Федеральное агентство по образованию Пензенский государственный университет

Кафедра Высшей и прикладной математики

Романова Л.Д., Ланцова В.А., Романова Е.Г.

КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО ВЫСШЕЙ МАТЕМАТИКЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ИХ ВЫПОЛНЕНИЮ

Учебное пособие для студентов-заочников инженерно-технических специальностей

ЧАСТЬ І

Романова Л.Д., Ланцова В.А., Романова Е.Г. "КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО ВЫСШЕЙ МАТЕМАТИКЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ИХ ВЫПОЛНЕНИЮ", часть 1

Настоящее учебное пособие предназначено для студентов-заочников инженерно-технических специальностей Пензенского государственного университета, составлено на основе программы курса высшей математики с учётом числа часов, отводимых для данной дисциплины учебным планом, а также профиля подготавливаемых специалистов.

Учебное пособие состоит из 2-х частей. В данной первой части пособия содержатся задания для 5 контрольных работ, выполняемых в первом и втором семестрах, приводятся решения типового варианта контрольных работ, в которых содержатся краткие теоретические сведения по каждой изучаемой теме.

ПГУ Каф ВиПМ

СОДЕРЖАНИЕ

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ	4
ПОРЯДОК ВЫПОЛНЕНИЯ КОНТРОЛЬНЫХ РАБОТЛИТЕРАТУРА	
<u>КОНТРОЛЬНАЯ РАБОТА № 1.</u> ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И	
АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ	6
РЕШЕНИЕ ТИПОВОГО ВАРИАНТА КОНТРОЛЬНОЙ РАБОТЫ № 1	11
Скалярное, векторное, смешанное произведения векторов	24
<mark>КОНТРОЛЬНАЯ РАБОТА № 2.</mark> ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ	29
РЕШЕНИЕ ТИПОВОГО ВАРИАНТА КОНТРОЛЬНОЙ РАБОТЫ № 2	
<mark>КОНТРОЛЬНАЯ РАБОТА № 3.</mark> ПРОИЗВОДНАЯ И ЕЁ ПРИЛОЖЕНИЯ	
РЕШЕНИЕ ТИПОВОГО ВАРИАНТА КОНТРОЛЬНОЙ РАБОТЫ № 3	
ПРОИЗВОДНАЯ И ЕЁ ПРИЛОЖЕНИЯ ПРАВИЛА ВЫЧИСЛЕНИЯ ПРОИЗВОДНЫХ.	43
Таблица производных Формула Тейлора	48
Правило Лопиталя	50
КОНТРОЛЬНАЯ РАБОТА № 4. ПРИЛОЖЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО	5 2
ИСЧИСЛЕНИЯ	53
РЕШЕНИЕ ТИПОВОГО ВАРИАНТА КОНТРОЛЬНОЙ РАБОТЫ № 4	54
Схема полного исследования функции	54
Дифференциал функции	60
<mark>КОНТРОЛЬНАЯ РАБОТА № 5.</mark> НЕОПРЕДЕЛЁННЫЙ И ОПРЕДЕЛЁННЫЙ	
ИНТЕГРАЛЫ	.62
МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ № 5	
Таблица неопределённых интегралов	
ОСНОВНЫЕ СВОЙСТВА НЕОПРЕДЕЛЁННОГО ИНТЕГРАЛА	
ОСНОВНЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ ФУНКЦИЙ	
1.1 Интегрирование путём подведения под знак дифференциала	
1.2 Интегрирование подстановкой	
1.3 Интегрирование по частям	
1.4 Интегрирование рациональных функций	
1.5 Интегрирование тригонометрических функций	
2. Определённый интеграл	
2.1 Несобственные интегралы	
2.2 Вычисление площадей плоских фигур	
2.3 Вычисление длины дуги плоской кривой	
ПРИЛОЖЕНИЕ	88
ТАБЛИНЫ ВАРИАНТОВ	.93

ΠΓΥ Καφ ΒυΠΜ

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПОРЯДОК ВЫПОЛНЕНИЯ КОНТРОЛЬНЫХ РАБОТ

К выполнению каждой контрольной работы следует приступать только после изучения соответствующего материала курса по учебнику и решения задач, указанных в каждой теме. Следует также внимательно разобрать решения тех задач, которые приводятся в данном пособии к каждой теме. При этом следует руководствоваться следующими указаниями:

1. Каждую работу следует выполнять в отдельной тетради в рукописном виде (набранные на компьютере контрольные работы не рассматриваются). На внешней обложке тетради должны быть указаны фамилия и инициалы студентов, полный шифр, номер контрольной работы и дата ее отправки в институт. Решения всех задач и пояснения к ним должны быть достаточно подробными. При необходимости следует делать соответствующие ссылки на вопросы теории с указанием формул, теорем, выводов, которые используются при решении данной задачи. Все вычисления (в том числе и вспомогательные) необходимо делать полностью. Чертежи и графики должны быть выполнены аккуратно и четко с указанием единиц масштаба, координатных осей и других элементов чертежа. Объяснения к задачам должны соответствовать тем обозначениям, которые даны на чертеже.

Для замечаний преподавателя необходимо на каждой странице оставлять поля шириной 3—4 см.

- 2. После получения работы (как зачтенной, так и незачтенной) студент должен исправить в ней все отмеченные рецензентом недостатки. В случае незачета студент обязан в кратчайший срок выполнить все требования рецензента и представить работу на повторное рецензирование, приложив при этом первоначально выполненную работу.
- 3. Контрольные работы должны выполняться самостоятельно. Если будет установлено, что та или иная контрольная работа выполнена несамостоятельно, то она не будет зачтена, даже если в этой работе все задачи решены верно.
- 4. В период экзаменационной сессии студент обязан представить все прорецензированные и зачтенные контрольные работы. При необходимости (по требованию преподавателя) студент должен давать на экзамене устные пояснения ко всем или некоторым задачам, содержащимся в этих работах.
- 5. В данном пособии представлены задачи, представляющие **необходимый минимум знаний** по математике, который должен усвоить студент для успешного обучения в университете и сдачи экзаменов или зачётов.
- 6. Каждый студент выполняет свой вариант контрольной работы, который определяется по двум последним цифрам зачётной книжки. Номера заданий для соответствующего варианта даны в табл. 1 (с. 97 данного пособия).

ЛИТЕРАТУРА

Бермант А.Ф., Араманович И.Г. Краткий курс математического анализа. - М.: Наука, 1973 - 2007.

Ефимов Н. В. Краткий курс аналитической геометрии. — М.: Наука, 1975.

Пискунов Н. С. Дифференциальное и интегральное исчисления. — М,: Наука, 1976—1978, т. 1, 2.

ΠΓΥ Καφ ΒυΠΜ

Письменный Д.Т. Конспект лекций по высшей математике. – М. Айрис Пресс, 2007, часть 1,2.

Шнейдер В. Е., Слуцкий А. И., Шумов А. С. Краткий курс высшей математики. — М.: Высшая школа, 1978, т. 1, 2.

Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. – М. Высшая школа, 1999, часть 1,2.

Минорский В. П. Сборник задач по высшей математике. — М.: Наука, 1955—1977.

УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ в первом семестре

Тема 1. Элементы линейной алгебры

Письменный Д.Т., часть 1, § 1-4.

Данко П.Е., Попов А.Г., Кожевникова Т.Я., часть 1, гл. 4-5.

Тема 2. Элементы векторной алгебры

Ефимов, гл. 7—10, *Письменный Д.Т.*, часть 1, § 5-8.

Данко П.Е., Попов А.Г., Кожевникова Т.Я., часть 1, гл. 2.

Тема 3. Аналитическая геометрия на плоскости

Ефимов, гл. 1—4, *Письменный Д.Т.*, часть 1, § 9-11.

Данко П.Е., Попов А.Г., Кожевникова Т.Я., часть 1, гл. 1.

Тема 4. Аналитическая геометрия в пространстве

Ефимов, гл. 11—13, *Письменный Д.Т.*, часть 1, § 12.

Данко П.Е., Попов А.Г., Кожевникова Т.Я., часть 1, гл. 3.

Тема 5. Комплексные числа

Письменный Д.Т., часть 1, § 27, 28. *Пискунов Н. С.*, часть 1, гл. 7.

Разберите решения задач из данного пособия (стр. 12-27).

Тема 6. Введение в математический анализ

Пискунов Н. С., часть 1, гл.1-2, *Письменный Д.Т.*, часть 1, § 13 - 19.

Данко П.Е., Попов А.Г., Кожевникова Т.Я., часть 1, гл. 6.

Разберите решения задач из данного пособия (стр. 27-30).

КОНТРОЛЬНАЯ РАБОТА № 1.

Элементы линейной алгебры и аналитической геометрии.

1-10. Даны две матрицы **A** и **B**. Найти: а) **AB**; б) **BA**; в) **A**⁻¹; г) **A A**⁻¹; д) **A**⁻¹**A**.

1.
$$\mathbf{A} = \begin{pmatrix} 2 & -1 & -3 \\ 8 & -7 & -6 \\ -3 & 4 & 2 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 & -1 & 2 \\ 3 & -5 & 4 \\ 1 & 2 & 1 \end{pmatrix}.$$

2.
$$\mathbf{A} = \begin{pmatrix} 3 & 5 & -6 \\ 2 & 4 & 3 \\ -3 & 1 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 & 8 & -5 \\ -3 & -1 & 0 \\ 4 & 5 & -3 \end{pmatrix}.$$

3.
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 & 6 & 0 \\ 2 & 4 & -6 \\ 1 & -2 & 3 \end{pmatrix}.$$

4.
$$\mathbf{A} = \begin{pmatrix} -6 & 1 & 11 \\ 9 & 2 & 5 \\ 0 & 3 & 7 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 7 \\ 1 & -3 & 2 \end{pmatrix}.$$

5.
$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & -1 & 2 \\ 2 & 1 & 1 \\ 3 & 7 & 1 \end{pmatrix}.$$

6.
$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 3 & -1 \\ 4 & 1 & 3 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 & 2 & -1 \\ 3 & 1 & 2 \\ 5 & 3 & 0 \end{pmatrix}.$$

7.
$$\mathbf{A} = \begin{pmatrix} 6 & 7 & 3 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 0 & 5 \\ 4 & -1 & -2 \\ 4 & 3 & 7 \end{pmatrix}$.

8.
$$\mathbf{A} = \begin{pmatrix} -2 & 3 & 4 \\ 3 & -1 & -4 \\ -1 & 2 & 2 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 & 3 & 1 \\ 0 & 6 & 2 \\ 1 & 2 & 2 \end{pmatrix}.$$

9.
$$A = \begin{pmatrix} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 6 & 5 & 2 \\ 1 & 9 & 2 \\ 4 & 5 & 2 \end{pmatrix}$.

10.
$$\mathbf{A} = \begin{pmatrix} 2 & 6 & 1 \\ 1 & 3 & 2 \\ 0 & 1 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 4 & -3 & 2 \\ -4 & 0 & 5 \\ 3 & 2 & -3 \end{pmatrix}.$$

11-20. Проверить совместность системы уравнений и в случае совместности решить её:

- а) по формулам Крамера,
- б) матричным способом (с помощью обратной матрицы),
- в) методом Гаусса.

11.
$$\begin{cases} 2x_1 + x_2 + 3x_3 = 7, \\ 2x_1 + 3x_2 + x_3 = 1, \\ 3x_1 + 2x_2 + x_3 = 6. \end{cases}$$

13.
$$\begin{cases} 3x_1 - x_2 + x_3 = 12, \\ x_1 + 2x_2 + 4x_3 = 6, \\ 5x_1 + x_2 + 2x_3 = 3. \end{cases}$$

15.
$$\begin{cases} 3x_1 - 2x_2 + 4x_3 = 12, \\ 3x_1 + 4x_2 - 2x_3 = 6, \\ 2x_1 - x_2 - x_3 = -9. \end{cases}$$

17.
$$\begin{cases} 4x_1 + x_2 - 3x_3 = 9, \\ x_1 + x_2 - x_3 = -2, \\ 8x_1 + 3x_2 - 6x_3 = 12. \end{cases}$$

19.
$$\begin{cases} 2x_1 - x_2 + 2x_3 = 0, \\ 4x_1 + x_2 + 4x_3 = 6, \\ x_1 + x_2 + 2x_3 = 4. \end{cases}$$

12.
$$\begin{cases} 2x_1 - x_2 + 2x_3 = 3, \\ x_1 + x_2 + 2x_3 = -4, \\ 4x_1 + x_2 + 4x_3 = -3. \end{cases}$$

14.
$$\begin{cases} 2x_1 - x_2 + 3x_3 = -4, \\ x_1 + 3x_2 - x_3 = 11, \\ x_1 - 2x_2 + 2x_3 = -7. \end{cases}$$

16.
$$\begin{cases} 8x_1 + 3x_2 - 6x_3 = -4, \\ x_1 + x_2 - x_3 = 2, \\ 4x_1 + x_2 - 3x_3 = -5. \end{cases}$$

18.
$$\begin{cases} 3x_1 - 2x_2 - 5x_3 = 5, \\ 2x_1 + 3x_2 - 4x_3 = 12, \\ x_1 - 2x_2 + 3x_3 = -1. \end{cases}$$

20.
$$\begin{cases} 2x_1 - x_2 - 3x_3 = -9, \\ x_1 + 5x_2 + x_3 = 20, \\ 3x_1 + 4x_2 + 2x_3 = 15. \end{cases}$$

21-30. Решить однородную систему уравнений.

31-40. Даны векторы $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ в декартовой системе координат. Показать, что векторы $\vec{a}, \vec{b}, \vec{c}$ образуют базис. Найти координаты вектора \vec{d} в этом базисе (написать разложение вектора \vec{d} в базисе $\vec{a}, \vec{b}, \vec{c}$).

31.
$$\vec{d} = \{-15, 5, 6\}, \quad \vec{a} = \{0, 5, 1\}, \quad \vec{b} = \{3, 2, -1\}, \quad \vec{c} = \{4, 1, 0\}.$$

32.
$$\vec{d} = \{8, 9, 4\}, \quad \vec{a} = \{1, 0, 1\}, \quad \vec{b} = \{0, -2, 1\}, \quad \vec{c} = \{1, 3, 0\}.$$

33.
$$\vec{d} = \{23, -14, -30\}, \quad \vec{a} = \{2, 1, 0\}, \quad \vec{b} = \{1, -1, 0\}, \quad \vec{c} = \{-3, 2, 5\}.$$

34.
$$\vec{d} = \{3,1,3\}, \quad \vec{a} = \{2,1,0\}, \quad \vec{b} = \{1,0,1\}, \quad \vec{c} = \{4,2,1\}.$$

35.
$$\vec{d} = \{-1, 7, 0\}, \quad \vec{a} = \{0, 3, 1\}, \quad \vec{b} = \{1, -1, 2\}, \quad \vec{c} = \{2, -1, 0\}.$$

36.
$$\vec{d} = \{11, -1, 4\}, \quad \vec{a} = \{1, -1, 2\}, \quad \vec{b} = \{3, 2, 0\}, \quad \vec{c} = \{-1, 1, 1\}.$$

37.
$$\vec{d} = \{-13, 2, 18\}, \ \vec{a} = \{1, 1, 4\}, \ \vec{b} = \{-3, 0, 2\}, \ \vec{c} = \{1, 2, -1\}.$$

38.
$$\vec{d} = \{0, -8, 9\}, \quad \vec{a} = \{0, -2, 1\}, \quad \vec{b} = \{3, 1, -1\}, \quad \vec{c} = \{4, 0, 1\}.$$

39.
$$\vec{d} = \{8, -7, -13\}, \quad \vec{a} = \{0, 1, 5\}, \quad \vec{b} = \{3, -1, 2\}, \quad \vec{c} = \{-1, 0, 1\}.$$

40.
$$\vec{d} = \{2,7,5\}, \quad \vec{a} = \{1,0,1\}, \quad \vec{b} = \{1,-2,0\}, \quad \vec{c} = \{0,3,1\}.$$

41-50. Даны вершины треугольника АВС.

Найти: 1) длину стороны AB; 2) уравнения сторон AB и BC и их угловые коэффициенты; 3) уравнение высоты СД и её длину; 4) уравнение медианы AE и координаты точки К пересечения этой медианы с высотой СД; 5) уравнение прямой, проходящей через точку К параллельно стороне AB; 6) координаты точки М, расположенной симметрично точке A относительно прямой СД. Сделать чертёж.

- **41.** A(-3; -3), B(5; -7), C(7; 7).
- **42.** A(4; 4), B(-8; -6), C(3; 8).
- **43.** A(-4; -3), B(-7; 3), C(1; 4).
- **44.** A(4; -2), B(6; -4), C(-2; 2).
- **45.** A(2; 3), B(-3; 6), C(6; 1).
- **46.** A(1; 2), B(-3; 1), C(3; -5).
- **47.** A(1; -6), B(-1; 4), C(3; 5).
- **48.** A(-2; 7), B(3; 1), C(6; -3).
- **49.** A(-2; 2), B(-4; 6), C(6; 4).
- **50.** A(-1; 3), B(2; 2), C(6; -3).

51-60. Даны координаты вершин пирамиды $A_1A_2A_3A_4$.

Найти: 1) длину ребра A_1A_2 ; 2) угол между рёбрами A_1A_2 и A_1A_3 ; 3) угол между ребром A_1A_4 и гранью $A_1A_2A_3$; 4) площадь грани $A_1A_2A_3$; 5) объём пирамиды; 6) уравнение прямой A_1A_2 ; 7) уравнение плоскости $A_1A_2A_3$; 8) уравнение высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$.

- **51.** A₁(6; 5; 2), A₂(5; 4; 6), A₃(2; 1; 3), A₄(6; 3; 5).
- **52.** A₁(2; 5; 3), A₂(9; 3; 4), A₃(4; 5; 2), A₄(7; 1; 6).
- **53.** A₁(6; 1; -3), A₂(4; 2; -2), A₃(4; 2; 0), A₄(1; 2; -4).
- **54.** A₁(5; 5; 4), A₂(1; 1; -4), A₃(-3; 4; 1), A₄(2; 8; -1).
- **55.** A₁(2; 4; -1), A₂(-2; -1; -3), A₃(1; -1; 3), A₄(3; 2; 4).
- **56.** A₁(-6; 5; 6), A₂(-3; 7; 1), A₃(5; 7; 8), A₄(6; -2; 2).
- **57.** A₁(2; 4; 3), A₂(-1; -1; 5), A₃(4; 8; 3), A₄(-3; 6; 7).
- **58.** $A_1(-3; -5; 4), A_2(-5; 8; -3), A_3(1; -2; -2), A_4(1; 1; -2).$

60.
$$A_1(3; -1; -1), A_2(1; 6; 1), A_3(-1; -1; 6), A_4(0; 4; 1).$$

61-70. Привести уравнение к каноническому виду, определить тип кривой и построить её.

61.
$$x^2 - y^2 + 4x - 6y - 30 = 0$$
.

61.
$$x^2 - y^2 + 4x - 6y - 30 = 0$$
. **62.** $3x^2 + 5y^2 + 18x - 10y - 13 = 0$.

63.
$$x^2 - 4x - y - 5 = 0$$
.

64.
$$-2x^2 + y^2 - 4x + 2y - 5 = 0$$
.

65.
$$3x^2 + y^2 - 12x + 6y - 13 = 0$$

$$3x^2 + y^2 - 12x + 6y - 13 = 0$$
. **66.** $6x^2 + y^2 + 24x + 2y = 0$.

67.
$$2y^2 + 4x - 4y - 6 = 0$$
.

68.
$$x^2 - 6x + y - 1 = 0$$
.

69.
$$3x^2 - y^2 + 6x - 4y - 2 = 0$$

$$3x^2 - y^2 + 6x - 4y - 2 = 0$$
. **70.** $5x^2 + 2y^2 + 30x - 8y - 7 = 0$.

71-80. Построить кривую в полярной системе координат.

71.
$$\rho = 4\sin 3\varphi$$
. 72. $\rho = 5\cos 2\varphi$. 73. $\rho = 3 - \sin \varphi$. 74. $\rho = \frac{4}{2 - \cos \varphi}$.

73.
$$\rho = 3 - \sin \varphi$$

74.
$$\rho = \frac{4}{2 - \cos \varphi}$$

75.
$$\rho = \frac{6}{3 - \sin \varphi}$$
. 76. $\rho = \frac{5}{6 - 2\sin \varphi}$. 77. $\rho = 4 + \cos 2\varphi$. 78. $\rho = \frac{7}{4 - 3\cos \varphi}$.

77.
$$\rho = 4 + \cos 2\phi$$
. 78.

78.
$$\rho = \frac{7}{4 - 3\cos\phi}$$

79.
$$\rho = 3\sin 2\varphi$$
.

80.
$$\rho = 3\cos 3\varphi$$
.

81-90. Дано комплексное число a. Требуется: 1) записать число a в алгебраической и тригонометрической форме; 2) найти все корни уравнения $z^3 = a^2$.

81.
$$a = \frac{4}{1-i}$$

82.
$$a = \frac{8}{1 - i\sqrt{3}}$$

83.
$$a = \frac{-4}{1+i}$$
.

81.
$$a = \frac{4}{1-i}$$
. **82.** $a = \frac{8}{1-i\sqrt{3}}$. **83.** $a = \frac{-4}{1+i}$. **84.** $a = \frac{-8}{1+i\sqrt{3}}$.

85.
$$a = \frac{4}{1+i}$$

86.
$$a = \frac{-8}{i + \sqrt{3}}$$

87.
$$a = \frac{-4}{1-i}$$

85.
$$a = \frac{4}{1+i}$$
. **86.** $a = \frac{-8}{i+\sqrt{3}}$. **87.** $a = \frac{-4}{1-i}$. **88.** $a = \frac{8}{\sqrt{3}-i}$.

89.
$$a = \frac{-8}{1 - i\sqrt{3}}$$
. **90.** $a = \frac{8}{\sqrt{3} + i}$.

90.
$$a = \frac{8}{\sqrt{3} + i}$$
.

РЕШЕНИЕ ТИПОВОГО ВАРИАНТА КОНТРОЛЬНОЙ РАБОТЫ № 1.

1-10. Даны две матрицы **A** и **B**. Найти: а) **AB**; б) **BA**; в) A^{-1} ; г) **A** A^{-1} ; д) $A^{-1}A$.

$$\mathbf{A} = \begin{pmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 0 & 1 \\ -2 & 1 & 3 \end{pmatrix}.$$

Решение.

а) Произведение AB имеет смысл, так как число столбцов матрицы A равно числу строк матрицы B. Находим матрицу C=AB, элементы которой $c_{ij}=a_{i1}b_{1\,j}+a_{i2}b_{2\,j}+a_{i3}b_{3\,j}+...+a_{in}b_{nj}$.

Имеем:

$$C = AB = \begin{pmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & -3 \\ 2 & 0 & 1 \\ -2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} -4+0-2 & -8+0+1 & 12+0+3 \\ 2-2-6 & 4+0+3 & -6-1+9 \\ 3+4-4 & 6+0+2 & -9+2+6 \end{pmatrix} = \begin{pmatrix} -6 & -7 & 15 \\ -6 & 7 & 2 \\ 3 & 8 & -1 \end{pmatrix}.$$

б) Вычислим

$$BA = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 0 & 1 \\ -2 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{pmatrix} = \begin{pmatrix} -4+4-9 & 0-2-6 & 1+6-6 \\ -8+0+3 & 0+0+2 & 2+0+2 \\ 8+2+9 & 0-1+6 & -2+3+6 \end{pmatrix} = \begin{pmatrix} -9 & -8 & 1 \\ -5 & 2 & 4 \\ 19 & 5 & 7 \end{pmatrix}.$$
 Очевидно, что $AB \neq BA$.

в) Обратная матрица A^{-1} матрицы A имеет вид

$$A^{-1} = \frac{1}{\Delta(A)} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$
, где

$$\Delta(A) = \begin{vmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{vmatrix} = 8 + 4 + 3 + 24 = 39 \neq 0$$
, т.е. матрица A невырожденная.

Значит, существует обратная матрица A^{-1} . Находим:

$$A_{11} = \begin{vmatrix} -1 & 3 \\ 2 & 2 \end{vmatrix} = -8; \qquad A_{21} = -\begin{vmatrix} 0 & 1 \\ 2 & 2 \end{vmatrix} = 2; \qquad A_{31} = \begin{vmatrix} 0 & 1 \\ -1 & 3 \end{vmatrix} = 1;$$

$$A_{12} = -\begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = 5; \qquad A_{22} = \begin{vmatrix} -4 & 1 \\ 3 & 2 \end{vmatrix} = -11; \qquad A_{32} = -\begin{vmatrix} -4 & 1 \\ 2 & 3 \end{vmatrix} = 14;$$

$$A_{13} = \begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} = 7; \qquad A_{23} = -\begin{vmatrix} -4 & 0 \\ 3 & 2 \end{vmatrix} = 4; \qquad A_{33} = \begin{vmatrix} -4 & 0 \\ 2 & -1 \end{vmatrix} = 4.$$

Тогда
$$A^{-1} = \frac{1}{39} \begin{pmatrix} -8 & 2 & 1 \\ 5 & -11 & 14 \\ 7 & 8 & 4 \end{pmatrix} = \begin{pmatrix} -\frac{8}{39} & -\frac{2}{39} & \frac{1}{39} \\ \frac{5}{39} & -\frac{11}{39} & \frac{14}{39} \\ \frac{7}{39} & \frac{8}{39} & \frac{4}{39} \end{pmatrix}.$$

$$\Gamma) \text{ Имеем: } A \cdot A^{-1} = \begin{pmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} -\frac{8}{39} & -\frac{2}{39} & \frac{1}{39} \\ \frac{5}{39} & -\frac{11}{39} & \frac{14}{39} \\ \frac{7}{39} & \frac{8}{39} & \frac{4}{39} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E.$$

д) Имеем:
$$A^{-1} \cdot A = \frac{1}{39} \begin{pmatrix} -8 & 2 & 1 \\ 5 & -11 & 14 \\ 7 & 8 & 4 \end{pmatrix} \cdot \begin{pmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E$$
, т.е.

обратная матрица найдена верно.

- **11-20**. Проверить совместность системы уравнений и в случае совместности решить её:
 - а) по формулам Крамера,
 - б) матричным способом (с помощью обратной матрицы),
 - в) методом Гаусса.

$$\begin{cases} x_1 + 5x_2 - x_3 = 3, \\ 2x_1 + 4x_2 - 3x_3 = 2, \\ 3x_1 - x_2 - 3x_3 = -7. \end{cases}$$

Решение. Найдём главный определитель системы

$$\Delta = \begin{vmatrix} 1 & 5 & -1 \\ 2 & 4 & -3 \\ 3 & -1 & -3 \end{vmatrix} = 1 \cdot 4 \cdot (-3) + 2 \cdot (-1) \cdot (-1) + 5 \cdot (-3) \cdot 3 - (-1) \cdot 4 \cdot 3$$

$$-1 \cdot (-3) \cdot (-1) - 5 \cdot 2 \cdot (-3) = -16 \neq 0.$$

Так как главный определитель системы не равен нулю, то система имеет единственное решение. Найдём решение системы по формулам Крамера

$$x_1 = \frac{\Delta_1}{\Delta}, \quad x_2 = \frac{\Delta_2}{\Delta}, \quad x_3 = \frac{\Delta_3}{\Delta},$$
где
$$\Delta_1 = \begin{vmatrix} 3 & 5 & -1 \\ 2 & 4 & -3 \\ -7 & -1 & -3 \end{vmatrix} = 64, \quad \Delta_2 = \begin{vmatrix} 1 & 3 & -1 \\ 2 & 2 & -3 \\ 3 & -7 & -3 \end{vmatrix} = -16, \quad \Delta_3 = \begin{vmatrix} 1 & 5 & 3 \\ 2 & 4 & 2 \\ 3 & -1 & -7 \end{vmatrix} = 32.$$
 Следовательно, $x_1 = \frac{64}{-16} = -4, \quad x_2 = \frac{-16}{-16} = 1, \quad x_3 = \frac{32}{-16} = -2.$

б) Для нахождения решения системы с помощью обратной матрицы запишем систему уравнений в матричной форме AX = B. Решение системы имеет вид $X = A^{-1} \cdot B$. Находим обратную матрицу A^{-1} (она существует, так как $\Delta(A) = \Delta = -16 \neq 0$).

$$A_{11} = \begin{vmatrix} 4 & 3 \\ -1 & -3 \end{vmatrix} = -15; \qquad A_{21} = -\begin{vmatrix} 5 & -1 \\ -1 & -3 \end{vmatrix} = 16; \qquad A_{31} = \begin{vmatrix} 5 & -1 \\ 4 & -3 \end{vmatrix} = -11;$$

$$A_{12} = -\begin{vmatrix} 2 & -3 \\ 3 & -3 \end{vmatrix} = -3; \qquad A_{22} = \begin{vmatrix} 1 & -1 \\ 3 & -3 \end{vmatrix} = 0; \qquad A_{32} = -\begin{vmatrix} 1 & -1 \\ 2 & -3 \end{vmatrix} = 1;$$

$$A_{13} = \begin{vmatrix} 2 & 4 \\ 3 & -1 \end{vmatrix} = -14; \qquad A_{23} = -\begin{vmatrix} 1 & 5 \\ 3 & -1 \end{vmatrix} = 16; \qquad A_{33} = \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix} = -6.$$

$$A^{-1} = \frac{1}{-16} \begin{pmatrix} -15 & 16 & -11 \\ -3 & 0 & 1 \\ -14 & 16 & -6 \end{pmatrix}.$$

Решение системы

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{-16} \begin{pmatrix} -15 & 16 & -11 \\ -3 & 0 & 1 \\ -14 & 16 & -6 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ -7 \end{pmatrix} = \frac{1}{-16} \begin{pmatrix} -45 + 32 + 77 \\ -9 + 0 - 7 \\ -42 + 32 + 42 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \\ -2 \end{pmatrix}.$$

Итак,
$$x_1 = -4$$
, $x_2 = 1$, $x_3 = -2$.

в) Решим систему методом Гаусса. Запишем расширенную матрицу систе-

в) Решим систему методом Гаусса. Запишем расширенную матрицу сист мы
$$C = \begin{pmatrix} 1 & 5 & -1 & 3 \\ 2 & 4 & -3 & 2 \\ 3 & -1 & -3 & -7 \end{pmatrix}$$
 и приведём её к ступенчатому виду. Для этого ум-

ножим первую строку на (-2) и сложим со второй, затем умножим первую строку на (-3) и сложим с третьей. Разделим третью строку на (-16) и поменяем местами вторую и третью строки. Получим:

$$C = \begin{pmatrix} 1 & 5 & -1 & 3 \\ 2 & 4 & -3 & 2 \\ 3 & -1 & -3 & -7 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & -1 & 3 \\ 0 & -6 & -1 & -4 \\ 0 & -16 & 0 & -16 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & -1 & 3 \\ 0 & -6 & -1 & -4 \\ 0 & 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & -1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & -6 & -1 & -4 \end{pmatrix}$$

Далее умножим вторую строку на 6 и сложим с третьей, получим

$$\sim \begin{pmatrix} 1 & 5 & -1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & -1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix}.$$
 Затем, из первой строки вычтем вторую,

умноженную на 5. и прибавим третью. Окончательно получаем

$$\begin{pmatrix} 1 & 5 & -1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix}.$$
 Откуда следует,
$$x_1 = -4, \quad x_2 = 1, \quad x_3 = -2.$$

21-30. Решить однородную систему уравнений
$$\begin{cases} 3x + 4y - z = 0, \\ x - 3y + 5z = 0, \\ 4x + y + 4z = 0. \end{cases}$$

Однородная система уравнений всегда совместна. Если главный определитель системы $\Delta = 0$, то система имеет единственное решение x = 0, y = 0, z = 0. Если главный определитель системы $\Delta \neq 0$, то система имеет бесчисленное множество решений.

Возьмём любые два уравнения системы (например, первое и второе) и найдём её решение.

$$\begin{cases} 3x + 4y - z = 0, \\ x - 3y + 5z = 0. \end{cases}$$
$$x = \begin{vmatrix} 4 & -1 \\ -3 & 5 \end{vmatrix} t = 17t, \quad y = -\begin{vmatrix} 3 & -1 \\ 1 & 5 \end{vmatrix} t = -16t, \quad z = \begin{vmatrix} 3 & 4 \\ 1 & -3 \end{vmatrix} t = -13t,$$
 где t - любое число.

31-40. Даны векторы \vec{a} , \vec{b} , \vec{c} , \vec{d} в декартовой системе координат. Показать, что векторы \vec{a} , \vec{b} , \vec{c} образуют базис. Найти координаты вектора \vec{d} в этом базисе (написать разложение вектора \vec{d} в базисе \vec{a} , \vec{b} , \vec{c}).

$$\vec{d} = \{-1, 7, -4\}, \quad \vec{a} = \{-1, 2, 1\}, \quad \vec{b} = \{2, 0, 3\}, \quad \vec{c} = \{1, 1, -1\}.$$

Решение.

Векторы $\vec{a}, \vec{b}, \vec{c}$ образуют базис, если определитель, составленный из координат этих векторов не равен нулю. Вычислим

$$\Delta = \begin{vmatrix} -1 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 3 & -1 \end{vmatrix} = 0 + 6 + 2 - 0 - (-3) - (-4) = 15 \neq 0$$
, следовательно, век-

торы \vec{a} , \vec{b} , \vec{c} образуют базис. Разложение вектора \vec{d} по базису \vec{a} , \vec{b} , \vec{c} имеет вид: $\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$, где α , β , γ - координаты вектора \vec{d} в базисе \vec{a} , \vec{b} , \vec{c} . Для нахождения α , β , γ составим систему уравнений $\begin{cases} -\alpha + 2\beta + \gamma = -1, \\ 2\alpha + \gamma = 7, \end{cases}$, коэффициенты которой равны координатам базис- $\alpha + 3\beta - \gamma = -4.$

ных векторов, а свободные члены — координатам вектора \vec{d} . Главный определитель системы был вычислен выше и равен 15, поэтому систему можно решить по формулам Крамера

$$\Delta_1 = \begin{vmatrix} -1 & 2 & 1 \\ 7 & 0 & 1 \\ -4 & 3 & -1 \end{vmatrix} = 30, \ \Delta_2 = \begin{vmatrix} -1 & -1 & 1 \\ 2 & 7 & 1 \\ 1 & -4 & -1 \end{vmatrix} = -15, \ \Delta_3 = \begin{vmatrix} -1 & 2 & -1 \\ 2 & 0 & 7 \\ 1 & 3 & -4 \end{vmatrix} = 45.$$

Следовательно,
$$\alpha = \frac{30}{15} = 2$$
, $\beta = \frac{-15}{15} = -1$, $\gamma = \frac{45}{15} = 3$ и $\vec{d} = 2\vec{a} - \vec{b} + 3\vec{c}$.

41-50. Даны вершины треугольника ABC: A(4; 3), B(-3; -3), C(2; 7).

Найти: 1) длину стороны AB; 2) уравнения сторон AB и BC и их угловые коэффициенты; 3) уравнение высоты СД и её длину; 4) уравнение медианы AE и координаты точки К пересечения этой медианы с высотой СД; 5) уравнение прямой, проходящей через точку К параллельно стороне AB; 6) координаты точки М, расположенной симметрично точке A относительно прямой СД.

Решение.

- 1) Воспользуемся формулой нахождения расстояния между двумя точками: $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$, где (x_1, y_1) , (x_2, y_2) координаты этих точек. Следовательно, длина стороны AB равна $|AB| = \sqrt{(-3-4)^2 + (-3-3)^2} = \sqrt{49+36} = \sqrt{85} \approx 9.2$.
- 2) Воспользуемся уравнением прямой, проходящей через две точки:

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}.$$
 Уравнение стороны АВ: $\frac{x-4}{-3-4} = \frac{y-3}{-3-3}$, откуда следует $6(x-4) = 7(y-3) \Rightarrow$ $6x-7y-3=0 \Rightarrow y=\frac{6}{7}x-\frac{3}{7}$. Последнее уравнение с угловым коэффициентом, из которого следует, $k_{AB}=\frac{6}{7}$.

Уравнение стороны ВС:

$$\frac{x-(-3)}{2-(-3)} = \frac{y-(-3)}{7-(-3)} \Rightarrow \frac{x+3}{5} = \frac{y+3}{10} \Rightarrow 10(x+3) = 5(y+3) \Rightarrow$$
 $2x-y+3=0$, откуда следует $y=2x+3$ и $k_{BC}=2$.

3) Высота СД перпендикулярна стороне АВ, воспользуемся условием перпендикулярности $k_1 \cdot k_2 = -1$, из которого найдём $k_{C\!\!\mathcal{I}} = -\frac{1}{k_{AB}} = -\frac{7}{6}$. Воспользуемся уравнением прямой, проходящей через заданную точку с заданным угловым коэффициентом $y-y_0=k(x-x_0)$. Подставим в это уравнение вместо x_0 , y_0 координаты точки С и $k_{C\!\!\mathcal{I}}$, получим уравнение высоты СД: $y-7=-\frac{7}{6}(x-2) \Rightarrow 7x+6y-56=0$.

Длину высоты СД найдём по формуле расстояния от точки С до прямой AB: $A_{r} + B_{r} + C$

$$h = \frac{\left|Ax_0 + By_0 + C\right|}{\sqrt{A^2 + B^2}}$$
, где $Ax + By + C = 0$ - уравнение стороны AB, (x_0, y_0) -

координаты точки С. Вычислим
$$h = \left| C \mathcal{I} \right| = \frac{\left| 6 \cdot 2 - 7 \cdot 7 - 3 \right|}{\sqrt{6^2 + 7^2}} = \frac{40}{\sqrt{85}} \approx \frac{40}{9.2} = 4,35$$
.

4) Для составления уравнения медианы AE найдём координаты точки E – середины стороны BC.

$$x_E = \frac{x_B + x_C}{2} = \frac{-3 + 2}{2} = -\frac{1}{2}, \quad y_E = \frac{y_B + y_C}{2} = \frac{-3 + 7}{2} = 2.$$

Запишем уравнение прямой, проходящей через 2 точки А и Е:

$$\frac{x-4}{-0.5-4} = \frac{y-3}{2-3} \Rightarrow x-4 = 4.5(y-3) \Rightarrow x-4.5y+9.5 = 0$$
или $2x-9y+19=0$ -

уравнение медианы АЕ.

Найдём точку пересечения высоты СД и медианы АЕ. Для этого составим систему из двух уравнений этих прямых и решим её.

$$\begin{cases} 7x + 6y - 56 = 0 \\ 2x - 9y + 19 = 0 \end{cases} \Rightarrow \begin{cases} 7x + 6y = 56 \\ 2x - 9y = -19 \end{cases} \Rightarrow \begin{cases} x = \frac{26}{5} \\ y = \frac{49}{15} \end{cases} \Rightarrow K(26/5; 49/15).$$

5) Так как прямая, проходящая через точку К параллельна стороне AB, то их угловые коэффициенты равны $k_{AB}=\frac{6}{7}$. Тогда по точке К и угловому коэффициенту составляем уравнение прямой

$$y - \frac{49}{15} = \frac{6}{7}(x - \frac{26}{5}) \Rightarrow 6x - 7y - \frac{25}{3} = 0$$
 или $18x - 21y - 25 = 0$.

6) Найдём координаты точки Д, как точки пересечения стороны АВ и высоты СД, для этого решим систему уравнений

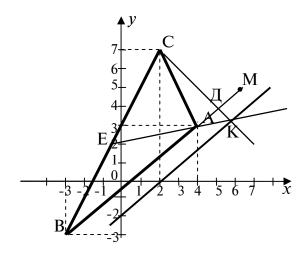
$$\begin{cases} 6x - 7y - 3 = 0 \\ 7x + 6y - 56 = 0 \end{cases} \Rightarrow \begin{cases} 6x - 7y = 3 \\ 7x + 6y = 56 \end{cases} \Rightarrow \begin{cases} x = \frac{82}{17} \\ y = \frac{63}{17} \end{cases} \Rightarrow \mathcal{L}(82/17; 63/17)$$

Координаты точки M, расположенной симметрично точке A относительно прямой СД, находим, исходя из того, что точка Д является серединой отрезка AM, т.е.

$$x_{\mathcal{I}} = \frac{x_A + x_M}{2}$$
; $y_{\mathcal{I}} = \frac{y_A + y_M}{2} \Rightarrow$

$$x_M = 2x_{\mathcal{I}} - x_A = 2 \cdot \frac{82}{17} - 4 = \frac{96}{17} \approx 5, 6;$$

 $y_M = 2y_{\mathcal{I}} - y_A = 2 \cdot \frac{63}{17} - 3 = \frac{75}{17} \approx 4, 4.$



Скалярное, векторное, смешанное произведения векторов.

Скалярным произведением двух векторов \mathbf{a} и \mathbf{b} называется число, обозначаемое $\mathbf{c} = \mathbf{a} \cdot \mathbf{b}$ и равное произведению модулей данных векторов на косинус угла между ними:

$$\mathbf{ab} = |\mathbf{a}||\mathbf{b}|\cos(\widehat{\mathbf{a},\mathbf{b}}),$$

где $(\widehat{\mathbf{a}},\widehat{\mathbf{b}})$ обозначает меньший угол между направлениями векторов \mathbf{a} и \mathbf{b} . Отметим, что всегда $0 \le (\widehat{\mathbf{a}},\widehat{\mathbf{b}}) \le \pi$.

Перечислим основные свойства скалярного произведения векторов:

- 1) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- 2) $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b});$
- 3) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$;
- 4) $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \pi \mathbf{p_a} \mathbf{b} = |\mathbf{b}| \pi \mathbf{p_b} \mathbf{a};$
- 5) $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$;
- 6) $\mathbf{a} \cdot \mathbf{b} = 0 \Leftrightarrow \mathbf{a} \perp \mathbf{b}$.

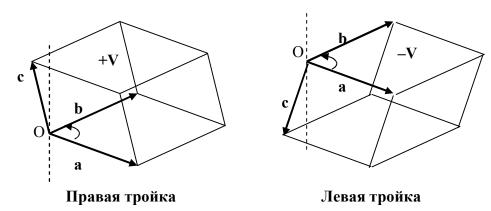
Если $\mathbf{a} = (x_1, y_1, z_1), \mathbf{b} = (x_2, y_2, z_2), \text{ то в базисе } \mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$\mathbf{a} \cdot \mathbf{b} = x_1 x_2 + y_1 y_2 + z_1 z_2;$$

$$|\mathbf{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2}; \quad |\mathbf{b}| = \sqrt{x_2^2 + y_2^2 + z_2^2};$$

$$\cos(\widehat{\mathbf{a}}, \widehat{\mathbf{b}}) = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

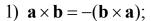
Упорядоченная тройка некомпланарных векторов \mathbf{a} , \mathbf{b} , \mathbf{c} с общим началом в точке О называется *правой*, если кратчайший поворот от вектора \mathbf{a} к вектору \mathbf{b} наблюдается из конца вектора \mathbf{c} происходящим против движения часовой стрелки. В противном случае данная тройка называется *певой*.



Векторным произведением векторов **a** u **b** называется вектор, обозначаемый $\mathbf{c} = \mathbf{a} \times \mathbf{b}$, который удовлетворяет следующим трем условиям:

- 1) $|\mathbf{c}| = |\mathbf{a}||\mathbf{b}|\sin(\widehat{\mathbf{a}},\widehat{\mathbf{b}});$
- 2) $\mathbf{c} \perp \mathbf{a}, \mathbf{c} \perp \mathbf{b};$
- 3) тройка **a**, **b**, **c** правая.

Перечислим основные свойства векторного произведения векторов:



2)
$$(\lambda \mathbf{a}) \times \mathbf{b} = \lambda (\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (\lambda \mathbf{b});$$

3)
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$
;

4)
$$\mathbf{a} \times \mathbf{b} = 0 \Leftrightarrow \mathbf{a} \parallel \mathbf{b}$$
;

5) $|\mathbf{a} \times \mathbf{b}| = S$, где S — площадь параллелограмма, построенного на векторах \mathbf{a} и \mathbf{b} , имеющих общее начало в точке O.

Если $\mathbf{a} = (x_1, y_1, z_1)$, $\mathbf{b} = (x_2, y_2, z_2)$, то векторное произведение $\mathbf{a} \times \mathbf{b}$ выражается через координаты данных векторов \mathbf{a} и \mathbf{b} следующим образом:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}.$$

Смешанным произведением векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ называется число $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$.

Перечислим основные свойства смешанного произведения векторов:

- 1) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$, поэтому смешанное произведение можно обозначать проще: \mathbf{abc} ;
 - 2) abc = bca = cab = -bac = -cba = -acb;
- 3) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$, поэтому смешанное произведение можно обозначать проще: \mathbf{abc} ;
 - 4) abc = bca = cab = -bac = -cba = -acb;
- 5) геометрический смысл смешанного произведения заключается в следующем: $\mathbf{abc} = \pm V$, где V объем параллелепипеда, построенного на перемножаемых векторах, взятый со знаком «+ », если тройка векторов \mathbf{a} , \mathbf{b} , \mathbf{c} правая, или со знаком «—», если она левая;
 - 6) **abc** = $0 \iff$ **a, b, c** компланарны.

Если
$$\mathbf{a} = (x_1, y_1, z_1), \mathbf{b} = (x_2, y_2, z_2), \mathbf{c} = (x_3, y_3, z_3)$$
 то

$$\mathbf{abc} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

51-60. Даны координаты вершин пирамиды $A_1A_2A_3A_4$.

Найти: 1) длину ребра A_1A_2 ; 2) угол между рёбрами A_1A_2 и A_1A_3 ; 3) угол между ребром A_1A_4 и гранью $A_1A_2A_3$; 4) площадь грани $A_1A_2A_3$; 5) объём пирамиды; 6) уравнение прямой A_1A_2 ; 7) уравнение плоскости $A_1A_2A_3$; 8) уравнение высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$.

$$A_1(4; 7; 8), A_2(-1; 13; 0), A_3(2; 4; 9), A_4(1; 8; 9).$$

Решение.

1) Воспользуемся формулой нахождения расстояния между двумя точ-ками: $d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$, где (x_1,y_1,z_1) , (x_2,y_2,z_2) - координаты этих точек. Следовательно, длина ребра A_1A_2 равна

$$|A_1A_2| = \sqrt{(-1-4)^2 + (13-7)^2 + (0-8)^2} = \sqrt{25+36+64} = \sqrt{125} = 5\sqrt{5}$$

2) Угол между рёбрами A_1A_2 и A_1A_3 равен углу между направляющими векторами $\overline{A_1A_2}=\{-1-4;13-7;0-8\}=\{-5;6;-8\}$ и $\overline{A_1A_3}=\{2-4;4-7;9-8\}=\{-2;-3;1\}$.

$$\cos \varphi = \frac{(\overline{A_1} \overline{A_2} \cdot \overline{A_1} \overline{A_3})}{|\overline{A_1} \overline{A_2}| \cdot |\overline{A_1} \overline{A_3}|} = \frac{(-5) \cdot (-2) + 6 \cdot (-3) + (-8) \cdot 1}{\sqrt{(-5)^2 + 6^2 + (-8)^2} \cdot \sqrt{(-2)^2 + (-3)^2 + 1^2}} = \frac{-16}{\sqrt{125} \cdot \sqrt{14}} \approx -0.38.$$

Следовательно, $\phi = \arccos(-0.38) \approx 112^{\circ}$.

3) Для нахождения угла между ребром A_1A_4 и гранью $A_1A_2A_3$ надо найти вектор, перпендикулярный грани $A_1A_2A_3$, который называется нормальным вектором и равен векторному произведению векторов $\overline{A_1A_2}$ и $\overline{A_1A_3}$, т.е.

$$\vec{n} = \overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3} = \begin{vmatrix} i & j & k \\ -5 & 6 & -8 \\ -2 & -3 & 1 \end{vmatrix} = i \begin{vmatrix} 6 & -8 \\ -3 & 1 \end{vmatrix} - j \begin{vmatrix} -5 & -8 \\ -2 & 1 \end{vmatrix} + k \begin{vmatrix} -5 & 6 \\ -2 & -3 \end{vmatrix} =$$

$$= -18i + 21j + 27k = \{-18; 21; 27\}.$$

$$\overrightarrow{A_1 A_4} = \{1 - 4; 8 - 7; 9 - 8\} = \{-3; 1; 1\}$$
.

Синус угла между ребром A_1A_4 и гранью $A_1A_2A_3$ найдём по формуле

$$\sin \phi = \frac{\left| \overline{A_1 A_4} \cdot \vec{n} \right|}{\left| \overline{A_1 A_1} \right| \cdot \left| \vec{n} \right|} = \frac{\left| (-3) \cdot (-18) + 1 \cdot 21 + 1 \cdot 27 \right|}{\sqrt{(-3)^2 + 1^2 + 1^2} \cdot \sqrt{(-18)^2 + 21^2 + 27^2}} = \frac{102}{\sqrt{11} \cdot 3\sqrt{166}} \approx 0.8.$$

Следовательно, угол между ребром A_1A_4 и гранью $A_1A_2A_3$ равен $\phi = \arcsin 0.8 = 52^{\circ}$.

4) Площадь грани $A_1A_2A_3$ равна

$$S_{A_1 A_2 A_3} = \frac{1}{2} \left| \overrightarrow{A_1 A_2} \times \overrightarrow{A_1 A_3} \right| = \frac{1}{2} \left| \{-18; 21; 27\} \right| = \frac{3}{2} \sqrt{166} \approx 19,3$$
.

5) Объём пирамиды равен

$$V = \frac{1}{6} \left| \left(\overrightarrow{A_1 A_2}, \overrightarrow{A_1 A_3}, \overrightarrow{A_1 A_4} \right) \right| = \frac{1}{6} \begin{vmatrix} -5 & 6 & -8 \\ -2 & -3 & 1 \\ -3 & 1 & 1 \end{vmatrix} = \frac{1}{6} \left| 15 + 16 - 18 + 72 + 5 + 12 \right| = 17.6$$

Воспользуемся уравнением прямой, проходящей через две точки

 $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$. Тогда уравнение прямой A_1A_2 можно записать в

виде
$$\frac{x-4}{-1-4} = \frac{y-7}{13-7} = \frac{z-8}{0-8}$$
 или $\frac{x-4}{-5} = \frac{y-7}{6} = \frac{z-8}{-8}$.

7) Воспользуемся уравнением плоскости, проходящей через три точки с координатами $(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3)$

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

Тогда уравнение плоскости $A_1A_2A_3$ запишется в виде

Тогда уравнение плоскости
$$A_1A_2A_3$$
 запишется в виде
$$\begin{vmatrix} x-4 & y-7 & z-8 \\ -1-4 & 13-7 & 0-8 \\ 2-4 & 4-7 & 9-8 \end{vmatrix} = 0 \Rightarrow (x-4) \begin{vmatrix} 6 & -8 \\ -3 & 1 \end{vmatrix} - (y-7) \begin{vmatrix} -5 & -8 \\ -2 & 1 \end{vmatrix} + (z-8) \begin{vmatrix} -5 & 6 \\ -2 & -3 \end{vmatrix} = 0$$

или после преобразований, получим 6x - 7y - 9z + 97 = 0.

- 8) Уравнение высоты A_4H , опущенной из вершины A_4 на грань $A_1A_2A_3$ получим исходя из условия перпендикулярности прямой A_4H и плоскости $A_1A_2A_3$. В качестве направляющего вектора прямой можно взять нормальный вектор $\vec{n} = \{6; -7; -9\}$ плоскости $A_1A_2A_3$. И тогда уравнение высоты запишется в виде $\frac{x-1}{6} = \frac{y-8}{-7} = \frac{z-9}{-9}$.
- 61-70. Привести уравнение к каноническому виду, определить тип кривой и построить её.

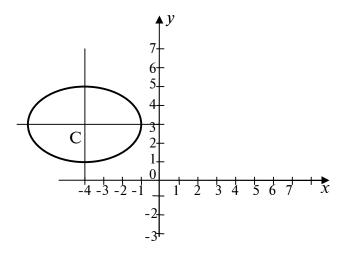
Пример1.
$$4x^2 + 9y^2 + 32x - 54y + 109 = 0$$
.

Решение. Дополним члены, содержащие x, и члены, содержащие y, до полных квадратов. Получим:

$$4(x^2 + 8x + 16) - 64 + 9(y^2 - 6y + 9) - 81 + 109 = 0 \Rightarrow 4(x + 4)^2 + 9(y - 3)^2 = 36$$
 Р азделим последнее уравнение на 36 и приведём к каноническому уравнению

$$\frac{(x+4)^2}{9} + \frac{(y-3)^2}{4} = 1.$$

Это уравнение эллипса, центр которого лежит в точке С(-4; 3), большая полуось a = 3, малая полуось b=2.



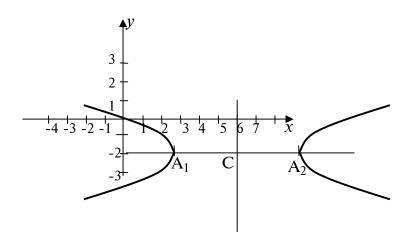
Пример 2. $x^2 - 6y^2 - 12x - 24y = 0$.

<u>Решение.</u> Дополним члены, содержащие x, и члены, содержащие y, до полных квадратов. Получим

$$(x^2 - 12x + 36) - 36 - 6(y^2 + 4y + 4) + 24 = 0 \Rightarrow (x - 6)^2 - 6(y + 2)^2 = 12$$
.

Разделим последнее уравнение на 12 и приведём к каноническому уравнению $\frac{(x-6)^2}{12} - \frac{(y+2)^2}{2} = 1$. Это уравнение гиперболы, центр которой лежит в точке C(6; -2), действительная полуось $a = \sqrt{12}$, мнимая полуось $b = \sqrt{2}$. Вер-

шины гиперболы $A_1(6-\sqrt{12};-2)$ и $A_2(6+\sqrt{12};-2)$.

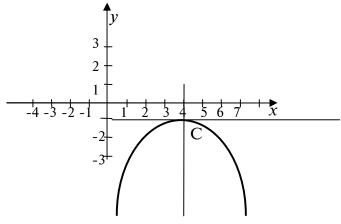


<u>Пример 3.</u> $x^2 - 8x + 2y + 18 = 0$.

<u>Решение.</u> Дополним члены, содержащие x, до полного квадрата. Получим: $x^2 - 8x + 16 + 2y + 2 = 0 \Rightarrow (x - 4)^2 + 2(y + 1) = 0 \Rightarrow (x - 4)^2 = -2(y + 1)$.

Получили каноническое уравнение параболы, вершина которой смещена в точку C(4; -1), ветви

направлены вниз.

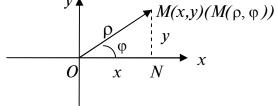


71-80. Построить кривую в полярной системе координат.

Полярные координаты точки и уравнение линии в полярных координатах.

Положение некоторой точки M на плоскости в прямоугольной декартовой системе координат Oxy определяется числами x и y, т. е. M(x,y). Эту точку можно задать и другим способом, например с помощью расстояния $\rho = \left| \overrightarrow{OM} \right|$ и угла ϕ , отсчитываемого против хода часовой стрелки от оси Ox, называемой nonsphoù осью, до радиуса-вектора \overrightarrow{OM} . В этом случае используется запись $M(\rho,\phi)$. Расстояние ρ называется nonsphom радиусом, ϕ - nonsphom углом точки M, а точка O-no-nocom.

Связь между декартовыми x, y и полярными ρ , ϕ координатами точки M при указанном расположении осей Ox и Oy, вектора \overrightarrow{OM} и угла ϕ выражается формулами:



$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \\ \rho \ge 0, \quad 0 \le \varphi < 2\pi. \end{cases}$$

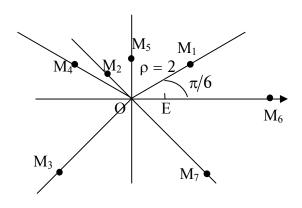
Декартовы координаты точки M можно находить по ее полярным координатам по формулам: $\rho = \sqrt{x^2 + y^2}$, $\cos \phi = \frac{x}{\sqrt{x^2 + y^2}}$, $\sin \phi = \frac{y}{\sqrt{x^2 + y^2}}$.

Эти формулы дают также возможность переходить от уравнений линий, заданных в декартовых координатах, к их уравнениям в полярных координатах, и наоборот.

<u>Пример 1</u>. Построить точки, заданные полярными координатами: $M_1(2;\pi/6),\ M_2(1;3\pi/4),\ M_3(3;5\pi/4),\ M_4(2;5\pi/6),\ M_5(3/2;\pi/2),\ M_6(4;0),\ M_7(3;7\pi/4).$

Решение.

Вначале проведем луч под углом ϕ к полярной оси Ox, затем на построенном луче отложим от полюса O отрезок длиной ρ . В итоге найдем все семь точек. Отрезок OE определяет единицу длины.



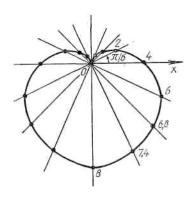
<u>Пример 2.</u> Построить кардиоиду, заданную уравнением в полярных координатах $\rho = 4(1-\sin\phi)$.

Решение.

Составим таблицу, в которой приведены значения полярного угла ϕ_i , (i=1,...,16) и соответствующие им значения полярного радиуса ρ_i :

φ_i	ρ_i	φ_i	ρ_i	φ_i	ρ_i	φ_i	ρ_i
0	4	$\pi/2$	0	π	4	$3\pi/2$	8
π/6	2	$2\pi/3$	≈0,6	$7\pi/6$	6	$5\pi/3$	≈7,4
$\pi/4$	≈1,2	$3\pi/4$	≈1,2	$5\pi/4$	≈6,8	$7\pi/4$	≈6,8
π/3	≈0,6	5π/6	2	$4\pi/3$	≈7,4	$11\pi/6$	6

Построив найденные точки M_i , (ρ_i, ϕ_i) в полярной системе координат и соединив их плавной линией, получим достаточно точное представление о кардиоиде.

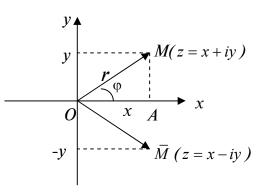


Комплексные числа и действия над ними

Комплексным числом называется число вида z = x + iy, где x и y— действительные числа; $i = \sqrt{-1}$ —так называемая мнимая единица, т. е. число, квадрат которого равен —1 (корень уравнения $z^2 + 1 = 0$); x называется действительной (вещественной) частью комплексного числа, а y — мнимой его частью. Для этих чисел приняты обозначения: x = Re z, y = Im z. Если y = 0, то $z = x \in R$; если же x = 0, то число z = iy называется чисто мнимым. С геометрической точки зрения, всякому комплексному числу z = x + iy соответствует точка M(x, y) плоскости (или вектор \overline{OM}) и, наоборот, всякой точке M(x, y) соответствует комплексное число z = x + iy. Между множествами комплексных чисел и точек плоскости Oxy установлено вза-

имно однозначное соответствие, поэтому данная плоскость называется ком- nлексной и обозначается символом (Z).

Множество всех комплексных чисел обозначается буквой С. Отметим, что $R \in C$. Точки, соответствующие действительным числам z = x, расположены на оси Ох, которая называется действительной осью комплексной плоскости, а точки, соответствующие мнимым числам



z = iy,— на оси Oy, которую называют *мнимой осью комплексной плоскости*.

Два комплексных числа равны, если соответственно равны их действительные и мнимые части. Числа вида z = x + iy и z = x - iy называются сопряженными.

Если $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ — два комплексных числа, то арифметические операции над ними выполняются по следующим правилам:

$$z_{1} + z_{2} = (x_{1} + iy_{1}) + (x_{2} + iy_{2}) = (x_{1} + x_{2}) + i(y_{1} + y_{2});$$

$$z_{1} - z_{2} = (x_{1} + iy_{1}) - (x_{2} + iy_{2}) = (x_{1} - x_{2}) + i(y_{1} - y_{2});$$

$$z_{1} \cdot z_{2} = (x_{1} + iy_{1}) \cdot (x_{2} + iy_{2}) = (x_{1}x_{2} - y_{1}y_{2}) + i(x_{2}y_{1} + x_{1}y_{2});$$

$$\frac{z_{1}}{z_{2}} = \frac{x_{1} + iy_{1}}{x_{2} + iy_{2}} = \frac{z_{1} \cdot \overline{z_{2}}}{z_{2} \cdot \overline{z_{2}}} = \frac{x_{1}x_{2} + y_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}} + i\frac{x_{2}y_{1} - x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}}.$$

Последняя операция имеет место при условии, что $z_2 \neq 0$. В результате получаем, вообще говоря, комплексные числа. Указанные операции над комплексными числами обладают всеми свойствами соответствующих операций над действительными числами, т. е. сложение и умножение коммутативны, ассоциативны, связаны отношением дистрибутивности и для них существуют обратные операции вычитания и деления (кроме деления на нуль).

Число $r = \left| \overrightarrow{OM} \right| = \sqrt{z \cdot \overline{z}}$ называется модулем комплексного числа z.

Угол ϕ , образованный вектором \overrightarrow{OM} с положительным направлением оси Ox, называется *аргументом комплексного числа* и обозначается $\phi = \text{Arg}z$.

Очевидно, что для всякого комплексного числа z = x + iy справедливы формулы:

$$x = r \cos \varphi, \ y = r \sin \varphi,$$

 $r = \sqrt{x^2 + y^2}, \ \cos \varphi = \frac{x}{r}, \ \sin \varphi = \frac{y}{r}, \ \varphi = \operatorname{arctg} \frac{y}{x},$

где главное значение аргумента $\varphi = \arg z$ удовлетворяет следующим условиям: $-\pi < \arg z \le \pi$ или $0 \le \arg z < 2\pi$.

Всякое комплексное число z = x + iy может быть представлено в тригонометрической форме $z = r(\cos \phi + i \sin \phi)$ или в показательной форме $z = re^{i\phi}$ (так как по формуле Эйлера $e^{i\phi} = \cos \phi + i \sin \phi$).

Если $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$, $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$ то справедливы формулы:

$$z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)) = r_1 r_2 e^{i(\varphi_1 + \varphi_2)},$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2)) = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}, \quad (z \neq 0)$$

$$z^n = r^n (\cos n\varphi + i \sin n\varphi) = r^n e^{in\varphi}.$$

Последняя формула называется формулой Муавра.

Для извлечения корня n-й степени $(n>1, n\in Z)$ из комплексного числа используется формула, дающая n значений этого корня, которые лежат в вершинах правильного n - угольника, вписанного в окружность радиуса $R = \sqrt[n]{r}$ с центром в начале координат:

$$z_k = \sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \ k = 0, 1, ...(n-1).$$

81-90. Дано комплексное число $a = \frac{4}{-1+i}$. Требуется: 1) записать число a в алгебраической и тригонометрической форме; 2) найти все корни уравнения $z^3 = a^2$.

Решение.

1) Представим число в алгебраической форме, для чего числитель и знаменатель умножим на сопряжённое знаменателю число:

$$a = \frac{4}{-1+i} = \frac{4(-1-i)}{(-1+i)(-1-i)} = \frac{4(-1-i)}{2} = -2-2i.$$

Получили комплексное число в алгебраической форме, у которого x = Re a = -2, y = Im a = -2.

Найдём модуль и аргумент этого числа

$$r = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + (-2)^2} = 2\sqrt{2}$$
, $\cos \varphi = \frac{x}{r} = -\frac{\sqrt{2}}{2}$, $\sin \varphi = \frac{y}{r} = -\frac{\sqrt{2}}{2}$,

Откуда следует, что $\phi = -\frac{3\pi}{4}$ и тригонометрическая форма числа имеет вид:

$$a = 2\sqrt{2}\left(\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)\right) = 2\sqrt{2}\left(\cos\frac{3\pi}{4} - i\sin\frac{3\pi}{4}\right).$$

2) Для решения уравнения $z^3 = a^2$ найдём

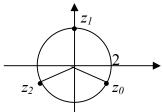
$$a^{2} = (2\sqrt{2})^{2} \left(\cos 2 \cdot \frac{3\pi}{4} - i\sin 2 \cdot \frac{3\pi}{4}\right) = 8\left(\cos \frac{3\pi}{2} + i\sin \frac{3\pi}{2}\right) = -8i \text{ и}$$
$$r = \left|-8i\right| = 8, \text{ } \phi = -\frac{\pi}{2}.$$

Затем найдём

$$z_k = \sqrt[3]{a^2} = \sqrt[3]{-8i} = \sqrt[3]{8} \left(\cos \left(\frac{-\pi/2 + 2\pi k}{3} \right) + i \sin \left(\frac{-\pi/2 + 2\pi k}{3} \right) \right), \ k = 0, 1, 2.$$

Придавая k последовательно значения 0, 1, 2, находим все 3 возможные корни данного уравнения:

$$\begin{split} z_0 &= 2 \left(\cos \left(\frac{-\pi/2}{3} \right) + i \sin \left(\frac{-\pi/2}{3} \right) \right) = 2 \left(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} \right) = 2 \left(\frac{\sqrt{3}}{2} - i \frac{1}{2} \right) = \sqrt{3} - i, \\ z_1 &= 2 \left(\cos \left(\frac{-\pi/2 + 2\pi}{3} \right) + i \sin \left(\frac{-\pi/2 + 2\pi}{3} \right) \right) = 2 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) = 2i, \\ z_2 &= 2 \left(\cos \left(\frac{-\pi/2 + 4\pi}{3} \right) + i \sin \left(\frac{-\pi/2 + 4\pi}{3} \right) \right) = 2 \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} \right) = \\ &= 2 \left(-\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} \right) = 2 \left(-\frac{\sqrt{3}}{2} - \frac{1}{2} \right) = -\sqrt{3} - i. \end{split}$$



КОНТРОЛЬНАЯ РАБОТА № 2.

Введение в математический анализ.

91-100. Найти указанные пределы, не пользуясь правилом Лопиталя.

91. a)
$$\lim_{x \to \infty} \frac{4x^6 - 5x + 6}{x^6 - 12x^2 + 20}$$
; б) $\lim_{x \to 3} \frac{x^2 - 9}{3x^2 - 8x - 3}$; в) $\lim_{x \to 3} \frac{\sqrt{1 + x} - 2}{x - 3}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{x\cdot \operatorname{tg} x}{\cos x - \cos^3 x}$; д) $\lim_{x\to \infty} x(\ln(3x-1) - \ln(3x-2))$.

92. a)
$$\lim_{x \to \infty} \frac{2x^6 - 3x^4 + 6}{3x^6 + 2x^2 + 10}$$
; 6) $\lim_{x \to 3} \frac{2x^2 - 5x - 3}{x^2 - x - 6}$; B); $\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{\sqrt{x - 2} - 1}$;

$$\Gamma$$
) $\lim_{x\to 0} \left(\frac{1-\cos 6x}{1-\cos 4x}\right)$; π) $\lim_{x\to 0} \frac{2x}{\ln(1+x)}$.

93. a)
$$\lim_{x \to \infty} \frac{x^3 - 3x^2 - 2x}{3x^3 + 4x^2 + 4}$$
; 6) $\lim_{x \to 2} \frac{x^2 - 3x + 2}{3x^2 - 4x - 4}$; B) $\lim_{x \to 0} \frac{\sin 3x}{3 - \sqrt{2x + 9}}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\sin 5x}{x^2 + 2x}$; π $\lim_{x\to \infty} \left(1 - \frac{3}{x}\right)^{1-2x}$.

94. a)
$$\lim_{x \to \infty} \frac{3x^3 + 4x}{8x^3 - 4x^2 + 5}$$
; 6) $\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 - 1}$; B) $\lim_{x \to \infty} \left(x - \sqrt{x^2 + 7x}\right)$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\sqrt{1-\cos 5x}}{2x}$; д) $\lim_{x\to \infty} \left(\frac{2x-1}{2x+2}\right)^{3x}$.

95. a)
$$\lim_{x \to \infty} \frac{100x^2 + 4x + 5}{4x^3 + x^2 - 3x}$$
; 6) $\lim_{x \to 2} \frac{x^2 - 4x + 4}{2x^2 - 6x + 4}$; B) $\lim_{x \to 2} \frac{x^2 - 5x + 6}{\sqrt{5 - x} - \sqrt{x + 1}}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\sin 4x + \sin 2x}{6x}$; д) $\lim_{x\to \infty} x(\ln(2x+1) - \ln(2x+3))$.

96. a)
$$\lim_{x \to \infty} \frac{2x^5 - 5x^3 + 8}{x^5 + 2x^4 + 7}$$
; б) $\lim_{x \to 2} \frac{6 - x - x^2}{x^3 - 8}$; в) $\lim_{x \to -4} \frac{\sqrt{x + 12} - \sqrt{4 - x}}{x^2 + 2x - 8}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{1-\cos 6x}{7x\sin 3x}$; д) $\lim_{x\to \infty} \left(\frac{x+4}{x+2}\right)^{-2x}$.

97. a)
$$\lim_{x \to \infty} \frac{7x^3 - 2x^2 - 4x}{2x^3 + 8x^2 - x + 5}$$
; б) $\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^3 - 27}$; в) $\lim_{x \to 4} \frac{\sqrt{5 + x} - 3}{x - 4}$;

$$r)$$
 $\lim_{x\to 0} \frac{x \cdot \sin 2x}{\cos x - \cos^3 x}$; д) $\lim_{x\to \infty} \left(\frac{x+4}{x}\right)^{1-3x}$.

98. a)
$$\lim_{x \to \infty} \frac{-x^4 + 5x^2 + 6}{4x^4 + 2x^2 + 3}$$
; 6) $\lim_{x \to 6} \frac{2x^2 - 72}{x^2 - 7x + 6}$; B) $\lim_{x \to 0} \frac{\cos 2x - 1}{3x \sin 3x}$;

$$\Gamma$$
) $\lim_{x \to -2} \frac{\sqrt{2-x} - \sqrt{x+6}}{x^2 - x - 6}$; π) $\lim_{x \to \infty} x \left(\ln(x+3) - \ln(x+2) \right)$.

99. a)
$$\lim_{x \to \infty} \frac{x^3 + 9}{6x^3 + 10x^2 + 5}$$
; 6) $\lim_{x \to -2} \frac{3x^2 - x - 14}{x^2 + 8x + 12}$;

B)
$$\lim_{x \to \infty} (\sqrt{x^2 + 4} - \sqrt{x^2 + 2x})$$
; г) $\lim_{x \to 0} \frac{\cos x - \cos^3 x}{4x \sin x}$; д) $\lim_{x \to \infty} \left(\frac{2x - 1}{2x}\right)^{3 + x}$.

100. a)
$$\lim_{x \to \infty} \frac{x^4 + 15x^2 + 11}{3x^4 - 2x^2 + 2}$$
; 6) $\lim_{x \to -3} \frac{3x^2 + 10x + 3}{2x^2 + 5x - 3}$;

B)
$$\lim_{x \to -1} \frac{5x^2 + 4x - 1}{\sqrt{x + 3} - \sqrt{5 + 3x}}$$
; г) $\lim_{x \to 0} \frac{x \cdot \operatorname{tg} 3x}{1 - \cos 6x}$; д) $\lim_{x \to \infty} \left(\frac{2x}{2x + 1}\right)^{-4x}$.

101-110. Задана функция y = f(x)и два значения аргумента x_1 и x_2 .

Требуется: 1) установить, является ли эта функция непрерывной или разрывной для каждого из данных значений аргумента;

2) в случае разрыва функции найти её пределы справа и слева;

101.
$$f(x) = 10^{\frac{1}{3x+1}}, x_1 = 2; x_2 = -1/3.$$

102.
$$f(x) = 3^{\frac{1}{2+x}}, \quad x_1 = 0; \quad x_2 = -2.$$

103.
$$f(x) = 5^{\frac{1}{4+x}}, \quad x_1 = 1; \quad x_2 = -4.$$

104.
$$f(x) = 2^{\frac{1}{x-1}}, \quad x_1 = 0; \quad x_2 = 1.$$

105.
$$f(x) = 7^{\frac{1}{x}}$$
, $x_1 = 0$; $x_2 = -3$.

106.
$$f(x) = 10^{\frac{1}{7-x}}, \quad x_1 = 5; \quad x_2 = 7.$$

107.
$$f(x) = 6^{\frac{1}{4-2x}}$$
, $x_1 = 2$; $x_2 = 1/2$.

108.
$$f(x) = 4^{\frac{1}{6-2x}}, \quad x_1 = 3; \quad x_2 = 4.$$

109.
$$f(x) = 2^{\frac{1}{4x+2}}$$
, $x_1 = 1$; $x_2 = -1/2$.

110.
$$f(x) = 8^{\frac{1}{6-x}}$$
, $x_1 = 6$; $x_2 = 4$.

111-120. Задана функция y = f(x). Найти точки разрыва функции, если они существуют. Сделать чертёж.

111.
$$f(x) = \begin{cases} -1, & \text{если } x < 0, \\ -\cos x, & \text{если } 0 \le x \le \pi/2, \\ \pi/2 + x, & \text{если } x > \pi/2. \end{cases}$$

$$112. \ f(x) = \begin{cases} x, \text{ если } x > \pi/2. \\ x, \text{ если } x \le -2, \\ 2 - x, \text{ если } -2 < x < 0, \\ x^2 + 2, \text{ если } x \ge 0. \end{cases}$$

113.
$$f(x) = \begin{cases} x, & \text{если } x \le -1, \\ 1/2, & \text{если } -1 < x \le \pi/6, \\ \sin x, & \text{если } x > \pi/6. \end{cases}$$

114.
$$f(x) = \begin{cases} x^2 - 4, & \text{если } x < -1, \\ 3x, & \text{если } -1 \le x \le 3, \\ 5, & \text{если } x > 3. \end{cases}$$

115.
$$f(x) = \begin{cases} 2, \text{ если } x < -1, \\ 2 - 2x, \text{ если } -1 \le x \le 1, \\ \ln x, \text{ если } x > 1. \end{cases}$$

116.
$$f(x) = \begin{cases} \frac{4}{x}, & \text{если } x < -2, \\ x, & \text{если } -2 \le x < 0, \\ 1-x, & \text{если } x \ge 0. \end{cases}$$

117.
$$f(x) = \begin{cases} \frac{\sqrt{4-x}}{2}, & \text{если } x < 0, \\ \cos 2x, & \text{если } 0 \le x \le \pi/4, \\ -x, & \text{если } x > \pi/4. \end{cases}$$

118.
$$f(x) = \begin{cases} \cos x, & \text{если } x \le -\pi, \\ -1, & \text{если } -\pi < x \le 0, \\ \sqrt{x+1}, & \text{если } x > 0. \end{cases}$$
119. $f(x) = \begin{cases} x + \pi, & \text{если } x \le -\pi, \\ \sin x, & \text{если } -\pi < x \le 0, \\ 3 - 2x, & \text{если } x > 0. \end{cases}$

119.
$$f(x) = \begin{cases} x + \pi, & \text{если } x \le -\pi, \\ \sin x, & \text{если } -\pi < x \le 0, \\ 3 - 2x, & \text{если } x > 0. \end{cases}$$

120.
$$f(x) = \begin{cases} x^2 - 4, & \text{если } x < -2, \\ 3x + 2, & \text{если } -2 \le x \le 2, \\ 12 - x^2, & \text{если } x > 2. \end{cases}$$

РЕШЕНИЕ ТИПОВОГО ВАРИАНТА КОНТРОЛЬНОЙ РАБОТЫ № 2.

91-100. Найти указанные пределы, не пользуясь правилом Лопиталя.

Решение.

а) $\lim_{x\to\infty} \frac{7x^4 + 2x^3 + 5}{6x^4 + 3x^2 - 7x}$. Имеем неопределённость вида $\frac{\infty}{\infty}$. Чтобы раскрыть её, разделим числитель и знаменатель дроби под знаком предела на x в наивысшей степени, в данном примере на x^4 . Получим

$$\lim_{x\to\infty}\frac{7x^4+2x^3+5}{6x^4+3x^2-7x}=\lim_{x\to\infty}\frac{7\frac{x^4}{x^4}+2\frac{x^3}{x^4}+\frac{5}{x^4}}{6\frac{x^4}{x^4}+3\frac{x^2}{x^4}-7\frac{x}{x^4}}=\lim_{x\to\infty}\frac{7+\frac{2}{x}+\frac{5}{x^4}}{6+\frac{3}{x^2}-\frac{7}{x^3}}=\frac{7}{6},\quad\text{так как каждая из дробей }\frac{2}{x},\;\frac{5}{x^4},\;\frac{3}{x^2},\;\frac{7}{x^3}\to 0$$
при $x\to\infty$.

б) $\lim_{x \to -2} \frac{x^2 - 4}{3x^2 + x - 10}$. Имеем неопределённость вида $\frac{0}{0}$. Чтобы раскрыть её, разложим числитель и знаменатель дроби на множители, воспользовавшись формулами сокращённого умножения (см. справочный материал в конце данного пособия): $x^2 - 4 = (x - 2)(x + 2)$ и разложением квадратного трёхчлена на множители. Для чего решим уравнение $3x^2 + x - 10 = 0$. Найдём $\sqrt{D} = \sqrt{b^2 - 4ac} = \sqrt{1 - 4 \cdot 3 \cdot (-10)} = 11$, $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm 11}{6}$, откуда следует, что $x_1 = \frac{5}{3}$, $x_2 = -2$ и $3x^2 + x - 10 = 3(x - \frac{5}{3})(x + 2) = = (3x - 5)(x + 2)$. Подставим полученные выражения под знак предела, получим $\lim_{x \to -2} \frac{x^2 - 4}{3x^2 + x - 10} = \lim_{x \to -2} \frac{(x - 2)(x + 2)}{(3x - 5)(x + 2)} = \lim_{x \to -2} \frac{x - 2}{3x - 5} = \frac{-2 - 5}{-6 - 5} = \frac{7}{11}$.

в) $\lim_{x\to 4} \frac{\sqrt{21+x}-5}{x^3-64}$. Имеем неопределённость вида $\frac{0}{0}$. Чтобы раскрыть её, умножим числитель и знаменатель дроби на выражение, сопряжённое числителю

$$\lim_{x \to 4} \frac{(\sqrt{21+x}-5)(\sqrt{21+x}+5)}{(x^3-64)(\sqrt{21+x}+5)} = \lim_{x \to 4} \frac{21+x-25}{(x^3-64)(\sqrt{21+x}+5)}.$$

Знаменатель разложим на множители по формуле разности кубов, получим

$$\lim_{x \to 4} \frac{x - 4}{(x - 4)(x^2 + 4x + 16)(\sqrt{21 + x} + 5)} = \lim_{x \to 4} \frac{1}{(x^2 + 4x + 16)(\sqrt{21 + x} + 5)} = \frac{1}{480}.$$

г) $\lim_{x\to 0} \frac{5x\cdot\sin x}{\cos 2x - \cos 4x}$. Имеем неопределённость вида $\frac{0}{0}$. Чтобы раскрыть её, разложим знаменатель на множители по формуле разности косинусов, получим: $\cos 2x - \cos 4x = -2\sin\frac{2x+4x}{2}\cdot\sin\frac{2x-4x}{2} = -2\sin 3x\sin(-x) = 2\sin 3x\sin x$

Затем применим I замечательный предел $\lim_{x\to 0} \frac{\sin x}{x} = 1$ или воспользуемся свойствами эквивалентных бесконечно малых величин $\sin x \sim x$, $\sin 3x \sim 3x$ при $x\to 0$, получим:

$$\lim_{x \to 0} \frac{5x \cdot \sin x}{\cos 2x - \cos 4x} = \lim_{x \to 0} \frac{5x \cdot x}{2\sin 3x \sin x} = \lim_{x \to 0} \frac{5}{2 \cdot \frac{\sin 3x}{x} \cdot \frac{\sin x}{x}} = \frac{5}{6} \text{ (T.K.)}$$

$$\lim_{x \to 0} \frac{\sin 3x}{x} = 3$$
) или
$$\lim_{x \to 0} \frac{5x \cdot \sin x}{\cos 2x - \cos 4x} = \lim_{x \to 0} \frac{5x \cdot x}{2\sin 3x \sin x} = \lim_{x \to 0} \frac{5x^2}{2 \cdot 3x \cdot x} = \frac{5}{6}$$
.

д) $\lim_{x\to\infty} 4x \left(\ln(1+2x) - \ln(3+2x)\right)$. Преобразуем выражение, стоящее под знаком предела по свойствам логарифмов

$$\lim_{x \to \infty} 4x \left(\ln(1+2x) - \ln(3+2x) \right) = \lim_{x \to \infty} 4x \left(\ln \frac{1+2x}{3+2x} \right) = \lim_{x \to \infty} \ln \left(\frac{1+2x}{3+2x} \right)^{4x}.$$

Так как логарифмическая функция непрерывна в области определения, то по свойству непрерывных функций предел и логарифм можно поменять местами,

т.е.
$$\lim_{x\to\infty} \ln\left(\frac{1+2x}{3+2x}\right)^{4x} = \ln\lim_{x\to\infty} \left(\frac{1+2x}{3+2x}\right)^{4x}$$
. Теперь перед нами стоит задача

найти $\lim_{x\to\infty} \left(\frac{1+2x}{3+2x}\right)^{4x}$. Имеем неопределённость вида 1^{∞} , которую раскроем

сведением выражения ко второму замечательному пределу $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$.

Для чего выполним следующие преобразования:
$$\lim_{x\to\infty} \left(\frac{1+2x}{3+2x}\right)^{4x} = \lim_{x\to\infty} \left(1+\frac{1+2x}{3+2x}-1\right)^{4x} = \lim_{x\to\infty} \left(1-\frac{2}{3+2x}\right)^{4x} = \lim_{x\to\infty} \left(1+\frac{2}{3+2x}\right)^{4x} = \lim_{x\to\infty} \left$$

$$\lim_{x \to \infty} \frac{-8x}{3 + 2x} = \lim_{x \to \infty} \frac{-8}{\frac{3}{x} + 2} = \frac{-8}{2} = -4, \ \left(\frac{3}{x} \to 0 \text{ при } x \to \infty\right).$$

Или можно несколько иначе: $\lim_{x\to\infty} \left(\frac{1+2x}{3+2x}\right)^{4x} = \lim_{x\to\infty} \left(\frac{1+\frac{1}{2x}}{1+\frac{3}{2x}}\right)^{4x} =$ (разделили

почленно числитель и знаменатель на 2x)=

$$= \lim_{x \to \infty} \left(\frac{1 + \frac{1}{2x}}{1 + \frac{3}{2x}} \right)^{4x} = \lim_{x \to \infty} \frac{\left(1 + \frac{1}{2x} \right)^{4x}}{\left(1 + \frac{3}{2x} \right)^{4x}} = \frac{e^{\frac{1}{2} \cdot 4}}{e^{\frac{3}{2} \cdot 4}} = \frac{e^{2}}{e^{6}} = e^{-4}.$$

101-110. Задана функция $y = f(x) = 8^{\frac{1}{x-3}}$ и два значения аргумента $x_1 = 3$ и $x_2 = 4$.

Требуется: 1) установить, является ли эта функция непрерывной или разрывной для каждого из данных значений аргумента;

2) в случае разрыва функции найти её пределы справа и слева.

Решение.

Для точки $x_1=3$ имеем: $\lim_{x\to 3-0} 8^{\frac{1}{x-3}}=8^{-\infty}=0$, $\lim_{x\to 3+0} 8^{\frac{1}{x-3}}=8^{\infty}=\infty$, т.е. в точке $x_1=3$ функция f(x) терпит бесконечный разрыв

 $(x_1 = 3$ - точка разрыва второго рода).

Для точки $x_2 = 4$ имеем: $\lim_{x \to 4-0} 8^{\frac{1}{x-3}} = 8^1 = 8$, $\lim_{x \to 4+0} 8^{\frac{1}{x-3}} = 8^1 = 8$.

Следовательно, в точке $x_1 = 4$ функция f(x) непрерывна.

111-120. Задана функция y = f(x). Найти точки разрыва функции, если они существуют. Сделать чертёж.

$$f(x) = \begin{cases} x^2, & \text{если } x \le 0, \\ (x-1)^2, & \text{если } 0 < x \le 2, \\ 5-x, & \text{если } x > 2. \end{cases}$$

Функция f(x) определена и непрерывна на интервалах Решение. $(-\infty;0),(0;2),(2;+\infty)$, где она задана непрерывными элементарными функциями. Следовательно, разрыв возможен только в точках $x_1 = 0$ и $x_2 = 2$.

Для точки
$$x_1 = 0$$
 имеем: $\lim_{x \to -0} f(x) = \lim_{x \to -0} x^2 = 0$,

Для точки
$$x_1 = 0$$
 имеем: $\lim_{x \to -0} f(x) = \lim_{x \to -0} x^2 = 0$, $\lim_{x \to +0} f(x) = \lim_{x \to +0} (x-1)^2 = 1$, $f(0) = x^2 \Big|_{x=0} = 0$,

т.е. функция f(x) в точке $x_1 = 0$ имеет разрыв первого рода.

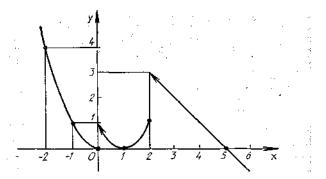
Для точки $x_2 = 2$ находим:

$$\lim_{x \to 2-0} f(x) = \lim_{x \to 2-0} (x-1)^2 = 1,$$

$$\lim_{x \to 2+0} f(x) = \lim_{x \to 2+0} (5-x) = 3,$$

$$f(2) = (x-1)^2 \Big|_{x=2} = 1,$$

т.е. в точке $x_2 = 2$ функция f(x)также имеет разрыв первого рода.



На рисунке представлен график данной функции.

 $\Pi \Gamma Y$ Ka ϕ Bu ΠM

УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ во втором семестре

Тема 7. Производная и её приложения

Бермант А.Ф., Араманович И.Г., глава 3, Пискунов Н. С., часть 1, гл. 3. Письменный Д.Т., часть 1, § 20-24. Данко П.Е., Попов А.Г., Кожевникова Т.Я., часть 1, гл. 7, §1. Разберите решения задач из данного пособия (стр.41-55).

Тема 8. Приложения дифференциального исчисления

Бермант А.Ф., Араманович И.Г., глава 4, Пискунов Н. С., часть 1, гл. 4, 5. Письменный Д.Т., часть 1, \S 25-26. Данко П.Е., Попов А.Г., Кожевникова Т.Я., часть 1, гл. 7, \S 2. Разберите решения задач из данного пособия (стр. 55-58).

Тема 9. Неопределённый интеграл

Бермант А.Ф., Араманович И.Г., глава 5, §1. Пискунов Н. С., часть 1, гл. 10. Письменный Д.Т., часть 1, § 29-34. Данко П.Е., Попов А.Г., Кожевникова Т.Я., часть 1, гл. 9. Разберите решения задач из данного пособия (стр. 58-72).

Тема 10. Определённый интеграл

Бермант А.Ф., Араманович И.Г., глава 5, \$2-4. Пискунов Н. С., часть 1, гл. 11. Письменный Д.Т., часть 1, \$ 35-42. Данко П.Е., Попов А.Г., Кожевникова Т.Я., часть 1, гл. 10. Разберите решения задач из данного пособия (стр. 73-82).

КОНТРОЛЬНАЯ РАБОТА № 3. Производная и её приложения

121-130. Найти производные $\frac{dy}{dx}$ данных функций.

121. a)
$$y = \frac{3x - 4}{\sqrt{x^2 + 3x - 2}}$$
; 6) $y = \left(3^{\sin 2x} - \cos^2 2x\right)^3$; B) $y = \ln \arcsin \sqrt{1 - x^2}$;

$$\Gamma$$
) $y = \ln \sqrt[3]{\frac{2 - x^3}{x^3 - 6x}}$; д) $y = (2x + 3)^{\lg x}$.

122. a)
$$y = \frac{x+3}{\sqrt{x^3 - 6x - 9}}$$
; 6) $y = \left(2^{\arctan x} - \ln(1+x^2)\right)^4$; B) $y = \ln \lg x^3$

$$\Gamma$$
) $y = \ln \sqrt[4]{\frac{3x^2 + 2}{x^3 + 2x}}$; д) $y = (1 + \cos 2x)^{\sin 3x}$.

123. a)
$$y = \frac{2x}{\sqrt{x^3 - 5x^2 + 3}}$$
; 6) $y = \left(3^{\cos 3x} + \sin^2 3x\right)^3$; B) $y = \arctan \frac{2x + 1}{2x - 1}$;

$$\Gamma$$
) $y = \ln \sqrt{\frac{x^2 + 3}{x^3 + 9x}}$; μ $y = (x^3 + 2)^{\text{ctg } x}$.

124. a)
$$y = \frac{3x}{\sqrt{x^3 - 4x^2 + 1}}$$
; 6) $y = \left(2^{\arcsin 2x} + \arccos 2x\right)^4$;

в)
$$y = \arctan \sqrt{1-x^2}$$
; r $y = \ln \sqrt[3]{\frac{2x^2-2}{x^3-3x}}$; $y = (\operatorname{tg} 2x)^{\cos 2x}$.

125. a)
$$y = \frac{4x}{\sqrt{x^3 + 5x^2 - 2}}$$
; 6) $y = \left(5^{\lg 2x} - \operatorname{ctg}^2 2x\right)^2$; B) $y = e^{\operatorname{arctg}^2 \sqrt{2x - 1}}$;

$$\Gamma$$
) $y = \ln \sqrt[7]{\frac{x^2 + 4}{x^3 + 12x}}$; д) $y = (\cos x + 5)^{\text{tg } x}$.

126. a)
$$y = \frac{4x+1}{\sqrt{x^2-16x-2}}$$
; 6) $y = \left(4^{\lg \sqrt{x}} + \sqrt{x}\right)^6$; B) $y = \arcsin \sqrt{1-4x^2}$;

$$\Gamma$$
) $y = \ln 5 \sqrt{\frac{3 - x^2}{x^3 - 9x}}$; д) $y = (x + \sin 6x)^{x^2}$.

127. a)
$$y = \frac{2x-3}{\sqrt{x^2+4x-3}}$$
; 6) $y = \left(3^{\arccos 2x} + \sqrt{1-4x^2}\right)^4$;

в)
$$y = \ln \sin \left(e^{x^2} \right)$$
; г) $y = \ln \sqrt[7]{\frac{4 - 3x^2}{x^3 - 4x}}$; д) $y = (\operatorname{tg} 2x)^{\operatorname{tg} 2x}$.

128. a)
$$y = \frac{3x - 8}{\sqrt{x^2 + 3x - 4}}$$
; б) $y = \left(6^{\cos^2 x} + \sin^2 x\right)^2$; в) $y = e^{\arcsin\sqrt{1 - x}}$;

$$\Gamma$$
) $y = \ln\left(x^2 + \sqrt{1 + x^4}\right)$; д) $y = (2x + x^2)^x$.

$$\Gamma$$
) $y = \ln\left(e^x + \sqrt{e^{2x} + 1}\right)$; д) $y = (x+1)^{\arctan\sqrt{x}}$.

$$\Gamma$$
) $y = \sqrt{x} \cdot \arctan \sqrt{x}$; д) $y = (x + \ln x)^{\frac{1}{x}}$.

131-160. Для данных функций найти $\frac{dy}{dx}$ и $\frac{d^2y}{dx^2}$.

135. a)
$$y = (1 + x^2) \arctan x$$
; б)
$$\begin{cases} x = 2t^3 + t, \\ y = \ln t. \end{cases}$$

135. a)
$$y = (1 + x^2) \arctan x$$
; б)
$$\begin{cases} x = 2t^3 + t, \\ y = \ln t. \end{cases}$$
136. a) $y = e^x \cos x$; б)
$$\begin{cases} x = 3t - t^3, \\ y = 3t^2. \end{cases}$$

141-150. Применяя формулу Тейлора с остаточным членом в форме Лагранжа к функции $f(x) = e^x$, вычислить значение e^a с точностью 0,001.

141.
$$a = 0,49$$
. **142.** $a = 0,36$. **143.** $a = 0,18$. **144.** $a = 0,83$.

145.
$$a = 0.59$$
. **146.** $a = 0.53$. **147.** $a = 0.78$. **148.** $a = 0.21$.

149.
$$a = 0.15$$
. **150.** $a = 0.72$.

151-160. Пользуясь правилом Лопиталя, вычислить пределы.

151. a)
$$\lim_{x \to \frac{\pi}{2}} \left(\operatorname{tg} x - \frac{1}{1 - \sin x} \right);$$
 6) $\lim_{x \to 0} x^{\sin x}$.

155. a)
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x \right);$$
 6) $\lim_{x \to \frac{\pi}{2}} (\operatorname{tg} x)^{2x - \pi}.$

156. a)
$$\lim_{x \to 0} \left(\operatorname{ctg} x - \frac{1}{x} \right)$$
; 6) $\lim_{x \to 0} \left(\cos 2x \right)^{3/x}$.

158. a)
$$\lim_{x \to 0} \left(\frac{1}{x \sin x} - \frac{1}{x^2} \right)$$
;

 $6) \lim_{x \to \infty} (\ln x)^{1/x}.$

160. a)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$
;

6) $\lim_{x\to 0} (1-2x)^{1/x}$.

161-170. Найти наибольшее и наименьшее значения функции f(x) на отрезке [a;b].

161.
$$f(x) = x - 2\sin x$$
, $[0; \pi/2]$

161.
$$f(x) = x - 2\sin x$$
, $[0; \pi/2]$. **162.** $f(x) = x + 2\cos x$, $[-\pi/4; \pi/3]$.

163.
$$f(x) = e^{-x^2} + 2x^2$$
, [-1;1]. **164.** $f(x) = 2x^2 - \sqrt{x} + 1$, [0;1].

164.
$$f(x) = 2x^2 - \sqrt{x} + 1$$
, [0;1].

165.
$$f(x) = x - \frac{2}{x} - 3\ln x$$
, [1;4]. **166.** $f(x) = xe^{-2x^2}$, [0;1].

166.
$$f(x) = xe^{-2x^2}$$
, [0;1].

167.
$$f(x) = 81x - x^4$$
, [-1;4]. **168.** $f(x) = x^3 - 3\ln x$, [1/2;2].

168.
$$f(x) = x^3 - 3\ln x$$
, $[1/2;2]$.

169.
$$f(x) = 4 \arctan x - 2x + 1$$
, [0;1]. **170.** $f(x) = x^2 e^{-x}$, [-1;2].

170.
$$f(x) = x^2 e^{-x}$$
, $[-1;2]$.

- 171. Требуется изготовить открытый сверху цилиндрический Каковы должны быть размеры сосуда (радиус максимальной вместимости. R и высота H), если на его изготовление имеется S = 84, 82 дм^2 материвши $(S \approx 27\pi)$?
- 172. Требуется вырыть яму конической формы (воронку) с образующей а = 3 м. При какой глубине объём воронки будет наибольшим?
- 173. Требуется изготовить закрытый цилиндрический бак максимальной вместимости. Каковы должны быть размеры бака (радиус R и высота H), если на его изготовление имеется $S = 18.84 \text{ м}^2$ материала ($S \approx 6\pi$)?
- 174. Резервуар, открытый сверху, имеет форму прямоугольного параллелепипеда с квадратным основанием. Каковы должны быть размеры резервуара, чтобы на его изготовление пошло наименьшее количество материала, если он должен вмещать 256 л воды?
- 175. Требуется вырыть яму цилиндрической формы с круглым основанием и вертикальной боковой поверхностью заданного объема $V=25~{\rm m}^2$ $(V \approx 8\pi)$. Каковы должны быть линейные размеры ямы (радиус *R* и высота H), чтобы на облицовку ее дна и боковой поверхности пошло наименьшее количество материала?
- **176.** Из круглого бревна радиуса $R = 2\sqrt{3}$ требуется вырезать балку прямоугольного сечения с основанием b и высотой h. Прочность балки про-

порциональна b h 2 . При каких значениях b и h прочность балки будет наи-большей?

- **177.** Требуется изготовить закрытый цилиндрический бак заданного объема $V = 50 \text{ м}^3$ ($V \approx 16\pi$). Каковы должны быть размеры бака (радиус R и высота H), чтобы на его изготовление пошло наименьшее количество материала?
- **178.** Требуется поставить палатку в форме правильной четырехугольной пирамиды заданной боковой поверхности $S = 4\sqrt{3} \text{ м}^2$. Каковы должны быть размеры палатки (сторона основания a и высота H), чтобы вместимость палатки была наибольшей?
- **179.** Цистерна имеет форму прямого кругового цилиндра, завершенного с одной стороны полушаром. Вместимость цистерны $V=41,89~{\rm M}^3$ ($V \approx \frac{40}{3}\pi$). Найти радиус цилиндра R, при котором цистерна будет иметь наименьшую полную поверхность.
- **180.** Сечение оросительного форму канала имеет равнобочной трапеции, боковые равны стороны которой боковых меньшему основанию. При наклона каком угле сторон сечение канала будет иметь наибольшую площадь?

РЕШЕНИЕ ТИПОВОГО ВАРИАНТА КОНТРОЛЬНОЙ РАБОТЫ № 3.

Производная и её приложения

Пусть функция y = f(x) определена в промежутке [a,b]. Исходя из некоторого значения $x = x_0$ независимой переменной придадим ему приращение Δx , не выводящие его из промежутка [a,b], так что и новое значение принадлежит промежутку [a,b]. Тогда значение y = f(x) функции заменится новым значением $y + \Delta y = f(x_0 + \Delta x)$, т.е. получим приращение

$$\Delta y = \Delta f(x_0) = f(x_0 + \Delta x) - f(x_0).$$

Предел отношения приращения функции Δy к вызвавшему его приращению Δx независимой переменной при стремлении $\Delta x \to 0$, т.е.

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

называется производной функции y = f(x) по независимой переменной x при данном ее значении $x = x_0$.

Функция y = f(x), имеющая производную в каждой точке интервала (a,b), называется дифференцируемой на этом интервале; операция нахождения производной функции называется дифференцированием.

Производная обозначается : $\frac{dy}{dx}$, y' или $f'(x_0)$.

Правила вычисления производных.

Установим несколько правил, которые могут помочь в вычислении производных. Будем считать, что функции u = u(x), v = v(x) и y = y(x) дифференцируемы.

- 1. Производная постоянной равна нулю, т.е. c' = 0.
- 2. Производная суммы (разности) функций равна сумме (разности) производных этих функций, т.е. $(u \pm v))' = u' \pm v'$.
- 3. Производная произведения двух функций находится по правилу $(uv)' = u' \cdot v + u \cdot v'$.

Следствие. $(cu)' = c \cdot u'$, т.е. постоянный множитель можно вынести за знак производной.

4. Производная частного двух функций находится по правилу

$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$
, в частности, $\left(\frac{c}{v}\right)' = -\frac{cv'}{v^2}$.

5. Производная сложной функции.

Пусть
$$y(x) = f(u(x))$$
. Тогда $y'(x) = f'(u) \cdot u'(x)$.

При применении этой формулы для решения конкретных примеров часто бывает полезным использовать в качестве искусственного приема введение промежуточных функций.

Проиллюстрируем это на следующем примере. Вычислим производную функции $y = \sin^5 \left(6x^4 + x^2 \right)^3$.

Введем функцию $u = \sin(6x^4 + x^2)^3$. Тогда $y = u^5$.

Затем введем функцию $w = (6x^4 - x^2)^3$. Тогда $u = \sin w$.

Наконец, введем функцию $v = 6x^4 + x^2$. Тогда $w = v^3$.

Воспользовавшись этими обозначениями процесс дифференцирования можно представить следующим образом:

$$y' = (u^5)' = 5u^4 \cdot u', \quad u' = (\sin w)' = (\cos w)w', \qquad w' = (v^3)' = 3v^2v',$$

 $v' = 24x^3 + 2x.$

Отметим, что все производные берутся по x . Теперь начинаем процесс «собирания» производной

$$y' = 5\left(\sin\left(6x^4 + x^2\right)^3\right)^4 \cdot u' = 5\sin^4\left(6x^4 + x^2\right)^3 (\cos w)w' =$$

$$= 15\sin^4\left(6x^4 + x^2\right)^3\cos\left(6x^4 + x^2\right)^3 \cdot v^2 \cdot v' =$$

$$= 15\sin^4\left(6x^4 + x^2\right)^3\cos\left(6x^4 + x^2\right)^3\left(6x^4 + x^2\right)^2\left(24x^3 + 2x\right).$$

Отметим, что приведенная выше процедура может оказаться полезной на первых порах, пока не выработался автоматизм при вычислении производных.

6. Производная обратной функции
$$y'_x = \frac{1}{x'_y}$$
, если $y = f(x)$ и $x = \varphi(y)$.

Таблица производных

f(x)		f'(x)	f(x)		f'(x)
1.	С	0	12.	tg <i>u</i>	$\frac{1}{\cos^2 u} \cdot u'$
2.	х	1	13.	$\operatorname{ctg} u$	$-\frac{1}{\sin^2 u} \cdot u'$
3.	u^n	$nu^{n-1} \cdot u'$	14.	arcsin <i>u</i>	$\frac{1}{\sqrt{1-u^2}} \cdot u'$ $-\frac{1}{\sqrt{1-u^2}} \cdot u'$
4.	\sqrt{u}	$\frac{1}{2\sqrt{u}} \cdot u'$	15.	arccos u	$-\frac{1}{\sqrt{1-u^2}} \cdot u'$
5.	$\frac{1}{u}$	$-\frac{1}{u^2} \cdot u'$	16.	arctg <i>u</i>	$\frac{1}{1+u^2} \cdot u'$
6.	a^{u}	$a^u \cdot \ln a \cdot u'$	17.	arcctg u	$-\frac{1}{1+u^2} \cdot u'$
7.	e^{u}	$e^{u} \cdot u'$	18.	$\operatorname{sh} u$	$\operatorname{ch} u \cdot u'$
8.	$\log_a u$	$\frac{1}{u \ln a} \cdot u'$	19.	ch <i>u</i>	$\operatorname{sh} u \cdot u'$
9.	ln u	$\frac{1}{u} \cdot u'$	20.	th u	$\frac{1}{\operatorname{ch}^2 u} \cdot u'$
10.	$\sin u$	$\cos u \cdot u'$	21.	cth u	$-\frac{1}{\sinh^2 u} \cdot u'$
11.	cosu	$-\sin u \cdot u'$			

Геометрический смысл производной: $f'(x_0) = \lg \alpha$, где $\lg \alpha$ равен угловому коэффициенту касательной кривой y = f(x) в точке x_0 .

121-130. Найти производные $\frac{dy}{dx}$ данных функций

Пример 1.
$$y = \frac{5x-2}{\sqrt{x^2+5x-1}}$$
.

<u>Решение.</u> Применим правило дифференцирования частного, получим

$$y' = \frac{(5x-2)'\sqrt{x^2+5x-1} - (5x-2)(\sqrt{x^2+5x-1})'}{(\sqrt{x^2+5x-1})^2} = \frac{5\sqrt{x^2+5x-1} - (5x-2)\frac{1}{2\sqrt{x^2+5x-1}}}{(x^2+5x-1)} = \frac{10(x^2+5x-1) - (5x-2)(2x+5)}{x^2+5x-1} = \frac{29x}{2(x^2+5x-1)^{3/2}} = \frac{29x}{2(x^2+5x-1)^{3/2}}.$$

$$\frac{\Pi \text{ ример 2.}}{2(x^2+5x-1)^{3/2}} y = \left(2^{\frac{1}{2}3x} - \frac{1}{\cos 3x}\right)^5.$$

$$\frac{P \text{ е шение.}}{2(x^2+5x-1)^{3/2}} y' = 5\left(2^{\frac{1}{2}3x} - \frac{1}{\cos 3x}\right)^4 \cdot \left(2^{\frac{1}{2}3x} - \frac{1}{\cos 3x}\right)' = \frac{1}{\cos^2 3x} - \frac{1}{\cos^2 3x} \cdot \left(\cos 3x\right)' = \frac{1}{\cos^2 3x} - \frac{1}{\cos^2 3x} \cdot \left(\cos 3x\right)' + \frac{1}{\cos^2 3x} \cdot \left(\cos 3x\right)' = \frac{1}{\cos^2 3x} \left(2^{\frac{1}{2}3x} - \frac{1}{\cos 3x}\right)^4 \cdot \left(2^{\frac{1}{2}3x} \ln 2 \cdot \frac{3}{\cos^2 3x} - \frac{3\sin 3x}{\cos^2 3x}\right) = \frac{15}{\cos^2 3x} \left(2^{\frac{1}{2}3x} - \frac{1}{\cos 3x}\right)^4 \cdot \left(2^{\frac{1}{2}3x} \ln 2 - \sin 3x\right).$$

<u>Пример 3</u>. $y = e^{\arctan \sqrt{x^2 - 1}}$.

Решение.

$$y' = e^{\arctan x \cdot 2}.$$

$$y' = e^{\arctan \sqrt{x^2 - 1}} \cdot \left(\arctan \sqrt{x^2 - 1}\right)' = e^{\arctan \sqrt{x^2 - 1}} \cdot \frac{1}{1 + (\sqrt{x^2 - 1})^2} \cdot \left(\sqrt{x^2 - 1}\right)' = e^{\arctan \sqrt{x^2 - 1}} \cdot \frac{1}{1 + x^2 - 1} \cdot \frac{1}{2\sqrt{x^2 - 1}} \cdot 2x = e^{\arctan \sqrt{x^2 - 1}} \cdot \frac{1}{x\sqrt{x^2 - 1}}.$$

$$\frac{\Pi p u m e p \ 4.}{\sqrt{x^2 + 8x - 10}}.$$

Решение.

Упростим функцию, воспользовавшись свойствами логарифма:

$$y = \frac{1}{4}\ln\left(\frac{5-4x}{x^2+8x-10}\right) = \frac{1}{4}\ln(5+4x) - \frac{1}{4}\ln(x^2+8x-10),$$
а затем продифференцируем. Получим

$$y' = \left(\frac{1}{4}\ln(5+4x) - \frac{1}{4}\ln(x^2 + 8x - 10)\right)' = \frac{1}{4} \cdot \frac{(5+4x)'}{5+4x} - \frac{1}{4} \cdot \frac{(x^2 + 8x - 10)'}{x^2 + 8x - 10} =$$

$$= \frac{1}{4} \left(\frac{4}{5+4x} - \frac{2x+8}{x^2 + 8x - 10}\right) = \frac{1}{4} \left(\frac{4x^2 + 32x - 40 - 10x - 8x^2 - 40 - 32x}{(4x+5)(x^2 + 8x - 10)}\right) =$$

$$= \frac{1}{4} \cdot \frac{-4x^2 - 10x - 80}{(4x+5)(x^2 + 8x - 10)} = -\frac{x^2 + 2.5x + 20}{(4x+5)(x^2 + 8x - 10)}.$$

<u>Пример 5.</u> $y = (\arcsin \sqrt{x})^{2\sqrt{x}}$

Решение. Прологарифмируем данную функцию

 $\ln y = \ln(\arcsin\sqrt{x})^{2\sqrt{x}}$, $\ln y = 2\sqrt{x} \cdot \ln(\arcsin\sqrt{x})$. Продифференцируем обе части полученного выражения

$$(\ln y)' = \left(2\sqrt{x} \cdot \ln(\arcsin\sqrt{x})\right)' \Rightarrow$$

$$\frac{y'}{y} = (2\sqrt{x})' \cdot \ln(\arcsin\sqrt{x}) + 2\sqrt{x} \cdot (\ln(\arcsin\sqrt{x}))' = \frac{\ln(\arcsin\sqrt{x})}{\sqrt{x}} + 2\sqrt{x} \cdot$$

$$\cdot \frac{1}{(\arcsin\sqrt{x})} \cdot (\arcsin\sqrt{x})' = \frac{\ln(\arcsin\sqrt{x})}{\sqrt{x}} + 2\sqrt{x} \cdot \frac{1}{(\arcsin\sqrt{x})} \cdot \frac{1}{\sqrt{1-x}} \cdot \frac{1}{2\sqrt{x}} =$$

$$= \frac{\ln(\arcsin\sqrt{x})}{\sqrt{x}} + \frac{1}{(\arcsin\sqrt{x})\sqrt{1-x}}.$$

Отсюда следует, что

$$y' = y \cdot \left(\frac{\ln(\arcsin\sqrt{x})}{\sqrt{x}} + \frac{1}{(\arcsin\sqrt{x})\sqrt{1-x}} \right) =$$

$$= (\arcsin\sqrt{x})^{2\sqrt{x}} \cdot \left(\frac{\ln(\arcsin\sqrt{x})}{\sqrt{x}} + \frac{1}{(\arcsin\sqrt{x})\sqrt{1-x}} \right).$$

131-160. Для данных функций найти $\frac{dy}{dx}$ и $\frac{d^2y}{dx^2}$.

Пример 1. $y = x^3 \sin 3x$.

Решение.

$$\frac{dy}{dx} = y' = (x^3 \sin 3x)' = (x^3)' \cdot \sin 3x + x^3 \cdot (\sin 3x)' = 3x^2 \sin 3x + 3x^3 \cos 3x;$$

$$\frac{d^2y}{dx^2} = y'' = (3x^2 \sin 3x + 3x^3 \cos 3x)' = 6x \sin 3x + 9x^2 \cos 3x + 9x^2 \cos 3x - 3x \cos 3x + 3x^3 \cos 3x + 3x^$$

$$-9x^3 \sin 3x = 3x((2-3x^2)\sin 3x + 6x\cos 3x).$$

$$\frac{\Pi \text{ ример 2.}}{\begin{cases} x = 2t - \sin 2t, \\ y = 8\sin^3 t. \end{cases}}$$

Решение.

$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{(8\sin^3 t)'}{(2t - \sin 2t)'} = \frac{24\sin^2 t \cos t}{2 - 2\cos 2t} = \frac{24\sin^2 t \cos t}{2(1 - \cos 2t)} = \frac{24\sin^2 t \cos t}{2 \cdot 2\sin^2 t} = 6\cos t;$$

$$\frac{d^2y}{dx^2} = \frac{\left(\frac{dy}{dx}\right)'_t}{x'(t)} = \frac{(6\cos t)'}{(2t - \sin 2t)'} = \frac{-6\sin t}{4\sin^2 t} = -\frac{3}{2\sin t}.$$

Формула Тейлора.

Рассмотрим функцию y = f(x). Формула Тейлора позволяет, при определённых условиях, приближённо представить функцию f(x) в виде многочлена и дать оценку погрешности этого приближения.

Если функция f(x) определена в некоторой окрестности точки x_0 и имеет в ней производные до (n+1)-го порядка включительно, то для любого x из этой окрестности найдётся точка $c \in (x_0; x)$ такая, что справедлива формула

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}, \quad (c = x_0 + \theta(x - x_0), \ 0 < \theta < 1).$$

Эта формула называется **формулой Тейлора** для функции f(x) и её можно записать в виде $f(x) = P_n(x) + R_n(x)$, где

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
 Ha-

зывается **многочленом Тейлора,** а
$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$
 называется

остаточным членом формулы Тейлора, записанным в форме Лагранжа. $R_n(x)$ есть погрешность приближённого равенства $f(x) \approx P_n(x)$. Таким образом, формула Тейлора даёт возможность заменить функцию y = f(x) много-

членом $y = P_n(x)$ с соответствующей степенью точности, равной значению остаточного члена $R_n(x)$.

При $x_0 = 0$ получаем частный случай формулы Тейлора — **формулу** Маклорена:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1},$$

где c находится между 0 и x ($c = \theta x$, $0 < \theta < 1$).

Приведём разложения по формуле Маклорена некоторых элементарных функций:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \frac{e^{\theta x} x^{n+1}}{(n+1)!},$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + (-1)^{n+1} \frac{x^{2n+3}}{(2n+3)!} \cdot \cos \theta x,$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + (-1)^{n+1} \frac{x^{2n+2}}{(2n+2)!} \cdot \cos \theta x,$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + (-1)^{n} \frac{x^{n+1}}{(n+1)(1+\theta x)},$$

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!} x^{2} + \dots + \frac{m(m-1)(m-2)\dots(m-n+1)}{n!} x^{n} + \frac{m(m-1)\dots(m-n)(1+\theta x)^{m-n-1}}{(n+1)!} x^{n+1}.$$

141-150. Применяя формулу Тейлора с остаточным членом в форме Лагранжа к функции $f(x) = e^x$, вычислить значение $e^{0,12}$ с точностью 0,001.

<u>Решение.</u> Формула Тейлора с остаточным членом в форме Лагранжа для функции $f(x) = e^x$ имеет вид

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + R_n$$
, где $R_n = \frac{x^{n+1}}{(n+1)!} e^{\theta x}$, $0 < \theta < 1$.

Отсюда
$$e^a \approx 1 + a + \frac{a^2}{2!} + \frac{a^3}{3!} + \dots + \frac{a^n}{n!} = \sum_{k=0}^n u_k$$
.

Значение a = 0,12 принадлежат отрезку [0;0,5], следовательно,

$$0 < \theta x < 0,5$$
 и $e^{\theta x} < e^{0,5} < 2$; $|R_n| = \frac{a^{n+1}}{(n+1)!} e^{\theta x} < \frac{2a^{n+1}}{(n+1)!}$.

При заданной погрешности $\varepsilon = 0,001$ точность будет заведомо выполнять-

ся, если мы положим
$$\frac{2a^{n+1}}{(n+1)!} < 10^{-1} \varepsilon$$
, откуда $\frac{a^{n+1}}{(n+1)!} < 0, 5 \cdot 10^{-1} \varepsilon$.

Полагая $\varepsilon = 0,001$, получим условие $\frac{a^{n+1}}{(n+1)!} < 0,5 \cdot 10^{-4}$ и при a = 0,12 имеем:

$$u_0 = 1$$
, $u_1 = \frac{0.12}{1!} = 0.12$, $u_2 = \frac{(0.12)^2}{2!} = \frac{0.0144}{2} = 0.0072$
 $u_3 = \frac{(0.12)^3}{3!} = \frac{0.001728}{6} = 0.000288$,
 $u_4 = \frac{(0.12)^4}{4!} = \frac{0.00021}{24} \approx 0.0000086 < 0.5 \cdot 10^{-4}$.

Складывая вычисленные значения, получим

$$e^{0,12} \approx 1 + 0,12 + 0,0072 + 0,000288 + 0,0000086 \approx 1,1275$$
.

Заданная точность достигнута при n = 4.

Правило Лопиталя

Пусть функции f(x) и g(x) непрерывны и дифференцируемы в окрестности точки x_0 и обращаются в нуль в этой точке: $f(x_0) = g(x_0) = 0$. Пусть $g'(x) \neq 0$ в окрестности точки x_0 .

Если существует
$$\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = l$$
, то $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)} = l$.

Правило Лопиталя применяется для раскрытия неопределённостей вида $\frac{0}{0}$ и $\frac{\infty}{\infty}$, которые называются *основными*. Неопределённости вида $0\cdot\infty,\ \infty-\infty,\ 1^\infty,\ \infty^0,\ 0^0$ сводятся к двум основным видам путём тождественных преобразований.

151-160. Пользуясь правилом Лопиталя, вычислить пределы. Решение.

a)
$$\lim_{x \to \frac{\pi}{2}} \frac{1-\sin x}{\operatorname{tg}^2 2x}$$
. При $x \to \frac{\pi}{2}$ получаем неопределённость $\frac{0}{0}$.

Применяем правило Лопиталя: $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\operatorname{tg}^2 2x} = \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x)'}{(\operatorname{tg}^2 2x)'} =$

$$= \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{2 \operatorname{tg} 2x \cdot \frac{2}{\cos^2 2x}} = \lim_{x \to \frac{\pi}{2}} \frac{-\cos^3 2x \cos x}{4 \sin 2x} = -\frac{1}{4} \lim_{x \to \frac{\pi}{2}} \frac{\cos^3 2x \cos x}{2 \sin x \cos x} =$$

$$= -\frac{1}{8} \lim_{x \to \frac{\pi}{2}} \frac{\cos^3 2x}{\sin x} = -\frac{1}{8} \cdot \frac{-1}{1} = \frac{1}{8}.$$

б) $\lim_{x\to 0} x^{3/(4+\ln x)}$. Имеем неопределённость вида 0^0 .

Обозначим $y = x^{3/(4+\ln x)}$. Тогда $\ln y = \ln x^{3/(4+\ln x)} = \frac{3\ln x}{4+\ln x}$,

$$\lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{3 \ln x}{4 + \ln x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to 0} \frac{(3 \ln x)'}{(4 + \ln x)'} = \lim_{x \to 0} \frac{\frac{3}{x}}{\frac{1}{x}} = \lim_{x \to 0} \frac{3}{1} = 3.$$

Так как $\lim_{x\to 0} x^{3/(4+\ln x)} = 3$, то $\lim_{x\to 0} x^{3/(4+\ln x)} = e^3$.

161-170. Найти наибольшее и наименьшее значения функции $f(x) = 2\sin x + \cos 2x$ на отрезке $[0; \pi/2]$.

 $P \ e \ \text{ш} \ e \ \text{н} \ u \ e.$ Находим критические точки функции из условия f'(x) = 0. $f'(x) = 2\cos x - 2\sin 2x = 0$. Решаем полученное уравнение:

 $2\cos x - 4\sin x\cos x = 0 \Rightarrow 2\cos x(1 - 2\sin x) = 0 \Rightarrow 2\cos x = 0$ или $2\sin x = 1$.

$$\cos x = 0 \Rightarrow x = \frac{\pi}{2} + \pi n, n \in \mathbb{Z} . \quad \sin x = \frac{1}{2} \Rightarrow x = (-1)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z} .$$

Из всех найденных критических точек только $x = \frac{\pi}{6}$ и $x = \frac{\pi}{2}$ принадлежат отрезку $[0; \pi/2]$. Вычислим значения данной функции при

$$x = 0$$
, $x = \frac{\pi}{6}$, $x = \frac{\pi}{2}$: $f(0) = 1$, $f\left(\frac{\pi}{6}\right) = 2\sin\frac{\pi}{6} + \cos\frac{\pi}{3} = 1 + \frac{1}{2} = 1,5$,

$$f\left(\frac{\pi}{2}\right) = 2\sin\frac{\pi}{2} + \cos\pi = 2 - 1 = 1.$$

Следовательно, $f_{\textit{наи}\delta} = f\left(\frac{\pi}{6}\right) = 1,5;$ $f_{\textit{наи}M} = f(0) = f\left(\frac{\pi}{2}\right) = 1.$

171-180. Решить задачу.

Требуется изготовить полотняный шатер, имеющий форму прямого кругового конуса заданной вместимости V= 14,14 м³ ($V \approx \frac{9}{2}\pi$). Каковы должны быть размеры конуса (высота H и радиус основания R), чтобы на шатер ушло наименьшее количество полотна?

 $S(R) = \pi R \sqrt{R^2 + \frac{27^2}{4R^4}} = \pi \frac{\sqrt{4R^6 + 729}}{2R}$. Исследуем полученную функцию на экстремум:

$$S'(R) = \pi \left(\frac{\sqrt{4R^6 + 729}}{2R}\right)' = \frac{\pi}{2} \cdot \frac{\frac{24R^5}{2\sqrt{4R^6 + 729}} \cdot R - \sqrt{4R^6 + 729}}{R^2} = \frac{\pi}{2} \cdot \frac{12R^6 - 4R^6 - 729}{R^2\sqrt{4R^6 + 729}} = \frac{\pi}{2} \cdot \frac{8R^6 - 729}{R^2\sqrt{4R^6 + 729}}.$$

Найдём критические точки из условия S'(R) = 0.

$$\frac{\pi}{2} \cdot \frac{8R^6 - 729}{R^2 \sqrt{4R^6 + 729}} = 0, \quad 8R^6 - 729 = 0, \quad R^6 = \frac{729}{8} = \left(\frac{9}{2}\right)^3, \quad R = \sqrt{\frac{9}{2}} = \frac{3}{\sqrt{2}} \approx 2,1$$

$$(R \neq 0 \text{ по условию задачи}).$$

$$H = \frac{27}{2R^2} = \frac{27 \cdot 2}{2 \cdot 9} = 3 \text{ м}.$$

Итак, для того, чтобы на шатер ушло наименьшее количество полотна, высота шатра должна быть H=3м и радиус основания R=2,1м.

КОНТРОЛЬНАЯ РАБОТА № 4.

Приложения дифференциального исчисления

181-200. Исследовать методами дифференциального исчисления функцию и, используя результаты исследования, построить её график.

181.
$$y = \frac{x^3 + 4}{x^2}$$
.

182.
$$y = \frac{4 - x^3}{x^2}$$
.

181.
$$y = \frac{x^3 + 4}{x^2}$$
. **182.** $y = \frac{4 - x^3}{x^2}$. **183.** $y = \frac{2x^3 + 1}{x^2}$.

184.
$$y = \frac{12 - 3x^2}{x^2 - 12}$$

185.
$$y = \frac{3x^4 + 1}{x^3}$$
.

184.
$$y = \frac{12 - 3x^2}{x^2 - 12}$$
. **185.** $y = \frac{3x^4 + 1}{x^3}$. **186.** $y = \frac{x^2 - x + 1}{x - 1}$.

187.
$$y = \frac{x^2 - 3x + 3}{x - 1}$$

187.
$$y = \frac{x^2 - 3x + 3}{x - 1}$$
. **188.** $y = \frac{x^2 - 4x + 1}{x - 4}$. **189.** $y = \frac{x^3 - 32}{x^2}$.

189.
$$y = \frac{x^3 - 32}{x^2}$$

190.
$$y = \frac{1 - 2x^3}{x^2}$$

191.
$$y = e^{2x-x^2}$$

190.
$$y = \frac{1 - 2x^3}{2}$$
. **191.** $y = e^{2x - x^2}$. **192.** $y = \sqrt[3]{x(x - 3)^2}$.

193.
$$y = (3-x)e^{x-2}$$
. **194.** $y = (x-2)e^{3-x}$. **195.** $y = (x-1)e^{3x+1}$

194.
$$v = (x-2)e^{3-x}$$

195.
$$v = (x-1)e^{3x+1}$$
.

196.
$$y = \frac{e^{2-x}}{2-x}$$
.

196.
$$y = \frac{e^{2-x}}{2-x}$$
. **197.** $y = -\frac{e^{-(x+2)}}{x+2}$. **198.** $y = \frac{e^{x/2}}{x}$.

198.
$$y = \frac{e^{x/2}}{x}$$
.

199.
$$y = \sqrt[3]{x(x+2)}$$

199.
$$y = \sqrt[3]{x(x+2)}$$
. **200.** $y = \sqrt[3]{(x-1)x^2}$.

201-210. Написать уравнения касательной и нормали к кривой y = f(x) в точке $M_0(x_0, y_0)$.

201.
$$y = (x-2)e^x$$
, $M_0(0; -2)$. **202.** $y = (x^2 + 4)e^x$, $M_0(0; 4)$.

202.
$$y = (x^2 + 4)e^x$$
, $M_0(0; 4)$.

203.
$$y = \frac{1}{r^2 - 4}$$
, $M_0(1; -1/3)$. **204.** $y = \frac{x - 5}{r^2 - 1}$, $M_0(0; 5)$.

204.
$$y = \frac{x-5}{x^2-1}$$
, $M_0(0;5)$.

205.
$$y = (x-5)\sqrt{x}$$
, $M_0(1; -4)$. **206.** $y = (x+1)\sqrt{x}$, $M_0(1; 2)$.

206.
$$y = (x+1)\sqrt{x}$$
, $M_0(1; 2)$

207.
$$y = \frac{x^2 + 1}{x^2 + 9}$$
, $M_0(0; 1/9)$. **208.** $y = \frac{\ln x}{x^2 + 1}$, $M_0(1; 0)$.

208.
$$y = \frac{\ln x}{x^2 + 1}$$
, $M_0(1; 0)$

209.
$$y = (x^2 - x)2^x$$
, $M_0(0; 0)$

209.
$$y = (x^2 - x)2^x$$
, $M_0(0; 0)$. **210.** $y = \frac{1 + \sqrt{x}}{1 - \sqrt{x}}$, $M_0(4; -3)$.

211-220. Вычислить приближённо с помощью дифференциала

211.
$$\sqrt{1+(0,08)^2}$$
. **212.** $\sqrt{17}$. **213.** $\arcsin 0.49$.

214. $\cos 63^{\circ}$. **215.** $\tan 46^{\circ}$. **216.** $\sqrt{3(7,05)^2 - 6 \cdot 7,05 - 5}$.

217. arctg 0,98. **218.** arccos 0,52. **219.** $sin 32^{\circ}$.

220. $\sqrt{5(5,08)^2 + 4 \cdot 5,08 - 1}$

РЕШЕНИЕ ТИПОВОГО ВАРИАНТА КОНТРОЛЬНОЙ РАБОТЫ № 4.

181-200. Исследовать методами дифференциального исчисления функцию и, используя результаты исследования, построить её график.

Схема полного исследования функции

Для полного исследования функции и построения её графика применяется следующая примерная схема:

- 1. указать область определения функции;
- 2. найти точки разрыва функции, точки пересечения её графика с осями координат и вертикальные асимптоты (если они существуют);
- 3. установить наличие или отсутствие четности, нечетности, периодичности функции;
 - 4. исследовать функцию на монотонность и экстремум;
 - 5. определить интервалы выпуклости и вогнутости, точки перегиба;
 - 6. найти асимптоты графика функции;
 - 7. произвести необходимые дополнительные вычисления;
 - 8. построить график функции.

Пример 1.
$$y = \frac{(x+3)^2}{x-4}$$
.

Решение. Воспользуемся рекомендуемой схемой.

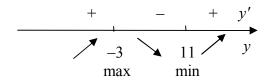
- 1. Областью определения функции является множество $(-\infty; 4) \cup (4; +\infty)$.
- 2. Ордината точки графика y > 0 при x > 4, y < 0 при x < 4.
- 3. Точки пересечения графика данной функции с осями координат: (0, -9/4) и (-3, 0).
 - 4. Легко находим, что x = 4 вертикальная асимптота, причем:

$$\lim_{x \to 4-0} \frac{(x+3)^2}{(x-4)} = -\infty; \quad \lim_{x \to 4+0} \frac{(x+3)^2}{(x-4)} = +\infty.$$

5. Исследуем функцию на возрастание, убывание, локальный экстремум:

$$y' = \frac{2(x+3)(x-4) - (x+3)^2}{(x-4)^2} = \frac{x^2 - 8x - 33}{(x-4)^2}.$$

Из условия y' = 0 следует $x^2 - 8x - 33 = 0$, откуда $x_1 = 11$, $x_2 = -3$.



В интервале $(-\infty; -3)$ y' > 0, следовательно, функция возрастает в этом интервале. В (-3; 4) y' < 0, т. е. функция убывает. Поэтому функция в точке x = -3 имеет локальный максимум: y(-3) = 0. В интервале (4; 11) y' < 0, следовательно, функция убывает на этом интервале; в $(11; +\infty)$ y' > 0, т. е. функция возрастает. В точке x = 11 имеем локальный минимум: y(11) = 28.

6. Исследуем график функции на выпуклость, вогнутость и определим точки перегиба. Для этого найдем

$$y'' = \frac{(2x-8)(x-4)^2 - (x^2 - 8x - 33) \cdot 2(x-4)}{(x-4)^4} = \frac{98}{(x-4)^3}.$$

Очевидно, что в интервале $(-\infty; 4)$ y'' < 0, и в этом интервале кривая выпукла; в $(4; +\infty)$ y'' > 0, т. е. в этом интервале кривая вогнута. Так как при x = 4 функция не определена, то точка перегиба отсутствует.

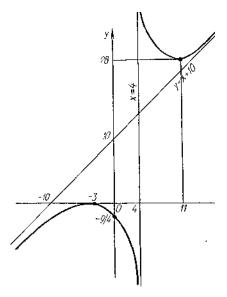
7. Находим наклонные асимптоты y = kx + b:

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{(x+3)^2}{x(x-4)} = 1,$$

$$b = \lim_{x \to \pm \infty} (f(x) - kx) = \lim_{x \to \pm \infty} \left(\frac{(x+3)^2}{x-4} - x \right) = \lim_{x \to \pm \infty} \frac{10x - 9}{x - 4} = 10.$$

Таким образом, существует единственная наклонная асимптота y = x + 10.

9. Строим график функции



$$\underline{\Pi p u m e p 2.} \quad y = x e^{-x^2/2}.$$

Решение. Воспользуемся общей схемой исследования функции.

- 1. Область определения функции $(-\infty; +\infty)$.
- 2. Так как y = 0 при x = 0, то график функции проходит через начало координат.
- 3. Функция принимает положительные значения в интервале $(0; +\infty)$ и отрицательные в интервале $(-\infty; 0)$.
 - 4. Вертикальных асимптот нет.
- 5. Так как $y(-x) = -xe^{-x^2/2} = -y(x)$, то функция нечетна и ее график симметричен относительно начала координат.
 - 6. Исследуем функцию на монотонность:

$$y' = \left(\frac{x}{e^{x^2/2}}\right)' = \frac{e^{x^2/2} - x \cdot xe^{x^2/2}}{e^{x^2}} = \frac{e^{x^2/2}(1 - x^2)}{e^{x^2}} = \frac{1 - x^2}{e^{x^2/2}}.$$

Если y'=0, то $1-x^2=0$, откуда $x_1=-1$, $x_2=1$.

$$y_{\min}(-1) = -\frac{1}{e^{1/2}} \approx -0.6$$
, $y_{\max}(1) = \frac{1}{e^{1/2}} \approx 0.6$.

7. Исследуем свойства функции, связанные со второй производной:

$$y'' = \left(\frac{1-x^2}{e^{x^2/2}}\right)' = \frac{-2xe^{x^2/2} - (1-x^2) \cdot xe^{x^2/2}}{e^{x^2}} = \frac{xe^{x^2/2}(-2-1+x^2)}{e^{x^2}} = \frac{x(x^2-3)}{e^{x^2/2}}.$$

Если y''=0, то $x(x^2-3)=0$, откуда следует $x_1=0$, $x_2=-\sqrt{3}$, $x_3=\sqrt{3}$.

Так как в точках $x = \pm \sqrt{3}$, x = 0 вторая производная y" меняет знак, то при этих значениях x на графике функции получаем точки перегиба, ординаты которых:

$$y(\pm\sqrt{3}) = \pm\frac{\sqrt{3}}{e^{3/2}} \approx \pm 0,4, \ y(0) = 0.$$

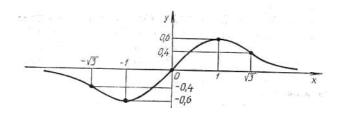
8. Ищем наклонные асимптоты y = kx + b:

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{1}{e^{x^2/2}} = 0,$$

$$b = \lim_{x \to \pm \infty} (f(x) - kx) = \lim_{x \to \pm \infty} \frac{x}{e^{x^2/2}} = \lim_{x \to \pm \infty} \frac{1}{xe^{x^2/2}} = 0.$$

Получаем горизонтальную асимптоту y = 0.

Полученные данные позволяют построить график функции.



Пример 3.
$$y = \sqrt[3]{x^2(x+3)}$$
.

Решение.

- 1. Данная функция определена для всех $x \in R$.
- 2. Функция не имеет точек разрыва и пересекает ось Ox при x = -3 и x = 0, а ось Oy при y = 0.

- 3. Функция не является четной, нечетной, периодической.
- 4. Находим производную функции

$$f'(x) = \left((x^3 + 3x^2)^{1/3} \right)' = \frac{1}{3} (x^3 + 3x^2)^{-2/3} \cdot \left(3x^2 + 6x \right) = \frac{x+2}{\sqrt[3]{x(x+3)^2}}.$$

f'(x) = 0 при $x_1 = -2$ и не существует в точках $x_2 = -3$, $x_3 = 0$. Эти точки разбивают всю область определения функции на интервалы

 $(-\infty; -3), (-3; -2), (-2; 0), (0; +\infty)$. Внутри каждого из полученных интервалов сохраняется знак производной.

$$+$$
 $+$ $+$ y' -3 -2 0 min y

 $y_{\text{max}} = \sqrt[3]{4}$, $y_{\text{min}} = y(0) = 0$. В точке $x_2 = -3$ функция не имеет экстремума, так как в ее окрестности f'(x) не меняет знака.

4. Находим вторую производную:

$$f''(x) = \left(\frac{x+2}{\sqrt[3]{x(x+3)^2}}\right)' = -\frac{2}{\sqrt[3]{x^4(x+3)^5}}.$$

 $f''(x) \neq 0$ для любого конечного x. Поэтому точками перегиба могут быть только те точки кривой, в которых вторая производная не существует, т. е. $x_2 = -3$ и $x_3 = 0$. Определим знак y'' в каждом из интервалов, на которые найденные точки разбивают область определения функции: f''(x) > 0 при $x \in (-\infty; -3)$, кривая вогнута; f''(x) < 0 при $x \in (-3; 0) \cup (0; +\infty)$, кривая выпукла. Так как в окрестности точки $x_2 = -3$ вторая производная меняет знак, то M(-3; 0) является точкой перегиба. Точка $x_3 = 0$ не является точкой перегиба, так как в ее окрестности знак f''(x) не меняется.

6. Вертикальных асимптот нет, так как данная функция не имеет бесконечных разрывов. Ищем наклонные асимптоты y = kx + b:

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{\sqrt[3]{x^2(x+3)}}{x} = \lim_{x \to \pm \infty} \sqrt[3]{1 + \frac{3}{x}} = 1,$$

$$b = \lim_{x \to \pm \infty} (f(x) - kx) = \lim_{x \to \pm \infty} \left(\sqrt[3]{x^2(x+3)} - x \right) =$$

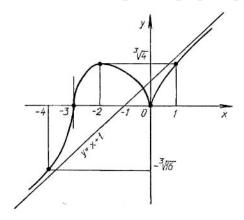
Контрольная работа № 4 и методические указания к её выполнению.

$$= \lim_{x \to \pm \infty} \frac{x^2(x+3) - x^3}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}} = \lim_{x \to \pm \infty} \frac{3x^2}{\sqrt[3]{x^4(x+3)^2 + x\sqrt[3]{x^2(x+3)} + x^2}}$$

$$= \lim_{x \to \pm \infty} \frac{3}{\sqrt{1 + \frac{6}{x} + \frac{9}{x^2}} + \sqrt[3]{1 + \frac{3}{x} + 1}} = 1.$$

Получили уравнение наклонной асимптоты y = x + 1.

- 7. Прежде чем строить график функции, целесообразно установить угол α , под которым кривая пересекает ось абсцисс в точках $x_2=-3$ и $x_3=0$. В этих точках $y'=\operatorname{tg}\alpha=\infty$ и $\alpha=\frac{\pi}{2}$. Так как в точке $x_3=0$ функция достигает нулевого минимума, то ее график не расположен ниже оси Ox в окрестности этой точки. Точка $x_3=0$ является *точкой возврата* графика функции.
 - 8. По результатам исследования строим график функции.



201-210. Написать уравнения касательной и нормали к кривой $y = 4x - 3\sqrt[3]{x^2}$ в точке $M_0(1;1)$.

<u>Решение.</u> Уравнение касательной кривой y = f(x) в точке x_0 имеет вид

$$y = f(x_0) + f'(x_0) \cdot (x - x_0)$$
.

Уравнение нормали к кривой y = f(x) в точке x_0 имеет вид

$$y = f(x_0) - \frac{1}{f'(x_0)}(x - x_0).$$

Если $f'(x_0) = 0$, то уравнение нормали имеет вид $x = x_0$.

В данном случае
$$f(x) = 4x - 3\sqrt[3]{x^2}$$
 и $f(x_0) = y_0 = 1$. Найдём
$$f'(x) = \left(4x - 3\sqrt[3]{x^2}\right)' = 4 - 3 \cdot \frac{2}{3}x^{-1/3} = 4 - \frac{2}{\sqrt[3]{x}}.$$
 Вычислим

 $f'(x_0) = 4 - \frac{2}{\sqrt[3]{x}}\Big|_{x=1} = 2$. Подставим в уравнение касательной, получим:

$$y = 1 + 2(x-1) \Rightarrow y = 2x-1$$
 или $2x - y - 1 = 0$.

Подставим в уравнение нормали значения функции y = f(x) и её производной в точке $x_0 = 1$, получим:

$$y = 1 - \frac{1}{2}(x - 1) \Rightarrow y = -\frac{1}{2}x + \frac{3}{2}$$
 или $x + 2y - 3 = 0$.

Дифференциал функции

Пусть функция y = f(x) имеет в точке x отличную от нуля производную

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x) \neq 0$$
. Тогда можно записать $\frac{\Delta y}{\Delta x} = f'(x) + \alpha$, где $\alpha \to 0$ при $\Delta x \to 0$, или $\Delta y = f'(x) \cdot \Delta x + \alpha \cdot \Delta x$.

Таким образом, приращение функции Δy представляет собой сумму двух слагаемых $f'(x)\cdot \Delta x$ и $\alpha\cdot \Delta x$, являющихся бесконечно малыми при $\Delta x \to 0$. Первое слагаемое $f'(x)\cdot \Delta x$ называется главной частью приращения функции Δy .

Дифференциалом функции y = f(x) в точке x называется главная часть её приращения, равная произведению производной функции на приращение аргумента, и обозначается $dy = f'(x) \cdot \Delta x$. Так как x' = 1, то $dx = \Delta x$, т.е. дифференциал независимой переменной равен приращению этой переменной. Поэтому

$$dy = f'(x)dx$$
.

Отбрасывая бесконечно малую $\alpha \cdot \Delta x$ в приращении функции Δy , получаем приближённое равенство $\Delta y \approx dy$, причём это равенство тем точнее, чем меньше Δx . Приближённое равенство можно записать в виде $f(x + \Delta x) - f(x) \approx f'(x) \cdot \Delta x$ или

$$f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x$$
.

Полученная формула используется для вычисления приближённых значений функций.

211-220. Вычислить приближённо с помощью дифференциала

a) $\sqrt[3]{84}$, 6) arctg 0,98.

Пример 1. 3√84.

Решение. Представим данную величину в виде $\sqrt[3]{84} = \sqrt[3]{64 + 20}$ и введём функцию $y = \sqrt[3]{x}$, где $x = x_0 + \Delta x$, где $x_0 = 64$; $\Delta x = 20$. Воспользуемся формулой $y(x_0 + \Delta x) \approx y(x_0) + y'(x_0) \cdot \Delta x$. Получим: $y(x_0) = \sqrt[3]{64} = 4$, $y' = \frac{1}{3\sqrt[3]{x^2}}$, $y'(64) = \frac{1}{3 \cdot 16} = \frac{1}{48}$. Вычислим $\sqrt[3]{84} \approx 4 + \frac{20}{48} = 4$, 42.

<u>Пример 2</u>. arctg 0,98.

<u>Решение</u>. Аналогично предыдущему: $y = \arctan x$, $x_0 = 1$, $\Delta x = -0.02$,

$$y(x_0) = \operatorname{arctg} 1 = \frac{\pi}{4}, \ y' = \frac{1}{1+x^2}, \ y'(1) = 0,5.$$

 $\operatorname{arctg} 0.98 \approx \pi/4 - 0.5 \cdot 0.2 = 0.77.$

КОНТРОЛЬНАЯ РАБОТА № 5. Неопределённый и определённый интегралы

221-230. Найти неопределённые интегралы

221. a)
$$\int \frac{\sqrt[3]{\ln^2(x-1)}}{x-1} dx$$
;

$$\int \frac{(x-1)}{-1} dx; \qquad \qquad 6) \int \frac{\arcsin x}{\sqrt{1+x}} dx;$$

B)
$$\int \frac{x^3 + 6x^2 + 10x + 12}{(x-2)(x+2)^3} dx$$
;

$$\Gamma) \int tg^3 4x \, dx.$$

$$222. \quad \text{a) } \int \frac{\cos 2x}{\sin^3 2x} dx;$$

$$6) \int \sqrt{x} \ln^2 x \, dx;$$

B)
$$\int \frac{x^2 - 6x + 8}{x^3 + 8} dx$$
;

$$\Gamma) \int \sin^4 x \, dx \, .$$

$$223. \quad \text{a) } \int \frac{\sqrt{\cot 97x}}{\sin^2 7x} dx;$$

$$6) \int \frac{\arccos\sqrt{x}}{\sqrt{1-x}} dx;$$

B)
$$\int \frac{2x^3 + 6x^2 + 5x}{(x+2)(x+1)^3} dx$$
;

$$\Gamma) \int \frac{dx}{5 - 4\sin x + 2\cos x}.$$

224. a)
$$\int \frac{dx}{\sqrt{1-x^2} \arcsin^3 x}$$
;

$$6) \int (x^2 + 4)e^{2x} dx;$$

B)
$$\int \frac{12-6x}{(x+1)(x^2-4x+13)} dx$$
; Γ) $\int \cos^4 x \, dx$.

$$\Gamma) \int \cos^4 x \, dx \, .$$

225. a)
$$\int e^{2x^3-1}x^2dx$$
;

6)
$$\int x \arctan 2x \, dx$$
;

B)
$$\int \frac{x^3 - 6x^2 + 13x - 8}{x(x - 2)^3} dx;$$

$$\Gamma) \int \frac{\cos^3 x}{\sqrt[4]{\sin^5 x}} dx.$$

226. a)
$$\int e^{3\cos x + 2} \sin x \, dx$$
;

$$\int \ln(2x-1)\,dx\,;$$

B)
$$\int \frac{x^2 + 3x - 6}{(x+1)(x^2 + 6x + 13)} dx$$
;

$$\Gamma) \int \frac{dx}{3\sin x + 4\cos x}.$$

227. a)
$$\int \frac{2x+1}{5x^2+2} dx$$
;

б)
$$\int x \sin^2 x \, dx$$
;

B)
$$\int \frac{x^3 + 6x^2 + 14x + 10}{(x+1)(x+2)^3} dx$$
; Γ) $\int \cos^4 x \sin^2 x dx$.

$$\Gamma) \int \cos^4 x \sin^2 x \, dx \, .$$

228. a)
$$\int \frac{2x-3}{\sqrt{x^2+9}} dx$$
;

$$6) \int x^2 \cos^2 x \, dx;$$

B)
$$\int \frac{x^2 + 3x + 2}{x^3 - 1} dx$$
;

$$\Gamma) \int_{1}^{5} \sqrt{\sin^4 x} \cos^3 x \, dx.$$

229. a)
$$\int \frac{3x+4}{\sqrt{4-x^2}} dx$$
;

6)
$$\int x \operatorname{tg}^2 x \, dx$$
;

B)
$$\int \frac{x^3 + 6x^2 + 13x + 8}{x(x+2)^3} dx;$$

$$\Gamma) \int \frac{2 \operatorname{tg} x + 3}{\sin^2 x + 2 \cos^2 x} dx.$$

230. a)
$$\int \frac{(\arctan x)^2 + 1}{1 + x^2} dx$$
;

6)
$$\int \ln\left(x + \sqrt{1 + x^2}\right) dx;$$

B)
$$\int \frac{3x+13}{(x-1)(x^2+2x+5)} dx$$
; Γ) $\int \frac{dx}{5+2\sin x+3\cos x}$.

$$\Gamma) \int \frac{dx}{5 + 2\sin x + 3\cos x} \, .$$

231-240. Вычислить определённые интегралы с точностью до двух знаков после запятой

231. a)
$$\int_{3}^{6} \frac{\sqrt{x^2 - 9}}{x^4} dx;$$

6)
$$\int_{0}^{\ln 5} \frac{e^{x} \sqrt{e^{x} - 1}}{e^{x} + 3} dx.$$

232. a)
$$\int_{\sqrt{2}}^{1} \frac{\sqrt{4-x^2}}{x^2} dx$$
;

6)
$$\int_{2}^{5} \frac{x^2 dx}{(x-1)\sqrt{x-1}}$$
.

233. a)
$$\int_{0}^{1} \sqrt{4 - x^2} \, dx;$$

6)
$$\int_{\ln 2}^{2\ln 2} \frac{dx}{e^x - 1}$$
.

234. a)
$$\int_{1}^{\sqrt{3}} \frac{x^3 + 1}{x^2 \sqrt{4 - x^2}} dx$$
;

$$6) \int_{0}^{4} \frac{dx}{1 + \sqrt{2x + 1}}.$$

235. a)
$$\int_{1}^{\sqrt{2}} \frac{\sqrt{2-x^2}}{x^4} dx$$
;

$$6) \int_{0}^{\ln 2} \sqrt{e^x - 1} \, dx.$$

236. a)
$$\int_{\frac{\sqrt{3}}{3}}^{1} \frac{dx}{x^2 \sqrt{(1+x^2)^3}}$$
;

$$6) \int_{3}^{8} \frac{x \, dx}{\sqrt{x+1}} \, .$$

237. a)
$$\int_{0}^{1} \frac{dx}{(x^2+3)^{3/2}}$$
;

6)
$$\int_{\ln 2}^{\ln 3} \frac{dx}{e^x - e^{-x}}$$
.

238. a)
$$\int_{\frac{1}{\sqrt{3}}}^{1} \frac{dx}{x^2 \sqrt{x^2 + 1}}$$
;

$$6) \int_{0}^{13} \frac{x+1}{\sqrt[3]{2x+1}} dx.$$

239. a)
$$\int_{2}^{4} \frac{\sqrt{x^2 - 4}}{x} dx$$
;

6)
$$\int_{\ln 3}^{0} \frac{1 - e^x}{1 + e^x} dx$$
.

240. a)
$$\int_{0}^{3} \frac{x^3}{\sqrt{x^2+9}} dx$$
;

6)
$$\int_{3}^{29} \frac{\sqrt[3]{(x-2)^2}}{3+\sqrt[3]{(x-2)^2}} dx.$$

241-250. Вычислить несобственные интегралы или доказать их расходимость

241. a)
$$\int_{1}^{\infty} \frac{dx}{x^2 + 4x + 5}$$
;

$$6) \int_{0}^{1} \frac{2x \, dx}{\sqrt{1 - x^4}} \, .$$

242. a)
$$\int_{0}^{\infty} \frac{dx}{2x^2 - 2x + 1}$$
;

$$6) \int_{0}^{1} \frac{x \, dx}{1 - x^4}.$$

243. a)
$$\int_{4}^{\infty} \frac{dx}{\sqrt{x^2 - 4x + 1}}$$
;

6)
$$\int_{0}^{2/3} \frac{\sqrt[3]{\ln(2-3x)}}{2-3x} dx.$$

244. a)
$$\int_{0}^{\infty} \frac{x \, dx}{\sqrt[4]{(16 + x^2)^5}};$$

$$\text{6) } \int_{1/2}^{1} \frac{\ln 2dx}{(1-x)\ln^2(1-x)}.$$

245. a)
$$\int_{0}^{\infty} \frac{x^3}{\sqrt[3]{(x^2+8)^4}} dx;$$

$$6) \int_{1/4}^{1} \frac{dx}{20x^2 - 9x + 1}.$$

246. a)
$$\int_{0}^{\infty} \frac{x \, dx}{\sqrt{(x^2 + 4)^3}}$$
;

$$6) \int_{1/3}^{1} \frac{\ln(3x-1)}{3x-1} dx.$$

247. a)
$$\int_{1}^{\infty} \frac{x \, dx}{\sqrt{16x^4 - 1}}$$
;

$$6) \int_{1}^{3} \frac{dx}{\sqrt[3]{(3-x)^5}}.$$

248. a)
$$\int_{0}^{\infty} \frac{x^3}{\sqrt{16x^4 + 1}} dx$$
;

$$6) \int_{0}^{1/3} \frac{dx}{9x^2 - 9x + 2}.$$

249. a)
$$\int_{0}^{\infty} \frac{16x}{16x^4 - 1} dx$$
;

6)
$$\int_{1}^{3} \frac{dx}{\sqrt{x^2 - 6x + 9}}$$
.

250. a)
$$\int_{0}^{\infty} \frac{x}{16x^4 + 1} dx;$$

$$6) \int_0^1 \frac{dx}{\sqrt[3]{2-4x}}.$$

251. Вычислить площадь фигуры, ограниченной линией, заданной уравнением в полярных координатах $\rho = 3\sqrt{\cos 2\phi}$.

252. Вычислить площадь фигуры, ограниченной линиями $y = 3\sqrt{-x}$ и $y = -\frac{1}{2}x + 2\frac{1}{2}$.

253. Вычислить площадь фигуры, ограниченной линией, заданной параметрическими уравнениями $\begin{cases} x = 4(t-\sin t); \\ y = 4(1-\cos t). \end{cases} \ (0 \le t \le 2\pi).$

254. Вычислить площадь фигуры, ограниченной линиями $y = 3\sqrt{x}$ и $y = \frac{3}{4}x + 2\frac{1}{4}$.

255. Вычислить площадь фигуры, ограниченной кривой, заданной уравнением в полярной системе координат $\rho = 3(1 + \cos \phi)$.

256. Вычислить площадь фигуры, ограниченной линиями $y = 3\sqrt{5-x}$ и $y = -\frac{3}{4}x + 6$.

257. Вычислить площадь фигуры, ограниченной кривой, заданной уравнением в полярных координатах $\rho = 4\sin 2\phi$.

- **258.** Вычислить площадь фигуры, ограниченной линиями $y = 3\sqrt{x-5}$ и $y = \frac{1}{2}x$.
- **259.** Вычислить площадь фигуры, ограниченной линией, заданной параметрическими уравнениями $\begin{cases} x = 3\cos t; \\ y = 2\sin t. \end{cases}$ ($0 \le t \le \pi$).
- **260.** Вычислить площадь фигуры, ограниченной линиями $y = 3\sqrt{x-3}$ и $y = \frac{1}{2}x+1$.
 - 261. Вычислить длину дуги линии, заданной уравнением

$$y = \sqrt{x - x^2} - \arccos \sqrt{x} + 5$$
, $1/9 \le x \le 1$.

- **262.** Вычислить длину дуги линии, заданной параметрическими уравнениями $\begin{cases} x = 2\cos^3 t; \\ y = 2\sin^3 t. \end{cases} \quad (0 \le t \le 2\pi)..$
- **263.** Вычислить длину дуги линии, заданной уравнением $y = \sqrt{1-x^2} + \arcsin x, \, 0 \le x \le 7/9 \, .$
- **264.** Вычислить длину дуги линии, заданной параметрическими уравнениями $\begin{cases} x = e^t (\cos t + \sin t); \\ y = e^t (\cos t \sin t), \end{cases} \ (0 \le t \le \pi).$
 - **265.** Вычислить длину дуги линии, заданной уравнением $y = -\ln \cos x, \ 0 \le x \le \pi/6$.
- **266.** Вычислить длину дуги линии, заданной уравнением в полярной системе координат $\rho = 5(1-\cos\phi), -\pi/3 \le \phi \le 0$.
 - 267. Вычислить длину дуги линии, заданной уравнением

$$y = \sqrt{1 - x^2} + \arccos x, \ 0 \le x \le 8/9.$$

268. Вычислить длину дуги линии, заданной параметрическими

уравнениями
$$\begin{cases} x = 8(\cos t + t \sin t); \\ y = 8(\sin t - t \cos t). \end{cases} (0 \le t \le \pi/4).$$

269. Вычислить длину дуги линии, заданной уравнением

$$y = 1 - \ln(x^2 - 1), 3 \le x \le 4$$
.

270. Вычислить длину дуги линии, заданной уравнением в полярной системе координат $\rho = 3(1 + \sin \phi), -\pi/6 \le \phi \le 0$.

Неопределённый и определённый интегралы

1. Неопределённый интеграл

Функция F(x) называется **первообразной** для функции f(x), если F'(x) = f(x). Всякая функция вида F(x) + C, где C – произвольная постоянная, также является первообразной для f(x), т.к. (F(x) + C)' = f(x). Совокупность всех первообразных для функции f(x) называется **неопределённым** интегралом и записывается в виде

$$\int f(x)dx = F(x) + C,$$

где f(x) – подынтегральная функция, C – произвольная постоянная.

Таблица неопределённых интегралов

1)
$$\int dx = x + C$$
; 2) $\int x^n dx = \frac{x^{n+1}}{n+1} + C$, $n \ne -1$;
2a) $\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C$; 26) $\int \frac{dx}{x^2} = -\frac{1}{x} + C$;
3) $\int \frac{dx}{x} = \ln|x| + C$;
4) $\int a^x dx = \frac{a^x}{\ln a} + C$, $(a > 0; a \ne 1)$; 5) $\int e^x dx = e^x + C$;
6) $\int \sin x dx = -\cos x + C$; 7) $\int \cos x dx = \sin x + C$;
8) $\int \frac{dx}{\sin^2 x} = -\cot x + C$; 9) $\int \frac{dx}{\cos^2 x} = \tan x + C$;
10) $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{x} + C$;
11) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C = -\frac{1}{2a} \ln \left| \frac{x + a}{x - a} \right| + C$;
12) $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$;
13) $\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| \tan x + \sqrt{x^2 \pm a^2} \right| + C$;
14) $\int \frac{dx}{\sin x} = \ln \left| \tan x + C \right| = \ln \left| \frac{1}{\sin x} - \cot x \right| + C$;
15) $\int \frac{dx}{\cos x} = \ln \left| \tan x + C \right| = \ln \left| \frac{1}{\cos x} + \tan x \right| + C$.

Основные свойства неопределённого интеграла

1.
$$\int f'(x)dx = \int df(x) = f(x) + C$$
; $d\int f(x)dx = d(F(x) + C) = f(x)dx$;

2.
$$\int (f_1(x) \pm f_2(x)) dx = \int f_1(x) dx \pm \int f_2(x) dx$$
;

3.
$$\int kf(x)dx = k \int f(x)dx$$
, $k = \text{const}$;

4. Если
$$\int f(x)dx = F(x) + C$$
 и $u = \varphi(x)$, то $\int f(u)du = F(u) + C$.

В частности,
$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C.$$

Основные методы интегрирования функций.

1.1 Интегрирование путём подведения под знак дифференциала.

Свойство 4) значительно расширяет таблицу простейших интегралов. А именно, в силу этого правила таблица интегралов оказывается справедливой независимо от того, является переменная интегрирования независимой переменной или дифференцируемой функцией. Прежде, чем использовать тот или иной табличный интеграл, приводим данный интеграл к виду

$$\int f(\varphi(x))\varphi'(x)dx = \int f(u)du, \text{ где } u = \varphi(x).$$

В связи с этим полезно отметить часто применяемые преобразования дифференциалов, а именно:

1)
$$dx = \frac{1}{a}d(ax+b)$$
, $a \ne 0$; 2) $xdx = \frac{1}{2}d(x^2)$; 3) $\frac{dx}{\sqrt{x}} = 2d(\sqrt{x})$;

4)
$$\frac{dx}{x} = d(\ln x);$$
 5) $e^x dx = d(e^x);$

6)
$$\sin x \, dx = -d(\cos x)$$
; 7) $\cos x \, dx = d(\sin x)$;

8)
$$\frac{dx}{\cos^2 x} = d(\operatorname{tg} x);$$
 9)
$$\frac{dx}{\sin^2 x} = -d(\operatorname{ctg} x);$$

10)
$$\frac{dx}{\sqrt{1-x^2}} = d(\arcsin x);$$
 11) $\frac{dx}{1+x^2} = d(\arctan x).$

Пример 1.

$$\int \frac{dx}{\sqrt{1-3x}} = -\frac{1}{3} \int \frac{d(1-3x)}{\sqrt{1-3x}} = \left\| u = 1 - 3x \right\| = -\frac{1}{3} \int \frac{du}{\sqrt{u}} = -\frac{1}{3} 2\sqrt{u} + C = -\frac{1}{3} \sqrt{u}$$

$$=-\frac{2}{3}\sqrt{1-3x}+C$$
.

Пример 2.

$$\int \frac{2x-5}{3x^2-2} dx = \frac{1}{3} \int \frac{d(3x^2-2)}{3x^2-2} - \frac{5}{\sqrt{3}} \int \frac{d(\sqrt{3}x)}{3x^2-2} dx = \left\| u = 3x^2-2 \right\| =$$

$$= \frac{1}{3} \int \frac{du}{u} - \frac{5}{\sqrt{3}} \int \frac{dt}{t^2-2} = \frac{1}{3} \ln|u| - \frac{5}{\sqrt{3}} \cdot \frac{1}{2\sqrt{2}} \ln\left| \frac{t-\sqrt{2}}{t+\sqrt{2}} \right| + C = \frac{1}{3} \ln\left| 3x^2-2 \right| -$$

$$- \frac{5}{2\sqrt{6}} \ln\left| \frac{\sqrt{3}x-\sqrt{2}}{\sqrt{3}x+\sqrt{2}} \right| + C.$$

Пример 3.

$$\int \frac{\arcsin x + x}{\sqrt{1 - x^2}} dx = \int \frac{\arcsin x}{\sqrt{1 - x^2}} dx + \int \frac{x}{\sqrt{1 - x^2}} dx = \int \arcsin x \, d(\arcsin x) - \frac{1}{2} \int \frac{d(1 - x^2)}{\sqrt{1 - x^2}} dx = \left\| u = \arcsin x \right\| = \int u \, du - \frac{1}{2} \int \frac{dt}{\sqrt{t}} = \frac{u^2}{2} - \frac{1}{2} 2\sqrt{t} = \frac{\arcsin^2 x}{2} - \sqrt{1 - x^2} + C.$$

1.2 Интегрирование подстановкой.

Полагая $x = \varphi(t)$, где t- новая переменная и φ - непрерывно дифференцируемая функция, то будем иметь

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Функцию $\varphi(t)$ стараются выбирать таким образом, чтобы интеграл, стоящий в правой части приобрёл более удобный для интегрирования вид.

Пример 1.

Тригонометрические подстановки. Пусть a>0, тогда:

- 1) Если интеграл содержит $\sqrt{a^2 x^2}$, то полагают $x = a \sin t$, тогда $\sqrt{a^2 x^2} = a \cos t$, $dx = a \cos t \, dt$.
- 2) Если интеграл содержит $\sqrt{x^2 a^2}$, то полагают $x = \frac{a}{\cos t}$, тогда $\sqrt{x^2 a^2} = a \operatorname{tg} t$, $dx = \frac{a \sin t}{\cos^2 t} dt$.
- 3) Если интеграл содержит $\sqrt{x^2 + a^2}$, то полагают $x = a \lg t$, тогда $\sqrt{x^2 + a^2} = \frac{a}{\cos t}$, $dx = \frac{a}{\cos^2 t} dt$.

Пример 2.

$$\int \frac{\sqrt{x^2 + 4}}{x^2} dx = \begin{vmatrix} a = 2, & x = 2 \lg t, & \sqrt{x^2 + 4} = \frac{2}{\cos t}, & dx = \frac{2dt}{\cos^2 t}, \\ \lg t = \frac{x}{2}, & \cos t = \frac{2}{\sqrt{x^2 + 4}}, & \sin t = \lg t \cdot \cos t = \frac{x}{\sqrt{x^2 + 4}} \end{vmatrix} =$$

$$= \int \frac{2}{\cos t \cdot 4 \lg^2 t} \cdot \frac{2dt}{\cos^2 t} = \int \frac{dt}{\cos t \cdot \sin^2 t} = \int \frac{\sin^2 t + \cos^2 t}{\cos t \cdot \sin^2 t} dt =$$

$$= \int \frac{dt}{\cos t} + \int \frac{\cos t}{\sin^2 t} dt = \ln \left| \lg t + \frac{1}{\cos t} \right| + \int \frac{d(\sin t)}{\sin^2 t} = \ln \left| \lg t + \frac{1}{\cos t} \right| - \frac{1}{\sin t} =$$

$$= \ln \left| \frac{x + \sqrt{x^2 + 4}}{2} \right| - \frac{\sqrt{x^2 + 4}}{x} + C.$$

1.3 Интегрирование по частям

Если $u = \varphi(x)$ и $v = \psi(x)$ - дифференцируемые функции, то имеет место формула интегрирования по частям: $\int u dv = uv - \int v du$.

В интегралах вида: $\int P(x)e^{ax}dx$, $\int P(x)\sin ax\,dx$, $\int P(x)\cos ax\,dx$, где P(x) – многочлен, полагают u=P(x).

Пример 1.
$$\int (x^2 + x)\cos 2x dx =$$
 $\begin{vmatrix} u = x^2 + x, & du = (2x + 1)dx \\ dv = \cos 2x dx, & v = \int \cos 2x dx = \frac{1}{2}\sin 2x \end{vmatrix} =$

$$= (x^{2} + x) \cdot \frac{1}{2} \sin 2x - \int \frac{1}{2} \sin 2x \cdot (2x + 1) dx = \frac{(x^{2} + x)}{2} \sin 2x - \frac{1}{2} \int (2x + 1) \sin 2x dx = \left\| u = 2x + 1, \quad du = 2 dx \\ dv = \sin 2x dx, \quad v = -\frac{1}{2} \cos 2x \right\| = \frac{(x^{2} + x)}{2} \sin 2x - \frac{1}{2} \left(-\frac{1}{2} \cos 2x \cdot (2x + 1) - \int -\frac{1}{2} \cos 2x \cdot 2 dx \right) = \frac{(x^{2} + x)}{2} \sin 2x + \frac{(2x + 1)}{4} \cos 2x - \frac{1}{2} \int \cos 2x dx = \frac{(x^{2} + x)}{2} \sin 2x + \frac{(2x + 1)}{4} \cos 2x - \frac{1}{4} \sin 2x + C = \frac{(2x^{2} + 2x - 1)}{4} \sin 2x + \frac{(2x + 1)}{4} \cos 2x + C.$$

В интегралах вида: $\int P(x) \ln x \, dx$, $\int P(x) \arcsin x \, dx$, $\int P(x) \arctan x \, dx$, где P(x) —степенная функция, полагают $u = \ln x$, либо $u = \arcsin x$, либо $u = \arctan x$.

$$\frac{\text{Пример 2}}{\sqrt{1-4x^2}} \cdot \int \frac{x \arcsin 2x}{\sqrt{1-4x^2}} dx = \begin{bmatrix} u = \arcsin 2x, & du = \frac{2dx}{\sqrt{1-4x^2}} \\ dv = \frac{xdx}{\sqrt{1-4x^2}}, & v = \int \frac{xdx}{\sqrt{1-4x^2}} = -\frac{1}{8} \int \frac{d(1-4x^2)}{\sqrt{1-4x^2}} = -\frac{1}{4} \sqrt{1-4x^2} \end{bmatrix} = \\ = \arcsin 2x \cdot \left(-\frac{1}{4} \sqrt{1-4x^2} \right) - \int -\frac{1}{4} \sqrt{1-4x^2} \cdot \frac{2dx}{\sqrt{1-4x^2}} = \\ = -\frac{1}{4} \sqrt{1-4x^2} \cdot \arcsin 2x + \frac{1}{2} \int dx = -\frac{1}{4} \sqrt{1-4x^2} \cdot \arcsin 2x + \frac{x}{2} + C .$$

$$\frac{\text{Пример 3.}}{dv = dx} \cdot \frac{u = \ln(x^2+1), & du = \frac{2xdx}{x^2+1}}{dv = dx} = x \ln(x^2+1) - \frac{1}{4} \ln(x^2+1)$$

$$-\int x \cdot \frac{2xdx}{x^2 + 1} = x \ln(x^2 + 1) - 2\int \frac{x^2}{x^2 + 1} dx = x \ln(x^2 + 1) - 2\int \frac{(x^2 + 1) - 1}{x^2 + 1} dx =$$

$$= x \ln(x^2 + 1) - 2 \int \frac{x^2 + 1}{x^2 + 1} dx + 2 \int \frac{dx}{x^2 + 1} = x \ln(x^2 + 1) - 2x + 2 \arctan x + C.$$

1.4 Интегрирование рациональных функций.

Интегрирование рациональной функции после выделения целой части сводится к интегрированию правильной рациональной дроби

 $\frac{P(x)}{O(x)}$, где P(x) и Q(x) - многочлены, причём степень числителя ниже степени

знаменателя. Знаменатель правильной дроби может быть разложен на множители и представлен в виде

 $Q(x) = a_n(x - x_1)^{k_1} ... (x - x_r)^{k_r} (x^2 + p_1 x + q_1)^{l_1} ... (x^2 + p_s x + q_s)^{l_s},$ где $x_1,...x_r$ - действительные корни (простые или кратные), а каждый квадратный трёхчлен имеет отрицательный дискриминант, т.е. $D = p^2 - 4q < 0$.

Теорема. Всякую правильную рациональную дробь $\frac{P(x)}{Q(x)}$, знаменатель которой разложен на множители

 $O(x) = a_n(x - x_1)^{k_1} (x - x_2)^{k_2} ... (x^2 + p_1 x + q_1)^{l_1} ... (x^2 + p_s x + q_s)^{l_s}$

можно представить (и притом единственным образом) в виде следующей суммы простейших дробей:

$$\frac{P(x)}{Q(x)} = \frac{A_1}{x - x_1} + \frac{A_2}{(x - x_1)^2} + \dots + \frac{A_{k_1}}{(x - x_1)^{k_1}} + \frac{B_1}{x - x_2} + \frac{B_2}{(x - x_2)^2} + \dots + \frac{B_{k_2}}{(x - x_2)^{k_2}} + \dots$$

$$\dots + \frac{C_1 x + D_1}{x^2 + p_1 x + q_1} + \frac{C_2 x + D_2}{(x^2 + p_1 x + q_1)^2} + \dots + \frac{C_{l_1} x + D_{l_1}}{(x^2 + p_1 x + q_1)^{l_1}} + \dots$$

$$\dots + \frac{M_1 x + N_1}{x^2 + p_s x + q_s} + \frac{M_2 x + N_2}{(x^2 + p_s x + q_s)^2} + \dots + \frac{M_{l_s} x + N_{l_s}}{(x^2 + p_s x + q_s)^{l_s}},$$

где $A_1, A_2..., B_1, B_2..., C_1, D_1..., M_1, N_1...$ - некоторые действительные коэффициенты.

$$\frac{\text{Пример 1}}{(x-1)(x+1)^3} \cdot \int \frac{3x^3 + 9x^2 + 10x + 2}{(x-1)(x+1)^3} dx$$

Знаменатель рациональной дроби, стоящей под знаком интеграла, имеет два корня: простой $x_1 = 1$ и кратный $x_2 = -1$ (кратность которого $k_2 = 3$), поэтому разложение дроби на простейшие имеет вид

$$\frac{3x^3 + 9x^2 + 10x + 2}{(x-1)(x+1)^3} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2} + \frac{D}{(x+1)^3} =$$

Приведём правую часть к общему знаменателю

$$=\frac{A(x+1)^3 + B(x-1)(x+1)^2 + C(x-1)(x+1) + D(x-1)}{(x-1)(x+1)^3}$$

Приравняем числители исходной и полученной дробей

$$3x^3 + 9x^2 + 10x + 2 = A(x+1)^3 + B(x-1)(x+1)^2 + C(x-1)(x+1) + D(x-1)$$
 при $x = 1$ получим $24 = 8A$, отсюда следует, что $A = 3$; при $x = -1$ получим $-2 = -2D \Rightarrow D = 1$.

Для нахождения оставшихся неизвестными коэффициентов B и C применим метод неопределённых коэффициентов, для этого приравняем коэффициенты

при x^3 и при x^0 (или положим x=0) слева и справа от знака равенства

$$x^3$$
 $|3 = A + B \Rightarrow B = 3 - A = 0;$
 x^0 $|2 = A - B - C - D \Rightarrow C = A - B - D - 2 = 0.$

Таким образом, все коэффициенты найдены, и рациональная дробь может быть представлена в виде

$$\frac{3x^3 + 9x^2 + 10x + 2}{(x-1)(x+1)^3} = \frac{3}{x-1} + \frac{1}{(x+1)^3}$$

и, следовательно,

$$\int \frac{3x^3 + 9x^2 + 10x + 2}{(x - 1)(x + 1)^3} dx = \int \frac{3}{(x - 1)} dx + \int \frac{1}{(x + 1)^3} dx = 3\ln|x - 1| - \frac{1}{2(x + 1)^2} + C.$$

$$\frac{\text{Пример 2}}{(x+2)^2(x^2+2x+3)} dx$$

Знаменатель рациональной дроби, стоящей под знаком интеграла, имеет действительный кратный корень x=-2 (кратность которого $k_1=2$), квадратный трёхчлен x^2+2x+3 имеет D=-8<0, поэтому разложение дроби на простейшие имеет вид

$$\frac{2x^3 + 11x^2 + 16x + 10}{(x+2)^2(x^2 + 2x + 3)} = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{Mx + N}{x^2 + 2x + 3} =$$

Приведём правую часть к общему знаменателю

$$= \frac{A(x+2)(x^2+2x+3) + B(x^2+2x+3) + Mx(x+2)^2 + N(x+2)^2}{(x+2)^2(x^2+2x+3)}$$

Приравняем числители исходной и полученной дробей

$$2x^{3} + 11x^{2} + 16x + 10 = A(x+2)(x^{2} + 2x + 3) + B(x^{2} + 2x + 3) + + Mx(x+2)^{2} + N(x+2)^{2}.$$

при x = -2 получим 6 = 3B, отсюда следует, что B = 2.

Для нахождения оставшихся неизвестными коэффициентов A, M и N применим метод неопределённых коэффициентов, для этого приравняем коэффициенты при x^3 , x^2 , x^0 слева и справа от знака равенства

$$x^{3} \mid 2 = A + M;$$

 $x^{2} \mid 11 = 4A + B + 4M + N \Rightarrow 4A + 4M + N = 9;$
 $x^{0} \mid 10 = 6A + 3B + 4N \Rightarrow 6A + 4N = 4.$

Решая систему уравнений $\begin{cases} A+M=2,\\ 4(A+M)+N=9, & \text{найдём } N=1, \quad A=0, \quad M=2.\\ 6A+4N=4 \end{cases}$

Таким образом, все коэффициенты найдены, и рациональная дробь может быть представлена в виде

$$\frac{2x^3 + 11x^2 + 16x + 10}{(x+2)^2(x^2 + 2x + 3)} = \frac{2}{(x+2)^2} + \frac{2x+1}{x^2 + 2x + 3}$$

и, следовательно.

$$\int \frac{2x^3 + 11x^2 + 16x + 10}{(x+2)^2 (x^2 + 2x + 3)} dx = \int \frac{2}{(x+2)^2} dx + \int \frac{2x+1}{x^2 + 2x + 3} dx$$
 (=)
$$\int \frac{2}{(x+2)^2} dx = -\frac{2}{x+2};$$

$$\int \frac{2x+1}{x^2 + 2x + 3} dx = \left\| \frac{x^2 + 2x + 3 = (x+1)^2 + 2}{(2x+2)dx = d(x^2 + 2x + 3)} \right\| = \int \frac{2x+2-1}{x^2 + 2x + 3} dx =$$

$$= \int \frac{(2x+2)dx}{x^2 + 2x + 3} - \int \frac{dx}{(x+1)^2 + 2} = \int \frac{d(x^2 + 2x + 3)}{x^2 + 2x + 3} - \frac{1}{\sqrt{2}} \arctan \left(\frac{(x+1)}{\sqrt{2}} \right) =$$

$$= \ln \left| x^2 + 2x + 3 \right| - \frac{1}{\sqrt{2}} \arctan \left(\frac{(x+1)}{\sqrt{2}} + C \right);$$

$$(=) -\frac{2}{x+2} + \ln \left| x^2 + 2x + 3 \right| - \frac{1}{\sqrt{2}} \operatorname{arctg} \frac{x+1}{\sqrt{2}} + C.$$

1.5 Интегрирование тригонометрических функций.

Интегралы вида $\int \sin^m x \cos^n x dx$.

1) Если $m=2\kappa+1$ — нечётное положительное число, то полагают $\int \sin^m x \cos^n x \, dx = -\int \sin^{2k} x \cos^n x \, d(\cos x) =$

 $= -\int (1 - \cos^2 x)^k \cos^n x \, d(\cos x) = \|\cos x = t\| = -\int (1 - t^2)^k t^n dt$, т.е. интеграл сводится к интегрированию степенной функции относительно $\cos x$.

Аналогично поступают, если n — нечётное положительное число.

$$\underline{\Pi p u m e p 1}. \int \sqrt[4]{\cos x} \cdot \sin^5 x \, dx =$$

$$= -\int \sqrt[4]{\cos x} \cdot \sin^4 x \, d(\cos x) = -\int \sqrt[4]{\cos x} (\sin^2 x)^2 \, d(\cos x) =$$

$$= -\int \sqrt[4]{\cos x} (1 - \cos^2 x)^2 \, d(\cos x) = \|\cos x = t\| = -\int t^{1/4} (1 - t^2)^2 \, dt =$$

$$= -\int (t^{1/4} - 2t^{9/4} + t^{17/4}) \, dt = -\frac{4t^{5/4}}{5} + 2\frac{4t^{13/4}}{13} - \frac{4t^{21/4}}{21} + C =$$

$$= -2t^{5/4} \left(\frac{2}{5} - \frac{4}{13}t^2 + \frac{2}{21}t^4\right) = -2\sqrt[4]{\cos^5 x} \left(\frac{2}{5} - \frac{4}{13}\cos^2 x + \frac{2}{21}\cos^4 x\right) + C.$$

$$\frac{\prod \text{ример 2.}}{\sin^3 2x} \det = \int \frac{\cos^3 2x}{\sin^3 2x} dx = \frac{1}{2} \int \frac{\cos^2 2x \, d(\sin 2x)}{\sin^3 2x} = \frac{1}{2} \int \frac{(1 - \sin^2 2x) \, d(\sin 2x)}{\sin^3 2x} =$$

$$= \|\sin 2x = t\| = \frac{1}{2} \int \frac{(1 - t^2) \, dt}{t^3} = \frac{1}{2} \int \frac{dt}{t^3} - \frac{1}{2} \int \frac{t^2 \, dt}{t^3} = -\frac{1}{4t^2} - \frac{1}{2} \int \frac{dt}{t} =$$

$$= -\frac{1}{4t^2} - \frac{1}{2} \ln|t| + C = -\frac{1}{4\sin^2 2x} - \frac{1}{2} \ln|\sin 2x| + C.$$

2) Если m и n – чётные положительные числа, то подынтегральное выражение преобразуют с помощью формул

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x), \quad \cos^2 x = \frac{1}{2}(1 + \cos 2x), \quad \sin x \cdot \cos x = \frac{1}{2}\sin 2x.$$

$$\underline{\Pi} \underline{p} \underline{m} \underline{m} \underline{p} \underline{3}. \quad \int \cos^2 3x \cdot \sin^4 3x \, dx =$$

$$= \int (\cos 3x \cdot \sin 3x)^2 \sin^2 3x \, dx = \int \frac{\sin^2 6x}{4} \cdot \frac{1 - \cos 6x}{2} \, dx =$$

$$= \frac{1}{8} \int (\sin^2 6x - \sin^2 6x \cdot \cos 6x) \, dx = \frac{1}{8} \int \frac{1 - \cos 12x}{2} \, dx - \frac{1}{48} \int \sin^2 6x \, d(\sin 6x) =$$

$$= \frac{1}{16} \int dx - \frac{1}{16} \int \cos 12x \, dx - \frac{1}{48} \cdot \frac{\sin^3 6x}{3} = \frac{x}{16} - \frac{\sin 12x}{192} - \frac{\sin^3 6x}{144} + C.$$

3) Если m и n – чётные числа, но одно из них отрицательное, то интеграл сводится к интегралу от рациональной функции относительно $\operatorname{tg} x$ или $\operatorname{ctg} x$.

Пример 4.

$$\int \frac{dx}{\cos^4 x} = \int \frac{1}{\cos^2 x} \cdot \frac{dx}{\cos^2 x} = \int (1 + \lg^2 x) d(\lg x) = \lg x + \frac{1}{3} \lg^3 x + C.$$

Интегралы вида $\int R(\sin x, \cos x) dx$.

1) С помощью подстановки $tg\frac{x}{2} = t$, откуда

$$\sin x = \frac{2t}{1+t^2}$$
, $\cos x = \frac{1-t^2}{1+t^2}$, $dx = \frac{2dt}{1+t^2}$

интеграл приводится к интегралу от рациональной функции относительно переменной t.

Пример 1.

$$\int \frac{dx}{\cos x + 2\sin x + 3} = \int \frac{\frac{2dt}{1+t^2}}{\frac{1-t^2}{1+t^2} + 2\frac{2t}{1+t^2} + 3} = \int \frac{\frac{2dt}{1+t^2}}{\frac{1-t^2+4t+3+3t^2}{1+t^2}} = \int \frac{2dt}{1+t^2} = \int \frac{dt}{1+t^2} = \int \frac{dt}{1+t^2} = \arctan(t+1) + C = \int \frac{2dt}{2t^2+4t+4} = \int \frac{dt}{t^2+2t+2} = \int \frac{dt}{(t+1)^2+1} = \arctan(t+1) + C = \int \frac{2dt}{1+t^2}$$

$$= \arctan(t) \left(\operatorname{tg} \frac{x}{2} + 1 \right) + C.$$

2) Если $R(-\sin x, -\cos x) = R(\sin x, \cos x)$, то для приведения интеграла к рациональному виду можно применить подстановку tgx = t, тогда

$$\sin x = \frac{t}{\sqrt{1+t^2}}, \ \cos x = \frac{1}{\sqrt{1+t^2}}, \ dx = \frac{dt}{1+t^2}.$$

Пример 2.

$$\int \frac{dx}{1+3\sin^2 x} = \int \frac{\frac{dt}{1+t^2}}{1+3\frac{t^2}{1+t^2}} = \int \frac{dt(1+t^2)}{(1+t^2)(1+t^2+3t^2)} = \int \frac{dt}{1+4t^2} =$$

$$= \frac{1}{2} \int \frac{d(2t)}{1 + (2t)^2} = \frac{1}{2} \arctan 2t + C = \frac{1}{2} \arctan 2t +$$

Но можно обойтись и без подстановки.

Пример 3.

$$\int \frac{dx}{\sin^2 x + 3\sin x \cos x - \cos^2 x} = \int \frac{dx}{\cos^2 x \cdot (\lg^2 x + 3\lg x - 1)} =$$

$$= \int \frac{d(\lg x)}{(\lg^2 x + 3\lg x - 1)} = \int \frac{dt}{t^2 + 3t - 1} = \int \frac{dt}{(t + 3/2)^2 - 13/4} =$$

$$= \frac{1}{\sqrt{13}} \ln \left| \frac{t + 3/2 - \sqrt{13}/2}{t + 3/2 + \sqrt{13}/2} \right| = \frac{1}{\sqrt{13}} \ln \left| \frac{2\lg x + 3 - \sqrt{13}}{2\lg x + 3 + \sqrt{13}} \right| + C.$$

2. Определённый интеграл

Пусть на отрезке [a,b] определена функция f(x). Разобьём отрезок [a,b] на n частей точками $a=x_0 < x_1 < x_2 < ... < x_n = b$. На каждом интервале (x_{i-1},x_i) возьмём произвольную точку ξ_i и составим сумму $\sum_{i=1}^n f(\xi_i) \Delta x_i$, где $\Delta x_i = x_i - x_{i-1}$. Сумма, вида $\sum_{i=1}^n f(\xi_i) \Delta x_i$ называется интегральной суммой, а её предел при $\max \Delta x_i \to 0$, если он существует и конечен, называется определённым интегралом от функции f(x) в пределах от a до b и обозначается

$$\int_{a}^{b} f(x)dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

Функция f(x) в этом случае называется *интегрируемой* на [a, b].

Пусть f(x) непрерывна на [a, b]. Тогда на этом отрезке существует неопределённый интеграл $\int f(x) dx = F(x) + C$ и имеет место формула

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x) \Big|_{a}^{b},$$

которая называется формулой Ньютона-Лейбница.

Если $f(x) \ge 0$ на [a, b], то геометрически определённый интеграл выражает площадь криволинейной трапеции, ограниченной графиком функции y = f(x), осью Ox и прямыми x = a, x = b.

Примеры вычисления определённых интегралов

<u>Пример 1.</u>

$$\int_{2\sqrt{3}}^{6} \frac{dx}{x^2 \sqrt{x^2 - 9}}$$
. Заданный интеграл берётся с помощью тригономет-

рической подстановки (см. 1.2) $x = \frac{a}{\cos t}$, где a = 3.

$$\int_{2\sqrt{3}}^{6} \frac{dx}{x^2 \sqrt{x^2 - 9}} = \begin{vmatrix} x = \frac{3}{\cos t}, & dx = \frac{3\sin t}{\cos^2 t} dt \\ \sqrt{x^2 - 9} = 3 \operatorname{tg} t, & \\ x = 2\sqrt{3} \Rightarrow \cos t = \frac{\sqrt{3}}{2} \Rightarrow t = \frac{\pi}{6} \end{vmatrix} = \int_{\pi/6}^{\pi/3} \frac{3\sin t \cdot \cos^2 t}{\cos^2 t \cdot 9 \cdot 3 \operatorname{tg} t} dt = \\ x = 6 \Rightarrow \cos t = \frac{1}{2} \Rightarrow t = \frac{\pi}{3}$$

$$= \int_{\pi/6}^{\pi/3} \frac{\sin t}{9 \lg t} dt = \frac{1}{9} \int_{\pi/6}^{\pi/3} \frac{\sin t \cdot \cos t}{\sin t} dt = \frac{1}{9} \int_{\pi/6}^{\pi/3} \cos t dt = \frac{\sin t}{9} \Big|_{\pi/6}^{\pi/3} =$$

$$= \frac{1}{9} (\sin \pi/3 - \sin \pi/6) = \frac{1}{9} (\frac{\sqrt{3}}{2} - \frac{1}{2}) = \frac{\sqrt{3} - 1}{8} = 0,04.$$

$$\frac{\prod \text{PMMep 2}}{3} \cdot \int_{3}^{8} \frac{\sqrt{x+1}+1}{\sqrt{x+1}-1} dx = \begin{vmatrix} x+1=t^{2}, & x=t^{2}-1 \\ dx=2tdt, \\ x=3 \Rightarrow t=2 \\ x=8 \Rightarrow t=3 \end{vmatrix} = \int_{2}^{3} \frac{t+1}{t-1} 2tdt = 2 \int_{2}^{3} \frac{t^{2}+t}{t-1} dt = 2 \int_{2}^{3} \frac{t^{2}-1+t+1}{t-1} dt = 2 \int_{2}^{3} \frac{t^{2}-1}{t-1} dt + 2 \int_{2}^{3} \frac{t+1}{t-1} dt = 2 \int_{2}^{3} \frac{(t-1)(t+1)}{t-1} dt + 2 \int_{2}^{3} \frac{t-1+2}{t-1} dt = 2 \int_{2}^{3} \frac{(t-1)(t+1)}{t-1} dt + 2 \int_{2}^{3} \frac{t-1+2}{t-1} dt + 4 \int_{2}^{3} \frac{dt}{t-1} = 2 \left(\frac{t^{2}}{2} + t \right) \begin{vmatrix} 3 + 2 \int_{2}^{3} dt + 4 \ln|t-1| \begin{vmatrix} 3 - 2 \left(\frac{9}{2} + 3 - \frac{4}{2} - 2 \right) + 2 + 4 \ln 2 - 4 \ln 1 = 2 + 4 \ln 2 = 9 + 4 \cdot 0,693 = 11,77.$$

Пример 3.

$$\int_{0}^{\ln 3} \frac{dx}{e^{x} + 4} = \begin{vmatrix} e^{x} = t, & dt = e^{x} dx \\ x = 0 \Rightarrow t = e^{0} = 1 \\ x = \ln 3 \Rightarrow t = 3 \end{vmatrix} = \int_{1}^{3} \frac{dt}{t(t+4)} = \int_{1}^{3} \frac{dt}{t^{2} + 4t} = \int_{1}^{3} \frac{dt}{(t+2)^{2} - 4} = \frac{1}{4} \ln \left| \frac{t+2-2}{t+2+2} \right|_{1}^{3} = \frac{1}{4} \ln \left| \frac{t}{t+4} \right|_{1}^{3} = \frac{1}{4} \left(\ln \frac{3}{7} - \ln \frac{1}{5} \right) = \frac{1}{4} \ln \frac{15}{7} \approx 0,19.$$

2.1 Несобственные интегралы

1. Несобственным интегралом по бесконечному промежутку

 $\int\limits_a^\infty f(x)dx$ называется $\lim\limits_{b o\infty}\int\limits_a^b f(x)dx$, если этот предел существует и конечен. Таким образом,

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx.$$

Аналогично определяются интегралы $\int_{-\infty}^{b} f(x)dx$ и $\int_{-\infty}^{+\infty} f(x)dx$.

2. Если f(x) непрерывна при всех значениях $x \in [a, b]$, кроме точки c, в которой f(x) имеет разрыв второго рода, то

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\delta \to 0} \int_{c+\delta}^{b} f(x)dx,$$

если эти пределы существуют и конечны. В этом случае интеграл $\int f(x)dx$ называется несобственным интегралом от неограниченной функации.

Если приведённые выше пределы конечны, то говорят, что несобственные интегралы *сходятся*, если нет, – то *расходятся*.

<u>Примеры</u>. Вычислить несобственные интегралы или доказать их расходимость.

1)
$$\int_{0}^{\infty} \frac{x^{3} dx}{\sqrt[6]{(2x^{4} + 1)^{5}}} = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} \frac{d(2x^{4} + 1)}{\sqrt[6]{(2x^{4} + 1)^{5}}} = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1) = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1) = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1) = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1) = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1) = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1) = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1) = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1) = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1) = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1) = \lim_{b \to \infty} \frac{1}{8} \int_{0}^{b} (2x^{4} + 1)^{-5/6} d(2x^{4} + 1)^{-$$

$$=\frac{1}{8}\lim_{b\to\infty}\frac{(2x^4+1)^{-\frac{5}{6}+1}}{-\frac{5}{6}+1}\Bigg|_0^b=\frac{1}{8}\lim_{b\to\infty}\frac{(2b^4+1)^{\frac{1}{6}}}{\frac{1}{6}}=\frac{1}{8}\lim_{b\to\infty}6(2b^4+1)^{\frac{1}{6}}=\infty,\text{ т.е. данный}$$

интеграл расходится.

2)
$$\int_{0}^{\infty} \frac{dx}{2x^2 + 6x + 6} = \lim_{b \to \infty} \int_{0}^{b} \frac{dx}{2(x^2 + 3x + 3)} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + 3} = \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{x^2 + 2 \cdot \frac{3}{2}x + \frac{9}{4} - \frac{9}{4} + \frac{9}{4}$$

$$= \lim_{b \to \infty} \frac{1}{2} \int_{0}^{b} \frac{dx}{\left(x + \frac{3}{2}\right)^{2} + \frac{3}{4}} = \lim_{b \to \infty} \frac{1}{2} \cdot \frac{1}{\frac{\sqrt{3}}{2}} \operatorname{arctg} \frac{\left(x + \frac{3}{2}\right) \cdot 2}{\sqrt{3}} \Big|_{0}^{b} =$$

$$= \lim_{b \to \infty} \frac{1}{\sqrt{3}} \arctan \left(\frac{2x+3}{\sqrt{3}} \right)^b = \lim_{b \to \infty} \frac{1}{\sqrt{3}} \left(\arctan \left(\frac{2b+3}{\sqrt{3}} - \arctan \left(\frac{3}{\sqrt{3}} \right) \right) \right) = \frac{1}{\sqrt{3}} \left(\frac{\pi}{2} - \frac{\pi}{3} \right) =$$

$$=\frac{\pi}{6\sqrt{3}}=\frac{\pi\sqrt{3}}{18}$$
. Предел равен конечному числу, значит, интеграл сходится.

3)
$$\int_{0}^{2} \frac{x^2 dx}{\sqrt{64 - x^6}} (=)$$

При x=2 знаменатель подынтегральной функции равен нулю, следовательно, в этой точке функция имеет разрыв II рода. Поэтому заданный интеграл является несобственным интегралом от неограниченной функции.

$$(=) \lim_{\varepsilon \to 0} \int_{0}^{2-\varepsilon} \frac{x^2 dx}{\sqrt{64 - x^6}} = \lim_{\varepsilon \to 0} \int_{0}^{2-\varepsilon} \frac{x^2 dx}{\sqrt{64 - (x^3)^2}} = \lim_{\varepsilon \to 0} \frac{1}{3} \int_{0}^{2-\varepsilon} \frac{3x^2 dx}{\sqrt{64 - (x^3)^2}} = \lim_{\varepsilon \to 0} \frac{1}{3} \int_{0}^{2-\varepsilon} \frac{3x^2 dx}{\sqrt{64 - (x^3)^2}} = \lim_{\varepsilon \to 0} \frac{1}{3} \arcsin \frac{x^3}{8} \Big|_{0}^{2-\varepsilon} = \lim_{\varepsilon \to 0} \frac{1}{3} \left(\arcsin \frac{(2-\varepsilon)^3}{8} - 0 \right) = \lim_{\varepsilon \to 0} \frac{1}{3} \arcsin \frac{2^3}{8} = \frac{1}{3} \arcsin 1 = \frac{\pi}{6}, \text{ т.е. интеграл сходится.}$$

Признаки сходимости несобственных интегралов.

1. Пусть для всех $x \ge a$ справедливо неравенство $0 \le f(x) \le g(x)$.

Тогда: если интеграл $\int_{a}^{\infty} g(x)dx$ сходится, то сходится и интеграл $\int_{a}^{\infty} f(x)dx$;

если интеграл $\int\limits_a^\infty f(x)dx$ расходится, то расходится и $\int\limits_a^\infty g(x)dx$.

2. Пусть $\lim_{x\to\infty}\frac{f(x)}{g(x)}=A$, где A – конечное число $\neq 0$, то интегралы и

 $\int_{0}^{\infty} g(x)dx$ сходятся или расходятся одновременно.

3. Если сходится $\int\limits_{a}^{\infty} \left| f(x) \right| dx$, то сходится и $\int\limits_{a}^{\infty} f(x) dx$ (последний интеграл называется в этом случае абсолютно сходящимся).

На практике в качестве интеграла, с которым производится сравнение, обычно используют интеграл вида $\int\limits_a^\infty \frac{1}{x^p} dx$, который сходится при p>1 и расходится при $p\leq 1$.

<u>Пример</u>. Исследовать на сходимость интеграл $\int_{1}^{+\infty} \frac{x+1}{\sqrt{x^3}} dx$.

При
$$x \to +\infty$$
 имеем $\frac{x+1}{\sqrt{x^3}} = \frac{x\left(1+\frac{1}{x}\right)}{x^{3/2}} \sim \frac{1}{x^{1/2}}$. Так как интеграл $\int\limits_{1}^{+\infty} \frac{1}{x^{1/2}} dx$

расходится (p = 1/2 < 1), то и заданный интеграл также расходится.

Признаки сходимости несобственных интегралов от неограниченных функций аналогичны признакам сходимости 1–3.

2.2 Вычисление площадей плоских фигур

- 1. Если заданная фигура ограничена графиками функций $y=f_1(x)$, $y=f_2(x)$ и прямыми $x=a,\ x=b$, причём $f_1(x)\leq f_2(x)$ при всех $x\in [a,b]$, то площадь фигуры равна $S=\int\limits_a^b (f_2(x)-f_1(x))dx$.
- 2. Если криволинейная трапеция ограничена кривой, заданной параметрическими уравнениями $x = \varphi(t)$, $y = \psi(t)$, то площадь криволинейной трапеции

$$S = \int_{\alpha}^{\beta} \psi(t) \cdot \varphi'(t) dt$$
, где α и β определяются из уравнений $\varphi(\alpha) = a$, $\varphi(\beta) = b$.

3. Если фигура ограничена линией, заданной уравнением в полярной системе координат $\rho=\rho(\phi)$ и двумя лучами $\phi=\phi_1$ и $\phi=\phi_2$, то её площадь выражается интегралом

$$S = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} (\rho(\varphi))^2 d\varphi.$$

<u>Пример 1</u>. Вычислить площадь фигуры, ограниченной линиями

$$y = 3\sqrt{x-1}$$
 и $y = \frac{1}{2}x + 2$.

<u>Решение</u>. Находим точки пересечения данных кривых:

$$3\sqrt{x-1} = \frac{1}{2}x + 2$$
. Возводим обе части

уравнения в квадрат, получаем квадратное уравнение и находим его корни:

$$9(x-1) = \frac{1}{4}x^2 + 2x + 4, \quad \frac{1}{4}x^2 - 7x + 13 = 0, \quad D = 249 - 13 = 36,$$

$$x_{1,2} = \frac{7 \pm 6}{2 \cdot \frac{1}{4}} = 2(7 \pm 6), \quad x_1 = 2, \quad x_2 = 26.$$

Строим фигуру и вычисляем её площадь.

$$S = \int_{2}^{26} (3\sqrt{x-1} - 0.5x - 2) dx =$$

$$= 3 \frac{(x-1)^{3/2} \cdot 2}{3} \Big|_{2}^{26} - 0.5 \frac{x^{2}}{2} \Big|_{2}^{26} - 2x \Big|_{2}^{26} = 2 \cdot 125 - 2 - 169 + 1 - 52 + 4 = 32.$$

Пример 2. Вычислить площадь фигуры, ограниченной кривой, задан-

ной параметрическими уравнениями $\begin{cases} x = 32\cos^3 t; \\ y = 2\sin^3 t; \\ x = 12\sqrt{3}, (x \ge 12\sqrt{3}). \end{cases}$

<u>Решение.</u> Здесь $\varphi(t) = 32\cos^3 t$, $\psi(t) = 2\sin^3 t$. Строим фигуру и вычисляем площадь заштрихованной части, для чего находим пределы интегрирования из уравнения $32\cos^3 t = 12\sqrt{3}$, $\cos^3 t = \frac{3\sqrt{3}}{8}$, $\cos t = \frac{\sqrt{3}}{2}$, $t = \pm \frac{\pi}{6}$,

 $32\cos^3 t = 32$, $\cos^3 t = 1$, $\cos t = 1$, t = 0. Так как область симметрична относительно оси Ox, находим площадь только верхней её части S_1 , тогда вся площадь фигуры будет равна $S = 2S_1$.

Находим производную $\phi'(t) = -96\cos^2t\sin t$ и вычисляем S_1 :

$$S_{1} = -\int_{\pi/6}^{0} 2\sin^{3}t \cdot 96\cos^{2}t \sin t \, dt =$$

$$= 192 \int_{0}^{\pi/6} \sin^{4}t \cdot \cos^{2}t \, dt = 192 \int_{0}^{\pi/6} (\sin t \cdot \cos t)^{2} \sin^{2}t \, dt = 192 \int_{0}^{\pi/6} \frac{\sin^{2}2t}{4} \cdot \frac{1 - \cos 2t}{2} \, dt =$$

$$= 24 \int_{0}^{\pi/6} (\sin^{2}2t - \sin^{2}2t \cdot \cos 2t) \, dt = 24 \int_{0}^{\pi/6} \frac{1 - \cos 4t}{2} \, dt - 12 \int_{0}^{\pi/6} \sin^{2}2t \, d(\sin 2t) =$$

$$= 12t \Big|_{0}^{\pi/6} - 12 \cdot \frac{1}{4} \sin 4t \Big|_{0}^{\pi/6} - 12 \frac{\sin^{3}2t}{3} \Big|_{0}^{\pi/6} = 12 \frac{\pi}{6} - 3\sin \frac{2\pi}{3} - 4\sin^{3}\frac{\pi}{3} =$$

$$= 2\pi - 3\frac{\sqrt{3}}{2} - 4\frac{3\sqrt{3}}{8} = 2\pi - \frac{3\sqrt{3}}{2} - \frac{3\sqrt{3}}{2} = 2\pi - 3\sqrt{3}.$$

Следовательно, $S = 4\pi - 6\sqrt{3} \approx 2,17$.

<u>Пример 3</u>. Вычислить площадь фигуры, ограниченной кривой $\rho = 1 + \sqrt{2}\cos\phi$.

<u>Решение.</u> Найдём пределы интегрирования из условия $\rho(\phi) \ge 0$.

Следовательно,
$$1 + \sqrt{2}\cos\phi \ge 0$$
, $\cos\phi \ge -\frac{1}{\sqrt{2}}$, $-\frac{3\pi}{4} \le \phi \le \frac{3\pi}{4}$.

Но так как фигура расположена симметрично относительно полярной оси в силу чётности функции $\cos \varphi$, достаточно вычислить половину её площади S_1 :

$$S_{1} = \frac{1}{4} \int_{0}^{\frac{3\pi}{4}} (1 + \sqrt{2}\cos\varphi)^{2} d\varphi = \frac{1}{4} \int_{0}^{\frac{3\pi}{4}} (1 + 2\sqrt{2}\cos\varphi + 2\cos^{2}\varphi) d\varphi =$$

$$= \frac{1}{4} (\varphi + 2\sqrt{2}\sin\varphi) \left| \frac{\frac{3\pi}{4}}{0} + \frac{1}{2} \int_{0}^{\frac{3\pi}{4}} \frac{(1 + \cos 2\varphi)}{2} d\varphi = \frac{1}{4} \left(\frac{3\pi}{4} + 2\sqrt{2}\sin\frac{3\pi}{4} \right) +$$

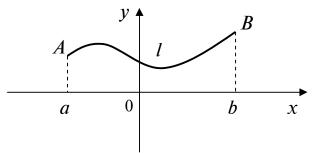
$$+ \frac{1}{4} \left(\varphi + \frac{1}{2}\sin 2\varphi \right) \left| \frac{\frac{3\pi}{4}}{0} = \frac{1}{4} \left(\frac{3\pi}{4} + 2\sqrt{2} \cdot \frac{\sqrt{2}}{2} + \frac{3\pi}{4} + \frac{1}{2}\sin\frac{3\pi}{2} \right) = \frac{1}{4} \left(\frac{3\pi}{2} + 2 - \frac{1}{2} \right) =$$

$$=\frac{1}{4}\left(\frac{3\pi}{2}+\frac{3}{2}\right)=\frac{3(\pi+1)}{8}$$
. Следовательно, $S=2S_1=\frac{3(\pi+1)}{4}\cong 3,1$.

2.3 Вычисление длины дуги плоской кривой.

1. Пусть дуга AB плоской кривой задана уравнением y = f(x), где f(x) — непрерывно дифференцируемая функция.

Тогда длина дуги



АВ находится по формуле

$$l = \int_{a}^{b} \sqrt{1 + (y'(x))^2} \, dx \, .$$

2. В случае, когда кривая задана параметрическими уравнениями $x = \varphi(t), \ y = \psi(t),$ где $\varphi(t), \ \psi(t)$ — непрерывно дифференцируемые функции, то длина дуги l вычисляется по формуле

$$l = \int_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} dt,$$

где α , β — значения параметра t , соответствующие концам дуги A и B.

3. Если гладкая кривая заданна уравнением в полярной системе координат $\rho = \rho(\phi)$, то длина дуги l вычисляется по формуле

$$l = \int_{\varphi_1}^{\varphi_2} \sqrt{(\rho(\varphi))^2 + (\rho'(\varphi))^2} d\varphi,$$

где ϕ_1 и ϕ_2 соответствуют концам дуги.

<u>Пример 2</u>. Вычислить длину дуги кривой $y = \ln \sin x$, $\frac{\pi}{3} \le \phi \le \frac{\pi}{2}$.

<u>Решение.</u> Длину дуги находим по формуле $l = \int_{a}^{b} \sqrt{1 + (y'(x))^2} dx$,

где
$$a = \frac{\pi}{3}$$
, $b = \frac{\pi}{2}$, $y' = \frac{\cos x}{\sin x}$, $1 + (y')^2 = 1 + \frac{\cos^2 x}{\sin^2 x} = \frac{1}{\sin^2 x}$.

Следовательно,
$$l = \int\limits_{\pi/3}^{\pi/2} \sqrt{\frac{1}{\sin^2 x}} \, dx = \int\limits_{\pi/3}^{\pi/2} \frac{1}{\sin x} \, dx = \ln \left| \operatorname{tg} \frac{x}{2} \right|_{\pi/3}^{\pi/2} =$$

$$= \ln \left| \operatorname{tg} \frac{\pi}{4} \right| - \ln \left| \operatorname{tg} \frac{\pi}{6} \right| = \ln 1 - \ln \frac{1}{\sqrt{3}} = \ln \sqrt{3} \cong 0,55 \, .$$

<u>Пример 2</u>. Вычислить длину дуги кривой, заданной параметрическими уравнениями

$$\begin{cases} x = 4(2\cos t - \cos 2t); \\ y = 4(2\sin t - \sin 2t). \end{cases} \quad (0 \le t \le \pi).$$

Решение. Длину дуги находим по формуле

$$l = \int_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} dt ,$$

где
$$\alpha = 0$$
, $\beta = \pi$, $x'(t) = 4(-2\sin t + 2\sin 2t) = 8(-\sin t + \sin 2t)$, $y'(t) = 4(2\cos t - 2\cos 2t) = 8(\cos t - \cos 2t)$,

$$(x')^2 + (y')^2 = 64(\sin^2 t - 2\sin t \sin 2t + \sin^2 2t + \cos^2 t - 2\cos t \cos 2t + \cos^2 t + \cos^2 t$$

$$+\cos^2 2t$$
) = $64(2 - 2(\cos 2t \cos t + \sin 2t \sin t)) = 128(1 - \cos t) =$

$$= 128 \cdot 2\sin^2\frac{t}{2} = 256\sin^2\frac{t}{2}.$$

Следовательно

$$l = \int_{0}^{\pi} \sqrt{256 \sin^{2} \frac{t}{2}} dt = \int_{0}^{\pi} 16 \sin \frac{t}{2} dt = -16 \cdot 2 \cos \frac{t}{2} \Big|_{0}^{\pi} = -32 \cos \frac{\pi}{2} + 32 \cos 0 =$$

$$= 32.$$

<u>Пример 3.</u> Вычислить длину дуги кривой, заданной уравнением в полярных координатах $\rho = 3e^{3\phi/4}, \quad 0 \le \phi \le \frac{\pi}{3}$.

Решение. Длину дуги находим по формуле

$$l = \int_{\varphi_1}^{\varphi_2} \sqrt{(\rho(\varphi))^2 + (\rho'(\varphi))^2} d\varphi,$$

где
$$\phi_1 = 0$$
, $\phi_2 = \frac{\pi}{3}$, $\rho'(\phi) = 3 \cdot \frac{3}{4} e^{3\phi/4}$,

$$\rho^2 + (\rho')^2 = 9e^{3\phi/2} + \frac{81}{16}e^{3\phi/2} = e^{3\phi/2} \left(9 + \frac{81}{16}\right) = \frac{225}{16}e^{3\phi/2}.$$

Следовательно,

$$l = \int_{0}^{\pi/3} \sqrt{\frac{225}{16}} e^{3\phi/2} d\phi = \int_{0}^{\pi/3} \frac{15}{4} e^{3\phi/4} d\phi = \frac{15}{4} \cdot \frac{4}{3} e^{3\phi/4} \Big|_{0}^{\pi/3} = 5e^{\pi/4} - 5 \cong 5,97.$$

ПРИЛОЖЕНИЕ

Формулы сокращённого умножения.

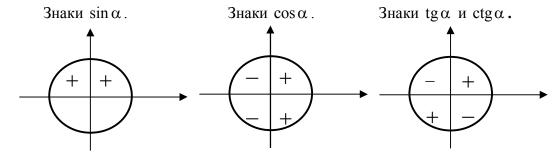
$$a^2 - b^2 = (a - b)(a + b);$$
 $(a \pm b)^2 = a^2 \pm 2ab + b^2;$ $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ или $(a + b)^3 = a^3 + b^3 + 3ab(a + b);$ $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ или $(a - b)^3 = a^3 - b^3 - 3ab(a - b);$ $a^3 + b^3 = (a + b)(a^2 - ab + b^2);$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2);$ $ax^2 + bx + c = a(x - x_1)(x - x_2),$

где x_1 и x_2 - корни уравнения $ax^2 + bx + c = 0$ находятся по формулам

$$\begin{cases} x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}, & \text{если } D > 0; \\ x_1 = x_2 = -\frac{b}{2a}, & \text{если } D = 0; \\ \text{нет действительных корней, если } D < 0, & \text{где} \quad D = \sqrt{b^2 - 4ac}. \end{cases}$$

Основные формулы тригонометрии

1. Знаки тригонометрических функций по четвертям



2. Формулы приведения

β	sinβ	cos β	tgβ	ctg β
-α	$-\sin\alpha$	$\cos \alpha$	$-tg\alpha$	$-\operatorname{ctg} \alpha$
$\pi/2-\alpha$	$\cos \alpha$	$\sin \alpha$	$\operatorname{ctg} \alpha$	tgα
$\pi/2 + \alpha$	$\cos \alpha$	$-\sin\alpha$	$-ctg\alpha$	$-tg\alpha$
$\pi - \alpha$	$\sin \alpha$	$-\cos\alpha$	$-tg\alpha$	$-\operatorname{ctg} \alpha$
$\pi + \alpha$	$-\sin\alpha$	$-\cos\alpha$	tgα	$\operatorname{ctg} \alpha$
$3\pi/2-\alpha$	$-\cos\alpha$	$-\sin\alpha$	$\operatorname{ctg} \alpha$	$tg\alpha$
$3\pi/2 + \alpha$	$-\cos\alpha$	$\sin \alpha$	$-ctg\alpha$	$-tg\alpha$
$2\pi - \alpha$	$-\sin\alpha$	$\cos \alpha$	$-tg\alpha$	$-\operatorname{ctg} \alpha$
$2\pi + \alpha$	$\sin \alpha$	$\cos \alpha$	$tg\alpha$	$ctg\alpha$

3. Соотношения между тригонометрическими функциями одного угла

$$tg\,\alpha = \frac{\sin\alpha}{\cos\alpha}\;; \qquad ctg\,\alpha = \frac{\cos\alpha}{\sin\alpha}; \qquad \sec\alpha = \frac{1}{\cos\alpha}\;; \qquad \csc\alpha = \frac{1}{\sin\alpha}\;;$$

$$\sin^2\alpha + \cos^2\alpha = 1\,; \qquad tg\,\alpha \cdot ctg\,\alpha = 1\,; \quad 1 + tg^2\,\alpha = \frac{1}{\cos^2\alpha}\,; \quad 1 + ctg^2\,\alpha = \frac{1}{\sin^2\alpha}\;.$$

4. Значения тригонометрических функций основных углов

		функции основн		
α	$\sin \alpha$	$\cos \alpha$	tgα	$\operatorname{ctg} \alpha$
0	0	1	0	_
$30^{\circ} = \pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$	$\sqrt{3}$
$45^{\circ} = \pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1	1
$60^{\circ} = \pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$	$\sqrt{3}/3$
$90^{\circ} = \pi/2$	1	0	_	0
$120^{\circ} = 2\pi/3$	$\sqrt{3}/2$	-1/2	$-\sqrt{3}$	$-\sqrt{3}/3$
$135^\circ = 3\pi/4$	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1	-1
$150^\circ = 5\pi/6$	1/2	$-\sqrt{3}/2$	$-\sqrt{3}/3$	$-\sqrt{3}$
$180^{\circ} = \pi$	0	-1	0	_
$270^{\circ} = 3\pi/2$	-1	0	-	0
$360^{\circ} = 2\pi$	0	1	0	_

5. Формулы сложения

$$\begin{split} \sin(\alpha+\beta) &= \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta \; ; \\ \cos(\alpha+\beta) &= \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \cos\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta \; ; \\ \tan(\alpha+\beta) &= \frac{\tan\alpha \cdot \cos\beta - \cos\alpha \cdot \cos\beta + \cos\alpha$$

6. Тригонометрические функции двойного угла

$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha ; \qquad \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha ;$$

$$tg 2\alpha = \frac{2tg \alpha}{1 - tg^2 \alpha} ;$$

7. Тригонометрические функции половинного угла

$$\sin^2\frac{\alpha}{2} = \frac{1-\cos\alpha}{2}; \quad \cos^2\frac{\alpha}{2} = \frac{1+\cos\alpha}{2}; \quad tg^2\frac{\alpha}{2} = \frac{1-\cos\alpha}{1+\cos\alpha};$$

8. Формулы преобразования суммы тригонометрических функций в произведение

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}; \qquad \sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2};$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}; \qquad \cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2};$$

9. Формулы преобразования произведений тригонометрических функций в сумму

$$\sin \alpha \cdot \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]; \qquad \cos \alpha \cdot \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right];$$
$$\sin \alpha \cdot \sin \beta = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right].$$

10. Формулы понижения степени

$$\cos^2\alpha = \frac{1+\cos 2\alpha}{2}\,;\quad \sin^2\alpha = \frac{1-\cos 2\alpha}{2}\quad \text{или}\quad 1+\cos 2\alpha = 2\cos^2\alpha\;;\quad 1-\cos 2\alpha = 2\sin^2\alpha\;.$$

Логарифмы

Основные формулы

Запись $c = \log_a b \ (a>0, \ a \ne 1, \ b>0)$ равнозначна записи $a^c = b$. Основное логарифмическое тождество $a^{\log_a b} = b$.

Формулы логарифмирования:

$$\log_a a = 1, \qquad \log_a 1 = 0,$$

$$\log_a (xy) = \log_a x + \log_a y, \quad \log_a \frac{x}{y} = \log_a x - \log_a y,$$

$$\log_a x^p = p \log_a x, p \neq 2n; \quad \log_a x^{2n} = 2n \log_a |x|.$$

Формулы перехода от одного основания к другому:

$$\log_a b = \frac{\log_c b}{\log_c a}, \qquad \log_a b = \frac{1}{\log_b a}, \qquad \log_a b \cdot \log_b a = 1,$$
$$\log_{a^m} b^n = \frac{n}{m} \log_a b, \qquad \log_{a^m} b = \frac{1}{m} \log_a b, \qquad \log_{a^n} b^n = \log_a b.$$

Таблица производных

	f(x)	f'(x)		f(x)	f'(x)		
1.	С	0	11.	cosu	$-\sin u \cdot u'$		
2.	x	1	12.	tg <i>u</i>	$\frac{1}{\cos^2 u} \cdot u'$		
3.	u^n	$nu^{n-1}\cdot u'$	13.	$\operatorname{ctg} u$	$-\frac{1}{\sin^2 u} \cdot u'$		
4.	\sqrt{u}	$\frac{1}{2\sqrt{u}} \cdot u'$	14.	arcsin u	$\frac{1}{\sqrt{1-u^2}} \cdot u'$		
5.	$\frac{1}{u}$	$-\frac{1}{u^2} \cdot u'$	15.	arccos u	$-\frac{1}{\sqrt{1-u^2}} \cdot u'$ $\frac{1}{1+u^2} \cdot u'$		
6.	a^u	$a^u \cdot \ln a \cdot u'$	16.	arctg u	$\frac{1}{1+u^2} \cdot u'$		
7.	e^u	$e^u \cdot u'$	17.	arcctg u	$\frac{1+u^2}{-\frac{1}{1+u^2}\cdot u'}$		
8.	$\log_a u$	$\frac{1}{u \ln a} \cdot u'$	18.	$\operatorname{sh} u$	$\operatorname{ch} u \cdot u'$		
9.	ln u	$\frac{1}{u} \cdot u'$	19.	ch u	$\operatorname{sh} u \cdot u'$		
10.	$\sin u$	$\cos u \cdot u'$					

Таблица неопределённых интегралов

1)
$$\int dx = x + C;$$
2)
$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1;$$
2a)
$$\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C;$$
2b)
$$\int \frac{dx}{x^{2}} = -\frac{1}{x} + C;$$
3)
$$\int \frac{dx}{x} = \ln|x| + C;$$
4)
$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C, \quad (a > 0; a \neq 1);$$
5)
$$\int e^{x} dx = e^{x} + C;$$
6)
$$\int \sin x dx = -\cos x + C;$$
7)
$$\int \cos x dx = \sin x + C;$$
8)
$$\int \frac{dx}{\sin^{2} x} = -\cot x + C;$$
9)
$$\int \frac{dx}{\cos^{2} x} = \tan x + C;$$
10)
$$\int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a} \arctan \frac{x}{a} + C;$$
11)
$$\int \frac{dx}{x^{2} + a^{2}} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C = -\frac{1}{2a} \ln \left| \frac{x + a}{x - a} \right| + C;$$

12)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C;$$

13)
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C;$$

14)
$$\int \frac{dx}{\sin x} = \ln \left| \lg \frac{x}{2} \right| + C = \ln \left| \frac{1}{\sin x} - \operatorname{ctg} x \right| + C;$$

15)
$$\int \frac{dx}{\cos x} = \ln \left| \operatorname{tg} \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C = \ln \left| \frac{1}{\cos x} + \operatorname{tg} x \right| + C.$$

Таблицы вариантов

No	Номера задач для контрольных работ в I семестре											
варианта ¹			•		. p. №						. p. №	2
	1	2	3	4	5	6	7	8	9	10	11	12
01	1	12	23	34	45	56	67	78	89	100	101	112
02	2	11	24	35	46	57	68	79	90	99	102	113
03	3	20	25	36	47	58	69	80	81	98	103	114
04	4	19	26	37	48	59	70	79	82	97	104	115
05	5	18	27	38	49	60	61	78	83	96	105	116
06	6	17	28	39	50	51	62	77	84	95	106	117
07	7	16	29	40	41	52	63	75	85	94	107	118
08	8	15	30	31	42	53	64	76	86	93	108	119
09	9	14	21	32	43	54	65	74	87	92	109	120
10	10	13	22	33	44	55	66	73	88	91	110	111
11	2	11	24	35	46	56	67	72	89	100	109	112
12	3	20	25	36	47	57	68	71	90	91	108	113
13	4	19	26	37	48	58	69	80	89	92	107	114
14	5	18	27	38	49	59	70	71	88	93	106	115
15	6	17	28	39	50	60	62	72	87	94	105	116
16	7	16	29	40	45	51	63	73	86	95	104	117
17	8	15	30	34	46	52	64	74	85	96	103	118
18	9	14	23	35	47	53	65	75	84	97	102	119
19	10	13	24	36	48	54	66	76	83	98	101	120
20	1	12	25	37	49	55	67	77	82	99	102	119
21	3	20	26	38	50	56	68	78	81	100	103	118
22	4	19	27	39	41	57	69	79	90	99	104	117
23	5	18	29	33	42	58	70	80	81	98	105	116
24	6	17	28	32	43	59	61	79	82	97	106	115
25	7	16	21	31	44	60	62	78	83	96	107	114
26	8	15	22	40	45	51	63	77	84	95	108	113
27	9	14	30	36	46	52	64	76	85	94	109	112
28	10	13	29	37	47	53	65	75	86	93	110	111
29	1	12	28	39	48	54	66	74	87	92	101	120
30	2	11	27	38	49	55	67	73	88	91	102	119

¹ Номер варианта определяется по двум последним цифрам зачетной книжки. Если **пред-последняя** цифра 3, 4 или 5, то из неё надо вычесть 3. Если **предпоследняя** цифра 6, 7 или 8, то из неё надо вычесть 6. Если же **предпоследняя** цифра 9, то из неё надо вычесть 9. Например, если две последние цифры 56, то вариант 26; если две последние цифры 75, то вариант 15; если две последние цифры 98, то вариант 08.

Каф ВиПМ

№ ва-	Номера задач для контрольных работ во II семестре															
риан			К. р.	№ 3				К. р.	№ 4		К. р. № 5					
та	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
01	121	132	143	151	162	173	181	192	205	213	224	231	242	253	265	
02	122	133	144	152	163	174	182	193	206	214	225	232	243	254	266	
03	123	134	145	153	164	175	183	19	207	215	226	233	244	255	267	
04	124	135	146	154	165	176	184	195	208	216	227	234	245	256	268	
05	125	136	147	155	166	177	185	196	209	217	228	235	246	257	269	
06	126	137	148	156	167	178	186	197	210	218	229	236	247	258	270	
07	127	138	149	157	168	179	187	198	201	219	230	237	248	259	261	
08	128	139	150	158	169	180	188	199	202	220	221	238	249	260	262	
09	129	140	141	159	170	171	189	200	203	211	222	239	250	251	263	
10	130	131	142	160	161	172	190	199	204	212	223	240	249	252	264	
11	122	133	149	151	162	173	182	198	205	213	224	239	248	253	265	
12	123	134	148	152	163	174	183	197	206	214	225	238	247	254	266	
13	124	135	147	153	164	175	184	196	207	215	226	237	246	255	267	
14	125	136	146	154	165	176	185	195	208	216	227	236	245	256	268	
15	126	137	145	155	166	177	186	194	209	217	228	235	244	257	269	
16	127	138	144	156	167	178	187	193	210	218	229	234	243	258	270	
17	128	139	143	157	168	179	188	192	205	219	230	233	242	259	269	
18	129	140	142	158	169	180	189	191	206	220	229	232	241	260	268	
19	130	132	141	159	170	172	190	192	207	213	228	231	250	259	267	
20	121	134	150	160	162	173	181	193	208	214	227	232	249	258	266	
21	123	135	149	151	163	174	183	194	209	215	226	233	248	257	265	
22	124	136	148	152	164	175	184	195	210	216	225	234	247	256	264	
23	125	137	147	153	165	176	185	196	201	217	224	235	246	255	263	
24	126	138	146	154	166	177	186	197	202	218	223	236	245	254	262	
25	127	139	145	155	167	178	187	198	203	219	222	237	244	253	261	
26	128	140	144	156	168	179	188	199	204	220	221	238	243	252	270	
27	129	131	143	157	169	180	189	200	205	211	222	239	242	251	265	
28	130	133	142	158	170	171	190	199	206	212	223	240	241	253	266	
29	122	134	141	159	161	172	182	198	207	213	224	231	250	254	267	
30	123	135	150	160	162	173	183	197	208	214	225	232	249	255	268	