М.Н. Ильясов

Сборник домашних заданий по высшей математике

Учебно-методическое пособие

3 часть

Павлодар

ББК 22.1 УДК 51(075.8) И 49

Министерство образования и науки Республики Казахстан

Павлодарский государственный педагогический институт

Кафедра Математического анализа

Рекомендовано к изданию решением Ученого Совета ПГПИ

Рецензенты:

Шакенов К.К. - доцент, зав.кафедрой Вычислительной математики КазНУ им. аль-Фараби.

Аяшинов М.М. - профессор, зав.кафедрой Математики ПаУ.

Ильясов М.Н.

И 49 Сборник домашних заданий по высшей математике.

3 часть.- Павлодар: ПГПИ, 2004.- 84 С.

ISBN 9965-652-75-0

Второе издание

Учебно-методическое пособие написано в соответствии с учебной программой по курсу высшей математики для инженерно-технических и физико-математических специальностей университетов. Оно содержит индивидуальные домашние задания (ИДЗ) по следующим разделам: функциям нескольких переменных, теории вероятностей и математической статистике, теории функций комплексной переменной и операционному исчислению. Кроме ИДЗ приведены необходимые теоретические сведения и методические указания по решению задач названных разделов. Пособие предназначено для студентов и преподавателей университетов.

$$U \frac{1602000000}{00 - (05) - 03}$$

ISBN 9965-652-75-0

Предисловие

В настоящее время ощущается нехватка дидактического материала по классическим разделам высшей математики (аналитической геометрии, высшей алгебре, математическому анализу, дифференциальным уравнениям и другим). Известно, что для выработок у студентов способности усвоения материала необходимо индивидуализировать не только контрольные работы, но и домашние задания. Это мнение подкрепляется личным опытом автора и моих коллег по кафедре.

самостоятельной работы студентов Увеличение ДЛЯ развития способностей предполагает соответствующее методическое обеспечение учебного процесса. Только задачники с подбором большого количества однотипных заданий позволяют проводить занятия с максимальной индивидуализацией. Этот сборник позволяет многим преподавателям продолжить метод обучения, который основывался на таких учебно-методических пособиях.

Данный сборник является третьей частью учебно-методических пособий под названием «сборник домашних заданий по высшей математике», написанного в соответствии с действующими программами курса высшей математики для инженерно-технических и физико-математических специальностей университетов. Это пособие также можно использовать и для других специальностей. Кроме того, он вполне доступен для студентов дистанционной формы обучения.

Весь комплекс учебно-методических пособий состоит из трех частей. Материал каждой части соответствует I-III семестрам учебного процесса. Для тех специальностей, которые курс высшей математики изучают в течении двух семестров, рекомендуется сделать необходимую выборку. Охарактеризую структуру пособия, методику его использования, организацию проверки и оценки знаний студентов. В первой части содержится материал по определителям, матрицам, линейной и векторной алгебре, аналитической геометрии, дифференциальному и интегральному исчислению функций одной переменной. Во второй части содержится материал по определенным, несобственным, кратным и криволинейным интегралами с их приложениями, дифференциальным vравнениям системам, рядам. В третьей части содержится материал по функциям нескольких переменных, теории вероятностей и математической статистике, теории функций комплексного переменного и операционному исчислению.

Весь практический материал III семестра по курсу высшей математики разделен на главы, а некоторые главы - на параграфы, в каждой из которых даются необходимые теоретические сведения (основные определения, понятия, формулы), используемые при решений задач и выполнении упражнений, изложение этих сведений иллюстрируется решенными примерами. В конце сборника приводятся индивидуальные домашние задания (ИДЗ) по материалам III семестра, которые разделены на 4 части (№№8-11). Эти ИДЗ рекомендуется выдавать в 4 этапа по 10 заданий в каждом, из расчета по 2 задания на одну учебную неделю. После приема

заданий одного этапа выдаются последующие. Каждое задание содержит по 20 вариантов. Практические занятия можно вести по так называемому блочно-цикловому методу оценки знаний, состоящий в следующем. Материал каждого семестра делится на 3-4 блока, по каждому из которых выполняется ИДЗ. В конце каждого цикла проводится письменная контрольная работа на одну пару, в которую входят 6-8 задач. Учет оценок за ИДЗ и контрольные работы позволяют вывести общую оценку за каждый блок и итоговую оценку за семестр.

Тогда оценка на экзамене, где в основном предлагаются теоретические вопросы, будет более объективной.

В заключение отмечу, что пособие в основном ориентировано на студента средних способностей, и усвоение содержащегося в нем материала гарантирует удовлетворительные и хорошие знания по курсу высшей математики. Для отлично успевающих студентов необходимы дополнительные индивидуальные задания повышенной сложности, которыми могут быть теоретические упражнения и нестандартные задачи.

Настоящий сборник адресован преподавателям и студентам и предназначен для проведения практических занятий, контрольных работ в аудиторий и выдачи индивидуальных домашних заданий по всем разделам курса высшей математики.

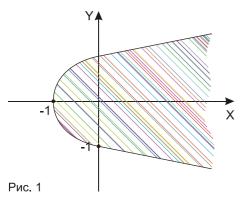
Глава 13 ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Для удобства рассмотрим функцию z = f(x, y) от двух переменных. Для функции с большим числом переменных все переносится по аналогии. Для этих функций определены все понятия, которые мы вводим для обычной функции, т.е. для функции от одной переменной.

Областью определения D функции z = f(x, y) является часть плоскости, ограниченная линиями.

Графиком этой функции является поверхность, образованная множеством точек пространства, координаты которых удовлетворяют данному уравнению z = f(x,y)

Пример 1. Найти область определения функции $z = \sqrt{x - y^2 + 1}$



Решение. Для существования значения z необходимо $x^{-y^2+1\geq 0}$ или $x^{+1\geq y^2}$. Для решения неравенства сначала нарису-ем график , которым является парабола. Эта линия делит плоскость на две части (внутреннюю и внешнюю к параболе). На одной из них выполняется неравенство $x^{+1\geq y^2}$. Легко проверить, что в данном случае это внутренняя часть параболы. Значит, областью определения является заштрихованная область вместе с границей.

Пример 2. Определить вид графика функции $z = \sqrt{4 - x^2 - y^2}$

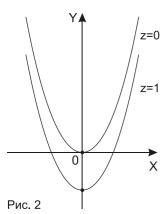
Решение. Сначала найдем область определения этой функции. Необходимо или $x^2+y^2 \le 4$ Отсюда следует, что областью определения будет круг радиуса $x^2+y^2 \le 4$ вместе с границей. Тогда множество $x^2+y^2 \le 4$ вместе с границей. Тогда множество пространства, координаты которых на области определения $x^2+y^2 \le 4$ пространства, координаты которых на области определения $x^2+y^2 \le 4$ пространства, координаты которых на области определения $x^2+y^2 \le 4$ образуют верхнюю полусферу радиуса $x^2+y^2 \le 4$ с центром в начале координат. Значит, графиком данной функции является верхняя полусфера.

Линией уровня называется такая линия, на всех точках которой данная функция принимает одно и то же значение.

Пример 3. Найти линию уровня функции $z = x^2 - y$

Решение. Очевидно, что областью определения функции является вся плоскость, так как для любых x и y можно найти значение z. Для построения линии уровня надо функции z придавать всевозможные числовые значения.

Пусть
$$z = 0$$
, тогда $0 = x^2 - y$ или $y = x^2$.



Строим график этой функции. Пусть z = 1, тогда $y = x^2 - 1$. Строим график и т.д. Линией уровня будет семейство парабол, полученных сдвигом вдоль оси ОҮ.

Надо отметить, что линии уровня между собой не пересекаются.

Пример 4. Найти линии уровня функции $z = \sqrt{x^2 + y^2 - 1}$

Решение. Областью определения является вся внешняя часть круга радиуса R=1. Все линии уровня - это окружности, поэтому получим семейство концентрических окружностей с центром в начале координат.

периодичность, предел непрерывность определяются по аналогии.

Частные производные определяются формулами:

Частные производные определяются формулами:
$$f'_{x}(x,y) = \lim_{\Delta_{x}\to 0} \frac{\Delta_{x}f}{\Delta x} \quad f'_{y}(x,y) = \lim_{\Delta_{y}\to 0} \frac{\Delta_{y}f}{\Delta y}, \text{ где}$$
$$\Delta_{x}f = f(x+\Delta x,y) - f(x,y) - 4$$
- частное приращение по x , - частное приращение по y . Отсюда следует, что частная производная по одного.

Отсюда следует, что частная производная по одной переменной является обычной производной по этой переменной, найденной при условии, что другая переменная - постоянная.

$$z = \arcsin \frac{x}{y}$$

Пример 5. Найти частные производные функции

$$f'_{x} = \frac{1}{\sqrt{1 - \left(\frac{x}{y}\right)^{2}}} \cdot \frac{1}{y} = \frac{1}{\sqrt{y^{2} - x^{2}}}$$

Решение.

$$f_y' = \frac{1}{\sqrt{1 - \left(\frac{x}{y}\right)^2}} \cdot \left(-\frac{x}{y^2}\right) = -\frac{x}{y\sqrt{y^2 - x^2}}$$

Пример 6. Найти частные производные функции $f_x' = \frac{1}{x^2 + y} \cdot 2x = \frac{2x}{x^2 + y} \quad f_y' = \frac{1}{x^2 + y} \cdot 1 = \frac{1}{x^2 + y}.$ Решение.

$$f'_{x} = \frac{1}{x^{2} + y} \cdot 2x = \frac{2x}{x^{2} + y}$$
 $f'_{y} = \frac{1}{x^{2} + y} \cdot 1 = \frac{1}{x^{2} + y}$

Решение.

По определению **частные производные второго порядка** находятся так: $f''_{xx} = (f'_x)'_x$, $f''_{yy} = (f'_y)'_y$, $f''_{xy} = (f'_x)'_y$, $f''_{yx} = (f'_y)'_x$, причем $f''_{xy} = f''_{yx}$.

Пример 7. Найти частные производные второго порядка для функции z = arctg(xy)

$$f'_{x} = \frac{1}{1 + (xy)^{2}} \cdot y = \frac{y}{1 + x^{2}y^{2}}$$
 $f'_{y} = \frac{1}{1 + (xy)^{2}} \cdot x = \frac{x}{1 + x^{2}y^{2}}$

Решение.

Тогда по определению

$$f''_{xx} = \left(\frac{y}{1+x^2y^2}\right)_x = \frac{-y}{(1+x^2y^2)} \cdot 2xy^2 = -\frac{2xy^3}{(1+x^2y^2)},$$

$$f'''_{yy} = \left(\frac{x}{1+x^2y^2}\right)_y = \frac{-x}{(1+x^2y^2)} \cdot x^2 \cdot 2y = -\frac{2x^3y}{(1+x^2y^2)},$$

$$f'''_{xy} = \left(\frac{y}{1+x^2y^2}\right)_y = \frac{1 \cdot (1+x^2y^2) - y \cdot x^2 \cdot 2y}{(1+x^2y^2)} = \frac{1-x^2y^2}{(1+x^2y^2)},$$

Полный дифференциал функции z = f(x, y) $dz = f'_x \cdot dx + f'_y \cdot dy$ определяется по формуле

Пример 8. Найти полный дифференциал функций $z = e^{xy}$. Решение. Найдем $f_x' = e^{xy} \cdot y$ $f_y' = e^{xy} \cdot x$ Тогла $dz = y \cdot e^{xy} dx + x \cdot e^{xy} dy = e^{xy} \left(y dx + x dy \right)$

Плоскость касательная к поверхности z = f(x, y) в точке $z - z_0 = f_x'(x_0, y_0)$, имеет уравнение $z - z_0 = f_x'(x_0, y_0)(x - x_0) + f_y'(x_0, y_0)(y - y_0)$

Пример 9. Составить уравнение касательной плоскости к поверхности $z = \sqrt{x^2 + y^2 - 4}$ B TOUKE M(2, -1, 1)

$$f'_{x} = \frac{1}{2\sqrt{x^{2} + y^{2} - 4}} \cdot 2x = \frac{x}{\sqrt{x^{2} + y^{2} - 4}} \qquad f'_{y} = \frac{1}{2\sqrt{x^{2} + y^{2} - 4}} \cdot 2y = \frac{y}{\sqrt{x^{2} + y^{2} - 4}},$$

$$f'_{x}(2, -1) = \frac{2}{\sqrt{2^{2} + (-1)^{2} - 4}} = \frac{2}{1} = 2 \qquad f'_{y}(2, -1) = \frac{-1}{\sqrt{2^{2} + (-1)^{2} - 4}} = \frac{-1}{1} = -1$$

$$z_{0} = \sqrt{2^{2} + (-1)^{2} - 4} = 1$$
и подставим их в формулу
$$z - 1 = 2(x - 2) - 1(y + 1)$$
и

$$z-1=2x-4-y-1$$

Omsem: $2x - \dot{y} - z - 4 = 0$

Из определений частных производных и полного дифференциала функции z = f(x,y) следует, что между полным приращением $\Delta z = \Delta f = f(x + \Delta x, y + \Delta y) - f(x,y)$ и полным дифференциалом df = dz существует приближенное равенство $\Delta f \approx df$, которое используется для приближенных вычислений.

Пример 10. Вычислить приблизительно $^{1,02^{2.05}}$

Решение. Введем функцию $f(x,y)=x^y$, приняв за x=1,02, y=2,05. Запишем соотношение в удобном виде: $f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + f'_x(x_0, y_0) \cdot \Delta x + f'_y(x_0, y_0) \cdot \Delta y$

Тогда, приняв $x_0=1$ $y_0=2$ $\Delta x=x-x_0=0.02$ $\Delta y=y-y_0=0.05$. Найдем $f_x'=yx^{y-1}$, $f_y'=x^y\ln x$, $f_x'(1,2)=2\cdot 1^{2-1}=2$, $f_y'(1,2)=1^2\ln 1=0$.

Подставляя эти значения в соотношение, получим: $1,02^{2.05} \approx 1^2 + 2 \cdot 0,02 + 0 \cdot 0,05 = 1 + 0,04 = 1,04 \qquad 1,02^{2.05} \approx 1,04$, т.е. z = f(x,y) , т.е. $f(x,y) = f(a,b) + f_x'(a,b) \cdot (x-a) + f_y'(a,b) \cdot (y-b) +$ в точке имеет вид:

$$+\frac{1}{2!} \left[f_{xx}''(a,b)(x-a)^{2} + 2 f_{xy}''(a,b)(x-a)(y-b) + f_{yy}''(a,b)(y-b)^{2} \right] + \dots + R_{n}(x,y)$$

Пример 11. Написать первые несколько слагаемых формулы Тейлора для функции $e^x \cos y$ в точке f(0,0)=1 ,

 $f'_{y} = e^{x} \cos y$ $f'_{y}(0,0) = 1 \cdot 1 = 1$ $f'_{y} = e^{x} (-\sin y)$ $f'_{y}(0,0) = 1 \cdot 0 = 0$ $f''_{xx} = e^x \cos y$, $f''_{xx}(0,0) = 1 \cdot 1 = 1$, $f''_{yy} = e^x(-\cos y)$, $f''_{yy}(0,0) = 1 \cdot (-1) = -1$ $f''_{xy} = e^x (-\sin y)$ $f''_{xy} (0,0) = 1 \cdot 0 = 0$ $e^{x} \cos y = 1 + 1 \cdot (x - 0) + 0 \cdot (y - 0) + \frac{1}{2!} \left[\cdot (x - 0)^{2} + 2 \cdot 0 \cdot (x - 0)(y - 0) + \right]$ Тогда

 $+(-1)(y-0)^{2}$ $+\dots$ $e^{x}\cos y = 1 + x + \frac{1}{2}x^{2} - \frac{1}{2}y^{2} + \dots$

Точка, в которой частные производные равны нулю или не существуют,

Экстремум функций z = f(x, y) возможен только в стационарной точке. Пусть $C = f''_{xy}(x_0, y_0)$ - стационарная точка. Найдем $A = f''_{xx}(x_0, y_0)$, $B = f''_{yy}(x_0, y_0)$,

Тогда при $\stackrel{\Delta = AB - C^2 > 0}{}$ экстремум есть, причем max, когда $\stackrel{A < 0}{}$, и min, когда $\stackrel{A > 0}{}$; при $\stackrel{\Delta > 0}{}$ экстремума нет; при $\stackrel{\Delta = 0}{}$ экстремум может быть, а

может и не быть, т.е. надо дополнительно исследовать с помощью производных более высоких порядков.

Пример 12. Исследовать на экстремум функцию $z = 2x + 2y - x^2 - y^2$. Решение. Найдем стационарные точки. $f_x' = 2 - 2x$, $f_y' = 2 - 2y$, решая [2-2x=0]

[2-2y=0], получим (1,1)

Стему , получим , стационарная точка. Найдем значение $\Delta = AB - C^2$, $f''_{xx} = -2$, $f''_{yy} = -2$, $f''_{xy} = 0$. Отсюда A = -2 , B=-2, C=0 $\Delta=(-2)(-2)-0^2=4>0$ $\Delta=(-2)(-2)-12^2=2+2-1-1=2$ является max. A=-2<0

Пусть требуется найти экстремум функции z = f(x, y), при условии, что аргументы x и y связаны уравнением $\phi(x,y)=0$. Такой экстремум называется условием.

1 способ. Из уравнения $\phi(x, y) = 0$ найти одну переменную, подставить в данную функцию и получить задачу на экстремум функции от одного аргумента.

 $2\ cnoco\delta\ (Лагранжа)$. Ввести новую переменную $^{\lambda}$ и искать экстремум для функции $^{z=f(x,y)+\lambda\phi(x,y)}$.

Для этого из системы надо найти стационарную точку, а переменную исключить.

Пример 13. Найти экстремум $z = y^2 - x^2$ при условии, что 2x - y + 3 = 0

Решение. Найдем *y* из условия y = 2x + 3 и подставим в данную функцию: Решение. Пандом у на условия $z = (2x+3)^2 - x^2 = 3x^2 + 12x + 9$ z' = 6x + 12 = 0 x = -2 , z'' = 6 > 0 . Значит, в точке x = -2 функция $z = y^2 - x^2$ имеет условный min. $z_{min} = 1 - (-2)^2 = -3$

Пример 14. Найти экстремум функции z = 2x + y при условии $x^2 + y^2 = 5$. *Решение*. Рассмотрим функцию $z = 2x + y + \lambda (x^2 + y^2 - 5)$. Составим систему

для нахождения стационарных точек.

$$\begin{cases} z'_{x} = 2 + 2x\lambda = 0 \\ z'_{y} = 1 + 2y\lambda = 0 \\ z'_{1} = x^{2} + y^{2} - 5 = 0 \end{cases}$$

Решим эту систему, x = 2y $4y^2 + y^2 = 5$ $y_{1,2} = \pm 1$ $x_{1,2} = \pm 2$, получили две $M_1(2,1)$ $M_2(-2,-1)$, получили две стационарные точки

 $z''_{xx} = 2\lambda$, $z''_{yy} = 2\lambda$, $z''_{xy} = 0$, $z''_{xy} =$ Экстремум есть.

Для точки
$$M_{_1}(2,1)$$
 $\lambda=-\frac{1}{2}$, $A=2\lambda=-1<0$, поэтому в точке $M_{_1}$ max. В точке $M_{_2}(-2,-1)$ $\lambda=\frac{1}{2}$, $A=2\lambda=1>0$, поэтому в точке $M_{_2}$ min. $Comsem$:

Для нахождения наибольшего и наименьшего значений функции в замкнутой области D необходимо найти все стационарные точки, лежащие внутри данной области и на ее границе, вычислить значения функции в этих точках. Затем найти экстремумы на границах области, а потом путем сравнения полученных чисел выбрать наибольшее и наименьшее из них.

Пример 15. Найти наибольшее и наименьшее значения функции $z = x^2 + 2xy + 4x - y^2$

Исследуем на границе x=0 . Тогда $z=-y^2$ и $z_{\max}=f(0,0)=0$,

. Исследуем на границе y=0 . Тогда $z=x^2+4x$, z'=2x+4=0 , x=-2 ,

. Исследуем на границе . Тогда y = -x - 2 $z = x^2 + 2x(-x-2) + 4x - (-x-2)^2 = x^2 - 2x^2 - 4x + 4x - x^2 - 4x - 4 = -2x^2 - 4x - 2$ z' = -4x - 4 = 0 x = -1 f(-1,-1) = -2

Сравнивая все полученные значения функции z, заключаем, что $\begin{pmatrix} z_{_{nau\delta}} = 0 \\ 0,0 \end{pmatrix}$ достигается в точке , а достигается в точках и .

Пример 16. Найти размеры емкости с открытым верхом формы прямоугольного параллелепипеда наибольшего объема, полная поверхность которой имеет площадь Р.

 Решение. Обозначим высоту - h, ширину - y, длину - x. Тогда
 V = xyh и $V = \frac{(P - xy)xy}{2(x + y)}$ и $V = \frac{(P - xy)xy}{2(x + y)}$. Найдем тах функции V
 xy + 2h(x + y) = P. Отсюда

$$\begin{cases} V'_{x} = \frac{(Py - 2xy^{2})(x + y) - (P - xy)xy}{2(x + y)^{2}} = 0 \\ V'_{y} = \frac{(Px - 2x^{2}y)(x + y) - (P - xy)xy}{2(x + y)^{2}} = 0 \end{cases} \Rightarrow \begin{cases} P - x^{2} - 2xy = 0 \\ P - y^{2} - 2xy = 0 \end{cases} \Rightarrow$$

$$x=y$$
 , $P=3x^2$, $x=\sqrt{\frac{P}{3}}$, $y=\sqrt{\frac{P}{3}}$, $y=\sqrt{\frac{P}{3}}=\frac{2}{2}\frac{P}{2\sqrt{\frac{P}{3}}}=\frac{1}{2}\sqrt{\frac{P}{3}}=\frac{1}{2}\sqrt$

 $V_{\text{max}} = \frac{P}{6} \sqrt{\frac{P}{3}}$ меньше стороны квадрата.

Глава 14

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

§1 Случайные события

 $P(A) = \frac{m}{n}$

A - событие, n - классическая формула вероятности события A, где n - число всех возможных элементарных исходов, m - число элементарных исходов, благоприятствующих, A.

Если A - достоверное событие, то P(A)=1; если A - невозможное событие, то P(A)=0, для других событий 0 < P(A) < 1.

Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. $P_n = n!$ - число всех возможных перестановок из n различных элементов.

Pазмещениями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются либо составом элементов,

 $A_n^m = \frac{n!}{(n-m)!}$

либо их порядком. - число всех возможных размещений по m элементов из n различных элементов.

Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются составом элементов. $C_n^m = \frac{n!}{m!(n-m)}$

- число всех возможных сочетаний по m элементов из n различных элементов.

Пример 1. Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит только один раз?

Решение. Это задание на перестановку, так как в каждой комбинации участвуют три различные цифры. $P_3 = 3! = 1 \cdot 2 \cdot 3 = 6$ чисел, а именно: 123, 132, 213, 231, 312, 321.

Пример 2. В турнире участвуют 5 шахматистов. Каждый с каждым играют по одной партии. Сколькими вариантами может образоваться тройка призеров?

 $A_5^3 = \frac{5!}{(5-3)} = \frac{5!}{2!} = 60$

Решение. Это задача на размещение из 5 по 3, то есть

Пример 3. В группе 9 студентов. Надо выбрать двоих. Сколько всего способов?

Решение. Это задание на сочетание из 9 по 2, то есть $C_9^2 = \frac{9!}{2!(9-2)!} = \frac{9!}{2!7!} = \frac{8 \cdot 9}{1 \cdot 2} = 36$

Пример 4. В урне 4 белых и 5 красных шаров. Наугад вынимают 2 шара. Найти вероятность того, что: а) они белые; б) разные.

$$P(A) = \frac{m}{n}$$

Peшение. а) A - событие, что шары белые, тогда n . Найдем n, то есть число всех возможных выборов двух шаров из урны, где лежат 9 n .

 $n = C_9^2 = \frac{9!}{2!7!} = 36$

шаров. Это задача на сочетание из 9 по 2, т.е.

Найдем m, то есть число таких выборов, когда оба шара белые. Это опять

 $m = C_4^2 = \frac{4!}{2!2!} = 6$

на сочетание, но теперь из 4 белых по 2, то есть $P(A) = \frac{m}{n} = \frac{6}{36} = \frac{1}{6}$. Тогда

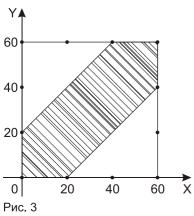
б) В - событие, что один шар белый, а другой шар красный. Тогда $P(B) = \frac{m}{n}$

m=36 . Найдем m, то есть число таких выборов, когда один шар белый, а другой - красный. Белый шар можно выбрать четырьмя способами, а красный - пятью, поэтому $m=C_4^1\cdot C_5^1=4\cdot 5=20$. Тогда $P(B)=\frac{m}{n}=\frac{20}{36}=\frac{5}{9}$

Классическая формула вероятности неприменима, когда число исходов $P(A) = \frac{\mu}{M}$

бесконечно много. В этом случае используется формула геометрической вероятности, где M - мера (длина, площадь, объем) всего объекта, μ - мера той части объекта, которая благоприятствует событию A.

Пример 5 (задача о встрече). Двое условились встретиться в определенном месте между 18 и 19 часами. Пришедший первым ждет второго в течение 20 минут, после чего уходит. Найти вероятность того, что встреча состоится, если каждый наудачу выбирает момент своего прихода в назначенном промежутке.



Решение. В квадрате ${}^{60\times60}$ каждой точке соответствует время в минутах после 18 часов прихода одного (x) и другого (y). Встреча состоится, если $|x-y| \le 20$. Этому соответствует заштрихованная фигура. Здесь мерой является площадь. M - площадь всего квадрата, μ - площадь заштрихованной фигуры (благо-приятствующая встрече). А - событие, что встреча состоится.

$$P(A) = \frac{S_{umpux}}{S_{\kappa gapagma}} = \frac{60 \cdot 60 - 40 \cdot 40}{60 \cdot 60} = \frac{36 - 16}{36} = \frac{20}{36} = \frac{5}{9}$$

Тогда

TO

Вероятность встречи больше ?, поэтому можно говорить, что она скорее состоится, чем не состоится. Если A и B - два несовместных события, то P(A+B)=P(A)+P(B)

Если события A_1 , A_2 , ..., A_n образуют полную группу, то $P(A_1) + P(A_2) + \dots + P(A_n) = 1$. В частности, при n = 2 события A_1 и A_2 называются противоположными и обозначаются через A_1 и A_2 называются A_1 и A_2 называются A_1 и A_2 называются противоположными и обозначаются через A_1 и A_2 называются A_1 и A_2 называются противоположными и обозначаются через A_1 и A_2 называются A_1 и A_2 называются противоположными и обозначаются через A_1 и A_2 называются A_1 и A_2 называются A_1 и A_2 называются противоположными и обозначаются через A_1 и A_2 называются A_1 и A_2 называются A_1 и A_2 называются A_1 и A_2 называются A_2 и A_3 называются A_1 и A_2 назыв

Пример 6. В урне 15 белых и 10 красных шара. Найти вероятность того, что среди 6 наудачу извлеченных шаров есть хотя бы один белый шар.

Решение. А - событие, что есть хотя бы один белый шар. Здесь проще найти вероятность A - событие, что все шары красные:

Тогла
$$P(A) = \frac{C_{10}^{6}}{C_{25}^{6}} = \frac{\overline{6! \cdot 4!}}{\overline{6! \cdot 19!}} = \frac{5 \cdot 5 \cdot 7 \cdot 8 \cdot 9 \cdot 10}{20 \cdot 21 \cdot 22 \cdot 23 \cdot 24 \cdot 25} = \frac{3}{2530} \approx 0,001$$

Тогда P(A) = 1 - P(A) = 1 - 0,001 = 0,999.

- условная вероятность, то есть вероятность события А, вычисленная в предположении, что событие В уже произошло.

, то события A и B называются независимыми. $P(AB) = P(A) \cdot P(B/A) = 0$ Для совместных событий A и B верна формула $P(AB) = P(B) \cdot P(AB) = 0$. Если события A и B несовместны, то P(AB) = P

Пример 7. В двух ящиках по 12 деталей. В одном ящике 8, а в другом 9 стандартных деталей. Из каждого ящика вынимают по одной детали. Найти вероятность того, что: а) вынутые детали будут стандартными; б) что одна деталь стандартная, а другая - нет.

Решение. А - событие, что деталь из первого ящика стандартная, В событие, что деталь из второго ящика стандартная.

 $P(A) = \frac{8}{12} = \frac{2}{3}$ $P(B) = \frac{9}{12} = \frac{3}{4}$. Так как события A и B независимые, а) Тогда $P(AB) = P(A) \cdot P(B) = \frac{2}{3} \cdot \frac{3}{A} = \frac{1}{2}$

б) С - событие, что одна деталь стандартная, а другая - нет. Тогда $P(C) = P(AB + AB) = P(AB) + P(AB) = P(A) \cdot P(B) + P(A) \cdot P(B) = P(A) \cdot P$ $=\frac{2}{3}\cdot\frac{1}{4}+\frac{1}{3}\cdot\frac{3}{4}=\frac{1}{6}+\frac{1}{4}=\frac{5}{12}$

Пусть D - событие, что вынутые детали будут нестандартными. События

АВ, С и D образуют полную группу, поэтому
$$P(D)=1-P(AB)-P(C)=1-\frac{1}{2}-\frac{5}{12}=\frac{1}{12}$$

Если n событий имеют одинаковую вероятность P, то вероятность появления хотя бы одного из этих событий равна $P(A)=1-(1-P)^n$

Пример 8. Монета бросается 4 раза. Найти вероятность того, что выпадет хотя бы один герб.

бросании монеты Решение. При одном выпадение герба имеет

$$P = \frac{1}{2} \qquad P(A) = 1 - \left(1 - \frac{1}{2}\right)^4 = 1 - \frac{1}{16} = \frac{15}{16}$$

Решение. При одном оросании монеты выпаден
$$P = \frac{1}{2} \qquad P(A) = 1 - \left(1 - \frac{1}{2}\right)^4 = 1 - \frac{1}{16} = \frac{15}{16}$$
 вероятность , поэтому .
$$P(A) = P(H_1) \cdot P\left(\frac{A}{H_1}\right) + P(H_2) \cdot P\left(\frac{A}{H_2}\right) + \dots + P(H_n) \cdot P\left(\frac{A}{H_n}\right) = \frac{1}{16}$$

вероятности, где $H_1, H_2, ..., H_n$ - полная группа событий (гипотеза).

Пример 9. В первой урне 3 белых и 5 красных шара, во второй - 6 белых и 4 красных. Из второй урны в первую наудачу перекладывают 2 шара. Найти вероятность того, что шар, наудачу извлеченный из первой урны, будет белым.

Решение. А - событие, что шар будет белым. Составим гипотезу (полную группу возможных событий) по поводу двух шаров, переложенных наудачу из второй урны в первую.

 H_1 - событие, что оба шара белые;

 H_2 - событие, что оба шара красные;

 H_3 - событие, что один шар белый и один красный.

Других вариантов быть не может, а одно из этих событий обязательно наступит, поэтому H_1 , H_2 , H_3 - полная группа событий. Тогда формула полной вероятности имеет вид

$$P(A) = P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2) + P(H_3) \cdot P(A/H_3)$$
 $P(H_1) = P(BC) = P(B) \cdot P(A/H_3)$
Найдем эти вероятности:

Найдем эти вероятности:

В - событие, что первый шар белый,

С - событие, что второй шар белый.

$$P(H_{1}) = \frac{6}{10} \cdot \frac{5}{9} = \frac{1}{3} \quad P(A_{H_{1}}) = \frac{5}{10} = \frac{1}{2}$$

$$P(H_{2}) = P(BC) = P(B) \cdot P(B) \cdot P(B) = \frac{4}{10} \cdot \frac{3}{9} = \frac{2}{15} \quad P(A_{H_{2}}) = \frac{3}{10}$$

$$P(H_{3}) = P(BC + BC) = P(BC) + P(BC) = \frac{6}{10} \cdot \frac{4}{9} + \frac{4}{10} \cdot \frac{6}{9} = \frac{8}{15} \quad P(A_{H_{3}}) = \frac{4}{10} = \frac{2}{5}$$

Подставляя в формулу, получим
$$P(A) = \frac{1}{3} \cdot \frac{1}{2} + \frac{2}{15} \cdot \frac{3}{10} + \frac{8}{15} \cdot \frac{2}{5} = \frac{1}{6} + \frac{1}{25} + \frac{16}{75} = \frac{21}{50} = 0,42$$

Событие A наступит с одной из гипотез $H_1, H_2, ..., H_n$, которые образуют полную группу. После того, как событие А наступило (или не наступило) можно определить, как изменились вероятности гипотез по формуле Байеса

$$P(H_i/A) = \frac{P(H_i) \cdot P(A/H_i)}{P(A)},$$
 где $i = 1, 2, ..., n$.

Пример 10. Мимо заправки проезжают легковых машин в 4 раза больше, чем грузовых. При этом заправляются каждая вторая грузовая машина и каждая пятая легковая. Найти вероятности того, что заправившаяся машина легковая.

Решение. Составим гипотезу: H_1 - событие, что заправилась легковая машина, H_2 - событие, что заправилась грузовая. А - событие, что машина заправилась. формуле полной вероятности заправилась. $P(A) = P(H_1) \cdot P(A_1) + P(H_2) \cdot P(A_2)$. Найдем эти вероятности и подставим в

формулу.

формулу. $P(H_1) = \frac{4}{5} \qquad P(H_2) = \frac{1}{5}$ и , так как по условию легковых в 4 раза больше $P\left(\frac{A}{H_1}\right) = \frac{1}{5} \qquad P\left(\frac{A}{H_2}\right) = \frac{1}{2}$ грузовых. и , так как по условию из легковых заправляется каждая пятая, а из грузовых - каждая вторая. Тогда $P(A) = \frac{4}{5} \cdot \frac{1}{5} + \frac{1}{5} \cdot \frac{1}{2} = \frac{13}{50}$. Теперь по формуле Байеса найдем

. Геперь по формуле Байес
$$P\begin{pmatrix} H_1/A \end{pmatrix} = \frac{\overline{5} \cdot \overline{5}}{13} = \frac{8}{13} \qquad P\begin{pmatrix} H_2/A \end{pmatrix} = \frac{\overline{5} \cdot \overline{2}}{13} = \frac{5}{13}$$

 $P(H_1) = \frac{4}{5}$ - было и $P(H_1/A) = \frac{8}{13}$ - стало, то

Исследуем эти вероятности. $P(H_1) > P(H_1/A) - P(H_2) < P(H_2/A)$ есть

Вероятность для грузовой машины увеличилась, так как среди них заправляются 50%, а среди легковых только 20%. $P_{n}(m) = \frac{n!}{m!(n-m)} p^{m} (1-p)^{n-m}$

$$P_n(m) = \frac{n!}{m!(n-m)!} p^m (1-p)^{n-m}$$

Формула Бернулли

где n - число испытаний, m - число испытаний, в которых наступает событие А, Р - вероятность наступления события А при одном испытании, $P_{n}^{(m)}$ - вероятность того, что при *n* испытаниях событие А наступит ровно *m* раз.

Пример 11. Монету бросают 5 раз. Найти вероятность того, что герб выпадет: а) один раз; б) не менее двух раз.

Pешение. a) По формуле Бернулли, где n=5, m=1, $P=\frac{1}{2}$, получим

$$P_5(1) = \frac{5!}{1!4!} \left(\frac{1}{2}\right)^1 \left(1 - \frac{1}{2}\right)^4 = 5 \cdot \frac{1}{2^5} = \frac{5}{32}$$

б) В - событие, что герб выпадет не менее двух раз.

$$P_5(0) = \frac{5!}{0!5!} \left(\frac{1}{2}\right)^0 \left(1 - \frac{1}{2}\right)^5 = \frac{1}{32}$$

Найдем

Тогда

События, что герб не выпадет, что герб выпадет один раз и В образуют $P_5(0) + P_5(1) + P(B) = 1$ $P(B) = 1 - \frac{5}{32} - \frac{1}{32} = \frac{13}{16}$ полную группу, поэтому $P_5(0)+P_5(1)+P(B)=1$. Отсюда

Для приближенного вычисления вероятности при больших значениях п используется локальная формула Лапласа:

$$P_n(m) \approx \frac{1}{\sqrt{npq}} \varphi(x)$$
, где $q = 1 - p$, $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, $x = \frac{m - np}{\sqrt{npq}}$

Функция $\phi(x)$ - четная, и ее значения удобно находить из таблицы. Пример 12. Монету бросают 100 раз. Найти вероятность того, что герб выпадет 40 раз.

Решение. Так как
$$n=100$$
 , то используем локальную формулу Лапласа.
$$P = \frac{1}{2} \quad q = 1 - \frac{1}{2} = \frac{1}{2} \quad m = 40 \quad \text{.}$$
 Отсюда
$$\phi(-2) = \phi(2) = 0.054$$

$$P_{100}(40) \approx \frac{1}{\sqrt{100 \cdot \frac{1}{2} \cdot \frac{1}{2}}} \cdot 0,054 = 0,011$$

Для приближенного вычисления вероятности того, что событие А появится в n испытаниях от m_1 раз до m_2 раз, используется интегральная формула Лапласа $P_n(m_1, m_2) \approx \Phi(x_2) - \Phi(x_1)$,

 $x_i = \frac{m_i - np}{\sqrt{npq}}$ $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$ - функция Лапласа, которую находят из гле таблицы.

Пример 13. Вероятность поражения мишени при одном выстреле равна 0,75. Найти вероятность того, что при 300 выстрелах мишень будет поражена не менее 150 и не более 250 раз.

менее 150 и не облее 250 раз. Решение. Здесь n = 300 $m_1 = 150$ $m_2 = 250$ P = 0.75 q = 0.25 . $x_1 = \frac{150 - 300 \cdot 0.75}{\sqrt{300 \cdot 0.75 \cdot 0.25}} = \frac{-75}{30 \cdot 0.25} = -10$ $x_2 = \frac{25}{30 \cdot 0.25} = \frac{10}{3} = 3.33$

Отсюда $\Phi(-10) = -0.5$ $\Phi(3,33) = 0.4995$. Подставляя в интегральную формулу Лапласа, $P_{300}(150,250) \approx 0.4995 - (-0.5) = 0.9995$.

Потоком событий называют последовательность событий, которые наступают в случайные моменты времени.

Интенсивностью потока $^{\lambda}$ называют среднее число событий, которые

появляются в единицу времени. κ событий простейшего потока за время tопределяется формулой:

 $P_{t}(\kappa) = \frac{(\lambda_{t})^{\kappa} e^{-\lambda_{t}}}{\kappa!}$

Пример 14. Среднее число вызовов, поступающих на АТС в одну минуту равно 2. Найти вероятность того, что за 3 минуты поступит: а) 5 вызовов; б) менее 3 вызовов; в) не менее 3 вызовов.

Решение. Здесь $\lambda = 2$, t = 3; t =Бупри $\kappa = 0$ $P_3(0) = e^{-6} = 0,0025$; $\rho_3(1) = 6 \cdot e^{-6} = 0,015$; $\rho_3(2) = \frac{6^2 e^{-6}}{2!} = 18 \cdot e^{-6} = 0,045$ P_3 P_3 $(\kappa < 3) = P_3(0) + P_3(1) + P_3(2) = 0,0625$

в) События «поступило менее 3 вызовов» и «поступило не менее 3 $P_3(\kappa \ge 3) = 1 - P_3(\kappa < 3) = 1 - 0.0625 = 0.9375$ вызовов» - противоположны, поэтому

§2 Дискретные случайные величины

Закон распределения дискретной случайной величины

$$p_1 + p_2 + \dots + p_n = 1$$

где x_i - случайные величины, p_1 - их вероятности, причем $p_1 + p_2 + ... + p_n = 1$

Основными дискретными распределениями являются:

а) биноминальное; б) геометрическое; в) Пуассона.

Они имеют следующие законы распределения:

a)
$$x \mid 0 \mid 1 \mid ... \mid \kappa \mid ... \mid n$$
 $p \mid q^{n} \mid npq^{n-1} \mid ... \mid C_{n}^{\kappa}q^{n-\kappa}p^{\kappa} \mid ... \mid p^{n}$

Возможными значениями случайной величины являются количество благоприятствующих исходов при *п* испытаниях. Вероятность вычисляется по формуле Бернулли.

Возможными значениями случайной величины являются количество которые испытаний, надо провести ДО первого появления благоприятствующего исхода. Вероятности образуют геометрическую прогрессию.

Это распределение возникает, когда n велико, а p - мало.

Возможными значениями случайной величины являются количество благоприятствующих исходов при *п* испытаниях. Вероятность вычисляется

$$Pn(\kappa) \approx \frac{\lambda^{\kappa} e^{-\lambda}}{\kappa!}$$
 $\lambda = np$

по формуле Пуассона

Пример 15. Игральный кубик брошен 4 раза. Написать распределения числа появлений тройки.

Решение. Случайная величина может принимать значения 0, 1, 2, 3, 4.

Найдем их вероятности по формуле Бернулли при $p = \frac{1}{6}$ и n = 4.

$$P_{4}(0) = \frac{4!}{0!4!} \left(\frac{1}{6}\right)^{0} \left(\frac{5}{6}\right)^{4} = \frac{625}{1296} \quad P_{4}(1) = 4\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{3} = \frac{125}{324}$$

$$P_{4}(2) = 6\left(\frac{1}{6}\right)^{2} \left(\frac{5}{6}\right)^{2} = \frac{25}{216} \quad P_{4}(3) = 4\left(\frac{1}{6}\right)^{3} \left(\frac{5}{6}\right) = \frac{5}{324} \quad P_{4}(4) = \left(\frac{1}{6}\right)^{4} \left(\frac{5}{6}\right)^{0} = \frac{1}{1296}$$

$$P_1 + P_2 + P_3 + P_4 + P_5 = \frac{625}{1296} + \frac{125}{324} + \frac{25}{216} + \frac{5}{324} + \frac{1}{1296} = 1$$

Проверим:

Пример 16. Производится бросание монеты. Написать закон распределения числа бросаний монеты до первого появления герба.

Решение. Это распределение геометрическое при

числовыми характеристиками случайной величины являются:

- 1) математическое ожидание $D(x) = M(x^2) (M(x))^2$;
- 3) среднее квадратическое отклонение
- 4) ассиметрия теоретического распределения
- 5) эксцесс теоретического распределения $\mu_{\kappa} = M \left((X M(x))^{\kappa} \right)^{\kappa}$ центральный момент порядка κ .

Пример 17. Монета брошена 3 раза. Найти числовые характеристики случайной величины числа выпадения герба.

Решение. Сначала найдем закон распределения этой случайной величины.

$$P_{3}(0) = \frac{3!}{0!3!} \left(\frac{1}{2}\right)^{0} \left(\frac{1}{2}\right)^{3} = \frac{1}{8} \qquad P_{3}(1) = 3\left(\frac{1}{2}\right)^{1} \left(\frac{1}{2}\right)^{2} = \frac{3}{8}$$

$$P_{3}(2) = 3\left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right) = \frac{3}{8} \qquad P_{3}(3) = \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{0} = \frac{1}{8}$$

Теперь найдем числовые характеристики.
$$M(x) = \frac{1}{8} \cdot 0 + \frac{3}{8} \cdot 1 + \frac{3}{8} \cdot 2 + \frac{1}{8} \cdot 3 = \frac{12}{8} = \frac{3}{2}$$

$$D(x) = \frac{1}{8} \cdot 0^2 + \frac{3}{8} \cdot 1^2 + \frac{3}{8} \cdot 2^2 + \frac{1}{8} \cdot 3^2 - \left(\frac{3}{2}\right)^2 = \frac{24}{8} - \frac{9}{4} = 3 - \frac{9}{4} = \frac{3}{4}$$

$$\delta(x) = \sqrt{D(x)} = \sqrt{\frac{3}{4}} = \frac{1,732}{2} = 0,866$$

Найдем центральные моменты порядка 3 и 4. $\mu_3 = M \left(X - M(x) \right)^3 \bot$

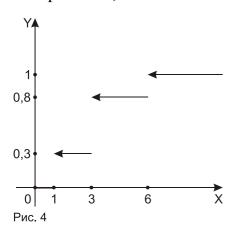
$$\begin{split} &= M \bigg[\bigg(X - \frac{3}{2} \bigg)^3 \bigg] = \frac{1}{8} \bigg(0 - \frac{3}{2} \bigg)^3 + \frac{3}{8} \bigg(1 - \frac{3}{2} \bigg)^3 + \frac{3}{8} \bigg(2 - \frac{3}{2} \bigg)^3 + \frac{1}{8} \bigg(3 - \frac{3}{2} \bigg)^3 = 0 \\ &\mu_4 = M \bigg[(X - M(x))^4 \bigg] = 0 \\ &= M \bigg[\bigg(X - \frac{3}{2} \bigg)^4 \bigg] = \frac{1}{8} \bigg(0 - \frac{3}{2} \bigg)^4 + \frac{3}{8} \bigg(1 - \frac{3}{2} \bigg)^4 + \frac{3}{8} \bigg(2 - \frac{3}{2} \bigg)^4 + \frac{1}{8} \bigg(3 - \frac{3}{2} \bigg)^4 = \frac{21}{16} \\ &A_s = \frac{\mu_3}{\delta^3(x)} = 0 \qquad E_\kappa = \frac{\mu_4}{\delta^4(x)} - 3 = \frac{21}{16} - 3 = -\frac{2}{3} \end{split}$$

Тогда , F(x) . F(x) . F(x) называется функция, равная вероятности события X < x , то есть F(x) = P(X < x) . F(x) . F(x) лискретной случайной величины имеет

ступенчатый вид, то есть является разрывной функцией.

Пример 18. Дискретная случайная величина X имеет закон распределения: *p* 0,3 0,5 0,2

| 0,3 | 0,5 | 0,2 | Найти функцию распределения и начертить ее график.
Решение. При
$$x \le 1$$
 $P(X < x) = 0 \Rightarrow F(x) = 0$; при $1 < x \le 3$ $P(X < x) = 0,3 \Rightarrow F(x) = 0,3$; при $3 < x \le 6$ $P(X < x) = 0,3 + 0,5 = 0,8 \Rightarrow F(x) = 0,8$; при $x > 6$ $P(X < x) = 1 \Rightarrow F(x) = 1$



Запишем полученный результат в виде:

$$F(x) = \begin{cases} 0, & npu & x \le 1, \\ 0,3, & npu & 1 < x \le 3, \\ 0,8, & npu & 3 < x \le 6, \\ 1, & npu & x > 6. \end{cases}$$

Теперь нарисуем ее график.

Вероятность того, что случайная величина примет значение в интервале $p(a \le x \le b) = F(b) - F(a)$ равна

Пример 19. Найти вероятность того, что случайная величина из примера

17 примет значение, заключенное в интервале (2, 5).

 $P(2 \le x \le 5) = F(5) - F(2)$

Решение.Эта вероятность по формуле равнаF(2)=0.3 F(5)=0.8 $P(2 \le x \le 5)=0.8-0.3=0.5$.Найдеми , поэтому

§3 Непрерывные случайные величины

Случайная ведичина называется непрерывной, если ее функция распределения F(x) есть непрерывная функция.

Плотностью распределения вероятностей непрерывной случайной f(x)величины называют функцию f(x) = F'(x)˜, равную производной от функции распределения, то есть

Тогда из формулы Ньютона-Лейбница следует, что

$$P(a \le x \le b) = F(b) - F(a) = \int_a^b f(x) dx$$

Пример 20. Случайная величина задана функцией распределения

$$F(x) = \begin{cases} 0, & \text{npu } x \le 0, \\ x, & \text{npu } 0 < x \le 1, \\ 1, & \text{npu } x > 1. \end{cases}$$

вероятность того, что $\binom{1}{4}, \frac{3}{4}$ Найти плотность распределения и случайная величина примет значение из интервала

Pешение. Найдем :

Решение. Наидем :
$$f(x) = F'(x) = \begin{cases} 0, & npu \ x \le 0, \\ 1, & npu \ 0 < x \le 1, \\ 0, & npu \ x > 1. \end{cases} \qquad f(x) = \begin{cases} 1, & npu \ x \in (0, 1], \\ 0, & npu \ x \in (0, 1] \end{cases}$$

$$P\left(\frac{1}{4} \le x \le \frac{3}{4}\right) = \int_{\frac{1}{4}}^{\frac{3}{4}} f(x) dx = \int_{\frac{1}{4}}^{\frac{3}{4}} 1 \cdot dx = x \Big|_{\frac{1}{4}}^{\frac{3}{4}} = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$$

Тогда

плотность распределения f(x), можно найти Зная функцию

$$F(x)$$
 по формуле $F(x) = \int_{-\infty}^{x} f(t) dt$

распределения

Пример 21. Найти функцию распределения по данной плотности распределения

$$f(x) = \begin{cases} 0, & npu \quad x \le 0, \\ \frac{\sin x}{2}, & npu \quad 0 < x \le \pi, \\ 0, & npu \quad x > \pi. \end{cases}$$

Решение. При $x \le 0$ F(x) = 0

При
$$0 < x \le \pi$$
 $F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{x} \frac{\sin t}{2} dt = -\frac{\cos t}{2} \Big|_{0}^{x} = \frac{1 - \cos x}{2}$

При
$$x > \pi$$

$$F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{\pi} \frac{\sin t}{2} dt + \int_{\pi}^{x} 0dt = -\frac{\cos t}{2} \Big|_{0}^{\pi} = \frac{1}{2} + \frac{1}{2} = 1$$

Итак, функция распределения имеет вид:

$$F(x) = \begin{cases} 0, & npu \ x \le 0, \\ \frac{1 - \cos x}{2}, & npu \ 0 < x \le \pi, \\ 1, & npu \ x > \pi. \end{cases}$$

Основными непрерывными распределениями являются:

а) нормальное; б) равномерное; в) показательное.

Нормальным называют распределение, которое описывается плотностью

a = M(x) - математическое ожидание этого распределения, $\delta^2 = D(x)$ - дисперсия.

называют распределения, которые Равномерным описываются $f(x) = \begin{cases} \frac{2}{b-a}, & npu \ x \in [a,b], \\ 0, & npu \ x \notin [a,b] \end{cases}$

плотностью

Показательным называют распределение, которое описывается $f(x) = \begin{cases} 0, & npu \ x < 0, \\ \lambda e^{-\lambda x}, & npu \ x \ge 0, \ \lambda > 0, \end{cases}$

плотностью

1/2 = M(x) - математическое ожидание этого распределения.

Плотность распределения f(x) имеет свойство $\int_{-\infty}^{\infty} f(x) dx = 1$. Числовые характеристики непрерывных случайных

величин определяются по формулам:

 $M(x) = \int xf(x)dx \quad D(x) = \int x^2 f(x)dx - (M(x))^2 \quad \mu_{\kappa} = \int (x - M(x))^{\kappa} f(x)dx$

Пример 22. Найти числовые характеристики непрерывной случайной $f(x) = \begin{cases} 1, & npu \ x \in [0,1], \\ 0, & npu \ x \in [0,1] \end{cases}$

величины х, с плотностью распределения

 $M(x) = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} xdx = \frac{x^{2}}{2}\Big|_{0}^{1} = \frac{1}{2}$ Решение.

 $D(x) = \int_{0}^{1} x^{2} f(x) dx - \left(\frac{1}{2}\right)^{2} = \frac{x^{3}}{3} \Big|_{0}^{1} - \frac{1}{4} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad \delta = \sqrt{D(x)} = \frac{1}{2\sqrt{3}}$

Найдем центральные моменты порядка 3 и 4.

 $\mu_{3} = \int_{0}^{1} \left(x - \frac{1}{2} \right)^{3} dx = \frac{\left(x - \frac{1}{2} \right)^{4}}{4} = 0 \quad \mu_{4} = \int_{0}^{1} \left(x - \frac{1}{2} \right)^{4} dx = \frac{\left(x - \frac{1}{2} \right)^{5}}{5} = \frac{1}{80}$

$$A_{s} = \frac{\mu_{3}}{\delta^{3}(x)} = \frac{0}{\delta^{3}(x)} = 0$$

$$E_{\kappa} = \frac{\mu_{4}}{\delta^{4}(x)} - 3 = \frac{\frac{1}{80}}{\frac{1}{144}} - 3 = \frac{9}{5} - 3 = -\frac{6}{5}$$
Тогда

Для нормально распределенной случайной величины вероятность того, что ее значение принадлежит интервалу (α,β)

ее значение принадлежи. $P(\alpha < x < \beta) = \phi \left(\frac{\beta - a}{\delta}\right) - \phi \left(\frac{\alpha - a}{\delta}\right)$, где $\phi(x)$ - функция Лапласа (§1).

Пример 23. Плотность распределения случайной величины имеет вид $f(x) = \frac{1}{5\sqrt{2\pi}}e^{-\frac{(x-10)^2}{50}}$

Найти вероятность того, что x примет

по формуле найдем нужную вероятность:

$$P(-5 < x < 15) = \phi \left(\frac{15 - 10}{5}\right) - \phi \left(\frac{-5 - 10}{5}\right) = \phi(1) - \phi(-3) = \phi(1) + \phi(3) =$$
 $= 0.3412 + 0.4987 = 0.84$
. Значения $\phi(1)$ и $\phi(3)$ найдены из таблицы.

Для равномерно распределенной случайной величины вероятность того, что ее значение принадлежит интервалу $P(\alpha < x < \beta) = \frac{\beta - \alpha}{b - a}$, равна

$$P(\alpha < x < \beta) = \frac{\beta - \alpha}{b - a}$$

Эта же вероятность для показательного распределения равна $P(\alpha < x < \beta) = e^{-\lambda \alpha} - e^{-\lambda \beta}$

Пример 24. Случайная величина распределена по закону $f(x) = \begin{cases} 0, & npu \ x < 0, \\ 4e^{-4x}, & npu \ x \ge 0. \end{cases}$

Найти числовые характеристики и вероятность того, что попадет в интервал

$$M(x) = \int_{-\Re}^{\infty} xf(x)dx = 4\int_{0}^{\infty} xe^{-4x}dx = \begin{bmatrix} u = x \\ dv = 4e^{-4x}dx \\ du = dx \\ v = -e^{-4x} \end{bmatrix} =$$

Решение.

$$=-xe^{-4x}\Big|_0^{\infty}+\int_0^{\infty}e^{-4x}dx=-\frac{1}{4}e^{-4x}\Big|_0^{\infty}=0+\frac{1}{4}=0,25$$

$$D(x) = \int_{0}^{\infty} x^{2} f(x) dx - [M(x)]^{2} = 4 \int_{0}^{\infty} x^{2} e^{-4x} dx - (0.25)^{2} = \begin{bmatrix} u = x^{2} \\ dv = 4e^{-4x} dx \\ du = 2x dx \\ v = -e^{-4x} \end{bmatrix} = -x^{2} e^{-4x} \Big|_{0}^{\infty} + \frac{1}{2} \int_{0}^{\infty} x^{2} e^{-4x} dx - (0.25)^{2} = \begin{bmatrix} u = x^{2} \\ dv = 4e^{-4x} dx \\ v = -e^{-4x} \end{bmatrix}$$

$$+2\int_{0}^{\infty} xe^{-4x}dx - 0,0625 = \frac{1}{2}M(x) - 0,0625 = \frac{1}{2} \cdot 0,25 - 0,0625 = 0,125 - 0,0625 = 0,0625$$
$$\delta = \sqrt{D(x)} = 0,25$$

$$P(0 < x < \frac{1}{4}) = e^{-4.0} - e^{-4.\frac{1}{4}} = 1 - e^{-1} = 1 - \frac{1}{e}$$

$$R(t)$$
Here we we have

Найдем вероятность

Функцией надежности R(t) называют функцию, определяющую вероятность безотказной работы элемента за время t, то есть .

Показательным законом надежности называют функцию надежности,

когда $R(t) = e^{-\lambda t}$, где λ - интенсивность отказов. Пример 25. Время безотказной работы элемента распределено по показательному закону $f(x) = 0.01 \cdot e^{-0.01t}$, t - в часах. Найти вероятность того, что элемент проработает безотказно 100 часов.

Решение. По ус $R(100) = e^{-0.01\cdot 100} = e^{-1} = \frac{1}{e} \approx 0.37$ условию формуле Отсюда

Искомая вероятность равна 0,37.

§4 Математическая статистика

1 Точечные оценки неизвестных параметров

Точечной называют статистическую оценку, которая определяется одним

Точечная оценка, математическое ожидание которой равно оцениваемому параметру, называется несмещенной. Иначе точечная оценка называется смещенной.

Для выборки
$$x_i \mid x_1 \mid x_2 \mid \dots \mid x_k$$
 $n_i \mid n_1 \mid n_2 \mid \dots \mid n_k$

выборочная средняя

$$x_{B} = \left(\sum_{i=1}^{L} n_{i} x_{i}\right) / n$$

 $x_B = \left(\sum_{i=1}^{L} n_i x_i\right) / n$ служит несмещенной оценкой

$$n = \sum_{i}^{k} n_{i}$$

генеральной средней, где x_i - варианты, n_i - частоты, выборки.

$$D_{\scriptscriptstyle B} = \left(\sum_{\scriptscriptstyle i=1}^{k} n_{\scriptscriptstyle i} (x_{\scriptscriptstyle i} - x_{\scriptscriptstyle B})^{\scriptscriptstyle 2}\right) / n$$
 служит смещенной оценкой

Выборочная дисперсия генеральной дисперсии.

Несмещенной оценкой генеральной дисперсии служит исправленная

$$S^2 = \frac{n}{n-1}D_B$$

выборочная дисперсия

Пример 1. Для выборки

Найти выборочную среднюю и исправленную дисперсию.
$$x_B = \frac{(16 \cdot 2 + 12 \cdot 5 + 5 \cdot 7 + 14 \cdot 10)}{50 = 2,76}$$
 Решение.
$$S^2 = \frac{50}{49} \cdot \frac{\left(16 \cdot 3,76^2 + 12 \cdot 0,76^2 + 8 \cdot 1,24^2 + 14 \cdot 4,24^2\right)}{50} = \frac{\left(226,2 + 6,9 + 12,3 + 251,7\right)}{49} = \frac{497,1}{49} \approx 10,14$$

Метод моментов. Для точечной оценки неизвестных параметров приравнивают теоретические моменты соответствующим эмпирическим моментам.

Пример 2. Случайная величина x подчинена нормальному распределения и имеет выборку

Найти методом моментов точечные оценки неизвестных параметров а (математического ожидания) и $^{\delta}$ (среднего квадратического отклонения).

 $v_{\kappa} = \left(\sum_{i=1}^{m} n_{i} x_{i}^{\kappa}\right) / n$ начальный момент порядка κ . Приравняем ские моменты: $V_1 = M_1$, $\mu_2 = m_2$. Отсюла Решение. теоретические и эмпирические $a^* = M(x) = X_B \qquad \delta^* = \sqrt{D_B}$

Как в примере 1, найдем X_B и D_B . $X_B = \frac{1}{6} \cdot 0.3 + 9 \cdot 0.5 + 26 \cdot 0.7 + 25 \cdot 0.9 + 30 \cdot 1.1 + 26 \cdot 1.3 + 21 \cdot 1.5 + 24 \cdot 1.7 + 20 \cdot 1.9 + 8 \cdot 2.2 + 5 \cdot 2.3}{200} = \frac{1}{8} \cdot 4.5 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 + 22.5 + 33 + 33.8 + 31.5 + 40.8 + 38 + 17.6 + 18.2 +$ +11,5)/200 = 253,2/200 = 1,266 $D_B = (6 \cdot 0.3^2 + 9 \cdot 0.5^2 + 26 \cdot 0.7^2 + 25 \cdot 0.9^2 + 30 \cdot 1.1^2 + 26 \cdot 1.3^2 + 21 \cdot 1.5^2 + 24 \cdot 1.7^2 + 20 \cdot 1.9^2 + 8 \cdot 2.2^2 + 5 \cdot 2.3^2) / 200 - 1.266^2 = (0.54 + 2.25 + 12.74 + 20.25 + 36.3 + 20.25 + 20$ + 43,94 + 47,25 + 69,36 + 72,2 + 38,72 + 26,45)/200 - 1,603 = 370/200 - 1,603 = = 1,850 -1,603 = 0,247 δ * = $\sqrt{D_B}$ = 0,497

Для точечной оценки неизвестных параметров существуют еще методы наибольшего правдоподобия и наименьших квадратов.

2 Интервальные оценки неизвестных параметров

Интервальной называют оценку, которая определяется двумя числами концами интервала, покрывающего оцениваемый параметр.

Доверительным называют интервал, который покрывает неизвестный параметр с заданной надежностью

Для случайной величины, распределенной по нормальному закону, доверительными интервалами являются: для оценки математического

ожидания $a^{X_B - \Delta < a < x_B + \Delta}$, где - точность оценки при известном $^{\delta}$

 $\Phi(t) = \frac{\gamma}{2}$, $\Phi(t)$ - функция Лапласа; при неизвестном δ , а tопределяют из таблицы.

Для оценки среднего квадратического отклонения $\max_{\max \{0,S(1-q)\}<\delta < S(1+q)}^{\delta}$

где q определяют из таблицы.

Пример 3. Найти доверительный интервал для оценки с надежностью 0,9 неизвестного математического ожидания а нормально распределенного генеральной совокупности, если генеральное признака $\delta = 4$, выборочная средняя $X_B = 13,6$ и объем квадратическое отклонение выборки n=36

 $\Delta = \frac{t\delta}{\sqrt{n}} = \frac{t \cdot 4}{\sqrt{36}} = \frac{2t}{3}$

Решение. Требуется найти точность оценки

 $\Phi(t) = \frac{0.9}{2} = 0.45$

Теперь найдем t из соотношения

Из таблицы находим $\begin{array}{c} \Delta = \frac{2 \cdot 1,645}{3} = \frac{3,29}{3} = 1,1 \\ X_B - \Delta < a < x_B + \Delta \\ 12,5 \le a \le 14.7 \end{array}$, получим доверительный интервал 12,5 < a < 14,7

Пример 4. Из генеральной совокупности извлечена выборка (пример 2). Оценить с надежностью 0,95 математическое ожидание а нормально генеральной распределенного признака совокупности помощью доверительного интервала ($^{n=200}$).

Решение. Выборочную среднюю и исправленное среднее квадратическое отклонение S найдем по формулам (как в примере 2).

лонение S наидем по формулам (как в примере 2)
$$X_B = 1,266 \qquad S^2 = \frac{n}{n-1} \cdot D_B = \frac{200}{199} \cdot 0,247 = 0,248$$

$$S = 0,498$$

. Теперь найдем t из таблицы по $\gamma = 0.95$, n = 200 , t = 1.96

 $\Delta = \frac{t \cdot S}{\sqrt[3]{n}} = \frac{1,96 \cdot 0,498}{\sqrt{200}} = 0,069$ Отсюда

Подставляя в формулу, получим 1,266-0,069 < a < 1,266+0,069

1,197 < *a* < 1,335

Пример 5. Произведено 12 измерений одним прибором некоторой величины, исправленное среднее квадратическое отклонение S=0.8 . Найти точность прибора с надежностью 0,95. Предполагается, что результаты измерений распределены нормально.

Решение. Точность прибора характеризуется средним квадратичным отклонением случайных ошибок измерений. Поэтому найдем доверительный интервал для δ . Из таблицы найдем q по q=0.55 . Подставляя в формулу q=0.55 . Подставляя в формулу q=0.550. q=0.550.

, , , , , , ,

Глава 15 ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

§1 Комплексные числа и действия над ними

Выражение вида z = x + iy, где x, y - действительные числа, а i - мнимая единица, удовлетворяющая условию $i^2 = -1$, называется алгебраической формой комплексного числа. При этом x называется действительной частью комплексного числа и обозначается x = x, а y называется мнимой частью комплексного числа и обозначается $\operatorname{Im} z = y$

 $z_1 = x_1 + iy_1$ равно комплексному числу $z_2 = x_2 + iy_2$ Комплексное число $\begin{cases} x_1 = x_2, \\ y_1 = y_2. \end{cases}$ Комплексное има

Комплексное число z = x - iy называется сопряженным к комплексному z = x + iy числу

Действия над комплексными числами в алгебраической форме

 $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ - два комплексных числа.

- I. Суммой $z_1 + z_2$ называется комплексное число $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$.
- 2. Произведением комплексного числа z_1 на действительное число называется комплексное число $\alpha z_1 = \alpha x_1 + \alpha y_1 i$
- 3. Произведением $z_1 z_2$ называют комплексное число, которое получается перемножением чисел $x_1 + iy_1$ и $x_2 + iy_2$ как алгебраических двучленов, учитывая, что $i^2 = -1$:

 $z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = x_1 x_2 + iy_1 x_2 + ix_1 y_2 + i^2 y_1 y_2 = (x_1 x_2 - y_1 y_2) + i(y_1 x_2 + x_1 y_2).$

Заметим, что к комплексным числам применимы все формулы частности, перемножая комплексно сокращенного умножения. В частности, пер сопряженные числа z = x + iy z = x - iy , получим, что $zz = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2$

4. Для нахождения частного z_1/z_2 , где $z_2 \neq 0$, надо числитель и знаменатель этой дроби умножить на число, сопряженное знаменателю, т.е.

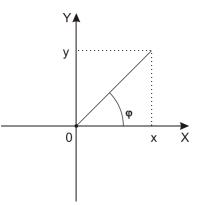
$$\frac{z_{1}}{z_{2}} = \frac{x_{2} - iy_{2}}{x_{2} + iy_{1}} \cdot \frac{\text{Получим}}{(x_{1} + iy_{1})(x_{2} - iy_{2})} = \frac{(x_{1}x_{2} + y_{1}y_{2}) + i(y_{1}x_{2} - x_{1}y_{2})}{(x_{2} + iy_{2})(x_{2} - iy_{2})} = \frac{(x_{1}x_{2} + y_{1}y_{2}) + i(y_{1}x_{2} - x_{1}y_{2})}{x_{2}^{2} + y_{2}^{2}} = \frac{x_{1}x_{2} + y_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}} + \frac{y_{1}x_{2} - x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}} i$$

Полученное комплексное число называется частным от деления комплексного числа z_1 на комплексное число z_2 .

$$z = \frac{(1-i)^2}{(2+i)^3} - 3(2-5i) + (1-2i)(4-i)$$

Пример 1. Вычислить

. Вычислить
$$z = \frac{-2i}{8+12i-6-i} - 6+15i+4-8i-i-2 = \frac{-2i}{2+11i} - 4+6i =$$

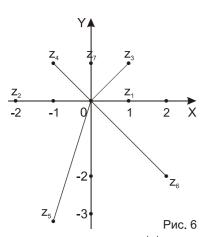


$$=\frac{-2i\left(2-11i\right)}{2^2+11^2}-4+6i=\frac{-4i-22}{125}-4+6i=\left(-\frac{22}{125}-4\right)+\left(-\frac{4}{125}+6\right)i=-\frac{522}{125}+\frac{746}{125}i$$

Комплексное число z=x+iy изображают точкой с координатами x,y на плоскости ХОҮ. Если провести из начала координат вектор x,y , то его длина x называется модулем комплексного числа z и обозначается z=x+iy , а угол, который этот вектор составляет с положительным направлением оси x=x+iy обозначается x=x+iy , причем x=x+iy , где x=x+iy , где x=x+iy , причем x=x+iy , где x=x+iy , где

$$\arg z = \begin{cases} arctg \frac{y}{x}, & ecnu \ x > 0, \\ \pi + arctg \frac{y}{x}, & ecnu \ x < 0, \ y \ge 0, \\ -\pi + arctg \frac{y}{x}, & ecnu \ x < 0, \ y < 0, \\ \frac{\pi}{2}, & ecnu \ x = 0, \ y > 0, \\ -\frac{\pi}{2}, & ecnu \ x = 0, \ y < 0. \end{cases}$$

(1)



Вычислив r = |z| и $\phi = Argz$, любое комплексное число z можно записать в игонометрической форме, подставив $x = r\cos \phi$; $y = r\sin \phi$ в выражение x+iy. тригонометрической форме, подставив $x = r(\cos \phi + i \sin \phi)$ Таким образом, получим

Пример 2. Представить числа $z_1 = 1$, $z_2 = -2$, $z_3 = 1+i$, $z_4 = -1+i$, $z_5 = -1-3i$, $z_6 = 2 - 2i$, $z_7 = i$ в тригонометрической форме.

Решение. Изображаем заданные комплексные числа точками плоскости

Поэт почками пло для нахождения $\phi = \arg z$ воспользуемся формулой (I). 1. Имеем $z_1 = 1 = 1 + 0i$ для него $z_1 = 1 + 0i$ для него $z_2 = -2 = -2 + 0i$ для него $z_3 = 1 + i$ для него $z_4 = 1 + i$ для него $z_5 = 1 + i$ для не

4. $z_4 = -1 + i$, $r_4 = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$, $\varphi_4 = \pi + arctg \frac{1}{-1} = \pi - \frac{\pi}{4} = \frac{3}{4}\pi$ поэтому $z_4 = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$

5. $z_5 = -1 - 3i$, $r_5 = \sqrt{(-1)^2 + (-3)^2} = \sqrt{10}$, $\varphi_5 = -\pi + arctg \frac{-3}{-1} = -\pi + arctg 3$ $z_5 = \sqrt{10} \left(\cos \left(arctg 3 - \pi \right) + i \sin \left(arctg 3 - \pi \right) \right)$

6. $z_6 = 2 - 2i$, $r_6 = \sqrt{2^2 + (-2)^2} = 2\sqrt{2}$, $\varphi_6 = arctg \frac{-2}{2} = arctg (-1) = -\frac{\pi}{4}$ $z_6 = 2\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$

7.
$$z_7 = i = 0 + 1i$$
, $\varphi_7 = \frac{\pi}{2}$, $r_7 = 1$, $z_7 = \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$.

 $e^{iy} = \cos y + i \sin y$ Тогда Положим определению ПО

z = x + iy =

 $= r(\cos \varphi + i \sin \varphi) = re^{iy}$, и выражение $z = re^{iy}$ называется показательной формой комплексного числа.

- Действия над комплексными числами в тригонометрической форме: 1. Умножение. Пусть $z_1 = r_1 \cos \varphi_1 + i \sin \varphi_1$, $z_2 = r_2 \cos \varphi_2 + i \sin \varphi_2$. Тогда $z_1 z_2 = r_1 \cos \varphi_1 + i \sin \varphi_1$) $z_2 \cos \varphi_2 + i \sin \varphi_2$. $= r_1 r_2 \left(\left(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 \right) + i \left(\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2 \right) \right) =$

 $=r_1r_2\cos\phi_1\cos\phi_1+\phi_2$) $+i\sin(\phi_1+\phi_2)$, то есть при умножении модули комплексных чисел перемножаются, а аргументы - складываются.

- 2. Деление. Пусть $z_2 \neq 0$. Тогда $\cos \varphi_1 + i \sin \varphi_1$. $\cos \varphi_1 + i \sin \varphi_2$. $\cos \varphi_1 + i \sin \varphi_2$. $\cos \varphi_1 + i \sin \varphi_2$. $\cos \varphi_2 + i \sin \varphi_2$. $\cos \varphi_2 + i \sin \varphi_2$. $=\frac{r_1}{r_2}\left(\cos\left(\varphi_1-\varphi_2\right)+i\sin\left(\varphi_1-\varphi_2\right)\right).$
- 3. Возведение комплексного числа в степень. Пусть

 $z^n = r^n (\cos n\varphi + i \sin n\varphi).$ **(2)**

4. Извлечение корней из комплексного числа.

Существует ровно n значений корней степени n uз z. Они могут быть вычислены по формуле:

числены по формуле.
$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right)$$
, где $k = 0, 1, ..., n-1$. (3)
Обозначим эти корни
$$\frac{\varepsilon_0, \varepsilon_1, ..., \varepsilon_{n-1}}{(-1+i)^{100}}$$
. Пример 3. Вычислить
$$\frac{(-1+i)^{100}}{r}$$
. Пример 2). Торка на формула надрими:

пример 2). Тогда по формуле получим:

$$z^{100} = \sqrt{2} \int_{00}^{00} \left(\cos \left(100 \frac{3\pi}{4} \right) + i \sin \left(100 \cdot \frac{3\pi}{4} \right) \right) =$$

$$= 2^{50} \left(\cos 75\pi + i \sin 75\pi \right) = 2^{50} \left(\cos \left(74\pi + \pi \right) + i \sin \left(74\pi + \pi \right) \right) = 2^{50} \left(\cos \pi + i \sin \pi \right) = -2^{50}$$

Пример 4. Вычислять все значения $\sqrt[4]{2-2i}$

Решение. Число z = 2 - 2i представим в тригонометрической форме (см.

 $z = \sqrt{8} \left(\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right)$ пример 2.):

 $\sqrt[4]{z} = \sqrt[4]{\sqrt{8}} \left(\cos \frac{-\frac{\pi}{4} + 2\pi\kappa}{4} + i\sin \frac{-\frac{\pi}{4} + 2\pi\kappa}{4}\right), \quad k = 0, 1,$ Согласно формуле (3) имеем: 2, 3.

$$\epsilon_{_0} = \sqrt[8]{8}(\cos(-\frac{\pi}{16}) + i\sin(-\frac{\pi}{16})) = \sqrt[8]{8}(\cos\frac{\pi}{16} - i\sin\frac{\pi}{16}).$$
 При $k = 0$ получим

При
$$\mathbf{k}=1$$
:
$$\epsilon_1 = \sqrt[8]{8}(\cos\frac{-\frac{\pi}{4}+2\pi}{4}+i\sin\frac{-\frac{\pi}{4}+2\pi}{4}) = \sqrt[8]{8}(\cos\frac{7\pi}{16}+i\sin\frac{7\pi}{16}).$$
 При $\mathbf{k}=1$:
$$\epsilon_2 = \sqrt[8]{8}(\cos\frac{-\frac{\pi}{4}+4\pi}{4}+i\sin\frac{-\frac{\pi}{4}+4\pi}{4}) = \sqrt[8]{8}(\cos\frac{15\pi}{16}+i\sin\frac{15\pi}{16})$$
 При $\mathbf{k}=2$:
$$\epsilon_3 = \sqrt[8]{8}(\cos\frac{-\frac{\pi}{4}+6\pi}{4}+i\sin\frac{-\frac{\pi}{4}+6\pi}{4}) = \sqrt[8]{8}(\cos\frac{23\pi}{16}+i\sin\frac{23\pi}{16}).$$
 При $\mathbf{k}=3$:

Напомним, как находятся корни квадратного уравнения с отрицательным дискриминантом: $z^2 + 2z + 5 = 0$.

$$z_{1,2} = -1 \pm \sqrt{1-5} = -1 \pm \sqrt{-4} = -1 \pm 2\sqrt{-1} = -1 \pm 2i$$

Уравнение $z^n = a$, где $a \in (-\infty, \infty)$ имеет ровно п комплексных решений: $z = \sqrt[n]{a}$

Пример 5. Решить уравнение: $z^3 = -8$. Решение. $z^3 = -8$, поэтому $z = \sqrt[3]{-8}$. Число -8 представим тригонометрической форме: $\pi + 2\pi\kappa$. $\pi + 2\pi\kappa$.

Поэтому
$$\frac{\sqrt[3]{-8}}{3} = 2(\cos\frac{\pi + 2\pi\kappa}{3} + i\sin\frac{\pi + 2\pi\kappa}{3})$$
, $k = 0, 1, 2$. $\epsilon_0 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 1 + i\sqrt{3}$. При $k = 0$. $\epsilon_1 = 2(\cos\frac{\pi + 2\pi}{3} + i\sin\frac{\pi + 2\pi}{3}) = 2(\cos\pi + i\sin\pi) = -2$. При $k = 1$. $\epsilon_2 = 2(\cos\frac{\pi + 4\pi}{3} + i\sin(\frac{\pi + 4\pi}{3})) = 2(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}) = 1$. При $k = 2$ $= 2(\cos(2\pi - \frac{\pi}{3}) + i\sin(2\pi - \frac{\pi}{3})) = 2(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}) = 1 - i\sqrt{3}$

§2 Функции комплексного переменного

Пусть комплексное переменное z = x + iy принимает некоторого множества А. Если каждому значению $z \in A$ можно поставить в соответствие одно или несколько значений другого комплексного переменного w = u + iv, то комплексное переменное w называют функцией комплексного переменного z и обозначают w = f(z). При этом, если каждому $z \in A$ соответствует единственное значение w, то говорят, что однозначная функция; если же хотя бы одному $z \in A$ соответствует несколько значений w = f(z), то w = f(z) - многозначная функция. Если w=u+iv является функцией от z=x+iy , то u и v являются функциями от x и y , т.е. u=u(x,y) , v=v(x,y) и можно записать w=f(z)=u(x,y)+iv(x,y) , где u(x,y)v(x,y) - функции действительного соответственно действительной и мнимой частью функции

Пример 6. Выделить действительную и мнимую части функции

Решение.
$$z = x + iy$$
, $z = x - iy$ $zz = x^2 + y^2$
$$z^2 = (x + iy)^2 = x^2 - y^2 + 2xyi$$

$$\frac{1}{z^2} = \frac{x^2 - y^2 - 2xyi}{(x^2 - y^2 + 2xyi)(x^2 - y^2 - 2xyi)} = \frac{x^2 - y^2 - 2xyi}{(x^2 - y^2) + 4x^2y^2} = \frac{x^2 - y^2 - 2xyi}{(x^2 + y^2)} = \frac{x^2 - y^2}{(x^2 + y^2)} - i \frac{2xy}{(x^2 + y^2)}$$

$$w = x^2 + y^2 + \frac{x^2 - y^2}{(x^2 + y^2)} - i \frac{2xy}{(x^2 + y^2)} = \frac{(x^2 + y^2) + x^2 - y^2}{(x^2 + y^2)} - i \frac{2xy}{(x^2 + y^2)}$$
 Отсюда
$$u(x, y) = \frac{(x^2 + y^2) + x^2 - y^2}{(x^2 + y^2)}$$

$$v(x, y) = -\frac{2xy}{(x^2 + y^2)}$$
 T.e.

Определение. Однозначная функция комплексного переменного имеет при $z \to z_0$ конечный предел b, если $\forall \varepsilon > 0$ существует $\delta > 0$ такое, что из неравенства $0 < |z - z_0| < \delta$ следует неравенство $|f(z) - b| < \varepsilon_0$ (z_0 и b комплексные числа). Обозначается предел так: $\lim_{z \to z_0} f(z) = b$

Функция f(z) называется непрерывной в точке z_0 , если $\lim_{z \to z_0} f(z) = f(z_0)$ Определение функций e^z , $\sin z$, $\cos z$, $\cot z$, $\sin z$

Эти функции комплексного переменного определяются как суммы следующих степенных рядов, сходящихся во всей плоскости комплексного переменного

$$e^{z} = 1 + \frac{z}{1!} + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} + \dots,$$

$$\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} + \dots + (-1)^{n} \frac{z^{2n+1}}{(2n+1)!} + \dots,$$

$$\cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} + \dots + (-1)^{n} \frac{z^{2n}}{(2n)!} + \dots,$$

$$shz = \frac{e^{z} - e^{-z}}{2} = z + \frac{z^{3}}{3!} + \frac{z^{5}}{5!} + \dots + \frac{z^{2n+1}}{(2n+1)!} + \dots,$$

$$chz = \frac{e^{z} + e^{-z}}{2} = 1 + \frac{z^{2}}{2!} + \frac{z^{4}}{4!} + \dots + \frac{z^{2n}}{(2n)!} + \dots$$

Для функций e^z , $\sin z$, $\cos z$ справедливы формулы Эйлера:

$$e^{iz} = \cos z + i \sin z$$

$$e^{-iz} = \cos z - i \sin z$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

откуда

Функции
$$tgz$$
, $ctgz$, thz и $cthz$ определяются равенствами: $tgz = \frac{\sin z}{\cos z}$ $ctgz = \frac{\cos z}{\sin z}$ $thz = \frac{shz}{chz}$ $cthz = \frac{chz}{shz}$

При этом выполняется следующие соотношения:

$$\sin z = -ishiz$$
 $\cos z = chiz$ $tgz = -ithiz$ $ctgz = icthiz$
 $shz = -i\sin iz$ $chz = \cos iz$ $thz = -itgiz$ $cthz = ictgiz$

Lnz является многозначной и определяется как функция, Функция обратная показательной:

$$Lnz = \ln|z| + iArgz = \ln|z| + i(\arg z + 2\pi k), \quad k = 0, \pm 1, \dots$$
(6)

Главным значением $^{\ln z}$ называется то значение, которое получается при k = 0

Обратные тригонометрические функции определяются по формулам:

Arc sin
$$z = -iLn\left(z + \sqrt{1-z^2}\right)$$

$$Arctgz = -\frac{i}{2}Ln\frac{1+iz}{1-iz}$$

$$Arc cos z = -iLn\left(z + \sqrt{z^2-1}\right)$$

$$Arcctgz = -\frac{i}{2}Ln\frac{z+i}{z-i}$$

Все эти функции являются многозначными.

Общая степенная функция z^a , где $a = \alpha + i\beta$, определяется формулой $z^{a} = e^{aLnz}$ и также является многозначной.

Общая показательная функция a^z определяется равенством $a^z=e^{zLna}$, где $a=\alpha+i\beta$

Пример 7. Найти значения функции $w = e^z$ в точке $z_0 = \pi(1-i)$

Решение. Воспользуемся формулой (4).
$$w(z_0) = e^{\pi(1-i)} = e^{\pi-\pi i} = e^{\pi} \cdot e^{-\pi i} = e^{\pi} (\cos \pi - i \sin \pi) = -e^{\pi}$$
 Имеем

Пример 8. Вычислить $Ln(\sqrt{3}+i)$

Решение. Найдем модуль и аргумент числа $z_0 = \sqrt{3} + i$

Имеем
$$|z_0| = \sqrt{\sqrt{3} + 1^2} = 2$$
, $\arg z_0 = arctg \frac{1}{\sqrt{3}} = \frac{\pi}{6}$

$$Lnz_0 = \ln 2 + i\frac{\pi}{6} + 2\pi ki$$
 $k = 0, \pm 1, \pm 2,...$

тогда из фомулы (6) получим:

 Π ример 9. Найти $\stackrel{\widehat{Arc}}{=}$ sin i

Решение. Пусть
$$z_0 = i$$
 $|z_0| = 1$ arg $z_0 = \pi/2$ $|z_0| = 1$ $|z_0| = 1$

$$=2\pi k - i \ln \left(\sqrt{2} - 1\right)$$
 $k = 0, \pm 1,...$

§3 Дифференцирование функции комплексного переменного

Определение. Производной функции комплексного переменного $\Delta w = f(z)$ вывается предел отношения прирашения функции $\Delta w = f(z + \Delta z) - f(z)$ называется предел отношения приращения функции приращению аргумента $f'(z) = \lim_{\Delta_z \to 0} \frac{\int_{z}^{z} f(z + \Delta z) - f(z)}{\Delta z}$ стремится к нулю произвольным

способом, т.е.

называется аналитической в точке Функция дифференцируема в точке z_0 и некоторой ее окрестности. Если функция аналитична в каждой точке области M, говорят, что она аналитична в этой области.

Если функция f(z)=u(x,y)+iv(x,y) дифференцируема в области M, то в каждой точке этой области выполняются условия Коши-Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

 $u(x,y)^{(8)}$ v(x,y)в некоторой точке области функции Если дифференцируемы как функции действительных переменных и выполнены соотношения (8), то f(z) является дифференцируемой в этой точке. В этом случае

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$
(9)

Пример 10. Является ли функция $f(z) = z^2 z$ аналитической?

Решение. Выделим действительную и мнимую части функции $f(z) = z^2 z = (x + ix)^2 (x - ix) = (x + ix)^2 (x - ix)^2 (x - ix) = (x +$ $f(z) = z^2 z = (x + iy)^2 (x - iy) = (x + iy)(x^2 + y^2) = (x^3 + xy^2) + i(x^2 y + y^3).$

Таким образом, $u(x, y) = x^3 + xy^3$, $v(x, y) = x^2 y + y^3$.

$$\frac{\partial u}{\partial x} = 3x^2 + y^2 \qquad \frac{\partial v}{\partial y} = x^2 + 3y^2$$

Проверим выполнение условий (8): $\frac{\partial u}{\partial x} = 3x^2 + y^2 \quad \frac{\partial v}{\partial y} = x^2 + 3y^2$, $3x^2 + y^2 = x^2 + 3y^2$ лишь при $y = \pm x$; $\frac{\partial u}{\partial x} = 2xy \quad \frac{\partial v}{\partial y} = x^2 + 3y^2$

$$3x^2 + y^2 = x^2 + 3y^2$$
 лишь при $y = \pm x$;

$$\frac{\partial u}{\partial y} = 2xy \qquad \frac{\partial v}{\partial x} = 2xy \qquad 2xy = -2xy \qquad \text{лишь при} \qquad x = 0 \qquad y = 0 \qquad x = y = 0$$

Итак, оба условия (8) выполняются только при x = y = 0, т.е. f(z)дифференцируемой в одной точке (0,0) и нигде не аналитична.

Производные элементарных функций переменного комплексного вычисляются так же, как и для действительного аргумента.

Пример 11. Вычислить
$$f'(z_0)$$
, где $f(z) = \cos^2(3z)$, $z_0 = \frac{\pi}{6}(i+1)$

Решение. Функция f(z) аналитична на всей комплексной плоскости. $f'(z) = 2\cos 3z \cdot (-\sin 3z) \cdot 3 = -6\sin 3z \cdot \cos 3z = -3\sin 6z$

$$f'(z_0) = -3\sin 6\left(\frac{\pi}{6}(i+1)\right) = -3\sin(\pi i + \pi) = -3\sin \pi i \cdot \cos \pi - 3\sin \pi \cdot \cos \pi i =$$

$$= 3(ish(i \cdot \pi i)) \cdot (-1) = 3i \cdot sh(-\pi) \cdot (-1) = 3ish\pi$$

Определение. Функция $\phi(x,y)$ называется гармонической в области M, если она имеет в этой области непрерывные частные производные до второго порядка включительно и удовлетворяет в этой области уравнению Лапласа:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0 \tag{10}$$

Если f(z)=u(x,y)+iv(x,y) - аналитична в области M, то функции u и v являются гармоническими.

Пример 12. Проверить, может ли функция $\phi(x,y) = xy \ln(x^2 + y^2)$ служить действительной или мнимой частью некоторой аналитической функции?

Решение. Проверим выполнение условий (10):

$$\frac{\partial \varphi}{\partial x} = y \ln(x^2 + y^2) + \frac{xy \cdot 2x}{x^2 + y^2} = y \cdot \ln(x^2 + y^2) + \frac{2x^2y}{x^2 + y^2}$$

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{2xy}{x^2 + y^2} + \frac{4xy(x^2 + y^2) - 2x^2y \cdot 2x}{(x^2 + y^2)^2} = \frac{2x^3y + 2xy^3 + 4xy^3 - 4x^3y}{(x^2 + y^2)^2} =$$

$$= \frac{2x^3y + 6xy^3}{(x^2 + y^2)^2} = \frac{2xy(x^2 + 3y^2)}{(x^2 + y^2)^2}$$

$$\frac{\partial \varphi}{\partial y} = x \ln(x^2 + y^2) + \frac{2xy^2}{x^2 + y^2}$$

$$\frac{\partial^2 \varphi}{\partial y^2} = \frac{2xy}{x^2 + y^2} + \frac{4xy(x^2 + y^2) - 2xy^2 \cdot 2y}{(x^2 + y^2)^2} = \frac{6x^3y + 2xy^3}{(x^2 + y^2)^2} = \frac{2xy(3x^2 + y^2)}{(x^2 + y^2)^2}$$

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{2xy(4x^2 + 4y^2)}{(x^2 + y^2)^2} = \frac{8xy}{x^2 + y^2}$$

Видно, что условия (10) не выполняются ни при каких условиях x и y. Следовательно, $\phi(x,y)$ не может являться действительной или мнимой частью некоторой аналитической функции.

Пример 13. Восстановить аналитическую функцию f(z) по её заданной действительной части $u(x,y) = 2e^x \cos y$

Проверим корректность постановки задачи, т.е. выполнение условия (10):

$$\frac{\partial u}{\partial x} = 2e^x \cdot \cos y \qquad \qquad \frac{\partial^2 u}{\partial x^2} = 2e^x \cdot \cos y$$

$$\frac{\partial u}{\partial y} = -2e^x \cdot \sin y$$

$$\frac{\partial^2 u}{\partial y^2} = -2e^x \cdot \cos y$$

$$\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

т.е. аналитическая функция с действительной частью $u^{(x,y)}$ существует. Для нахождения мнимой части воспользуемся формулами (8).

Воспользуемся формулами (8). $u = 2e^x \cdot \cos y \qquad \frac{\partial u}{\partial x} = 2e^x \cdot \cos y \qquad , \text{ но тогда, так как в } \\ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \frac{\partial v}{\partial y} = 2e^x \cdot \cos y \qquad , \text{ откуда. интегрируса } \\ \text{годим:} \qquad , \text{ откуда. } \\ \text{годим:} \qquad , \text{ откуда.} \\ \text{годим:$

силу первого условия (8) находим:

 $v(x, y) = \int 2e^x \cdot \cos y dy = 2e^x \sin y + \varphi(x)$ (II)

Для нахождения неизвестной функции $\phi(x)$ используем второе из условий (8):

 $\frac{\partial u}{\partial y} = -2e^x \sin y$, а дифференцируя равенство (II) Из условий задачи находим $\frac{\partial u}{\partial y} = -2e^x \sin y + \varphi'(x)$

по x, получаем $e^{-2e^x}\sin y = -2e^x\sin y - \varphi'(x)$, откуда, подставляя во второе равенство (8), имеем $e^{-2e^x}\sin y = -2e^x\sin y - \varphi'(x)$ или $e^{-2e^x}\sin y + C$ подставляя в формулу (II) $e^{-2e^x}\sin y + C$, получим $e^{-2e^x}\sin y + C$.

Окончательно имеем

 $f(z) = u(x,y) + iv(x,y) = 2e^x \cos y + i(2e^x \sin y + C) = 2e^x (\cos y + i \sin y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i \cos y) + ic = 2e^x (\cos y + i$ $= 2e^{x}e^{iy} + iC = 2e^{x+iy} + iC = 2e^{z} + iC$

Пример 14. Восстановить аналитическую функцию по её заданной мнимой части:

имой части:

Решение. Проверим выполнение равенства (10) для функции
$$v$$
:

$$\frac{\partial v}{\partial x} = \frac{8x}{x^2 + y^2} + 1$$

$$\frac{\partial^2 v}{\partial x^2} = \frac{8(x^2 + y^2) - 8x \cdot 2x}{(x^2 + y^2)^2} = \frac{8(y^2 - x^2)}{(x^2 + y^2)}$$

$$\frac{\partial v}{\partial y} = \frac{8y}{x^2 + y^2}$$

$$\frac{\partial^2 v}{\partial y^2} = \frac{8(x^2 + y^2) - 8y \cdot 2y}{(x^2 + y)^2} = \frac{8(x^2 - y^2)}{(x^2 + y)^2}$$

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

таким образом,

f(z)определения действительной части функции Для воспользуемся условиями (8).

Из второго равенства

$$\frac{\partial v}{\partial x} = \frac{8x}{x^2 + y^2} + 1$$

$$\frac{\partial u}{\partial y} = -\frac{8x}{x^2 + y^2} - 1$$

$$\frac{\partial v}{\partial x} = \frac{8x}{x^2 + y^2} + 1$$
 Из условия задачи находим: .
$$\frac{\partial u}{\partial y} = -\frac{8x}{x^2 + y^2} - 1$$
 Получаем уравнение: , отсюда
$$u(x,y) = -\int \frac{8xdy}{x^2 + y^2} - \int dy = -\frac{8x}{x} \arctan \frac{y}{x} - y + \varphi(x) = -y - 8\arctan \frac{y}{x} + \varphi(x)$$

Для определения $\varphi(x)$ воспользуемся первым равенством (8):

Из условия задачи находим Дифференципуа пот

Дифференцируя равенство (12), получим:

$$\frac{\partial u}{\partial x} = -8 \frac{1}{1 + \frac{y^2}{x^2}} \cdot \left(-\frac{y}{x^2} \right) + \phi'(x) = \frac{8y}{x^2 + y^2} + \phi'(x)$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 Подставляя равенство , получим:
$$\frac{8y}{x^2 + y^2} + \phi'(x) = \frac{8y}{x^2 + y^2}$$
 , $\phi'(x) = 0$, $\phi(x) = C = const$, $\phi(x, y) = -y - 8arctg \frac{y}{x} + C + i \left(4 \ln \left(x^2 + y^2\right) + x\right) = 0$ откуда

$$= -y + xi + \left(-8arctg\frac{y}{x} + i \cdot 8 \cdot \frac{1}{2}\ln\left(x^2 + y^2\right)\right) + C =$$

$$= i\left(x + iy\right) + 8i\left(iarctg\frac{y}{x} + \ln\sqrt{x^2 + y^2}\right) + C =$$

$$= iz + 8i\left(iargz + \ln|z|\right) + C = C + iz + 8i\ln z$$

§4 Интегрирование функции комплексного переменного

Пусть функция w=f(z) непрерывна в некоторой области D. Пусть γ гладкая кривая, лежащая в D.

Рассмотрим дугу этой кривой с началом в точке z_0 и концом в точке z. Разделим эту дугу на n частей произвольными точками $z_0, z_1, z_2, ..., z_n = z$, расположенными на линии

 $S_n = f(\varepsilon_0) \Delta_{\mathcal{Z}_0} + f(\varepsilon_1) \Delta_{\mathcal{Z}_1} + ... + f(\varepsilon_{n-1}) \Delta_{\mathcal{Z}_{n-1}},$ Составим сумму $\Delta_{\mathcal{Z}} = z_{k+1} - z_k \quad \varepsilon_k \in (z_k, z_{k+1})$ произвольна.

Пусть $\lambda = \max_{z \in \mathbb{Z}_k} \Delta z_{k}$. Тогда предел S_n при $n \to \infty$ и $\lambda \to 0$, если он существует, называется интегралом функции f(z) по дуге кривой γ ,

$$\int f(z)dz = \lim_{\lambda \to 0} S_n$$

 $\int\limits_{\lambda\to 0} f(z)dz = \lim_{\lambda\to 0} S_n$ заключенной между точками z_0 и z: $\int\limits_{\gamma} f(z)dz$ Если w = f(z) = u(x,y) + iv(x,y) , то $\int\limits_{\gamma} f(z)dz$ криволинейных интегралов от действительных функций по следующей them видо: формуле:

 $\int_{\gamma}^{\alpha} f(z)dz = \int_{\gamma}^{\alpha} (u+iv)(dx+idy) = \int_{\gamma}^{\alpha} (u(x,y)(dx-v(x,y)(dy)+i\int_{\gamma}^{\alpha} (v(x,y)(dy+u(x,y)(dy)))$

Если контур γ - кусочно гладкий и состоит из гладких контуров γ_1, γ_2 , $f(z)dz = \int_{z}^{\gamma} f(z)dz + \int_{z}^{\gamma} f(z)dz$ т.е. $f(z) = \alpha f_1(z) + \beta f_2(z)$, то $f(z) = \alpha \int_{z}^{\gamma} f(z)dz + \beta \int_{z}^{\gamma} f(z)dz$ Если $f(z) = \alpha f_1(z) + \beta f_2(z)$, то $f(z) = \alpha f_1(z) + \beta f_2(z)$ - аналитическая функция в односвязной области D то значение

- аналитическая функция в односвязной области D, то значение взятого по произвольной кусочно-гладкой линии интеграла, принадлежащей области D, не зависит от линии γ , а зависит лишь от начальной и конечной точек этой линии.

Теорема Коши. Для любой аналитической в некоторой односвязной $\int f(z)dz$ области D функции f(z)интеграл с взятый по любому замкнутому контуру C, равен нулю.

Если кривая γ задана параметрическими уравнениями $x = \varphi(t)$, $y = \psi(t)$, где

 $\int_{t_0} f(z)dz = \int_{t_0}^{t} f(z(t))z'(t)dt$, то $\int_{t_0}^{t_0} f(z)dz = \int_{t_0}^{t} f(z(t))z'(t)dt$, где $z(t) = \varphi(t) + i\psi(t)$

Если функция f(z) - аналитична в односвязной области D, содержащей

точки $\int_{z_0}^{z} f(z)dz = F(z)\Big|_{z_0}^{z_1} = F\Big(z_1\Big) - F\Big(z_2\Big)$, где $\int_{z_0}^{z_1} f(z)dz = F(z)\Big|_{z_0}^{z_1} = F\Big(z_1\Big) - F\Big(z_2\Big)$, где $\int_{z_0}^{z_1} f(z)dz = f(z)\Big|_{z_0}^{z_1} = F\Big(z_1\Big) - f\Big(z_2\Big)$, где $\int_{z_0}^{z_1} f(z)dz = f(z)\Big|_{z_0}^{z_1} = f\Big(z\Big)$.

Для нахождения первообразных аналитических функций применяются обычные формулы интегрирования.

$$J = \int_{0}^{4+3} (ze^{z} + z^{2} + 1) dz$$

Пример 15. Вычислить:

Подынтегральная функция Решение. является аналитичной во всей комплексной плоскости.

 $J = \int_{0}^{4+3i} z e^{z} dz + \int_{0}^{4+3i} z^{2} dz + \int_{0}^{4+3i} dz$

нахождения первообразной первого ИЗ ЭТИХ интегралов воспользуемся формулой интегрирования по части:

$$\int ze^{z}dz = ze^{z} - \int e^{z}dz = ze^{z} - e^{z}, \quad z = u, \quad e^{z}dz = dv, \quad du = dz, \quad v = e^{z}$$

$$\Pi \text{O9TOMY}$$

$$J = \left(ze^{z} - e^{z} + \frac{z^{3}}{3} + z\right)^{4+3i} = (4+3i)e^{4+3i} - e^{4+3i} + \frac{(4+3i)^{3}}{3} + 4 + 3i - ie^{i} + e^{i} - \frac{i^{3}}{3} - i = \frac{1}{3}e^{2i}$$

$$= e^{4+3i}(3+3i) + \frac{64+144i-108-27i}{3} + 4+3i+(1-i)e^{i} + \frac{i}{3}-i =$$

$$=3e^{4}e^{3i}(1+i)+(1-i)e^{i}-\frac{32}{3}+\frac{124}{3}i=$$

$$=3e^{4}(\cos 3+i\sin 3)(1+i)+(1-i)(\cos 1+i\sin 1)-\frac{32}{3}+\frac{124}{3}i=$$

$$=3e^{4}\left(\cos 3 - \sin 3 + i\sin 3 + i\cos 3\right) + \left(\cos 1 + \sin 1 - i\cos 1 + i\sin 1\right) - \frac{32}{3} + \frac{124}{3}i =$$

$$= \left(3e^4 \cos 3 - 3e^4 \sin 3 + \cos 1 + \sin 1 - \frac{32}{3}\right) + i\left(3e^4 \sin 3 + 3e^4 \cos 3 - \cos 1 + \sin 1 + \frac{124}{3}\right).$$

точки f(z)=1-z Решение. Функция f(z)=1-z не является аналитической. Действительно, u(x,y)=1-x , v(x,y)=y . Проверим выполнения условий Коши-Римана (8): $\frac{\partial u}{\partial x}=-1$ $\frac{\partial v}{\partial y}=1$, так что первое из этих условий не выполняется и функция не является аналитической. $J=\int (1-x)dx-ydy+i\int ydx+(1-x)dy=J_1+iJ_2$.

$$J = \int (1-x)dx - ydy + i \int ydx + (1-x)dy = J_1 + iJ_2$$

Вычислим каждый из интегралов J_1 и J_2 . Имеем: $\gamma: y = x^2$, dy = 2xdx , $0 \le x \le 2$, поэтому

$$J_{1} = \int_{0}^{2} (1 - x - x^{2} \cdot 2x) dx = \int_{0}^{2} (1 - x - 2x^{3}) dx = \left(x - \frac{x^{2}}{2} - \frac{x^{4}}{2}\right)_{0}^{2} = -8$$

$$J_2 = \int_0^2 (x^2 + (1 - x) \cdot 2x) dx = \int_0^2 (2x - x^2) dx = \left(x^2 - \frac{x^3}{3}\right)_0^2 = \frac{4}{3}$$

$$J = -8 + \frac{4}{3}i$$

Отсюда

$$J = \int z^2 \cdot z dz$$

 \square пример 17. Вычислить $^{\gamma}$, если $^{\gamma}$ - отрезок соединяющий точки $^{z_0=0}$ и $^{z_1=-2-2i}$.

Решение. Подынтегральная функция не является аналитической (проверка предоставляется читателю).

Запишем z в показательной форме: $z = re^{i\phi}$, тогда $z = re^{-i\phi}$, $dz = e^{i\phi}dr + rie^{i\phi}d\phi$

$$\varphi = -\frac{3\pi}{4} = const \qquad d\varphi = 0 \qquad 0 \le r \le 2\sqrt{2}$$

Вдоль данного отрезка интегрирования Поэтому получим:

$$J = \int_{0}^{2} r^{2} e^{2i\varphi} r e^{-i\varphi} e^{i\varphi} dr = \int_{0}^{2} r^{3} e^{2i\left(-\frac{3\pi}{4}\right)} dr = e^{-\frac{3\pi i}{2}} \cdot \frac{r^{4}}{4} \Big|_{0}^{2\sqrt{2}} = \left(\cos\frac{3\pi}{2} - i\sin\frac{3\pi}{2}\right) \cdot \frac{64}{4} = 16i$$

$$J = \int_{0}^{2} (3 + \pi^{2}) dz$$

 $J = \int_{\gamma} (3 + z^2) dz$, где γ - дуга окружности |z| = 2 , Пример 18. Вычислить $-\frac{\pi}{2} \le \arg z \le \frac{\pi}{2}$

Решение. Функция $f(z)=3+z^2$ не является аналитической (проверьте!). Представим z в показательной форме: $z = re^{i\phi}$. Тогда имеем: $dz = e^{i\varphi}dr + ire^{i\varphi}d\varphi$

Вдоль контура
$$\gamma$$
: $r = |z| = 2$, $dr = 0$, $-\frac{\pi}{2} \le \phi \le \frac{\pi}{2}$, откуда $J = \int_{-\pi/2}^{\pi/2} (3 + r^2 e^{-2i\phi}) i r e^{i\phi} d\phi = \int_{-\pi/2}^{\pi/2} (6i e^{i\phi} + 8i e^{-i\phi}) d\phi = 6e^{i\phi} \Big|_{-\pi/2}^{\pi/2} - 8e^{-i\phi} \Big|_{-\pi/2}^{\pi/2} = 6e^{i\pi/2} - 6e^{-i\pi/2} - 8e^{-i\pi/2} + 8e^{i\pi/2} = 14e^{i\pi/2} - 14e^{-i\pi/2} = 14\cos\frac{\pi}{2} + 14i\sin\frac{\pi}{2} - 14\cos\frac{\pi}{2} + 14i\sin\frac{\pi}{2} = 28i$

§5 Интегральная формула Коши

Если функция f(z) является аналитической в области D, ограниченной кусочно-гладким замкнутым контуром C, и на самом контуре,

справедлива интегральная формула Коши
$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{z - z_0} \qquad z_0 \in D$$
 (14)

Эта формула позволяет вычислить некоторые интегралы.

 $\int_{|z|=3} \frac{e^{iz}}{z+1} dz$

|z|=3 знаменатель обращается в нуль в точке z = -1, и функция $f(z) = e^{iz}$ является аналитической в круге $|z| \le 3$

нке
$$z = -1$$
, и функция $f(z) = e^{iz}$ является аналитической в круге $\int_{z=-1}^{|z|=3} \frac{e^{iz}}{z+1} dz = 2\pi i \left(e^{iz}\right)_{z=-1} = 2\pi i e^{-1} = 2\pi i \left(\cos 1 - i \sin 1\right) = 2\pi \sin 1 + i 2\pi \cos 1$.

 $\int \frac{chz}{z^2-3z+2}dz$ Пример 20. Вычислить интеграл $\int \frac{chz}{z^2-3z+2}dz$, если

I) C:
$$|z-i| = 1$$
,

II) C:
$$|z-i| = 2$$
,

III) C:
$$|z-i| = 3$$
.

 $Peшениe\ I.\$ В замкнутой области $|z-i| \le 1$ подынтегральная функция является аналитической, поэтому в силу теоремы Коши $\int_{c}^{chz} \frac{chz}{z^2 - 3z + 2} dz = 0$ Решение II В

Pешение II. В замкнутой области $|z-i| \le 2$ в точке z=1 знаменатель обращается в нуль. Подынтегральную функцию перепишем в виде

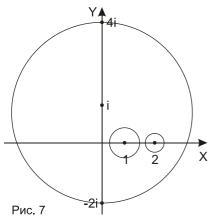
$$\frac{chz}{(z-1)(z-2)} = \frac{\overline{z-2}}{\overline{z-1}}$$

 $f(z) = \frac{chz}{z-2}$ Функция в области $|z-i| \le 2$. Применяя интегральную формулу Коши при $z_0 = 1$, получим

$$\int_{C} \frac{chz}{z^{2} - 3z + 2} dz = \int_{C} \frac{\overline{z - 2}}{z - 1} dz = 2\pi i \frac{chz}{z - 2} \bigg|_{z = 1} = 2\pi i \frac{ch1}{-1} = -i2\pi ch1$$

Решение III. В области, ограниченной окружностью $|z^{-i}| \le 3$ в двух точках z^{-1} и z^{-2} , знаменатель подынтегральной функции обращается в нуль.

Поэтому разложим дробь $\frac{\overline{z^2 - 3z + 2}}{z^2 - 3z + 2}$ на сумму $\frac{1}{z^2 - 3z + 2} = \frac{1}{(z - 1)(z - 2)} = \frac{A}{z - 1} + \frac{B}{z - 2} = \frac{A(z - 2) + B(z - 1)}{(z - 1)(z - 2)}$ отсюда 1 = A(z-2) + B(z-1); при z=1 1 = -A, A = -1 при z=2 1 = B, т.е. $\frac{1}{z^2 - 3z + 2} = -\frac{1}{z-1} + \frac{1}{z-2}$, подставляя в интеграл, получим $\int_{C} \frac{chz}{z^2 - 3z + 2} dz = \int_{C} \frac{chz}{z-2} dz - \int_{C} \frac{chz}{z-1} dz = 2\pi i chz|_{z=2} - 2\pi i chz|_{z=1} = 2\pi i (ch2 - ch1)$



Можно поступить и иначе.

Воспользуемся теоремой Коши для многосвязной области.

$$\int_{C} f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz + \dots + \int_{C_n} f(z)dz$$

Для этого построим окружности C_1 и C_2 с центрами в точках z=1, z=2достаточно малых радиусов таких, чтобы эти окружности не пересекались и целиком лежали в круге $\frac{|z-i| \le 3}{chz}$ (рис. 7). Получим

$$\int_{C} \frac{chz}{z^{2} - 3z + 2} dz = \int_{C^{1}} \frac{\overline{z - 2}}{z - 1} dz + \int_{C^{2}} \frac{\overline{z - 1}}{z - 2} dz = 2\pi i \frac{chz}{z - 2} \Big|_{z = 1} + 2\pi i \frac{chiz}{z - 1} \Big|_{z = 2} = -2\pi i ch1 + 2\pi i ch2$$

Если функция f(z) аналитична в области D и на ее границе C, то для любого натурального n имеет место формула

обого натурального
$$n$$
 имеет место формула
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{n+1}} dz , \quad z_0 \in D, \quad z \in C$$

$$\int_{|z^{+2}i|=2} \frac{\sin z}{(z+i)^3} dz$$

$$\lim_{z \to \infty} z = \frac{\sin z}{(z+z_0)^{n+1}}$$

 $\frac{\sin z}{(z+i)^3}$ Решение. Подынтегральная функция является аналитической в области $|z+2i| \le 2$, кроме z=-i. Функция $f(z) = \sin z$ является аналитической в круге $|z+2i| \le 2$

 $\int\limits_{|z|=-i}^{|z|+2i|\leq 2} \frac{\sin z}{(z+1)^3} dz = \frac{2\pi i}{2!} \left(\sin z\right)'' \Big|_{z=-i}$ Полагая в формуле (15) $= \cos z$, получим $= \cos z$, далее $= \cos z$. Спедорательно

Следовательно

$$\int_{|z+2i|=2} \frac{\sin z}{(z+i)^5} dz = \frac{2\pi i}{2!} \left(-\sin z\right)_{z=-i} = \pi i (-\sin(-i)) = \pi i \sin i = \pi i^2 s h 1 = -\pi s h 1$$

 $\int\limits_{|z|=3}^{\int} \frac{e^{3z}}{(z-i)^2z} dz$ Пример 22. Вычислить интеграл |z|=3Решение. Знаменатель обращается в нуль в двух точках $z_1=0$ и z=i. Построим окружности C_1 и C_2 с центрами в точках $z_1=0$, $z_2=i$ достаточно малых радиусов так, чтобы эти окружности не пересекались и целиком лежали в круге |z|=3

В трехсвязной области применима теорема Коши для многосвязной

 $\int_{|z|=3} \frac{e^{3z}}{(z-i)^2 z} dz = \int_{C^1} \frac{e^{3z}}{(z-i)^2 z} dz + \int_{C^2} \frac{e^{3z}}{(z-i)^2 z} dz$ области

К первому интегралу правой части равенства применима формула (14), $f(z) = \frac{e^{3z}}{(z-i)^2}$, а сама подынтегральная функция представима в виде где

$$\frac{e^{3z}}{(z-i)^2} / z \qquad f(z) = \frac{e^{3z}}{(z-i)^2}$$

 $\frac{e^{3z}}{(z-i)^2} / z$ $f(z) = \frac{e^{3z}}{(z-i)^2}$ является аналитической внутри C_1 , поэтому в силу

$$\int_{C} \frac{e^{3z} dz}{(z-i)^2 z} = \int_{C} \frac{\overline{(z-i)^2}}{Z} dz = 2\pi i \frac{e^{3z}}{(z-i)^2} \bigg|_{z=0} = -2\pi i$$

, ко второму интегралу в правой

$$f(z) = \frac{e^{3z}}{z}$$

 $f(z) = \frac{e^{3z}}{z}$ Функция является аналитической внутри C_2 , поэтому в силу формулы (15) при C_2 поэтому в силу

$$\int_{C_2} \frac{e^{3z}}{(z-i)^2} dz = \frac{2\pi i}{1!} \left(\frac{e^{3z}}{z} \right)' = 2\pi i \frac{3e^{3z}z - e^{3z}}{z^2} \bigg|_{z=i} = 2\pi i \frac{3ie^{3i} - e^{3i}}{-1} = 2\pi e^{3i} (3+i) =$$

 $2\pi(\cos 3 + i\sin 3)(3+i) = 2\pi(3\cos 3 - \sin 3 + i(3\sin 3 + \cos 3))$

Окончательно получаем

$$\int_{|z|=3}^{\infty} \frac{e^{3z}}{(z-i)^2 z} dz = -2\pi i + 2\pi (3\cos 3 - \sin 3 + i(3\sin 3 + \cos 3)) =$$

$$= 2\pi (3\cos 3 - \sin 3 + i(3\sin 3 + \cos 3 - 1))$$

Можно поступить иначе.

Разложим дробь на сумму простейших дробей
$$\frac{1}{(z-i)^2 z} = \frac{A}{(z-i)^2} + \frac{B}{z-i} + \frac{C}{z}$$

Определив A, B, C окончательно получим $\frac{1}{(z-i)^2 z} = \frac{-i}{(z-i)^2} + \frac{1}{z-i} - \frac{1}{z}$

$$\frac{1}{(z-i)^2 z} = \frac{-i}{(z-i)^2} + \frac{1}{z-i} - \frac{1}{z}$$

Подставим в подынтегральную функцию полученный результат

$$\int_{|z|=3} \frac{e^{3z}}{(z-i)^2 \cdot z} = -i \int_{|z|=3} \frac{e^{3z}}{(z-i)^2} dz + \int_{|z|=3} \frac{e^{3z}}{(z-i)} dz - \int_{|z|=3} \frac{e^{3z}}{z} dz$$

Применяя формулы (14) и (15), получим
$$-i\int_{\overline{(z-i)^2}} \frac{e^{3z}}{dz} dz = -i\frac{2\pi i}{1!} \left(e^{3z}\right)_{z=i} = -\frac{i2\pi i 3e^{3i}}{1!} = 6\pi e^{3i} = 6\pi (\cos 3 + i \sin 3)$$

$$\int_{|z|=3} \frac{e^{3z}}{(z-i)} dz = 2\pi i e^{3z} \Big|_{z=i} = 2\pi i e^{3i} = 2\pi i (\cos 3 + i \sin 3) = 2\pi (-\sin 3 + i \cos 3)$$

$$-\int_{|z|=3} \frac{e^{3z}}{z} dz = -2\pi i e^{3z} \Big|_{z=0} = -2\pi i$$

Окончательно получим

$$\int_{|z|=3} \frac{e^{3z}dz}{(z-i)^2 \cdot z} = 6\pi(\cos 3 + i\sin 3) + 2\pi(-\sin 3 + i\cos 3) - 2\pi i =$$

§6 Ряды Тейлора и Лорана

Пусть функция $\omega = f(z)$ аналитическая в кольце D: $0 \le r \le |z - z_0| < R \le \infty$ Тогда она представляется в этом кольце сходящимся рядом Лорана

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$
(16)

коэффициенты которого определяются однозначно, а именно $\begin{pmatrix} 1 & f & f \end{pmatrix}$

$$a_{n} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - z_{0})^{n+1}} dz$$
(17)

где Г - произвольный замкнутый кусочно-гладкий контур,

принадлежащий нашему кольцу и содержащий внутри точку z_0 . Если r=0 и функция $\omega=f(z)$ аналитическая еще и в самой точке z_0 , то разложение в ряд Лорана превращается в разложение в ряд Тейлора

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \qquad |z - z_0| \le R \le \infty$$

$$a_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz = \frac{f^{(n)}(z_0)}{n!}$$
Здесь (18)

Отличие от разложения функций действительного переменного в ряд Тейлора состоит в том, что для функций комплексного переменного гораздо проще указать область, в которой справедливо разложение. А именно, если $\omega = f(z)$ аналитична в окрестности точки z₀, то наше разложение верно в круге $|z-z_0| < R$, где R - расстояние от точки z_0 до ближайшей к ней особой точки функции .

Приведем разложение в ряд Тейлора при $z_0 = 0$ некоторых простейших функций:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = 1 + z + \frac{z^{2}}{2!} + \dots$$

$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2n+1}}{(2n+1)!} = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots$$

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2n}}{(2n)!} = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \dots$$

$$\ln(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^{n}}{n} = z - \frac{z^{2}}{2} + \frac{z^{3}}{3} - \dots$$

$$(1+z)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)}{n!} z^{n} = 1 + \alpha \cdot z + \frac{\alpha(\alpha-1)}{2!} z^{2} + \dots$$

Первые три разложения справедливы на всей комплексной плоскости, а

|z| < 1. последних разложения справедливы при Из последнего разложения, в частности, получаем

Пример 23.
$$z^{3} = 1 - z + z^{2} - z^{3} + \dots = \sum_{n=0}^{\infty} (-1)^{n} z^{n}$$
 $|z| < 1$ $|z| < 1$

- а) Разложить в ряд Тейлора в окрестности точки z = 0.
- б) Разложить в ряд Лорана в кольце
- в) Разложить в ряд Лорана в кольце 0 < |z+1| < 3

Решение. Разложим исходную рациональную дробь на простые дроби:

$$\frac{5z-4}{z^2-z-2} = \frac{5z-4}{(z-2)(z+1)} = \frac{A}{z-2} + \frac{B}{z+1}$$

$$5z-4 = A(z+1) + B(z-2);$$

$$z = 2:6 = 3A, \quad A = 2;$$

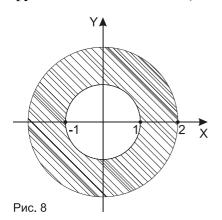
$$z = -1:-9 = -3B, \quad B = 3,$$

$$f(z) = \frac{2}{z-2} + \frac{3}{z+1}$$

Особыми точками функции являются точки $z_1 = 2$ и $z_2 = -1$.

a)
$$f(z) = \frac{3}{1+z} - \frac{1}{1-\frac{z}{2}} = 3\sum_{n=0}^{\infty} (-1)^n z^n - \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n = \sum_{n=0}^{\infty} \left[3(-1)^n - \frac{1}{2^n}\right] z^n$$

Разложение верно в круге |z| < R , где |zусловии $\begin{vmatrix} z \end{vmatrix} < 1$ мы можем использовать приведенные выше разложения 1 1 1 7функций $\overline{1+z}$ и $\overline{1-z}$ (с заменой z на $\overline{2}$).

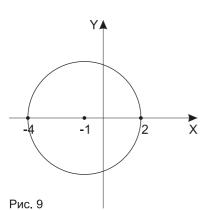


б) В этой области (рис.8) дробь $\frac{1-\frac{z}{2}}{2}$ разлагается в ряд так же, как и в случае а), так как по условию $\frac{|z|<2}{3}$, $\frac{|z|}{2}<1$.

Для разложения же дроби $\frac{1+z}{|z|}$ нужно в знаменателе вынести за скобку z,

так как в нашей области $\frac{\left|\frac{1}{z}\right|}{3} < 1$:

$$\frac{3}{1+z} = \frac{3}{z(1+\frac{1}{z})} = \frac{3}{z} \sum_{n=0}^{\infty} \frac{(-1)^n}{z^n} = 3 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{z^n}$$



$$f(z) = -\sum_{n=0}^{\infty} \frac{z^n}{2^n} + 3\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{z^n}$$
. В итоге получаем

в) В этой области (рис.9) дробь $\frac{\overline{z+1}}{2}$ яв-ляется одним из членов искомого ряда Лорана. С дробью же $\frac{2}{z-2} = \frac{2}{z+1-3} = -\frac{2}{3(1-\frac{z+1}{3})} = -\frac{2}{3} \sum_{n=0}^{\infty} \left(\frac{z+1}{3}\right)^n$

При этом как раз учитывается, что $\left|\frac{z+1}{3}\right| < 1$ $f(z) = \frac{3}{z+1} - \frac{2}{3} \sum_{n=0}^{\infty} \frac{(z+1)^n}{3^n}$

В результате получаем

$$f(z) = \frac{1}{(z+i)^2}$$

Пример 24.

Разложить в ряд Лорана в области $|z-1| > \sqrt{2}$



Pешение. Единственной особой точкой $f^{(z)}$ является (рис.10) точка $z_1=-i$. Ее расстояние до точки $z_0=1$ равно $\sqrt{2}$. Далее имеем:

$$f(z) = \frac{1}{(z-1+1+i)^2} = \frac{1}{(z-1)^2 \left(1 + \frac{1+i}{z^{-1}}\right)^2}$$

Используя разложение $(1+z)^{\alpha}$ при $\alpha=-2$ по степеням z с заменой z на

 $\overline{z-1}$, находим

$$f(z) = \frac{1}{(z-1)^2} \left[1 - 2\frac{1+i}{z-1} + 3\left(\frac{1+i}{z-1}\right)^2 - 4\left(\frac{1+i}{z-1}\right)^3 + 5\left(\frac{1+i}{z-1}\right)^4 + \dots \right] =$$

$$= \frac{1}{(z-1)^2} - 2\frac{1+i}{(z-1)^3} + 3\frac{(1+i)^2}{(z-1)^4} - 4\frac{(1+i)^3}{(z-1)^5} + 5\frac{(1+i)^4}{(z-1)^6} - \dots = \sum_{n=2}^{\infty} \frac{(-1)^n (n-1)(1+i)^{n-2}}{(z-1)^n}$$

 $\left| \frac{1+i}{z-1} \right| = \frac{\sqrt{2}}{|z-1|} < \frac{\sqrt{2}}{\sqrt{2}} = 1$ При этом полезно заметить, что в нашей области $\frac{|z-1|}{|z-1|} = \frac{\sqrt{2}}{|z-1|} < \frac{\sqrt{2}}{\sqrt{2}} = 1$ Пример 25.

Пример 25. $f(z) = \ln(3-z)$. Разложить в ряд Тейлора в окрестности точки $z_0 = 0$

$$f(z) = \ln 3 \left(1 - \frac{z}{3}\right) = \ln 3 + \ln \left(1 - \frac{z}{3}\right).$$
 Решение.

Используя приведенное выше разложение функции $\frac{\ln(1+z)}{}$ с заменой z на , получаем

$$f(z) = \ln 3 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \left(-\frac{z}{3}\right)^n}{n} = \ln 3 - \sum_{n=1}^{\infty} \frac{z^n}{n3^n} = \ln 3 - \frac{z}{3} - \frac{z^2}{2 \cdot 3^2} - \frac{z^3}{3 \cdot 3^3} - \frac{z^4}{4 \cdot 3^4} - \dots$$

Разложение верно при |z| < 3 так как $z_0 = 0$ до единственной особой точки $z_0 = 0$ до

§7 Классификация изолированных особых точек. Вычеты

Пусть z_0 - изолированная особая точка функции $\omega = f(z)$, т.е. $\omega = f(z)$ аналитическая в некоторой окрестности точки $a_0 = a_0$ за исключением самой $a_0 = a_0$ в ряд Лорана в точки z_0 . Рассмотрим разложение функции окрестности точки z_0

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$
 (20)

Этот ряд представим в виде суммы двух рядов:

- правильной части ряда Лорана и

 $\sum_{n=-1}^{\infty} a_n (z-z_0)^n$ - главной части ряда Лорана. Точка z_0 называется *устранимой* особой точкой функции $\omega = f(z)$, если в разложении (20) главная часть ряда Лорана отсутствует, т.е. $\lim_{n=1,2,...} f(z)$, n=1,2,... . Это эквивалентно существованию конечного предела $z\to z_0$

Точка z_0 называется **полюсом** функции $\omega = f(z)$, если в разложении (20) главная часть ряда Лорана содержит лишь конечное число членов. Пусть $a_{-n} = 0$ для n > k и $a_{-k} \neq 0$. Тогда число k называется **порядком полюса**. Полюса первого порядка называются также простыми полюсами.

Если в окрестности точки z_0 функция $\omega = f(z)$ представляется в виде $f(z) = \frac{\phi(z)}{(z-z_0)^k}$, где $\phi(z)$ аналитическая в этой окрестности и $\phi_0(z) \neq 0$, то z_0 полюс функции порядка k.

Если в окрестности точки z_0 функция $\omega = f(z)$ представляется в виде , где $\phi(z)$ и $\psi(z)$ аналитические в этой окрестности, $\phi(z)$ имеет в точке z_0 ноль кратности $m \ge 0$ а $\psi(z)$ имеет в точке z_0 ноль кратности z_0 ноль кратности $\omega = f(z)$ порядка z_0 порядка z_0 ноль кратности z_0 ноль кратности

Если же $n \le m$, то z_0 - **устранимая** особая точка функции $\omega = f(z)$. (Здесь уместно отметить, что окрестностях точки z_0 имеет в точке z_0 ноль кратности z_0 окрестностях точки z_0 представима в виде $\varphi(z) = (z - z_0)^n \quad \varphi_1(z)$, где

Точка z_0 называется *существенно особой* точкой функции $\omega = f(z)$, в разложении (20) главная часть ряда Лорена содержит бесконечное число членов.

Вычетом функции $\omega = f(z)$ в изолированной особой точке z_0 называется коэффициент a_{-1} в разложении ряда Лорана (20). $a_{-1} = resf(z_0) = res_{z=z_0} f(z)$

Обозначения:

Если z_0 - устранимая особая точка, то $test(z_0) = 0$. Если $test(z_0) = 0$. $test(z_0) = 0$. $test(z_0)$ находится из разложения $test(z_0)$. в ряд Лорана (20).

Если же z_0 - полюс порядка k, то вычет функции $\omega = f(z)$ в этой точке

находится по формуле $resf(z_0) = \frac{1}{(k-1)!} \lim_{z \to z_0} \frac{d^{k-1}}{dz^{k-1}} \left[f(z)(z-z_0)^k \right]$

Если $^{k=1}$, то отсюда следует формула для нахождения вычета в простом $resf(z_0) = \lim_{z \to z_0} [f(z)(z - z_0)]$

В частности, если в окрестности точки z_0 функции $\omega = f(z)$ представима в $f(z) = \frac{\varphi(z)}{\psi(z)}$, где $\varphi(z)$ и $\varphi(z)$ аналитические в этой окрестности, $\varphi(z_0) \neq 0$, $\psi(z_0) = 0$, $\psi'(z_0) \neq 0$, то z_0 - простой полюс f(z) и $resf(z_0) = \frac{\varphi(z_0)}{\psi'(z_0)}$

В нижеследующих примерах нужно найти особые точки функции, указать их характер и вычислить вычеты функций в этих особых точках.

Пример 26.

Решение. Числитель и знаменатель дроби - аналитические функции на

аналитическая при всей комплексной плоскости, поэтому функция знаменателе z, отличном от 0. Значит, $z_0 = 0$ - единственная особая точка

нашей функции (в ней функция не определена). Так как $\lim_{z\to 0} \frac{\sin z}{z} = 1$, то $\lim_{z\to 0} \frac{\sin z}{z} = 1$, \lim разложения нашей функции в ряд Лорана по степеням z.

Пример 27. $f(z) = e^{\frac{z}{1-z}}$

Pешение. Так как функция $\omega = e^z$ аналитическая для всех z, а функция аналитическая при $z \neq 1$, то сложная функция $\omega = e^{\frac{z}{1-z}}$ аналитической при $z \neq 1$. Так как в точке $z_0 = 1$ исходная функция не определена, то $z_0 = 1$ - единственная особая точка нашей функции. Разложим ее в ряд Лорана в окрестности точки $z_0 = 1$. Имеем: $e^{\frac{z}{1-z}} = e^{\frac{z^{-1+1}}{1-z}} = e^{-1-\frac{1}{z-1}} = \frac{1}{e}e^{-\frac{1}{z-1}}$

$$e^{\frac{z}{1-z}} = e^{\frac{z^{-1+1}}{1-z}} = e^{-1-\frac{1}{z^{-1}}} = \frac{1}{e}e^{-\frac{1}{z^{-1}}}$$

Далее используем разложение функции e^z в степенной ряд $e^{z} = 1 + z + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} + \dots$

Заменяя в этом разложении z на $-\frac{1}{z-1}$, получаем нужное нам разложение в ряд Лорана:

 $f(z) = \frac{1}{e} \left[1 - \frac{1}{z - 1} + \frac{1}{2!(z - 1)^2} - \dots + \frac{(-1)^n}{n!(z - 1)^n} + \dots \right]$

Из этого ряда видно, что $z_0 = 1$ - существенно особая точка функции и

 $f(z) = -\frac{1}{(z^2+1)}$ Пример 28.

Пример 28. $f(z) = \frac{1}{(z+i)^3(z-i)^3}$ Решение. Так как $z_1 = i$ и $z_2 = -i$, то особыми точками нашей функции .

 $f(z) = \frac{1}{(z-i)^5}$ $f(z) = \frac{1}{(z-i)^5}$ и одной из приведенных и односами Из представлений выше теорем о полюсах следует, что обе эти точки являются полюсами третьего порядка и

$$resf(i) = \frac{1}{2} \lim_{z \to i} \left\{ \frac{1}{(z+i)^5 (z-i)^5} (z-i)^5 \right\}^{n} = \frac{1}{2} \lim_{z \to i} \frac{12}{(z+i)^5} = \frac{6}{(2i)^5} = \frac{3}{16i} = -\frac{3}{16}i$$

Аналогично вычисляется resf(-i).

 $f(z) = \frac{e^{\frac{1}{z}}}{1-z}$ Пример 29.

Pешение. Особыми точками нашей функции будут являться точки $z_1 = 0$ $z_2 = 1$. Из приведенного в примере 27 разложения в степенной ряд функции $\omega = e^z$ и из разложения

$$\frac{1}{1-z}$$
 = 1 + z + z² + ... + zⁿ + ... |z| < 1

следует, что при |z|<1

$$f(z) = \left(1 + \frac{1}{z} + \frac{1}{2!z^2} + \dots + \frac{1}{n!z^n} + \dots\right)\left(1 + z + z^2 + \dots + z^n + \dots\right)$$

Перемножая почленно эти ряды, легко увидеть, что главная часть получаемого ряда Лорана будет содержать бесконечное число членов, т.е. $z_1 = 0$ является существенно особой точкой нашей функции и вычет в этой точке - коэффициент ряда Лорана при z^{-1} будет равен $1 + \frac{1}{2!} + \frac{1}{3!} + ... + \frac{1}{n!} + ...$

$$1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$

Но из того же разложения в степеной ряд функции $\omega = e^z$ при z = 1

 $\sum_{n=0}^{\infty} \frac{1}{n!} = e^1 = e$ следует, что , значит, resf(0) = e .

Что же касается точки $z_2=1$, то в окрестности этой точки $f(z)=\frac{\phi(z)}{\psi(z)}$ функция может быть представлена в виде $\phi(z)=1-z$ аналитическая в этой окрестности и , тоже аналитическая в $\phi(z)=0$ этой окрестности , $\phi(z)=0$. Значит, $\phi(z)=0$ - простой полюс $\phi(z)=0$. Значит, $\phi(z)=0$ - простой полюс

$$f(z) = \frac{1 + \cos z}{(z - \pi)^5}$$

Пример 30.

Решение. Единственной особой точкой этой функции является точка $z_0 = \pi$ $\phi(z) = 1 + \cos z$ $\phi(z) = -\cos z$ $\phi'(z) = -\cos z$ $\phi'(z) = -\cos z$ $\phi(z) = -\cos z$ $\phi(z)$ из приведенных выше теорем о полюсах следует, что $z_0 = \pi^{-1}$ - полюс функции порядка 4 и

$$resf(\pi) = \frac{1}{3!} \lim_{z \to \pi} \left\{ \frac{1 + \cos z}{(z - \pi)^{0}} (z - \pi)^{4} \right\}^{m} = \frac{1}{3!} \lim_{z \to \pi} \left\{ \frac{1 + \cos z}{(z - \pi)^{2}} \right\}^{m}$$

Нетрудно провести нужные дальнейшие вычисления, однако пример можно решить более простым способом. При доказательстве приведенной нами формулы для нахождения вычета в полюсе k-го порядка не используется то, что $a_{-k} \neq 0$, $a_{-k+1} \neq 0$, ..., поэтому она справедлива и для полюса любого дорядка, меньшего, чем к. Значит, при вычислении вычетов

 $f(z) = \frac{\varphi(z)}{\psi(z)}$ в точке z_0 можно исходить только из кратности z_0 как нашем примере функции корня знаменателя, не обращая внимания на числитель. В нашем примере используем формулу для вычета в полюсе порядка 6

$$resf(\pi) = \frac{1}{5!} \lim_{z \to \pi} \left\{ \frac{1 + \cos z}{(z - \pi)^6} (z - \pi)^6 \right\}^{(5)} = \frac{1}{120} \lim_{z \to \pi} \left\{ 1 + \cos z \right\}^{(5)} = \frac{1}{120} \lim_{z \to \pi} (-\sin z) = 0$$

Если функция $\omega = f(z)$ аналитическая внутри замкнутого контура L и на этом контуре, за исключением конечного числа особых точек внутри $L:z_1,\ z_2,$..., Z_n , TO

$$\int_{L} f(z)dz = 2\pi i \sum_{k=1}^{n} resf(z_{k})$$
(21)

(контур L проходится в положительном направлении, т.е. при движении вдоль L ограниченная им область остается слева от наблюдателя).

$$\int_{|z^{+1}|=3} \frac{tg \frac{z}{2}}{(z-1)^{2}} dz$$

Пример 31. Вычислить

Решение. Особыми точками подынтегральной функции будут являться

 $z_1 = 1$ точка $z_1 = 1$ и решения уравнения $z_1 = 0$, т.е. $z = \frac{\pi}{2} + \pi k$, $z = \pi + 2\pi k$,

Легко видеть, что на контуре |z+1|=3 особых точек нет, а внутри контура будет лишь две особых точки $z_1=1$ и $z_2=\pi-2\pi=-\pi$ (т.е. k=-1).

$$z_1 = 1$$
 - полюс второго порядка $\left(tg \frac{z}{2}\Big|_{z=1} \neq 0\right)$ и

$$resf(1) = \lim_{z \to 1} \left\{ \frac{tg^{\frac{z}{2}}}{(z-1)^2} (z-1)^2 \right\} = \lim_{z \to 1} \frac{1}{2\cos^2 \frac{z}{2}} = \frac{1}{2\cos^2 \frac{1}{2}}$$

$$\phi(z) = \frac{\sin \frac{z}{2}}{(z-1)^2}$$
 $\psi(z) = \cos \frac{z}{2}$ - простой полюс, так как если обозначить

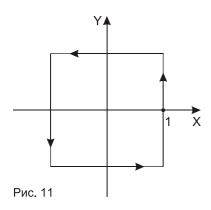
 $z_2 = -\pi$ - простой полюс, так как если обозначить $z_2 = -\pi$ - простой полюс, так как если обозначить $z_2 = -\pi$, $z_2 = -\pi$, $z_2 = -\pi$, $z_3 = -\pi$, $z_4 = -\pi$, $z_$

$$\psi(-\pi) = 0 \quad \psi'(-\pi) = -\frac{1}{2} \sin \frac{z}{2} \Big|_{z=-\pi} \neq 0$$

$$resf(-\pi) = \frac{\varphi(-\pi)}{\psi'(-\pi)} = -\frac{2 \sin (-\pi)}{(-\pi-1)^2 \sin (-\pi)} = -\frac{2}{(\pi+1)^2}$$

$$\int_{|z+1|=3} \frac{tg_{\frac{z}{2}}}{(z-1)^2} dz = 2\pi i \left[resf(1) + resf(-\pi) \right] =$$

 $\int\limits_{|z^{+l}|=3}^{tg_{\frac{z}{2}}} dz = 2\pi i \left[resf(1) + resf(-\pi) \right] =$ По основной теореме о вычетах $= 2\pi i \left[\frac{1}{2\cos^{2}\frac{1}{2}} - \frac{2}{(\pi+1)^{2}} \right] = \pi i \left[\frac{1}{\cos^{2}\frac{1}{2}} - \frac{4}{(\pi+1)^{2}} \right]$



 $J = \int_{z}^{1 - \cos z} \frac{1 - \cos z}{z^3 (z - 3)} dz$

Пример 32. Вычислить

где L - квадрат со стороной 2 и центром в начале координат, проходимый в положительном направлении.

Решение. Так как внутрь нашего контура попадает только одна особая точка подынтегральной функции $z_1 = 0$, а вторая особая точка находится вне контура то

В окрестностях точки $z_1 = 0$ подынтегральная функция f(z) представима

В окрестностях точки подынтегральная функция представима $f(z) = \frac{\varphi(z)}{\psi(z)} \qquad \varphi(z) = 1 - \cos z \quad \psi(z) = z^3(z-3)$ в виде $\varphi(0) = 0 \quad \varphi'(z) = \sin z \quad \varphi'(0) = 0 \quad \varphi''(z) = \cos z \quad \varphi''(0) \neq 0$ имеет в точке $z_1 = 0 \quad \psi(z) \quad \text{имеет в динеть, имеет в точке}$ ноль кратности 2; как легко видеть, имеет в точке $z_1 = 0 \quad \text{простой полюс} \quad \text{и}$ $resf(0) = \lim_{z \to 0} \left\{ \frac{1 - \cos z}{z^3(z-3)} z \right\} = \lim_{z \to 0} \frac{1 - \cos z}{z^2(z-3)} = -\frac{1}{3} \lim_{z \to 0} \frac{1 - \cos z}{z^2} =$

$$resf(0) = \lim_{z \to 0} \left\{ \frac{1 - \cos z}{z^3 (z - 3)} z \right\} = \lim_{z \to 0} \frac{1 - \cos z}{z^2 (z - 3)} = -\frac{1}{3} \lim_{z \to 0} \frac{1 - \cos z}{z^2} = -\frac{1}{3} \lim_{z \to 0} \frac{1 - \cos z}{$$

$$= -\frac{1}{3} \lim_{z \to 0} \frac{(1 - \cos z)(1 + \cos z)}{(1 + \cos z)z^2} = -\frac{1}{3} \lim_{z \to 0} \frac{\sin^2 z}{(1 + \cos z)z^2} = -\frac{1}{6} \left(\lim_{z \to 0} \frac{\sin z}{z}\right)^2 = -\frac{1}{6}$$

 $J = 2\pi i \left(-\frac{1}{6}\right) = -\frac{\pi i}{3}$ Отсюда

 $\int\limits_{|z|=1}^{\int}z\cos^2\frac{1}{z}dz$ Пример 33. Вычислить

Pешение. Внутри контура |z|=1 находится единственная особая точка подынтегральной функции $z_0 = 0$. Из разложения в степенной ряд функции

 $\omega = \cos z$. $\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots$ получаем разложение функции

Лорана в окрестности точки $z_0 = 0$

$$z\cos^{2}\frac{1}{z} = z\frac{1}{2}\left(1 + \cos\frac{2}{z}\right) = \frac{z}{2}\left(1 + 1 - \frac{2^{2}}{2!z^{2}} + \frac{2^{4}}{4!z^{4}} - \dots\right) = z - \frac{2}{2!z} + \frac{2^{3}}{4!z^{3}} - \dots$$

т.е. $z_0 = 0$ - существенно особая точка, и resf(0) = -1

Тогда по основной теореме о вычетах

$$\int_{|z|=1}^{\infty} z \cos^2 \frac{1}{2} dz = -2\pi i$$

$$J = \oint\limits_{|z|=2} \frac{z}{z^4 + 1} dz$$

 $J = \oint\limits_{|z|=2} \frac{z}{z^4 + 1} dz$ Пример 34. Вычислить Решение. Особ Решение. Особые точки подынтегральной функции - это корни уравнения $z^{4}+1=0$, т.е. $z=\sqrt[4]{-1}$. Записывая число -1 в тригонометрической форме и используя формулу для извлечения корня из комплексного числа, получаем

$$z = \sqrt[4]{\cos \pi + i \sin \pi} = \cos \frac{\pi + 2\pi k}{4} + i \sin \frac{\pi + 2\pi k}{4}$$

 $k=0,\ 1,\ 2,\ 3.$ Отсюда получаем 4 особых точки $\sum_{k=0}^{z} t \cos \left(\frac{z}{z_k} \right)$ находятся внутри круга t=0, и t=0, и t=0. Однако вычисление интеграла таким спосоом получается довольно

громоздким. Для упрощения сделаем в интеграле замену

$$J = \oint_{|\xi| = \frac{1}{2}} \frac{-\frac{1}{\xi^2} d\xi}{\xi^5 \left(\frac{1}{\xi^4} + 1\right)} = \oint_{|\xi| = \frac{1}{2}} \frac{d\xi}{\xi^3 \left(1 + \xi^4\right)}$$

 $z = \frac{1}{\xi}$ (Отметим, что при замене переменной направление обхода контура меняется на противоположное, так как $z = -\frac{1}{\xi}$ направление обхода контура ...)

В полученном после замены интеграле внутри контура $|\xi| = \frac{1}{2}$ будет лишь одна особая точка подынтегральной функции $z_0 = 0$. Это полюс третьего порядка и

$$J = 2\pi i \operatorname{res}_{\xi=0} \frac{1}{\xi^{3} (1+\xi^{4})} = \pi i \lim_{\xi \to 0} \left\{ \frac{1}{1+\xi^{4}} \right\}^{"} = \pi i \lim_{\xi \to 0} \left\{ \frac{-4\xi^{3}}{(1+\xi^{4})^{2}} \right\} =$$

$$= -4\pi i \lim_{\xi \to 0} \frac{3\xi^{2} (1+\xi^{4})^{2} - \xi^{3} \cdot 2(1+\xi^{4})^{2} \cdot 4\xi^{3}}{(1+\xi^{4})^{2}} = 0$$

Впрочем, данный пример достаточно просто решается и рассматривать вычет подынтегральной функции в бесконечно удаленной $res_{z=\infty} f(z)$ ТОЧКЕ

§8 Вычисление интегралов от функций действительного переменного

Основная теорема о вычетах помогает вычислять и некоторые интегралы от функций действительного переменного.

Рассмотрим , где $P_m(x)$ - многочлен степени m, $Q_n(x)$ - многочлен степени n, не имеющий действительных корней, и $n-m \ge 2$. Тогда ых корис $f(z) = \frac{P(z)}{Q_n(z)}$ в особых точках, $\int_{0}^{\infty} \frac{P_{m}(x)}{Q(x)} dx = 2\pi i \delta$, где $^{\delta}$ - сумма вычетов функции находящихся в верхней полуплоскости.

$$J = \int_{0}^{\infty} \frac{x^2}{\left(x^2 + 4\right)^2} dx$$

Пример 35. Вычислить интеграл

Решение. В силу четности подынтегральной функции

$$J = \frac{1}{2} \int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 4)^2} dx$$

Особые точки подынтегральной функции $^{\pm 2i}$, из них в верхней

полуплоскости расположена точка
$$\frac{2i}{z}$$
, и $J = \frac{1}{2} 2\pi i \underset{z=2i}{res} \frac{z^2}{(z^2+4)^2} = \pi i \underset{z=2i}{res} \frac{z^2}{(z+2i)^2} \frac{z^2}{(z-2i)^2}$

Из теорем о полюсах видно, что z=2i - полюс второго порядка и

$$\operatorname{res}_{z=2i} \frac{z^{2}}{(z+2i)^{2}(z-2i)^{2}} = \lim_{z\to 2i} \left[\frac{z^{2}(z-2i)^{2}}{(z+2i)^{2}(z-2i)^{2}} \right] = \lim_{z\to 2i} \frac{2z(z+2i)^{2}-z^{2}\cdot 2(z+2i)}{(z+2i)^{4}} =$$

$$=2\lim_{z\to ^2i}\frac{z(z+2i)-z^2}{(z+2i)^5}=2\frac{-8+4}{-64i}=\frac{1}{8i}\qquad J=\pi i\frac{1}{8i}=\frac{\pi}{8}$$
. Тогда

$$\int R(x)e^{i\lambda x}dx$$

Теперь рассмотрим интеграл вида $\overset{\int\limits_{-\infty}^{\infty}}{R(x)}e^{i\lambda_x}dx$, где $\overset{R(x)}{}$ - правильная рациональная дробь, знаменатель которой не имеет действительных корней.

 $\lambda > 0$ $\int_{-\infty}^{\infty} R(x)e^{i\lambda x}dx = 2\pi i\delta$, где δ - сумма вычетов функции Тогда при $f(z) = R(z)e^{i\lambda z}$

 $z = R(z)e^{i\lambda z}$ в особых точках верхней полуплоскости. Так как $\cos \lambda_x = \text{Re } e^{i\lambda z}$ $\sin \lambda_x = \text{Im } e^{i\lambda z}$, то

$$\int_{-\infty}^{\infty} R(x)\cos \lambda x dx = \operatorname{Re} \int_{-\infty}^{\infty} R(x)e^{i\lambda x} dx \qquad \int_{-\infty}^{\infty} R(x)\sin \lambda x dx = \operatorname{Im} \int_{-\infty}^{\infty} R(x)e^{i\lambda x} dx$$

Пример 36. Вычислить интегралы

$$J_{1} = \int_{-\infty}^{\infty} \frac{x \cos x}{x^{2} - 2x + 10} dx \qquad J_{2} = \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2} - 2x + 10} dx$$

$$J = \int_{-\infty}^{\infty} \frac{xe^{ix}}{x^2 - 2x + 10} dx$$

Решение. Рассмотрим

Особые точки подынтегральной функции - это решение уравнения $x^2-2x+10=0$, т.е. $z_{1,2}=1\pm 3i$. Из этих точек в верхней полуплоскости

Взяв действительную и мнимую части этого ответа, получаем

$$J_1 = \frac{\pi}{3e^e} \left(\cos 1 - 3\sin 1\right)$$
 $J_2 = \frac{\pi}{3e^e} \left(3\cos 1 + \sin 1\right)$

 $\int_{0}^{2\pi} R(\sin x, \cos x) dx$

Для вычисления интегралов вида $z = e^{ix}$, при которой рекоменбуется замена

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i} = \frac{z - \frac{1}{z}}{2i} = \frac{z^2 - 1}{2iz}, \quad \cos x = \frac{e^{ix} + e^{-ix}}{2} = \frac{z + \frac{1}{z}}{2} = \frac{z^2 + 1}{2z},$$

$$dz = ie^{ix} dx = izdx,$$

$$dx = \frac{dz}{iz}$$

$$\int_{0}^{2\pi} R(\sin x, \cos x) dx = \int_{|z|=1}^{2\pi} R\left(\frac{z^2 - 1}{2iz}, \frac{z^2 + 1}{2z}\right) \frac{1}{iz} dz = \int_{|z|=1}^{2\pi} F(z) dz$$

где F(z) - рациональная функция.

Последний интеграл считается при помощи основной теоремы о вычетах.

$$J = \int_{0}^{2\pi} \frac{dx}{(5 + 4\cos x)^{2}}$$

Пример 37. Вычислить

Решение. После замены переменной $z = e^{ix}$, согласно предыдущему, получаем

$$J = \int_{|z|=1}^{z} \frac{dz}{iz \left[5 + \frac{2(z^2 + 1)}{z}\right]^2} = -i \int_{|z|=1}^{z} \frac{z}{(2z^2 + 5z + 2)^2} dz$$

Особые точки подынтегральной функции - это решения уравнения $2z^2 + 5z + 2 = 0$, т.е.

$$z_{1,2} = \frac{-5 \pm \sqrt{9}}{4}$$
, $z_1 = -2$, $z_2 = -\frac{1}{2}$

Из этих точек внутри круга |z|=1 находится только точка $z_2=-\frac{1}{2}$, и

$$J = -i2\pi i \operatorname{res}_{z=-\frac{1}{2}} \frac{z}{(2z^2 + 5z + 2)^2} = 2\pi \operatorname{res}_{z=-\frac{1}{2}} \frac{z}{4(z+2)^2 (z+\frac{1}{2})^2}$$

$$z_2 = -\frac{1}{2}$$

$$z_2 = -\frac{1}{2}$$
 Так как $z_2 = -\frac{1}{2}$ - полюс второго порядка, то
$$J = \frac{\pi}{2} \lim_{z \to -\frac{1}{2}} \left\{ \frac{z(z+\frac{1}{2})^2}{(z+2)^2(z+\frac{1}{2})^2} \right\} = \frac{\pi}{2} \lim_{z \to -\frac{1}{2}} \left\{ \frac{z}{(z+2)^2} \right\} = \frac{\pi}{2} \lim_{z \to -\frac{1}{2}} \frac{(z+2)^2 - 2z(z+2)}{(z+2)^4} =$$

$$= \frac{\pi}{2} \lim_{z \to -\frac{1}{2}} \frac{z + 2 - 2z}{(z + 2)^3} = \frac{\pi}{2} \lim_{z \to -\frac{1}{2}} \frac{2 - z}{(z + 2)^3} = \frac{\pi}{2} \cdot \frac{5 \cdot 8}{2 \cdot 27} = \frac{10\pi}{27}$$

Глава 16 ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ

$$F(P) = \int_{0}^{\infty} e^{-pt} f(t) dt$$

 $F(P) = \int_{0}^{\infty} e^{-pt} f(t) dt$ Функция f(t) называется Лапласовым изображ f(t) = F(P) называется оригиналом. Это пишут так: называется Лапласовым изображением функции $F(P) \rightarrow f(t)$

Отметим свойства преобразования Лапласа.

$$L\{f(at)\} = \frac{1}{a}F\left(\frac{P}{a}\right)$$

$$1^{\circ} \qquad L\{f_{1}(t) + f_{2}(t)\} = F_{1}(P) + F_{2}(P)$$

$$3^{\circ} \qquad L\{e^{-\alpha_{t}}f(t)\} = F(P + \alpha)$$

$$4^{\circ} \qquad L\{f_{n}(t)\} = (-1)^{n}F^{(n)}(P)$$

$$5^{\circ} \qquad L\{f_{n}(t)\} = p^{(n)}F(p) - [p^{n-1}f(0) + p^{n-2}f'(0) + ... + pf^{(n-2)}(0) + f^{(n-1)}(0)]$$

$$L\{f_{n}(t)\} = p^{(n)}F(p) - [p^{n-1}f(0) + p^{n-2}f'(0) + ... + pf^{(n-2)}(0) + f^{(n-1)}(0)]$$

$$L\{f_{n}(t)\} = e^{-pt_{0}}F(P)$$

$$6^{\circ} \qquad L\{f_{n}(t)\} = e^{-pt_{0}}F(P)$$

Таблица некоторых изображений

	1	2	3	4	5	6
f(t)	1	sin <i>at</i>	cos at	$e^{-\alpha_t}$	shat	chαt
F(P)	1	а	p	1	α	p
	\overline{p}	$\overline{p^2 + a^2}$	$\overline{p^2 + a^2}$	$\overline{p+\alpha}$	$p^2 - \alpha^2$	$p^2-\alpha^2$

	7	8	9	10	11	12
f(t)	$e^{-\alpha_t}\sin at$	$e^{-\alpha_t}\cos at$	t^n	t sin at	t cos at	$te^{-\alpha_t}$
F(P)	$\frac{a}{(p+\alpha)^2+a^2}$	$\frac{p+\alpha}{(p+\alpha)^2+a^2}$	$\frac{n!}{p^{n+1}}$	$\frac{2pa}{\left(p^2+a^2\right)}$	$\frac{p^2 - a^2}{\left(p^2 + a^2\right)^2}$	$(p+\alpha)^2$

 $f(t) = \sin 2t - 2\cos 3t$ Пример 1. Найти изображение функции

Решение. Используя свойство 2° и формулы (2) и (3) из таблицы,

ПОЛУЧИМ:
$$F(p) = L\{f(t)\} = L\{\sin 2t\} - 2L\{\cos 3t\} =$$

$$= \frac{2}{p^2 + 4} - 2\frac{p}{p^2 + 9} = \frac{2(p^2 - p^3 + 9 - 4p)}{(p^2 + 4)(p^2 + 9)} = -\frac{2(p^3 - p^2 + 4p - 9)}{(p^2 + 4)(p^2 + 9)}$$

$$F(p) = \frac{6}{p^2 + 9} + \frac{3p}{p^2 + 4}$$

Пример 2. Найти оригинал для изображения

$$F(p) = 2 \cdot \frac{3}{p^2 + 3^2} + 3 \cdot \frac{p}{p^2 + 2^2}$$
 Решение. Представим в виде Используя формулы (2) и (3) из таблицы, получим

Используя формулы (2) и (3) из таблицы, получим $f(t) = 2\sin 3t + 3\cos 2t$

$$F(p) = \frac{10}{p^2 + 2p + 5}$$

Пример 3. Найти оригинал для изображения

F(p) в виде $F(p)=5 \cdot \frac{2}{(p+1)^2+2^2}$ Решение. Представим

Решение. Представим в видс $f(t) = 5 \cdot e^{-t} \sin 2t$ Отсюда по формуле (7) таблицы найдем $F(p) = \frac{p+2}{p^2+6p+13}$

$$F(p) = \frac{p+2}{p^2+6p+13}$$

Пример 4. Найти оригинал для изображения F(p)

Решение. Представим
$$F(p)$$
 в виде $F(p) = \frac{(p+3)-1}{(p+3)^2+4} = \frac{p+3}{(p+3)^2+2^2} - \frac{1}{2} \cdot \frac{2}{(p+3)^2+2^2}$

Тогда из формулы (7) и (8) таблицы следует:

$$f(t) = e^{-3t} \cos 2t - \frac{1}{2} e^{-3t} \sin 2t = e^{-3t} \left(\cos 2t - \frac{1}{2} \sin 2t\right)$$

Пример 5. Найти изображение функции $f(t) = t^2 e^{-2t}$

$$L\left\{e^{-2t}\right\} = \frac{1}{p+2}$$

Решение. Из формулы (4) таблицы следует Теперь используем свойство 4°, получим

$$L\left\{2e^{-2t}\right\} = (-1)^2 \left(\frac{1}{p+2}\right)'' = \left(-\frac{1}{(p+2)^2}\right)' = \frac{2}{(p+2)^5}$$

$$F(p) = {3p-2 \choose (p-1)(p^2-6p+10)}$$

Пример 6. Найти оригинал для изображения
$$F(p)$$
 на сумму простейших дробей:
$$F(p) = \frac{3p-2}{(p-1)(p^2-6p+10)} = \frac{a}{p-1} + \frac{bp+c}{p^2-6p+10}$$

где a, b, c - неизвестные числа, которые найдем из тождества $3p-2=a \binom{p^2-6p+10}{p+10}+\binom{bp+c}{p-1}$

Придавая р удобные значения, получим:

при
$$p=1$$
: $1=5a$ $a=\frac{1}{5}$; при $p=0$: $-2=2-c$, $c=4$; при $p=0$: $4=\frac{2}{5}+2b+4$ $b=-\frac{1}{5}$; $F(p)=\frac{1}{5}\cdot\frac{1}{p-1}-\frac{1}{5}\cdot\frac{p-20}{p^2-6p+10}$

Отсюда имеем

Оригинал для первой дроби найдем по формуле (4) таблицы, а для второй

дроби - как в примере 4.
$$F(p) = \frac{1}{5} \cdot \frac{1}{p-1} - \frac{1}{5} \cdot \frac{(p-3)-17}{(p-3)^2+1} \to \frac{1}{5}e^t - \frac{1}{5}e^{3t}\cos t + \frac{17}{5}e^{3t}\sin t$$

$$F(p) = \frac{p}{(p^2 + 4p + 8)}$$

Пример 7. Найти оригинал для изображения
$$F(p)$$
 к виду $F(p) = \frac{p}{p^2 + 4p + 8} \cdot \frac{1}{p^2 + 4p + 8} = F_1(p) \cdot F_2(p)$

Найдем оригиналы для
$$F_1(p)$$
 и $F_2(p)$: $F_1(p) = \frac{p}{p^2 + 4p + 8} = \frac{p + 2}{(p + 2)^2 + 2^2} - \frac{2}{(p + 2)^2 + 2^2} \rightarrow e^{-2t} \cos 2t - e^{-2t} \sin 2t = f_1(t)$ $F_2(p) = \frac{1}{p^2 + 4p + 8} = \frac{1}{2} \cdot \frac{2}{(p + 2)^2 + 2^2} \rightarrow \frac{1}{2} \cdot e^{-2t} \sin 2t = f_2(t)$

Отсюда по свойству 6° получим

$$f(t) = \int_{0}^{t} f_{1}(z) \cdot f_{2}(t-z) dz = \int_{0}^{t} e^{-2z} (\cos 2z - \sin 2z) \cdot \frac{1}{2} e^{-2(t-z)} \sin 2(t-z) dz =$$

$$= \frac{1}{2} e^{-2t} \int_{0}^{t} (\cos 2z - \sin 2z) \cdot \sin 2(t-z) dz =$$

$$= \frac{1}{2} e^{-2t} \int_{0}^{t} (\cos 2z - \sin 2z) \cdot (\sin 2t \cos 2z - \sin 2z \cos 2t) dz =$$

$$= \frac{1}{2} e^{-2t} \left[\sin 2t \int_{0}^{t} \cos^{2} 2z dz + \cos 2t \int_{0}^{t} \sin^{2} 2z dz - (\sin 2t + \cos 2t) \int_{0}^{t} \sin 2z \cdot \cos 2z dz \right] =$$

$$= \frac{1}{4} e^{-2t} \left[\sin 2t \int_{0}^{t} (1 + \cos 4z) dz + \cos 2t \int_{0}^{t} (1 - \cos 4z) dz - (\sin 2t + \cos 2t) \int_{0}^{t} \sin 4z dz \right] =$$

$$= \frac{1}{4} e^{-2t} \left[\sin 2t \left(z + \frac{1}{4} \sin 4z \right)_{0}^{t} + \cos 2t \left(z - \frac{1}{4} \sin 4z \right)_{0}^{t} + \frac{1}{4} (\sin 2t + \cos 2t) \cos 4z \right]_{0}^{t} \right] =$$

$$= \frac{1}{4} e^{-2t} \left[\sin 2t \left(t + \frac{1}{4} \sin 4t \right) + \cos 2t \left(t - \frac{1}{4} \sin 4t \right) + \frac{1}{4} (\sin 2t + \cos 2t) \cdot (\cos 4t - 1) \right] =$$

$$= \frac{1}{4} e^{-2t} \left[\sin 2t \left(t + \frac{1}{4} \sin 4t \right) + \cos 2t \left(t - \frac{1}{4} \sin 4t \right) + \frac{1}{4} (\sin 2t + \cos 2t) \cdot (\cos 4t - 1) \right] =$$

$$= \frac{1}{16} e^{-2t} (4t \sin 2t + 4t \cos 2t + \sin 2t \sin 4t - \cos 2t \sin 4t + \sin 2t \cos 4t + \cos 2t \cos 4t - \sin 2t - \cos 2t \right) = \frac{1}{8} e^{-2t} \left[2t (\sin 2t + \cos 2t) - \sin 2t \right]$$

Метод операционного исчисления для решения задачи Коши:

$$a_0 x^{(n)} + a_1 x^{(n-1)} + \dots + a_{n-1} x^1 + a_n x = f(t)$$
(1)

$$x(0) = c_1, x^1(0) = c_2, \dots, x^{(n-1)}(0) = c_n,$$
 (2)

где (1) - линейное дифференциальное неоднородное уравнение с постоянными коэффициентами а;

(2) - начальное условие, c_i - const;

x(t) - неизвестная функция аргумента t.

Используя свойство 5° и начальное условие (2) запишем уравнение (1) в изображениях

Боражениях
$$x(p)|a_0p^n + a_1p^{n-1} + ... + a_{n-1}p + a_n| = a_0 [p^{n-1}c_1 + p^{n-2}c_2 + ... + c_n] + a_1 [p^{n-2}c_1 + p^{n-3}c_2 + ... + c_{n-1}] + a_{n-2} [pc_1 + c_2] + a_{n-1}c_1 + F(p)$$
, $x(p) \xrightarrow{} x(t)$

Из этих уравнений находится x(p), затем его оригинал x(t), который и будет решением данной задачи.

$$x'' - 3x' + 2x = 2e^{t} \cos \frac{t}{2}, \quad x(0) = 1, \quad x'(0) = 0$$

Пример 8. Решить задачу Коши

Решение. Перейдем к изображениям

$$p^{2}x(p)-p\cdot 1-3(px(p)-1)+2x(p)=2\frac{p-1}{(p-1)^{2}+\frac{1}{4}}$$

$$x(p)[p^{2}-3p+2]=p-3+\frac{2(p-1)}{p^{2}-2p+\frac{5}{4}}$$

Отсюда

$$x(p) = \frac{p-3}{p^2 - 3p + 2} + \frac{2}{(p-2)(p^2 - 2p + \frac{5}{4})}$$

Для определения оригинала вторую дробь разложим на сумму двух простейших дробей, как в примере 6.

$$\frac{2}{(p-2)(p^2-2p+\frac{5}{4})} = \frac{a}{p-2} + \frac{bp+c}{p^2-2p+\frac{5}{4}}$$

$$2 = a\left(p^2-2p+\frac{5}{4}\right) + (p-2)(bp+c)$$

Составим тождество

Придавая p удобные значения, получим $2 = \frac{5}{4}a \quad a = \frac{8}{5}$

при
$$p=2$$
:
при $p=0$:
 $2 = \frac{5}{4}a$ $a = \frac{8}{5}$;
при $p=0$:
 $2 = 2 - 2c$, $c = 0$;
 $2 = \frac{2}{5} - b$ $b = -\frac{8}{5}$;
при $p=1$:

Разложим первую дробь:
$$\frac{p-3}{p^2-3p+2} = \frac{p-3}{(p-1)(p-2)} = \frac{d}{p-1} + \frac{e}{p-2}$$

Составим тождество p-3=d(p-2)+e(p-1)

Придавая
$$p$$
 удобные значения, получим при $p=2$: $^{-1=e} _{} \stackrel{e=-1}{,} \stackrel{\cdot}{d=2}$ при $p=1$: $^{-2=-d} _{} \stackrel{\cdot}{,} \stackrel{d=2}{,}$

$$x(p) = \frac{2}{p-1} - \frac{1}{p-2} + \frac{\frac{8}{5}}{p-2} - \frac{\frac{8}{5}p}{p^2 - 2p + \frac{5}{4}} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{1}{p-2} - \frac{8}{5} \cdot \frac{p}{p^2 - 2p + \frac{5}{4}} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{1}{p-2} - \frac{8}{5} \cdot \frac{p}{p^2 - 2p + \frac{5}{4}} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{1}{p-2} - \frac{8}{5} \cdot \frac{p}{p^2 - 2p + \frac{5}{4}} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{1}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{1}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{1}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{1}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} = \frac{2}{p-1} + \frac{3}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{8}{5} \cdot \frac{p}{p-2} - \frac{p}{p$$

Тогда

$$= \frac{2}{p-1} + \frac{3}{5} \cdot \frac{1}{p-2} - \frac{8}{5} \cdot \frac{p-1}{(p-1)^2 + \frac{1}{4}} - \frac{16}{5} \cdot \frac{\frac{1}{2}}{(p-1)^2 + \frac{1}{4}}$$

$$x(t) = 2e^{t} + \frac{3}{5}e^{2t} - \frac{8}{5}e^{t}\cos\frac{t}{2} - \frac{16}{5}e^{t}\sin\frac{t}{2}$$
 - решение данной задачи Коши. пля $f(t)$ найти оригинал невозможно, используется формул

Отсюда

Когда для f(t) найти оригинал невозможно, используется формула Дюамеля:

$$x(t) = \int_{0}^{t} x_{1}'(z)f(t-z)dz$$
, где $x_{1}(t)$ - решение того же уравнения (1) при $f(t) = 1$ и все $c_{i} = 0$

 $x'' + x' = \frac{1}{1 + e^t}$ x(0) = 0 x'(0) = 0*Решение*. Сначала решим уравнение x'' + x' = 1. Для этого перейдем к изображениям и получим

$$x_1(p)(p^2+p) = \frac{1}{p}$$
 $x_1(p) = \frac{1}{p^2(p+1)}$

Теперь найдем оригинал $x_1(p)$ для $x_1(p) = \frac{1}{p^2(p+1)} = \frac{a}{p^2} + \frac{b}{p} + \frac{c}{p+1}$. Составим тождество $1 = a(p+1) + bp(p+1) + cp^2$

Придавая р удобные значения, получим:

Придавая
$$p$$
 удооные значени $p=0$: $1=a$; при $p=-1$: $1=c$; при $p=1$: $1=2+2b+1$, $b=-1$. $x_1(p)=\frac{1}{p^2}-\frac{1}{p}+\frac{1}{p+1}$ Отсюда

Отсюда p^2 p p+1 . Используя формулы (1), (4) и (9) таблицы, получим оригинал: . Тогда $x_1'(t) = t - t + e^{-t}$.

Теперь применим формулу Дюамеля:
$$x(t) = \int_{0}^{1-e^{-z}} \frac{1-e^{-z}}{1+e^{t-z}} dz = \int_{0}^{t} \frac{e^{z}-1}{e^{t}+e^{z}} dz = \begin{vmatrix} e^{z} = y \\ dy = e^{z} dz \end{vmatrix} = \int_{1}^{e^{t}} \frac{(y-1)dy}{y(y+e^{t})} = \int_{1}^{e^{t}} \left(\frac{1+e^{-t}}{y+e^{t}} - \frac{e^{-t}}{y}\right) dy =$$

$$= \left[(1+e^{-t}) \ln (y+e^{t}) - e^{-t} \ln y \right]_{1}^{e^{t}} = (1+e^{-t}) \ln 2e^{t} - te^{-t} - (1+e^{-t}) \ln (1+e^{t}) =$$

$$= t + (1 + e^{-t}) \ln \frac{2}{1 + e^{t}}$$
 - решение данной задачи Коши.

Метод операционного исчисления для решения системы линейных дифференциальных уравнений с постоянными коэффициентами

Рассмотрим систему из уравнений первого порядка

$$\begin{cases} x' = ax + by + f_1(t) \\ y' = cx + dy + f_2(t) \\ x(0) = x_0 \\ y(0) = y_0 \end{cases}$$

x(t), y(t) - неизвестные функции от аргумента t; гле x_0, y_0, a, b, c, d - постоянные;

 $f_1(t), f_2(t)$ -данные функции.

От данной системы перейдем к системе их изображений: $px(p) - x_0 = ax(p) + by(p) + F_1(p)$

$$\begin{cases} px(p) - x_0 = ax(p) + by(p) + F_1(p) \\ py(p) - y_0 = cx(p) + dy(p) + F_2(p) \end{cases}$$

Полученная система является алгебраической относительно неизвестных x(p) и y(p).

Решая систему, найдем x(p) и y(p) и затем для них определим оригиналы x(t) и y(t).

$$\begin{cases} x' = 4x - 8y + e^t \\ y' = -8x + 4y - e^{2t} \end{cases} \quad x(0) = 0 \quad y(0) = 0$$
.

Решение. Запишем эту систему в изображениях:

$$\begin{cases} px(p) - x_0 = 4x(p) - 8y(p) + \frac{1}{p-1} \\ py(p) - y_0 = -8x(p) + 4y(p) - \frac{1}{p-2} \end{cases}$$

Найдем из системы x(p) и y(p). Из первого уравнения найдем $y(p) = \frac{1}{8} \left(4x(p) - px(p) + \frac{1}{p-1} \right)$ и подставим это во второе уравнение: $8x(p) + (p-4)\frac{1}{8} \left(4x(p) - px(p) + \frac{1}{p-1} \right) = -\frac{1}{p-2}$

$$8x(p) + (p-4)\frac{1}{8}\left(4x(p) - px(p) + \frac{1}{p-1}\right) = -\frac{1}{p-2},$$

$$\left(8 + \frac{p}{2} - 2 - \frac{p^2}{8} + \frac{p}{2}\right)x(p) = -\frac{p-4}{8(p-1)} - \frac{1}{p-2},$$

$$x(p) = \frac{\frac{p-4}{8(p-1)} + \frac{1}{p-2}}{\frac{p^2}{8} - p-6} = \frac{\frac{p-4}{p-1} + \frac{8}{p-2}}{\frac{p^2-8p-48}{p-1}} = \frac{p^2+2p}{(p-12)(p+4)(p-1)(p-2)}$$

Разложим эту дробь на сумму простейших:
$$x(p) = \frac{a}{p-12} + \frac{b}{p+4} + \frac{c}{p-1} + \frac{d}{p-2}$$

Составим тождество:

$$p^{2} + 2p = a(p+4)(p-1)(p-2) + b(p-12)(p-1)(p-2) + c(p-12)(p+4)(p-2) + d(p-12)(p+4)(p-1)$$

Придавая p удобные значения, найдем неизвестные a, b, c и d:

при
$$p=1$$
: $3=55c$, $c=\frac{3}{55}$; при $p=2$: $8=-60d$, $d=-\frac{2}{15}$. при $p=12$: $168=1760a$, $a=\frac{21}{220}$; при $p=-4$: $8=-480b$, $b=-\frac{1}{60}$. Подставляя эти значения, получим: $x(p)=\frac{21}{220}\cdot\frac{1}{p-12}-\frac{1}{60}\cdot\frac{1}{p+4}+\frac{3}{55}\cdot\frac{1}{p-1}-\frac{2}{15}\cdot\frac{1}{p-2}$

Теперь найдем по формуле (4) таблицы оригинал:
$$x(t) = \frac{21}{220} e^{12t} - \frac{1}{60} e^{-4t} + \frac{3}{55} e^t - \frac{2}{15} e^{2t}$$

Неизвестную функцию y(t) можно найти из первого уравнения данной системы, подставляя вместо и их значения. $x'(t) = \frac{63}{55}e^{12t} + \frac{1}{15}e^{-4t} + \frac{3}{55}e^{t} - \frac{4}{15}e^{2t}$

$$x'(t) = \frac{63}{55}e^{12t} + \frac{1}{15}e^{-4t} + \frac{3}{55}e^{t} - \frac{4}{15}e^{2t}$$
Найдем

$$y = \frac{1}{8} \left(4x - x' + e^t \right)$$

Из первого уравнения имеем

Подставим сюда значения
$$x$$
 и x .
$$y(t) = \frac{1}{8} \left(\frac{21}{55} e^{12t} - \frac{1}{15} e^{-4t} + \frac{12}{55} e^t - \frac{8}{15} e^{2t} - \frac{63}{55} e^{12t} - \frac{1}{15} e^{-4t} - \frac{3}{55} e^t + \frac{4}{15} e^{2t} + e^t \right) =$$

$$= \frac{1}{8} \left(-\frac{42}{55} e^{12t} - \frac{2}{15} e^{-4t} + \frac{64}{55} e^t - \frac{4}{15} e^{2t} \right) = -\frac{21}{220} e^{12t} - \frac{2}{60} e^{-4t} + \frac{8}{55} e^t - \frac{1}{30} e^{2t}$$

$$\begin{cases} x(t) = \frac{21}{220} e^{12t} - \frac{1}{60} e^{-4t} + \frac{3}{55} e^t - \frac{2}{15} e^{2t} \\ y(t) = -\frac{21}{220} e^{12t} - \frac{2}{60} e^{-4t} + \frac{8}{55} e^t - \frac{1}{30} e^{2t} \end{cases}$$

Индивидуальные домашние задания 8

ИДЗ 8.1

Найти область определения функций и нарисовать график:

1.
$$z = \sqrt{x^2 - 4y^2}$$

$$z = \arcsin \frac{x}{y}$$

$$\frac{4}{7} z = \ln \left(y^2 - x^2 \right)$$

10.
$$z = \sqrt{x-1-y^2}$$

10.
$$z = \arcsin \frac{x-1}{y}$$
13. $z = \ln (4-4x^2-y^2)$

$$z = \ln \left(4 - 4x^2 - y^2 \right)$$

19.
$$z = \sqrt{x - y} + \sqrt{x + y}$$

$$z = \sqrt{4 - x^2 - 4y^2}$$

$$z = \arccos \frac{x}{x}$$

$$z = \ln \left(x - y^2\right)$$

8.
$$z = m x - y$$
11. $z = \sqrt{y + 2 - x^2}$

$$z = \arccos \frac{y+1}{z}$$

$$z = \arccos \frac{y+1}{x}$$
14.
$$z = \ln \left(2 + y^2 - x\right)$$

$$20. \quad z = \sqrt{xy} + \sqrt{y - x}$$

$$z = \sqrt{x^2 + y^2 - 1}$$

$$z = \arcsin(xy)$$

6.
$$z = \arcsin(xy)$$
9.
$$z = \ln(y+1-x^2)$$

12.
$$z = \sqrt{1 - x^2 - y^2}$$

15.
$$z = \arccos(x + y - 1)$$

18. $z = \ln(3 + x^2 - y)$

18.
$$z = \ln 3 + x^2 - 1$$

Пример 1 гл. 13.

ИДЗ 8.2

Найти линии уровня функции:

1. $z = \arccos\left(x^2 - y\right)$ 2. $z = \arcsin\left(x - y^2\right)$

1.
$$\frac{z - \arccos x - y}{(a - c)^2}$$

$$z = \arcsin\left(x - y^2\right)$$

$$z = \sqrt{x^2 - y - 3}$$

$$z = \frac{x-2}{y}$$

$$7 = x^2 + y^2 - 4$$

$$13. \quad z = x^2 + y^2 - 4$$

16.
$$z = xy$$

$$z = \frac{x - y}{x - 1}$$

$$z = \arcsin\left(x - y^2\right)$$

4.
$$z = \arcsin(2 - x^2 - y^2)$$
5. $z = \sqrt{x^2 + y^2 - 3}$

8.
$$z = \sqrt{y - 2x^2 + 1}$$

$$z = \frac{y}{x+1}$$

$$z = \frac{y}{x+1}$$
11.
$$z = 2x^{2} + y - 1$$
17.
$$z = x(y-1)$$

$$z = x(y-1)$$

$$z = \frac{x+y}{y+1}$$

3.
$$z = \arccos(x^2 + y^2 - 1)$$

6.
$$z = \sqrt{5 - x^2 - y^2}$$

$$z = \frac{y+1}{x}$$

$$z = \frac{x}{y-1}$$

$$z = \frac{x}{y-1}$$
12.
15. $z = y-x^2-2$
 $z = y(x+2)$

$$z = y(x+2)$$

Примеры 3, 4 гл.13.

ИДЗ 8.3

Найти частные производные второго порядка:

$$z = \ln(xy+1)$$

$$z = \ln\left(\frac{x}{y} + 1\right)$$

$$z = \ln\left(xy+1\right) \qquad z = \ln\left(\frac{x}{y}+1\right)$$

$$z = \ln\left(\frac{x}{y}+1\right)$$

$$z = \ln\left(\frac{x}{y}+1\right)$$

$$z = \ln\left(\frac{x}{y}+1\right)$$

$$\mathbf{4}. \quad z = \sin\left(xy\right)$$

$$\int_{0}^{z=\cos\left(x^{2}+y\right)}$$

$$6^{z=tg(x+y)}$$

5.
$$z = \cos(x^2 + y)$$
 6. $z = tg(x + y)$ 7. $z = \arcsin \frac{x^2}{y}$ 8. $z = \arccos \frac{y^2}{x}$

$$z = \arccos \frac{y^2}{x}$$

$$z = arctg\sqrt{xy}$$

9.
$$z = arctg\sqrt{xy}$$
10.
$$z = \frac{x^2}{y+1}$$

$$z = \frac{y^2}{x-1}$$

12.
$$z = \sqrt{x^2 + y^2}$$

13.
$$z = e^{xy}$$

14.
$$z = e^{x/y}$$

15.
$$z = e^{\frac{y}{x}}$$

12.
$$z = \sqrt{x^2 + y^2}$$

 $z = \frac{x}{\sqrt{x^2 + y^2}}$
16.

$$z = \frac{y}{\sqrt{x^2 + y^2}}$$
 $z = \sqrt{\frac{x}{y}}$ $z = \frac{\sqrt{x + y}}{x}$ $z = \frac{\sqrt{x + y}}{x}$ 20. $z = \frac{\sqrt{x + y}}{y}$

ИДЗ 8.4

Найти полный дифференциал функции:

1.
$$z = x^{y}$$
 2. $z = x^{\ln y}$ 3. $z = y^{\ln x}$ 4. $z = \frac{\ln x}{y}$ 5. $z = \frac{\ln y}{x}$ 6. $z = \sqrt{xy} + x + y$ 8. $z = x\sqrt{y} - x - y$ 9. $z = \sqrt{xy}$ 10. $z = \ln (x + y^{2})$ 11. $z = (x + y^{2})$ 12. $z = \frac{x + y}{x - y}$ 13. $z = \sqrt{x^{2} + y + 1}$ 14. $z = \arctan(\frac{y}{x})$ 15. $z = \arcsin(xy + 1)$ 16. $z = \arccos(\frac{x}{y} + 1)$ 20. $z = \frac{xy}{x^{2} + y^{2}}$ 17. $z = \arcsin(xy + 1)$ 19. $z = \arcsin(xy + 1)$ 19. $z = \arcsin(xy + 1)$ 19. $z = \arcsin(xy + 1)$

ИДЗ 8.5

Найти уравнение касательной плоскости к поверхности в точке М:

1.
$$z = \ln(1-xy)$$
, $M(0,2,0)$
2. $z = \ln\left(\frac{y}{x}+1\right)$, $M(-2,0,0)$
3. $z = \sqrt{x^2-y}$, $M(2,3,2)$
4. $z = \sqrt{x^2+y^2}$, $M(0,1,1)$
5. $z = \sqrt{xy}-1$, $M(2,2,1)$
6. $z = \sqrt{x^2-y+2}$, $M(-1,2,1)$
7. $z = \ln\left(x^2+y-2\right)$, $M(-2,-1,0)$
9. $z = \ln\left(x^2+y-2\right)$, $M(-2,-1,0)$
10. $z = \ln\left(x^2-y^2+1\right)$, $M(1,-1,0)$
11. $z = \arcsin\frac{x+1}{x+y}$, $M(0,2,\frac{\pi}{6})$
12. $z = \frac{y-2}{x-y}$, $M(2,1,-1)$
13. $z = \sqrt{x^2+y^2-1}$, $M(-2,-1,2)$
14. $z = \arccos\frac{y-1}{x}$, $M(2,0,\frac{2\pi}{3})$
15. $z = \sqrt{x^2+y^2-1}$, $M(-2,-1,2)$
16. $z = \sqrt{x^2-y^2+1}$, $M(-1,1,1)$
17. $z = \arctan(y+1)$
18. $z = \frac{y^2-1}{x}$, $M(1,-2,3)$
19. $z = e^{x^2-y^2}$, $M(1,-1,1)$

ИДЗ 8.6

Вычислить приближенно:

Пример 10 гл. 13.

ИДЗ 8.7

Исследовать на экстремум функцию:

1.
$$z = x^3 + 8y^3 - 6xy + 1$$

3. $z = x^3 + y^2 - 6xy - 39x + 18y + 100$

5. $z = 3x^3 + 3y^3 - 9xy + 5$

7. $z = 4(x - y - 1) - x^2 - y^2$

9. $z = x^2 + xy + y^2 - 6x - 9y + 20$

11. $z = 2x^2 + (y + 1)^2 + 2$

12. $z = 2xy - 2x^2 - 4y^2 + 1$

13. $z = 2xy - 5x^2 - 3y^2 + 3$

14. $z = x^3 + y^3 - 6xy + 3$

15. $z = 2xy - 2x^2 - 4y^2 + 1$

16. $z = x^3 + y^3 - 3xy + 2$

17. $z = 2xy - 5x^2 - 3y^2 + 3$

18. $z = xy - x^2 - y^2 + 4$

19. $z = xy - x^2 - y^2 + 4$

10. $z = xy - x^2 - y^2 + 4$

11. $z = xy - x^2 - y^2 + 4$

12. $z = x^3 + y^3 - 3xy + 2$

13. $z = xy - x^2 - y^2 + 4$

14. $z = xy - x^2 - y^2 + 4$

15. $z = xy - x^2 - y^2 + 4$

16. $z = xy - x^2 - y^2 + 4$

17. $z = xy - x^2 - y^2 + 4$

18. $z = xy - x^2 - y^2 - x + 6y$

19. $z = xy - x^2 - y^2 - x + 6y$

19. $z = xy - x^2 - y^2 - x + 6y$

20. $z = x^2 + y^2 - xy + x + y$

ИДЗ 8.8

Найти наибольшее и наименьшее значения функцию в области D_{ij} ограниченной заданными линиями:

1.
$$z = 3x + y - xy$$
 $D: x = 0, y = 4, y = x$
2. $z = xy - x - 2y$ $D: x = 3, y = 0, y = x$
3. $z = 5x^2 - 3xy + y^2$ $D: x = 0, x = 1, y = 0, y = 1$
4. $z = x^2 + y^2 - 2x - 2y$ $D: x = 0, y = 0, x + y = 1$
5. $z = 2x^3 - xy^2 + y^2$ $D: x = 0, x = 1, y = 0, y = 6$

6.
$$z = x^2 + 2xy$$
, $D: y = 0$, $y = x^2 - 4$
7. $z = \frac{1}{2}(x^2 - xy)$ $D: y = 8$, $y = 2x^2$
8. $z = x^2 - 2xy - y^2 + 4x$ $D: x = -3$, $y = 0$, $x + y + 1 = 0$
9. $z = 3x^2 + 3y^2 - x - y$ $D: x = 5$, $y = 0$, $x - y = 1$
10. $z = xy - 3x - 2y$ $D: x = 0$, $y = 0$, $x = 4$, $y = 4$
11. $z = 2x^2 + 2xy - \frac{1}{2}(y^2 - 4x)$ $D: x = 0$, $y = 2$, $y = 2x$
12. $z = xy - 2x - y$ $D: x = 0$, $x = 3$, $y = 0$, $y = 4$
13. $z = x^2 + xy$ $D: y = 0$, $y = 4x^2 - 4$
14. $z = x^2y(4 - x - y)$ $D: x = 0$, $y = 0$, $x + y = 6$
15. $z = x^3 + y^3 - 3xy$ $D: x = 0$, $x = 2$, $y = -1$, $y = 2$
16. $z = x^2 + 2xy - y^2 - 4x$ $D: x = 3$, $y = 0$, $y = x + 1$
17. $z = 4 - 2x^2 - y^2$ $D: y = 0$, $y = \sqrt{1 - x^2}$
18. $z = 2x^2y - x^3y - x^2y^2$ $D: x = 0$, $y = 0$, $x + y = 6$
19. $z = 5x^2 - 3xy + y^2$ $D: x = -1$, $x = 1$, $y = -1$, $y = 1$
20. $z = 2x^2 + 3y^2$ $D: y = 0$, $y = \sqrt{4 - x^2}$
Примеры 15, 16 гл. 13.

Найти экстремумы функции

1.
$$z = x - y$$
 при $x^2 + y^2 = 1$

3. $z = 2x - y$ при $x^2 + 3y^2 = 3$

5. при $2x^2 + xy = 1$

7. $z = 3x + y$ при $x^2 + y^2 = 4$

9. при $x^2 + y^2 = 4$

11. $x = x^2 - y^2$ при $x + 2y - 1 = 0$

12. $x = x^2 + y^2$ при $x - 2y + 2 = 0$

13. $x = x^2 + y^2$ при $x - 2y + 2 = 0$

15. $x = x^2 + 2y^2$ при $x - 2y + 2 = 0$

17. $x = 2xy + y^2$ при $x - 2y + 3 = 0$

19. $x = xy - y^2$ при $x + y + 3 = 0$

Примеры 13, 14 гл. 13.

Найти экстремумы функции z = f(x, y) при условии $\phi(x, y) = 0$: 2. z = x + y при $x^2 + 2y^2 = 2$ **4**. z = x - 2y при $2x^2 + y^2 = 1$ **10**. z = y - 3x при $x^2 + xy = 3$ 12. $z = 2x^{2} - y^{2}$ при x + y + 2 = 014. $z = 2x^{2} + y^{2}$ при 2x - y + 3 = 0**16.** $z = x^2 + xy$ при 3x + y + 1 = 0**18**. $z = 2x^2 - xy$ при x + 2y + 3 = 0**20**. $z = x^2 - 2xy$ при x - 3y + 2 = 0

ИДЗ 8.10

Проверить, удовлетворяет ли данному уравнению функция z = f(x, y):

1.
$$x^2 z''_{xx} + 2xyz''_{xy} + y^2 z''_{yy} = 0$$
, $z = \frac{y}{x}$

3.
$$z'_x + yz'_y = 3(x^3 - y^3)$$
 $z = \ln \frac{x}{y} + x^3 - y^3$

5.
$$z''_{xx} + z''_{yy} = 0$$
, $z = \ln (x^2 + (y+1)^2)$

7.
$$yz''_{xy} = (1 + y \ln x)z'_x$$
 $z = x^y$

9.
$$z''_{xx} = z''_{yy}$$
, $z = e^{-\cos(x+y)}$

11.
$$x^2 z'_x - xyz'_y + y^2 = 0$$
, $z = \frac{y^2}{3x} + \arcsin(xy)$

13.
$$x^2 z''_{xx} - 2xyz''_{xy} + y^2 z''_{yy} + 2xyz = 0$$
 $z = e^{xy}$

15.
$$z''_{xx} + z''_{yy} = 0$$
 $z = \ln(x^2 + y^2 + 2x + 1)$

17.
$$9z''_{xx} + z''_{yy} = 0$$
 $z = e^{-x-3y} \cdot \sin(x+3y)$

19.
$$x^2 z''_{xx} + 2xyz''_{xy} + y^2 z''_{yy} = 0$$
, $z = xe^{y/x}$

Примеры 5, 6, 7 гл. 13.

2.
$$xz'_{x} + yz'_{y} = 2z$$
, $z = \frac{xy}{x+y}$

4.
$$x^2 z''_{xx} + y^2 z''_{yy} = 0$$
 $z = e^{xy}$

$$\mathbf{6}. z''_{xx} = z''_{yy}, \quad z = \sin^2(x - y)$$

8.
$$x^2 z''_{xx} - y^2 z''_{yy} = 0$$
 $z = y \sqrt{\frac{y}{x}}$

10.
$$xz'_x + yz'_y = z$$
, $z = x \ln \frac{y}{x}$

12.
$$yz'_x - xz'_y = 0$$
, $z = \ln(x^2 + y^2)$

14.
$$z''_{xy} = 0$$
 $z = arctg \frac{x+y}{1-xy}$

16.
$$z = \frac{2x + 3y}{x^2 + y^2}$$

18.
$$xz'_x + yz'_y = 2z$$
, $z = (x^2 + y^2)tg \frac{x}{y}$

20.
$$z''_{xx} + z''_{yy} = 0$$
, $z = arctg \frac{y}{x}$

Индивидуальные домашние задания 9

ИДЗ 9.1

Среди n лотерейных билетов m выигрышных. Наудачу взяли k билетов. Определить вероятность того, что среди них l выигрышных. (Исходные данные в таблице 1.)

Пример 4 гл. 14.

ИДЗ 9.2

Коэффициенты p и q уравнения $x^2 + px + q = 0$ удовлетворяют условиям: $0 \le p \le a$, $0 \le q \le b$. Найти вероятность того, что у уравнения: варианты 1-10 - есть решения; варианты 11-20 - нет решений. (Исходные данные в таблице 1.) Пример 5 гл. 14.

ИДЗ 9.3

В двух ящиках n% и k% стандартных изделий соответственно. Наудачу выбирают по одному из каждого ящика. Найти вероятность того, что а) два стандартных; б) одно стандартное; в) хотя бы одно стандартное. (Исходные данные в таблице 1.)

Пример 7 гл. 14.

ИДЗ 9.4

Из 100 ламп n_i изготовлены в i цехе, i=1, 2, 3, $n_1+n_2+n_3=100$. В лампах первого цеха 6%, второго - 4%, третьего - 2% бракованных. Наудачу берут одну лампу. Найти вероятность того, что она не бракованная. (Исходные данные в таблице 1.)

Пример 9 гл. 14.

ИДЗ 9.5

В первой урне n белых и m черных шаров, во второй k белых и l черных. Из первой во вторую переложено S шаров. Найти вероятность того, что шар, взятый из второй урны, - белый. (Исходные данные в таблице 1.)

Пример 9 гл. 14.

ИДЗ 9.6

Вероятность выигрыша в лотерею на один билет равна p. Куплено n билетов. Составить закон распределения случайной величины количества выигранных билетов. (Исходные данные в таблице 1.)

Пример 15 гл. 14.

ИДЗ 9.7

В магазин поступили изделия с двух заводов в количестве n и k. Среди них m% изделий первого завода и l% второго завода первосортных. Куплено одно первосортное изделие. Найти вероятность того, что оно изготовлено

первым заводом. (Исходные данные в таблице 2.) Пример 10 гл. 14.

ИДЗ 9.8

n раз бросили (монету в вариантах 1-10; игральный кубик в вариантах 11-20). Найти вероятность того, что герб (в вариантах 1-10) или шестерка (в вариантах 11-20) выпадет: а) ровно k раз; б) не менее m_1 и не более m_2 раз. (Исходные данные в таблице 2.)

Примеры 12, 13 гл. 14.

ИДЗ 9.9

Дана α плотность распределения f(x) случайной величины. Найти параметр , математическое ожидание, дисперсию, функцию распределения, вероятность попадания в интервал (x_1, x_2) .

рятность попадания в интервал
$$(x_1, x_2)$$
.
$$f(x) = \begin{cases} \frac{1}{\alpha - a}, & npu \ x \in [a, b] \\ 0, & npu \ x \in [a, b] \end{cases}$$
Варианты 1-5:
$$f(x) = \begin{cases} a, & npu \ x \in [\alpha, b] \\ 0, & npu \ x \in [\alpha, b] \end{cases}$$
Варианты 11-15:
$$f(x) = \begin{cases} \alpha, & npu \ x \in [a, b] \\ 0, & npu \ x \in [a, b] \end{cases}$$

$$f(x) = \begin{cases} b, & npu \ x \in [a, a] \\ 0, & npu \ x \in [a, a] \end{cases}$$
Варианты 16-20:

Варианты 16-20:

(Исходные данные в таблице 2.) Примеры 21, 22 гл. 14.

ИДЗ 9.10

9.10 $f(x) = \gamma e^{-ax^2 + bx + c}$ случайной величины. Дана плотность распределения Найти параметр , математическое ожидание, дисперсию, вероятность попадания в интервал (x_1, x_2) . (Исходные данные в таблице 2.)

Пример 23 гл. 14.

Та бл		n	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5
иц a 1		p	0,2	0,3 5	0,1 5	0,1	0,3	0,0 5	0,1 5	0,2 5	0,1	0,2 5	0,2	0,2	0,3	0,1 5	0,2	0,0	C
		S	3	2	4	3	2	4	3	2	4	3	2	4	3	2	4	3	2
		1	8	3	5	4	3	6	5	4	5	3	7	3	5	4	6	6	2
		k	6	4	3	5	6	3	6	4	5	4	3	6	4	3	6	5	3
		m	6	5	8	7	5	4	5	5	2	5	4	3	4	6	3	6	4
		n	5	5	6	6	4	7	7	6	6	5	4	7	6	4	5	7	5
		n ₂	40	39	39	40	41	43	38	38	37	37	36	36	34	34	35	35	4
	6	n ₁	32	31	30	29	28	27	26	25	24	23	32	31	30	29	28	27	2
		k	65	70	82	64	90	66	85	56	78	58	84	53	91	67	92	51	9
		n	80	75	76	83	72	87	63	88	54	81	55	89	52	79	62	93	5
		b	1	1	2	1	2	3	2	3	3	1	2	3	4	4	4	4	5
		a	2	3	3	1	2	3	1	1	2	4	4	4	4	3	2	1	5
		1	7	6	5	5	4	3	4	5	6	6	5	7	7	4	5	7	6
		k	15	13	12	8	7	7	8	10	8	7	6	9	8	9	11	10	
		m	12	14	11	10	9	10	9	8	10	8	9	12	10	10	12	13	
		n	20	21	22	18	19	17	17	16	16	15	15	18	19	20	21	22	2
	No	No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
	за	ва																	
	да	ри																	
	ИН Я	ан та																	
																			Ц

Ta		X_2	3	0	2	0	2	3	-1	1	-1	0	3	-2	4	0	-1	4	Ι.
бл						,													
иц a 2		\mathbf{X}_{1}	1	-2	0	-1	1	2	-2	0	-3	-3	0	-3	0	-4	-4	1	-
		С	1	1	-1	-1	-2	1	1	-1	-1	2	?	?	-1	-1	1	-?	
		b	1	-1	2	-2	3	4	-4	2	-2	-8	1	-1	?	-?	-2	1	-
		a	?	?	?	?	?	2	2	2	2	2	?	?	?	?	?	1/8	
		X ₂	5	6	9	7	8	3	2	2,5	2	5	4	3	4	2	5	2,5	1
		X ₁	3	4	6	5	5	2	1	2	1,5	4	3,5	2	3	1	3	1,5	
	10	b	7	8	9	8	10	4	3	3	2	5	4	5	4	4	5	?	
	10	a	3	3	4	4	4	?	?	1	1	?	3	2	2	1	1	1	
		m ₂	7	7	8	8	6	7	9	9	8	10	4	5	4	5	7	7	
		m ₁	4	3	4	5	3	5	5	6	6	7	1	1	2	2	4	3	
		k	6	5	4	7	6	4	7	5	7	6	3	4	2	3	4	2	
		n	10	11	12	13	14	15	16	17	18	19	19	18	17	16	15	14	1
		1	58	84	53	91	67	92	51	94	60	67	61	78	65	70	64	82	(
		m	92	57	95	59	93	62	79	52	89	55	81	54	88	63	87	72	8
		k	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20]
		n	25	24	23	22	21	20	19	18	17	16	26	27	28	29	30	31	
	№ 3а да ни я	№ ва ри ан та	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16]

Индивидуальные домашние задания 10

ИДЗ 10.1

Представить в тригонометрической форме:

1.
$$1+i$$

2
$$1-\sqrt{3}i$$

3.
$$\sqrt{3} + i$$

4.
$$2-2i$$

6.
$$-2i$$

7.
$$-\sqrt{3+i}$$

8.
$$-\sqrt{3}-i$$

9.
$$^{-1}$$

10
$$\sqrt{3}-i$$

11
$$1+\sqrt{3}i$$

ригонометрической форме.

2.
$$1-\sqrt{3}i$$
3. $\sqrt{3}+i$
4. $2-2i$
6. $-2i$
7. $-\sqrt{3}+i$
8. $-\sqrt{3}-i$
10. $\sqrt{3}-i$
11. $1+\sqrt{3}i$
12. $-1-\sqrt{3}i$
14. $-1+i$
15. $-2+2i$
16. $3-\sqrt{3}i$
17. $3-\sqrt{3}i$
18. $3+\sqrt{3}i$
19. $3-\sqrt{3}+3i$
20. $3-\sqrt{3}+3i$

13.
$$-1+\sqrt{3}i$$

14
$$^{-1+i}$$

15
$$-2+2i$$

16
$$3-\sqrt{3i}$$

17.
$$\sqrt{3} + 3i$$

18.
$$3+\sqrt{3}i$$

$$-\sqrt{3}+3i$$

20.
$$\sqrt{3}-3i$$

Пример 2 гл. 15.

ИДЗ 10.2

Найти все корни и указать их на координатной плоскости:

1.
$$\sqrt[4]{16}$$

$$2^{6\sqrt{8\sqrt{3}-8i}}$$

4
$$\sqrt[3]{8\sqrt{3}+8i}$$

5.
$$\sqrt[5]{-32}$$

6.
$$\sqrt[5]{i}$$

7
$$\sqrt[5]{16-16\sqrt{3}i}$$

2.
$$\sqrt[6]{8\sqrt{3}-8i}$$
 3. $\sqrt[4]{-4}$ 4. $\sqrt[3]{8\sqrt{3}+8i}$ 6. $\sqrt[5]{i}$ 7. $\sqrt[5]{16-16\sqrt{3}i}$ 8. $\sqrt[5]{16\sqrt{3}+16i}$ 10. $\sqrt[6]{-4i}$ 11. $\sqrt[6]{8+8\sqrt{3}i}$ 12. $\sqrt[4]{8\sqrt{3}-8i}$

9.
$$\sqrt[6]{8}$$

10
$$\sqrt[6]{-4i}$$

11
$$\sqrt[6]{8+8\sqrt{3}i}$$

2
$$\sqrt[4]{8\sqrt{3}-8i}$$

13.
$$\sqrt[6]{-16}$$

14.
$$\sqrt[3]{4i}$$

15.
$$\sqrt[4]{8-8\sqrt{3}i}$$

16
$$\sqrt[5]{16+16i}$$

17.
$$\sqrt[5]{-1+i}$$

14.
$$\sqrt[4]{-8+8\sqrt{3}i}$$
 15. $\sqrt[4]{8-8\sqrt{3}i}$ 16. $\sqrt[5]{16+16i}$ 18. $\sqrt[4]{-8+8\sqrt{3}i}$ 19. $\sqrt[6]{-4\sqrt{3}-4i}$ 20. $\sqrt[3]{-8}$

10
$$\sqrt[6]{-4\sqrt{3}-4i}$$

20.
$$\sqrt[3]{-8}$$

Примеры 4, 5 гл. 15.

ИДЗ 10.3 $\omega(z) = u(x,y) + i.v(x,y)$ Восстановить аналитическую функцию $1. \quad u = x^2 - y^2 + 3x + y \qquad \cdots = 3$

$$u = x^2 - y^2 + 3x + y$$

$$3. \quad u = x^3 - 3y^2x + 2$$

5.
$$u = x^2 - y^2 + xy$$

$$\frac{3}{7} u = 3(x^2 - y^2 + 1)$$

$$9. \ u = e^{x \cos y}$$

$$u = \frac{x}{x^2 + y^2}$$

$$u = x^2 - y^2 + 5x + y - \frac{y}{x^2 + y^2}$$

15.
$$u = y - 2xy$$

$$17. \quad u = e^{-y} \cos x$$

$$19 \quad u = e^x \sin y$$

$$v = x^3 + 6x^2y - 3xy^2 - 2y^3$$

$$v = arctg \frac{y}{x} + 1$$
4.

$$\frac{4}{6} \cdot v = 3 \ln \left(x^2 + y^2 \right)$$

$$8. \quad v = 2e^{x\cos y}$$

$$v = \frac{x}{x^2 + y^2} - 2y$$
10.

12.
$$v = \ln (x^2 + y^2) + x - 2y$$

$$v = \frac{y}{x^2 + y^2}$$

16.
$$v = xy + x$$

$$v = \frac{y}{x^2 + y^2}$$
14.
16.
$$v = xy + x$$
18.
$$v = x^2 - y^2 + 2x$$

$$20. v = 3x^2y - y^3$$

ИДЗ 10.4

```
Вычислить интеграл от функции комплексного переменного:
1. \int_{-1}^{L} , L - отрезок от точки z_1 = 3 до z_2 = -3 ;
2. L - дуга окружности |z|=1, 0 \le \arg z \le \pi
         , L - отрезок от точки z_1 = 0 до z_2 = e^{\frac{1}{4}};
4. \int_{-|z|}^{|z|} dz, L - отрезок от точки z_1 = 0 до z_2 = 2 + i;
5. \int_{|z|}^{|z|} |z|^{-z}, L - дуга окружности |z| = 2, 0 \le \arg z \le \pi;
6. \int_{-\infty}^{z-1}, L - окружность |z|=3;
7. \int_{-\infty}^{\infty} Re z dz, L - дуга параболы y = 2x^2 от z_1 = 0 до z_2 = 1 + 2i;
8. \int_{-\infty}^{L} , L - отрезок от точки z_1 = 0 до z_2 = 1 + i ;
9. \int_{-\infty}^{\infty} , L - дуга окружности |z|=3 , 0 \le \arg z \le \pi ;
10. \int_{-L}^{L} , L - окружность |z^{-1}|^{=1} ;
11. \int_{-1}^{L} , L - отрезок от точки z_1=0 до z_2=2+i ;
12. \int_{-L}^{L} \int_{z+1}^{L} \int_{e^z dz}^{z} dz, L - окружность |z+1|=1;
13. \int_{-L}^{L} (z^2 + z + 1) dz L - дуга окружности |z| = 1, \text{Re } z \ge 0;
14. \stackrel{\iota}{}_{}^{} , L - отрезок от точки \stackrel{z_1=1}{} до \stackrel{z_2=1-i}{} ;
15. _{1}^{L} , L - отрезок от точки z_{1}=0 до z_{2}=1+i ;
16. L = \frac{|z|}{1} = 1, L - дуга окружности |z| = 1, \lim z \ge 0;
17. \int_{-L}^{L}, L - отрезок от точки z_1 = 0 до z_2 = 1 + 2i;
18. \int_{-1}^{L} (2z+1)dz, L - отрезок от точки z_1 = 1+i до z_2 = i;
19. L , L - дуга параболы y = x^2 от точки z_1 = 0 до z_2 = 1 + i ;
```

$$\int_{\mathbb{C}^2+1} dz$$
 20. L - отрезок от точки $z_1=-1+i$ до $z_2=i$; Примеры 16, 17, 18 гл. 15.

ИДЗ 10.5

Найти все лорановские разложения данной функции по степеням z:

11.
$$\frac{z-2}{2z^3+z^2-z}$$
 2. $\frac{z-4}{z^4+z^3-2z^2}$ 3. $\frac{z-6}{z^4+2z^3-8z^2}$ 4. $\frac{z-10}{2z^3+5z^2-25z}$ 5. $\frac{z-16}{z^4+3z^3-18z^2}$ 6. $\frac{z-18}{2z^3+3z^2-9z}$ 7. $\frac{z-20}{z-20}$ 8. $\frac{z+2}{z+z^2-2z^3}$ 9. $\frac{z-10}{2z^3+9z^2-81z}$ 2. $\frac{z+10}{z+10}$ 13. $\frac{9z+3z^2-2z^3}{z+20}$ 14. $\frac{8z^2+2z^3-z^4}{z+12}$ 15. $\frac{z+10}{25z+5z^3-z^4}$ 17. $\frac{49z+7z^2-2z^3}{z+18}$ 18. $\frac{z+16}{32z^2+4z^3-z^4}$ 19. $\frac{50z^2+5z^3-z^4}{z+20}$ 20. $\frac{81z+9z^2-2z^3}{z+22-2z^3}$ Пример 24 гл. 15.

ИДЗ 10.6

Пример 24 гл. 15.

Определить тип особой точки z=0 для данной функции:

$$\frac{1-chz}{1-\frac{z^2}{2}+\frac{z^4}{24}-\cos z} \qquad \frac{e^z}{1+z+\frac{z^2}{2}-e^z}$$
19.
$$\mathbf{20}.$$

$$\frac{e^z}{1+z+\frac{z^2}{2}-e^z}$$

Примеры 26-30 гл. 15.

ИДЗ 10.7

Вычислить интеграл:

Примеры 19-22, 31-34 гл. 15.

ИДЗ 10.8

Вычислить интеграл:

1.
$$|z|=1$$

2. $|z-3|=1$

3. $\frac{(z-1)-2}{\sin z}$

4. $|z-1|=3$

5. $|z|=1$

5. $|z|=1$

6. $|z-1|=2$

7. $|z|=1$

8. $|z-1|=2$

8. $|z-1|=2$

10. $|z-1|=2$

11. $|z-1|=2$

12. $|z-3|=1$

12. $|z-1|=2$

13. $|z-1|=2$

14. $|z-1|=2$

15. $|z-1|=2$

16. $|z-1|=2$

17. $|z-1|=2$

18. $|z-1|=2$

19.
$$\int_{|z^{+1}|=\frac{1}{2}} \frac{(z+2)dz}{\sin 2z}$$
20.
$$\int_{|z|=1} \frac{(e^{z}+1)dz}{z\sin z}$$

Примеры 19-22, 31-34 гл. 15.

ИДЗ 10.9

Вычислить интеграл:

Вычислить интеграл:

1.
$$\int_{0}^{2\pi} \frac{dx}{2+\sqrt{3}\sin x}$$
2. $\int_{0}^{2\pi} \frac{dx}{4+\sqrt{15}\sin x}$
3. $\int_{0}^{2\pi} \frac{dx}{5+2\sqrt{6}\sin x}$
4. $\int_{0}^{2\pi} \frac{dx}{6+\sqrt{35}\sin x}$
5. $\int_{0}^{2\pi} \frac{dx}{7+4\sqrt{3}\sin x}$
6. $\int_{0}^{2\pi} \frac{dx}{5-4\sin x}$
7. $\int_{0}^{2\pi} \frac{dx}{5-3\sin x}$
10. $\int_{0}^{2\pi} \frac{dx}{4-\sqrt{7}\sin x}$
11. $\int_{0}^{2\pi} \frac{dx}{3-2\sqrt{2}\sin x}$
12. $\int_{0}^{2\pi} \frac{dx}{3-2\sqrt{2}\sin x}$
13. $\int_{0}^{2\pi} \frac{dx}{2-\sqrt{3}\sin x}$
14. $\int_{0}^{2\pi} \frac{dx}{5-\sqrt{21}\sin x}$
15. $\int_{0}^{2\pi} \frac{dx}{3\sin x+5}$
16. $\int_{0}^{2\pi} \frac{dx}{\sqrt{7}\sin x+4}$
17. $\int_{0}^{2\pi} \frac{dx}{2\sqrt{6}\sin x-5}$
18. $\int_{0}^{2\pi} \frac{dx}{4\sin x+5}$
19. $\int_{0}^{2\pi} \frac{dx}{3\sin x+5}$
20. $\int_{0}^{2\pi} \frac{dx}{\sqrt{7}\sin x+4}$

Пример 37 гл. 15.

ИДЗ 10.10

Вычислить интеграл:

1.
$$\frac{\int_{-\infty}^{\infty} (x-1) dx}{(x^2+1)}$$
2. $\frac{\int_{-\infty}^{\infty} (x^2+1)}{(x^2+2x+2)}$
3. $\frac{\int_{-\infty}^{\infty} (x^2+2x+2)}{(x^2+1)(x^2+4)}$
4. $\frac{\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}}{(x^2+1)(x^2+4)}$
5. $\frac{\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}}{(x^2+1)(x^2+4)}$
9. $\frac{\int_{-\infty}^{\infty} (x-1) dx}{(x^2+4)(x^2+9)}$
11. $\frac{\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+3)}}{(x^2+1)(x^2+4)}$
12. $\frac{\int_{-\infty}^{\infty} \frac{dx}{(x^2+2)(x^2+3)}}{(x^2+1)(x^2+4)}$
15. $\frac{\int_{-\infty}^{\infty} \frac{dx}{(x^2+2)(x^2+3)}}{(x^2+1)(x^2+4)}$
16. $\frac{\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}}{(x^2+1)(x^2+4)}$
17. $\frac{\int_{-\infty}^{\infty} (x^2+1) dx}{(x^2+4)(x^2+3)}$
18. $\frac{\int_{-\infty}^{\infty} \frac{dx}{(x^2+5)}}{(x^2+5)}$
19. $\frac{\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)(x^2+4)}}{(x^2+4)(x^2+4)}$
19. $\frac{\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)(x^2+4)}}{(x^2+4)(x^2+4)}$

Индивидуальные домашние задания 11

_{f(t)} ИДЗ 11.1

Найти изображение функции

1.
$$f(t) = \sin 3t - t^2$$

1.
$$f(t) = 3ch2t + 3t$$

7
$$f(t) = 4te^{-t} + 3$$

$$f(t) = 2\cos t - 3\sin 2t$$

$$f(t) = 2sh2t - 3t$$

13.
$$\int \sqrt{t} = 2sn 2t - 3t$$

16
$$f(t) = 3t \cos 2t - 2$$

7.
$$f(t) = 2\cos t - 3\sin 2t$$

10. $f(t) = 2\sin 2t - 3t$
13. $f(t) = 3\cos 2t - 2$
16. $f(t) = e^{-t}\cos 3t + 4$

$$f(t) = 2\cos 2t + t^3$$

$$f(t) = 3t \sin 2t - 2$$

$$f(t) = e^{-2t} \sin 3t + t$$

2.
$$f(t) = 2\cos 2t + t^3$$

5. $f(t) = 3t \sin 2t - 2$
8. $f(t) = e^{-2t} \sin 3t + t$
11. $f(t) = 3\sin 2t + 2t^2$
14. $f(t) = 3sht - 2t^2$
17. $f(t) = 2te^{2t} - 5$
20. $f(t) = 3e^{-t} + 2e^{3t}$

$$f(t) = 3sht - 2t^2$$

17
$$f(t) = 2te^{2t} - 5$$

20
$$f(t) = 3e^{-t} + 2e^{3t}$$

3.
$$f(t) = sh3t + 2t$$

6. $f(t) = 2t \cos t + 1$
9. $f(t) = e^{2t} \cos t - 2$

$$f(t) = e^{2t} \cos t - 2$$

12.
$$f(t)=4\cos t + 2$$

15. $f(t)=4\cos 3t - 3t$
16. $f(t)=2t\sin 3t + 1$
17. $f(t)=e^{3t}\sin 2t - 3$

15
$$f(t) = 2t \sin 3t + 1$$

18
$$f(t) = e^{3t} \sin 2t - 3t$$

Пример 1 гл. 16.

Найти оригинал для изображения :
$$F(P) = \frac{3}{p^2 - 1} - \frac{4p}{p^2 + 4}$$

$$\mathbf{2}.$$

$$\mathbf{2}.$$

$$F(p) = \frac{3p}{n^2 + 1} - \frac{2}{n^2 - 4}$$

$$F(p) = \frac{2p-1}{p-1}$$

7.
$$F(p) = \frac{p^2 - 1}{(p^2 + 1)^2}$$

$$F(p) = \frac{2p+3}{p^2 - 10p + 29}$$

$$F(p) = 2p+3$$

10.
$$F(p) = \frac{2p+3}{p^2-10p+29}$$
13.
$$F(p) = \frac{2p+3}{p^2-5p+4}$$
14.
$$F(p) = \frac{p-2}{p^2+3p-4}$$
16.
$$F(p) = \frac{32p+5}{p^2-3p-4}$$
17.
$$F(p) = \frac{3p-2}{p^2+3p-4}$$
18.
$$F(p) = \frac{3p-2}{p^2+5p-6}$$
19.
$$F(p) = \frac{3p-1}{p^2-p-2}$$
11.
$$F(p) = \frac{5p}{(p^2+9)}$$
15.
$$F(p) = \frac{3p-2}{p^2+5p-6}$$
17.
$$F(p) = \frac{3p-1}{p^2-p-2}$$
18.
$$F(p) = \frac{3p-1}{p^2-p-2}$$
19.
$$F(p) = \frac{3p-1}{p^2-p-2}$$
19.
$$F(p) = \frac{3p-1}{p^2-p-2}$$

$$F(p) = \frac{2}{p^2} - \frac{3p}{p^2 + 2p + 2}$$

$$F(p) = \frac{p}{n^2 + 4n + 5} - \frac{2}{n}$$

$$F(P) = \frac{3p+8}{n^2-8p+17}$$

$$F(p) = \frac{3p}{(p^2 + 4)}$$

$$F(P) = \frac{2p^2 - 18}{2p^2}$$

14.
$$(p^2+9)$$

$$F(P) = \frac{p-2}{p^2 + 3p - 2}$$

$$F(p) = \frac{3p-1}{p^2 - p - 2}$$

Найти оригинал для изображения :
$$F(p) = \frac{3}{p^2 - 1} - \frac{4p}{p^2 + 4}$$

$$F(p) = \frac{2}{p^2} - \frac{3p}{p^2 + 2p + 2}$$

$$F(p) = \frac{3p}{p^2 + 1} - \frac{2}{p^2 - 4}$$

$$F(p) = \frac{p}{p^2 + 4p + 5} - \frac{2}{p}$$

$$F(p) = \frac{3p - 4p}{p^2 + 4p + 5} - \frac{3p}{p}$$

$$F(p) = \frac{3p - 4p}{p^2 + 4p + 5} - \frac{4p}{p}$$

$$F(p) = \frac{3p - 4p}{p^2 - 6p + 13}$$

$$F(p) = \frac{3p + 8}{p^2 - 8p + 17}$$

$$F(p) = \frac{p - 3}{p^2 + 8p + 20}$$

$$F(p) = \frac{p - 3}{p^2 + 8p + 20}$$

$$F(p) = \frac{3}{p} - \frac{4p}{p^2 - 6p + 1}$$

$$F(P) = \frac{p-3}{p^2 + 8p + 20}$$

$$F(p) = \frac{3p+1}{p^2+10p+26}$$

$$F(P) = \frac{5p}{\binom{n^2+9}{n^2+9}}$$

15.
$$(p^2+9)^2$$

$$F(p) = \frac{3p-2}{p^2 + 5p - 6}$$

ИДЗ 11.3 F(P)

Найти оригинал для изображения
$$F(p) = \frac{p-2}{(p+2)(p^2+p+1)}$$

$$F(P) = \frac{3}{p^3 - 8}$$

$$F(P) = \frac{3}{p^4 + p^2}$$

$$F(P) = \frac{3}{p^4 + p^2}$$

$$F(p) = \frac{3p+4}{(p-2)(p^2+2p+2)}$$
2.

2.
$$F(P) = \frac{2}{p^3 + 8}$$

$$F(p) = \frac{p+3}{(p-1)(p^2+4p+5)}$$

$$F(p) = \frac{p+4}{p^3 + 2p^2 + 5p}$$
7.
$$F(p) = \frac{2+p}{p^3 + p^2 + p}$$
9.
$$F(p) = \frac{p-2}{p^2(p+1)}$$
11.
$$F(p) = \frac{p+4}{p^3 + 1}$$
13.
$$F(p) = \frac{3p+1}{(p+2)(p^2 - 2p + 2)}$$
15.
$$F(p) = \frac{p-1}{p^3 + 5p^2 + 4p}$$
17.
$$F(p) = \frac{2p-1}{(p+3)(p^2 - 4)}$$
19.

$$F(p) = \frac{p-1}{(p^2+1)(p^2+4)}$$
8.
$$F(p) = \frac{p+3}{p(p^2+4)}$$
10.
$$F(p) = \frac{3p}{p^3-1}$$
12.
$$F(p) = \frac{p}{(p^2+1)(p+1)}$$
14.
$$F(p) = \frac{p+4}{p^3+3p^2+2p}$$
16.
$$F(p) = \frac{p-2}{(p+2)(p^2-1)}$$
18.
$$F(p) = \frac{p+1}{(p-2)(p^2-9)}$$
20.

Примеры 2, 3, 4, 6 гл. 16.

НДЗ 11.4
Найти оригинал для изображения :
$$F(p) = \frac{p^2}{(p^2+1)}$$
 2.
$$F(p) = \frac{p^2-p}{(p^2+1)}$$
 3.
$$F(p) = \frac{p^2-p}{(p^2+1)}$$
 5.
$$F(p) = \frac{p^2+p}{(p^2+16)}$$
 8.
$$F(p) = \frac{p^2+p}{(p^2+2p+5)}$$
 8.
$$F(p) = \frac{p^2+p}{(p^2+2p+5)}$$
 10.
$$F(p) = \frac{p^2+2p}{(p^2+2p+5)}$$
 11.
$$F(p) = \frac{p^2-p}{(p^2+2p+5)}$$
 12.
$$F(p) = \frac{p}{(p^2+2p+5)}$$
 13.
$$F(p) = \frac{p}{(p^2-4p+5)}$$
 14.
$$F(p) = \frac{p}{(p^2+4p+13)}$$
 15.
$$F(p) = \frac{p}{(p^2+4p+13)}$$
 16.
$$F(p) = \frac{p}{(p^2+2p+10)}$$
 20.
$$F(p) = \frac{1}{(p^2-2p+10)}$$
 17.
$$F(p) = \frac{1}{(p^2-4p+8)}$$
 18.
$$F(p) = \frac{1}{(p^2-4p+8)}$$
 19.

Найти изображение функции $f(t) = f(t) + 1 e^{t}$ $4. \quad f(t) = t^2 \sin t$

7.
$$f(t) = t^2 ch3t$$

10. $f(t) = (t^2 - 2)_{sht}$

8.
$$f(t) = (t^{2} - 1)\sin 2t$$
11.
$$f(t) = (t^{2} + 3t)\cosh 2t$$
14.
$$f(t) = t^{3}\cos 2t$$
17.
$$f(t) = (t - 1)^{2}e^{-2t}$$
20.
$$f(t) = (t - 2)^{2} \sinh t$$

9.
$$f(t) = (t^2 + t)\cos 3t$$

10.
$$f(t) = t^3 \sin t$$

$$f(t) = t^3 \cos 2t$$

$$f(t) = t^3 sh2t$$

13.
$$\int_{-1}^{1} (1-t)^{-1} \sin t$$

14.
$$f(t) = t^3 \cos 2t$$

15.
$$f(t) = t^3 sh2t$$

16.
$$f(t) = t^3 ch3t$$

17
$$f(t) = (t-1)^2 e^{-2t}$$

9.
$$f(t) = t^3 e^{-t}$$
12. $f(t) = t^3 e^{-t}$
15. $f(t) = t^3 \sinh 2t$
18. $f(t) = (t+1)^2 \sin t$

16.
$$f(t) = (t+2)^2 \cos t$$

$$f(t) = (t-2)^2 sht$$

Примеры 1, 5 гл.16.

Найти оригинал для изображения :
$$F(P) = \frac{p^2 + 3p + 5}{p^3 - p^2 - p + 1}$$

$$F(P) = \frac{p^2 - 3p + 5}{p^3 + p^2 + p^2 + p^2}$$

$$F(P) = \frac{p^2 - 3p + p^2 + p^$$

$$F(p) = \frac{p^2 - 3p}{p^3 + p^2 + p + 1}$$

айти оригинал для изображения
$$F(p) = \frac{p^2 + 3p + 5}{p^3 - p^2 - p + 1}$$
 $F(p) = \frac{p^2 - 3p}{p^3 - 3p^2 - 3p + 1}$ $F(p) = \frac{p^2 - p}{p^3 - 3p^2 - 3p + 1}$ $F(p) = \frac{p^2 - p}{p^3 - 4p - 3}$ $F(p) = \frac{p^2 - p + 3}{p^3 - 4p - 3}$ $F(p) = \frac{p^2 - p + 3}{p^3 + 4p + 5}$ $F(p) = \frac{p^2 + p + 4}{p^3 + 4p^2 - 3}$ $F(p) = \frac{p^2 + 5}{p^3 + 3p^2 - 2}$ $F(p) = \frac{p^2 - p - 4}{p^3 + 2p^2 + 3p + 2}$ $F(p) = \frac{p^2 - p - 4}{p^3 + 2p^2 + 3p + 2}$ $F(p) = \frac{p^2 - p - 4}{p^3 + 2p^2 + 3p + 2}$

$$F(p) = \frac{p^2 - p}{p^3 - 3p^2 - 3p + 1}$$

$$F(p) = \frac{p^2 - 3}{p^3 - 4p - 3}$$

$$F(p) = \frac{p^2 - p + 3}{p^3 + 4p + 5}$$

$$F(P) = \frac{p^2 + p + 4}{p^3 + 4p^2 - 3}$$

4

16

$$F(p) = \frac{p^2 + 5}{p^3 + 3p^2 - 2}$$

$$F(p) = \frac{p^2 - p - 4}{p^3 + 2p^2 + 3p + 2}$$

$$F(p) = \frac{p^2 + 2p + 6}{p^3 + 3p^2 + 4p + 2}$$

$$F(p) = \frac{p^2 + 10}{p^3 + 5p^2 - 11}$$

10.
$$F(p) = \frac{p^2 + p}{p^3 - 4p^2 + 3}$$
12.

$$F(p) = \frac{p^2 - 3p + 4}{p^3 + 4p^2 + 3p - 4}$$

12.
$$F(P) = \frac{p^2 - p + 3}{p^3 + 4p - 5}$$

$$F(p) = \frac{p^2 - 3p + 4}{p^3 + 4p^2 + 3p - 8}$$

14.
$$\frac{p^3 + 4p - 5}{p^3 + 7}$$

$$F(p) = \frac{p^2 + 2p + 2}{p^3 - 4p^2 - 2p + 5}$$

$$F(P) = \frac{p^2 + 7}{p^3 - 5p + 4}$$

17.
$$F(p) = \frac{p^2 + p + 1}{p^3 + 2p^2 + p - 4}$$

14.
$$F(P) = \frac{p^{3} + 4p - 5}{p^{3} - 5p + 4}$$
16.
$$F(P) = \frac{p^{2} - p + 1}{p^{3} - 2p^{2} - 3p + 4}$$
18.
$$P(P) = \frac{p^{2} - p + 1}{p^{3} - 2p^{2} - 3p + 4}$$

17.
$$F(p) = \frac{p^2 + 2p + 3}{p^3 + 3p^2 - p - 3}$$

$$F(p) = \frac{p^2 - 2p + 5}{p^3 + 4p^2 - 2p - 3}$$

$$F(P) = \frac{p^{-1} 2p + 3}{p^3 + 3p^2 - p - 3}$$

Примеры 2, 3, 4, 6 гл. 16.

ИДЗ 11.7

Решить задачу Коши:
1.
$$x'' + x = 6e^{-t}$$
 $x(0) = 3$ $x'(0) = 1$

1.
$$x'' - x' = t^2$$
 $x(0) = 0$ $x'(0) = 1$

2.
$$x'' + x' = t^2 + t$$
 $x(0) = 0$ $x'(0) = -2$

3.
$$x'' - x = \cos 3t$$
, $x(0) = 1$, $x'(0) = 1$

4.
$$x'' - 9x = \sin t - \cos t$$
 $x(0) = -3$ $x'(0) = 2$

6.
$$x'' + 2x' = 2 + e^{t}$$
 $x(0) = 1$ $x'(0) = 2$

7.
$$2x'' - x' = \sin 3t$$
, $x(0) = 2$, $x'(0) = 1$

8.
$$x'' + 2x' = \frac{1}{2}\sin t$$
 $x(0) = -2$ $x'(0) = 4$

9. $x'' + x = sht$ $x(0) = 2$ $x'(0) = 1$

10. $x'' + 4x = \sin 2t$ $x(0) = 0$ $x'(0) = 1$

11. $2x'' + 5x' = 29\cos t$ $x(0) = -1$ $x'(0) = 0$

12. $x'' + 4x = 8\sin 2t$ $x(0) = 3$ $x'(0) = -1$

13. $x'' + x = 2\cos t$ $x(0) = 0$ $x'(0) = 1$

14. $x'' + x' - 2x = e^{-t}$ $x(0) = -1$ $x'(0) = 0$

15. $x'' - 2x' = e^{t}(e^{t} + t - 3)$ $x(0) = 2$ $x'(0) = 2$

16. $x'' - 3x' + 2x = 12e^{3t}$ $x'(0) = 2$ $x'(0) = 6$

17. $x'' - x' - 6x = 2$ $x(0) = 1$ $x'(0) = 0$

18. $x'' - 2x' - 3x = 2t$ $x(0) = 1$ $x'(0) = 0$

19. $x'' - 3x' + 2x = e^{t}$ $x(0) = 1$ $x'(0) = 0$

20. $x'' + 4x' + 29x = e^{-2t}$ $x(0) = 0$ $x'(0) = 1$

Пример 8 гл. 16.

ИДЗ 11.8

Решить задачу Коши при начальных условиях
$$x(0)=0$$
, $x'(0)=0$: $x''-x'=\frac{1}{1+e^t}$ 2. $x''-2x'+x=\frac{e^t}{1+t^2}$ 3. $x''-x=tht$ 4. $x''-2x'+x=\frac{e^t}{ch^2t}$ 5. $x''-2x'=\frac{1}{cht}$ 6. $x''-2x'+x=\frac{e^t}{1+t}$ 7. $x''-x'=\frac{1}{1+cht}$ 8. $x''-4x=\frac{1}{ch^22t}$ 9. $x''-x=\frac{1}{ch^2t}$ 10. $x''-x=\frac{1}{ch^2t}$

10.
$$x'' - x' = \frac{1}{1 + cht}$$
11.
$$x'' - 4x = \frac{1}{ch^{2}2t}$$
12.
$$x'' - x = \frac{1}{ch^{2}t}$$
13.
$$x'' + x' = \frac{e^{t}}{1 + e^{t}}$$
14.
$$x'' - 4x' + 4x = \frac{2e^{2t}}{ch^{2}2t}$$
15.
$$x'' - x' = \frac{e^{t}}{\left(1 + e^{t/2}\right)^{2}}$$
16.
$$x'' + 2x' + x = \frac{te^{-t}}{t+1}$$
17.
$$x'' - x' = \frac{e^{2t}}{2 + e^{t}}$$
18.
$$x'' - x' = \frac{sht}{ch^{2}t}$$
19.
$$x'' + x' = \frac{1}{(1 + e^{t})}$$
20. Upwer 9 Fig. 16.

Пример 9 гл. 16.

ИДЗ 11.9

x(0)=0Решить систему однородных уравнений при начальных условиях y(0)=0 .

Пример 10 гл. 16.

Решить систему уравнений при начальных условиях
$$x' = x - y + 1$$
 $y' = -4x + y + e^{t}$ $y' = -x + e^{3t}$ 2. $x' = -2x + y + 3$ $y' = -x + e^{3t}$ 4. $x' = -x + 2y - e^{-t}$ 3. $x' = -2x + y + 3$ $y' = -x + e^{3t}$ 5. $x' = -2x + y + 3$ $y' = -x + 2y - e^{-t}$ 7. $x' = 4x + 2y - 1$ 10. $x' = 2x + 3y + 1$ $x' = 5x + 4y + e^{4t}$ 13. $x' = x + 2y + 2$ $y' = x + y + e^{-3t}$ 14. $x' = x + 2y + 2$ $y' = x + 3y - e^{3t}$ 15. $x' = x + 4y + 3$ 16. $x' = 7x + 3y - 1$ $y' = x + 5y - e^{-2t}$ 17. $x' = 4x - y - 2$ $y' = 2x + 4y + e^{-5t}$ 18. $x' = x + 4y - 5$ $y' = x + 5y - e^{-2t}$ 19. $x' = x + 2y + 2$ $y' = x + 4y + e^{-5t}$ 19. $x' = x + 2y - 2$ $y' = 2x + 8y + e^{-3t}$ 19. $x' = x + 2y - 2$ $y' = x + 5y - e^{-2t}$ 19. $x' = x + 4y + e^{-5t}$ 19. $x' = x + 4y + e^{-2t}$ 19. $x' = x + 4y + e^{-5t}$ 19. x

СОДЕРЖАНИЕ

Предисловие 3
Глава 13. Функции нескольких переменных 5
Глава 14. Теория вероятностей и математическая статистика 11
§1 Случайные события 11
§2 Дискретные случайные величины 18
§3 Непрерывные случайные величины 21
§4 Математическая статистика 24
Глава 15. Теория функций комплексного переменного 28
§1 Комплексные числа и действия над ними 28
§2 Функции комплексного переменного 32
§3 Дифференцирование функций комплексного переменного 34
§4 Интегрирование функций комплексного переменного 38
§5 Интегральная формула Коши 41
§6 Ряды Тейлора и Лорана 44
§7 Классификация изолированных особых точек. Вычеты 47
§8 Вычисление интегралов от функций действительного
переменного 54
Глава 16. Операционное исчисление 57
Индивидуальные домашние задания 8 64
Индивидуальные домашние задания 9 69
Индивидуальные домашние задания 10 73
Индивидуальные домашние задания 11 78

Ильясов Муратхан Нурмагамбетович

Сборник домашних заданий по высшей математике

Учебно-методическое пособие 3 часть

Подписано в печать 15.12.2004. Формат 29,7 x 42?. Бумага книжно-журнальная. Объем 1,7 усл.печ.л. Тираж 100 экз. Заказ № 0009

Редакционно-издательский отдел Павлодарского государственного педагогического института 637002, г.Павлодар, ул.Мира, 60 E-mail: nauka.ppi@unicode.kz