

НОУ СПО Челябинский юридический колледж

		УТВЕРЖДАЮ
	Π_{J}	редседатель ПЦК
		Кондаков С.А.
«		2014 г.

Задания к контрольной работе

по дисциплине Математика

для студентов заочной формы обучения с применением дистанционных образовательных технологий специальности 38.02.01 «Экономика и бухгалтерский учет (по отраслям)» ОДОБРЕНА

на заседании предметно-цикловой комиссии «Математики, информатики и вычислительной техники»

Протокол № 1от 24 сентября 2013 г.

Председатель

предметно-цикловой

комиссии

С.А.Кондаков

Составлены на основе федерального образовательного государственного стандарта СПО соответствии учебным рабочей планом программой дисциплины «Математика» специальности ПО 38.02.01 «Экономика и бухгалтерский учет (по отраслям)»

Составитель: С.А.Кондаков

преподаватель предметно-цикловой комиссии «Математики, информатики и вычислительной техники» Челябинского юридического колледжа

Рецензенты: Г.В. Киреева

преподаватель математики Челябинского юридического колледжа

М.В. Булгакова

преподаватель математики Южно-Уральского профессионального института

Пояснительная записка

Учебная дисциплина «Математика» относится математическому и обще естественнонаучному циклу.

Главной целью изучения дисциплины «Математика» является формирование у студентов практических навыков математической культуры, подразумевающих овладение разнообразными приемами точного, последовательного, обоснованного мышления и приобретаемых посредством решения задач и упражнений. Формирование практических навыков математического мышления: анализируются графики различных зависимостей, отмечаются их особенности, проводится математическая обработка тех или иных статистических данных.

В результате изучения дисциплины студент должен: знать:

- значение математики в профессиональной деятельности и при освоении основной профессиональной образовательной программы;
- основные математические методы решения прикладных задач в области профессиональной деятельности;
- основные понятия и методы математического анализа, дискретной математики, линейной алгебры, теории комплексных чисел, теории вероятностей и математической статистики;
 - основы интегрального и дифференциального исчисления.
 уметь:
 - решать прикладные задачи в области профессиональной деятельности. овладевать общими компетенциями, включающими в себя способность
- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Анализировать социально-экономические и политические проблемы и процессы, использовать методы гуманитарно-социологических наук в различных видах профессиональной и социальной деятельности.
- ОК 3. Организовывать свою собственную деятельность, определять методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 4. Решать проблемы, оценивать риски и принимать решения в нестандартных ситуациях.
- ОК 5. Осуществлять поиск, анализ и оценку информации, необходимой для постановки и решения профессиональных задач, профессионального и личностного развития.
- ОК 6. Работать в коллективе и команде, обеспечивать ее сплочение, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
 - ОК 8. Быть готовым к смене технологий в профессиональной деятельности.

ОК 9. Уважительно и бережно относиться к историческому наследию и культурным традициям, толерантно воспринимать социальные и культурные традиции.

профессиональными компетенциями, соответствующие основным видам профессиональной деятельности

- ПК 1.1. Составлять земельный баланс района
- ПК 1.3. Готовить предложения по определению экономической эффективности использования имеющегося недвижимого имущества.
- ПК 1.6. Анализировать варианты применения моделей территориального управления.
- ПК 1.7. Определять инвестиционную привлекательность проектов застройки территорий.
 - ПК 2.1. Выполнять комплекс кадастровых процедур.
 - ПК 2.2. Определять кадастровую стоимость земель.
- ПК 3.1. Выполнять работы по картографо-геодезическому обеспечению территорий, создавать графические материалы.
- ПК 4.1. Осуществлять сбор и обработку необходимой и достаточной информации об объекте оценки и аналогичных объектах.
- ПК 4.2. Производить расчеты по оценке объекта оценки на основе применимых подходов и методов оценки.
- ПК 4.3. Обобщать результаты, полученные подходами, и давать обоснованное заключение об итоговой величине стоимости объекта оценки.
- ПК 4.4. Рассчитывать сметную стоимость зданий и сооружений в соответствии с действующими нормативами и применяемыми методиками.
- ПК 4.5. Классифицировать здания и сооружения в соответствии с принятой типологией.
- ПК 5.1. Организовывать свою деятельность как индивидуального предпринимателя (кадастрового инженера) или коллектива организации в соответствии с вышеприведенными видами деятельности.

Контрольная работа проводится в целях закрепления полученных теоретических знаний и выработки навыков их применения при решении задач.

Перед выполнением заданий необходимо ознакомиться с теоретическим материалом, а также со списком информационного обеспечения. Контрольная работа составлена в 10 вариантах, каждый их которых содержит 6 заданий.

Номер варианта контрольной работы зависит от номера студенческого билета (определяется по последней цифре). Например:

Номер студенческого билета	Номер выполняемого варианта
№ 11 1	Первый
Nº 112	Второй
Nº 113	Третий
№ 11 4	Четвертый
Nº 115	Пятый

№ 11 6	Шестой
№ 11 7	Седьмой
№ 118	Восьмой
№ 11 9	Девятый
№ 12 0	Десятый

Контрольная работа оформляется в тетради в клеточку, после выполнения заданий составляется таблица.

№	1a	16	1в	1г	2a	26	3	4a	46	4в	5a	56	5в	6a	66	6в
отметка о выполнении																

Критерии оценок

Контрольная работа оценивается по пятибалльной системе.

- **5 баллов** контрольная работа выполнена в объёме 91%-100%, сделаны пояснения к решениям, аккуратно оформлена.
- **4 балла** контрольная работа выполнена в объёме 75%-90%, сделаны пояснения к решениям, аккуратно оформлена.
- **3 балла** контрольная работа выполнена в объёме 51%-74%, сделаны частичные пояснения, аккуратно оформлена.
 - 2 балла контрольная работа выполнена в объёме менее 51%.

Задание № 1

Вычислить пределы:

Вариант № 1

a)
$$\lim_{x \to \sqrt{2}} \frac{x^4 - 1}{x^2 + 1}$$

6)
$$\lim_{x \to +\infty} \frac{x^4 - 1}{2x^3 + 3}$$

$$\mathbf{B}) \lim_{x\to 0} \frac{\sin 3x}{x}$$

$$\Gamma$$
) $\lim_{x\to\infty} \left(1+\frac{x}{x+1}\right)^x$

Вариант № 2

a)
$$\lim_{x \to -2} \frac{8 + x^3}{x + 2}$$

$$6) \lim_{x \to +\infty} \frac{1 + x^2 - x^5}{7 + x^5}$$

B)
$$\lim_{x\to 0} \frac{\sin\frac{x}{3}}{x}$$

$$\Gamma) \lim_{x\to\infty} \left(1+\frac{8}{x}\right)^x$$

Вариант № 3

a)
$$\lim_{x \to -1} \frac{x^3 + x^2 - 11}{8x^2 + 5}$$

$$\text{6) } \lim_{x \to +\infty} \frac{7x - 9x^2}{x^2 + 4x - 2}$$

$$\Gamma) \lim_{x \to \infty} \left(1 + \frac{x}{x^2 + 3} \right)^{-1}$$

Вариант № 4

a)
$$\lim_{x \to 3} \frac{9 - x^2}{3 - x}$$

$$6) \lim_{x \to -\infty} \frac{7 - x}{18 + x}$$

$$B) \lim_{x\to 0} \frac{\sin\frac{x}{5}}{x}$$

$$\Gamma) \lim_{x \to \infty} \left(1 + \frac{5x}{3x^2 + 7} \right)^x$$

Вариант № 5

a)
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x - 1}$$

$$6) \lim_{x \to +\infty} \frac{x^4 - 1}{2x^3 + 3}$$

$$B) \lim_{x\to 0} \frac{\sin^6 x}{x^6}$$

$$\Gamma$$
) $\lim_{x\to\infty} \left(1+\frac{7}{2+x}\right)^{x}$

Вариант № 6

a)
$$\lim_{x\to 1} \frac{\sqrt{5-x}+2}{\sqrt{2-x}-3}$$

$$\text{6) } \lim_{x \to +\infty} \frac{5x^2 + 2x + 7}{x^2 - 3x - 5}$$

$$B) \lim_{x\to 0} \frac{\sin^3 x}{x^3}$$

$$\Gamma) \lim_{x \to \infty} \left(\frac{x-2}{x+2} \right)^{x}$$

Вариант № 7

a)
$$\lim_{x \to 2} \frac{4 - x^2}{3 - x}$$

$$6) \lim_{x \to +\infty} \frac{4+x}{x}$$

$$B) \lim_{x\to 0} \frac{\sin 10x}{x}$$

$$\Gamma) \lim_{x \to \infty} \left(\frac{x^2 + 3x - 1}{x^2 + x + 1} \right)^{x}$$

Вариант № 8

a)
$$\lim_{x \to -2} \frac{2+x}{x^2 + 4x + x}$$

$$6) \lim_{x \to -\infty} \frac{12x^2 + 5}{4x^2 - 9}$$

B)
$$\lim_{x \to 0} \frac{\sin \frac{x}{10}}{x}$$

$$\Gamma \lim_{x \to \infty} \left(1 + \frac{7x}{7 + x^2} \right)^x$$

Вариант № 9

a)
$$\lim_{x \to 3} \frac{x-3}{x^3 - 27}$$

$$6) \lim_{x \to +\infty} \frac{1 - 2x}{3x + 2}$$

$$B) \lim_{x\to 0} \frac{\sin 7x}{x}$$

r)
$$\lim_{x \to \infty} \left(\frac{x^3 + x^2 + 1}{x^3 + 1} \right)^x$$

Вариант № 10

a)
$$\lim_{x \to 0} \frac{\sqrt{x} + x^4 - 1}{\sqrt{x+1} + x}$$

$$6) \lim_{x \to +\infty} \frac{x-8}{8x}$$

$$B) \lim_{x \to 0} \frac{\sin \frac{x}{7}}{x}$$

$$\Gamma) \lim_{x \to \infty} \left(\frac{x+1}{x+7} \right)^x$$

Задание № 2

Продифференцировать функцию:

Вариант № 1

a)
$$y(x) = \frac{1}{3}x^3 + \frac{x^2}{2} - 3x + \frac{4}{x} + 0.9$$

6)
$$y = \sqrt{4 - x^2} + tg^2 3x$$

Вариант № 2

a)
$$z(x) = \frac{1}{4} - 0.5 + 3x^2 - \frac{1}{x^3} + x^4$$

6)
$$y = \sqrt[3]{(x^3 + 1)^2} + tg^2 \sqrt{x}$$

Вариант № 3

a)
$$t(x) = 2\sin x + 5x^2 - \frac{1}{x} + \sqrt{3}$$

$$6) y = \sqrt{\sin 2x} + tg^5 \frac{x}{2}$$

Вариант № 4

a)
$$h(x) = \frac{1}{5}x^5 - \frac{1}{4}x^4 + \cos x - 0.09$$

$$\int 5y = \sin^3 5x^2 + \frac{1}{3}tg^3 \frac{x}{3}$$

Вариант № 5

a)
$$g(x) = 4tgx + 4x^3 - 4 \cdot \frac{2}{x^2} + \frac{\sqrt{2}}{5}$$

$$6) \ \ y = tgx \cdot \sin^2 x$$

Вариант № 6

a)
$$f(x) = \frac{x^6}{6} + 5x^4 - ctgx + \sqrt{7}x$$

$$6) y = \arcsin \frac{2x^3}{1+x^6}$$

Вариант № 7

a)
$$p(x) = \frac{1}{x^3} - \frac{1}{x^2} + \frac{1}{x} + x^{2.5}$$

$$\text{6) } y = \arccos\frac{9 - x^2}{9 + x^2}$$

Вариант № 8

a)
$$q(x) = 7\sin x - 5\cos x + 4x^{-5} + \frac{2}{3}$$

6)
$$y = 5x^4 \cdot \ln(x^5 + 3)$$

Вариант № 9

a)
$$r(x) = x^{-3} + x^{-2} - x^{-1} + 2.5x + 0.161$$

$$6) y = \frac{1}{ctg^2x} + \frac{1}{\sqrt[3]{ctgx}}$$

Вариант № 10

a)
$$\varphi(x) = \sqrt{225}x^2 + \frac{15}{x} + tgx - ctgx$$

$$6) y = \frac{1}{ctg^2x} + \frac{1}{\sqrt[3]{ctgx}}$$

Задание № 3

Исследовать функцию и построить ее график:

	,
Вариант № 1	$y = \frac{1}{x^2 - 2}$
Вариант № 2	$y = \frac{2}{9 - x^2}$
Вариант № 3	$y = \frac{3}{x+5}$
Вариант № 4	$y = \frac{4}{5x - 10}$
Вариант № 5	$y = \frac{5}{1 - x^2}$
Вариант № 6	$y = \frac{6}{x - 7}$
Вариант № 7	$y = \frac{7}{16 - x^2}$
Вариант № 8	$y = \frac{8}{2x - 3}$
Вариант № 9	$y = \frac{9}{3x - x^2}$
Вариант № 10	$y = \frac{10}{x^2 + 7x}$

Задание № 4

Вычислить неопределенный интеграл:

Вариант № 1										
$\int (3x^4 - 5x^2 + 6x - 7)dx$	$\int \left(\frac{5}{\sin^2 x} - \frac{3}{\sqrt{1 - x^2}}\right) dx$	$\int \left(6\cos x - \frac{4}{1+x^2}\right) dx$								
Вариант № 2										
$\int (x\sqrt[3]{x} - \frac{6}{x^2}) dx$	$\int \frac{x^4 dx}{1 + x^2}$	$\int (e^x + 7x^2) dx$								
	Вариант № 3									
$\int x^3 \sqrt[4]{x} dx$	$\int \frac{dx}{\sin^2 x \cos^2 x}$	$\int (4x-7)^8 dx$								
	Вариант № 4									
$\int \frac{x^3 + 3x^2 - \sqrt[3]{x} + 1}{x\sqrt{x}} dx$	$\int \frac{x^3 + 3x^2 - \sqrt[3]{x} + 1}{x\sqrt{x}} dx \qquad \int \frac{(x^6 + 1)dx}{x^2 + 1} \qquad \int \frac{dx}{\sqrt[3]{8x - 15}}$									
	Вариант № 5									
$\int \frac{x^4 - 16}{x^2 + 4} dx$	$\int \frac{\sqrt{1+x^2}}{\sqrt{1-x^4}} dx$	$\int xe^x dx$								
	Вариант № 6									
$\int \left(\frac{3}{\cos^2 x} - \frac{4}{\sin^2 x}\right) dx$	$\int \frac{x^3 - x^2 + x - 1}{x^2 + 1} dx$	$\int \frac{dx}{\sqrt[3]{5x-3}}$								
	Вариант № 7									
$\int (6\cos x - 7\sin x)dx$	$\int tg^2xdx$	$\int x^2 \sin 2x dx$								
	Вариант № 8									
$\int \frac{\sqrt{1-x^2} + 1 + x^2}{(1+x^2)\sqrt{1-x^2}} dx$	$\int ctgxdx$	$\int \sqrt{6x+11} dx$								
Вариант № 9										
$\int \left(8\sin x - \frac{9}{\cos^2 x}\right) dx$	$\int \frac{x^2 - 4x\sqrt{x} + 4x}{\left(\sqrt{x} - 2\right)^2} dx$	$\int \frac{x^2}{\sqrt{1-x^6}} dx$								
	Вариант № 10									
$\int \left(\frac{6}{\sqrt{1-x^2}} + \frac{3}{1+x^2}\right) dx$	$\int (x^3 + 3^x) dx$	$\int x \sin x^2 dx$								

<u>Задание № 5</u>

Вычислить определенный интеграл:

Вариант № 1									
a) $\int_{0}^{1} (5x^4 - 8x^3) dx$	$\left(5\right)\int_{1}^{4} \frac{5\sqrt{x}}{x} dx$	$\int_{0}^{\frac{\pi}{2}} \sin 2x dx$							
Вариант № 2									
a) $\int_{-1}^{1} (6x^3 - 5x) dx$	$6) \int_{1}^{4} (x^{2} - 6x + 9) dx$	$\int_{0}^{5} \frac{dx}{\sqrt{25-x^2}}$							
Вариант № 3									
$\int_{1}^{3} (x^2 - 2x) dx$	$0 \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{6}{\cos^2 2x} dx$	B) $\int_{-2}^{2} \frac{dx}{\sqrt{16-x^2}}$							
	Вариант № 4								
$a) \int_{1}^{2} \frac{dx}{x^{3}}$	$\int_{1}^{6} \frac{6x}{\sqrt{x}} dx$	B) $\int_{-1}^{1} (x+4)^3 dx$							
	Вариант № 5								
a) $\int_{1}^{8} \sqrt[3]{x} dx$	$6) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin x + \cos x)^2 dx$	$\mathbf{B} \int_{1}^{4} \left(x + \frac{\sqrt{x}}{x} \right) dx$							
	Вариант № 6								
a) $\int_{\frac{\pi}{2}}^{\pi} 2 \sin x dx$	$0) \int_{1}^{3} (x^{2} - 3x + 4) dx$	$B) \int_{0}^{4} \frac{dx}{\sqrt{3x+4}}$							
	Вариант № 7								
a) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \frac{dx}{\sin^2 x}$	$\int_{0}^{\frac{\pi}{6}} \frac{4}{\cos^2 2x} dx$	$\int_{0}^{2} (1+2x)^{3} dx$							
	Вариант № 8								
a) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{2} dx$	$\left(\vec{0} \right) \int_{-1}^{2} x^4 dx$	$\mathbf{B} \int_{0}^{2\pi} \left(\sin \frac{x}{4} + \cos \frac{x}{4} \right)^{2} dx$							
Вариант № 9									
$a) \int_{0}^{\frac{\pi}{3}} \frac{\sin x}{3} dx$	$\left(5\right)\int_{0}^{\frac{\pi}{2}}\cos xdx$	$B) \int_{-2}^{6} \frac{dx}{\sqrt{x+3}}$							
	Вариант № 10								
$a) \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} 8\cos x dx$	$\int_{1}^{3} x^{3} dx$	$B) \int_{0}^{3\pi} \frac{dx}{\cos^2 \frac{x}{9}}$							

Задание № 6

Вычислить площадь криволинейной трапеции, ограниченной графиками функций:

Вариант № 1										
a) $y = x^4; x = -1; x = 1$	6) $y = -x^2 - 4x$	B) $y = \sin x; x = \frac{\Pi}{4}; x = 0$								
Вариант № 2										
a) $y = x^2 - 4x + 5; x = 0; x = 4$	6) $y = \sqrt{x}$; $x=0$; $x=1$	B) $y = \cos x; x = \frac{\Pi}{2}; x = 0$								
	Вариант № 3									
a) $y = -2x; x = 3$	6) $y = x^2 - 4x + 5; y = 5$	B) $y = \sin x; x = \frac{\Pi}{2}; x = 0$								
	Вариант № 4									
a) $y = -2x; x = 1$	б) $y = 1 - x^3$	B) $y = 1 - x$; $y = 3 - 2x - x^2$								
	Вариант № 5									
a) $y = -2x; x = -2$	$6) y = -x^2 - 2x$	B) $y = \cos x; x = -\frac{\pi}{2}; x = \frac{\pi}{2}$								
	Вариант № 6									
a) $y = x; x = -2$	6) $y = 1 + x^3$	B) $y = x^2; y = \frac{1}{x^2}; x = 2$								
	Вариант № 7									
a) $y = 2x$; $x = -2$	$6) \ y = -x^2 - x$	B) $y = \sin x; x = \frac{5\Pi}{4}; x = 0$								
	Вариант № 8									
a) $y = x^2$; $y = \frac{1}{x^2}$; $x = -2$	6) $y = -x^2 + 4$	B) $y = \sqrt{x} \ x = 1; x = 4;$								
Вариант № 9										
a) $y = 3x; x = -1$	$ 6) \ \ y = -x^2 + 9 $	B) $y = \cos x; x = -\frac{\Pi}{2}; x = 0$								
	Вариант № 10									
a) $y = -2x$; $x = -4$	$6) y = -x^2 - 3x$	B) $y = \cos x; x = \frac{\pi}{2}; x = \pi$								

Образцы решения задач

к заданию № 1

Пример № 1

$$\lim_{x\to 7} \frac{3x+5}{x-5} = \frac{3\times 7+5}{7-5} = 13,$$

Пример № 2

$$\lim_{x \to 1} \frac{2x^2 - x - 1}{(x - 1)^2} = \lim_{x \to 1} \frac{2\left(x + \frac{1}{2}\right)(x - 1)}{\left(x - 1\right)^2} = \lim_{x \to 1} \frac{2x + 1}{x - 1} = \infty$$

Пример № 3

$$\lim_{x \to 2} \frac{\sqrt{x+2} - \sqrt{6-x}}{x^2 - 4} = \lim_{x \to 2} \frac{\left(\sqrt{x+2} - \sqrt{6-x}\right)\left(\sqrt{x+2} + \sqrt{6-x}\right)}{\left(x^2 - 4\right)\left(\sqrt{x+2} + \sqrt{6-x}\right)} = \lim_{x \to 2} \frac{2(x-2)}{(x-2)(x+2)(\sqrt{x+2} + \sqrt{6-x})} = \lim_{x \to 2} \frac{2}{(x+2)(\sqrt{x+2} + \sqrt{6-x})} = \frac{1}{8}$$

Пример № 4

$$\lim_{x \to -\infty} \frac{2^{x+1} + 3^{x+1}}{2^x + 3^x} = \lim_{x \to -\infty} \frac{2 + 3\left(\frac{3}{2}\right)^x}{1 + \left(\frac{3}{2}\right)^x} = \frac{2 + 0}{1 + 0} = 2$$

Пример № 5

$$\lim_{x \to \infty} \frac{4x + \sin x}{x - \cos x} = \lim_{x \to \infty} \frac{4 + \frac{\sin x}{x}}{1 - \frac{\cos x}{x}} = \frac{4 + 0}{1 - 0} = 4$$

Пример № 6

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1 + \frac{1}{y}\right)^{y} = e$$

<u>Пример№ 7</u>

$$\lim_{x \to \infty} \left(1 + \frac{5}{x} \right)^{3x} = \lim_{x \to \infty} \left[\left(1 + \frac{5}{x} \right)^{\frac{x}{5}} \right]^{\frac{5}{x} \times 3x} = \lim_{x \to \infty} \left[\left(1 + \frac{5}{x} \right)^{\frac{x}{5}} \right]^{15} = e^{15}$$

Пример № 8

$$\lim_{y \to 0} (1 - 3y)^{\frac{2}{y}} = \lim_{y \to 0} \left[(1 - 3y)^{-\frac{1}{3y}} \right]^{-3y^{\frac{2}{y}}} = \lim_{y \to 0} \left[(1 - 3y)^{-\frac{1}{3y}} \right]^{-6} = e^{-6}$$

Пример № 9

$$\lim_{x \to \infty} \left(\frac{2x-3}{2x-1} \right)^{4x} = \lim_{x \to \infty} \left(\frac{(2x-1)-2}{2x-1} \right)^{4x} = \lim_{x \to \infty} \left(1 - \frac{2}{2x-1} \right)^{4x} = \lim_{y \to 0} (1+y)^{-\frac{4}{y}+2} = \lim_{y \to 0} (1+y)^{-\frac{4}{y}} \lim_{y \to 0} (1+y)^{2} = \left[\lim_{y \to 0} (1+y)^{\frac{1}{y}} \right]^{-4} \times 1 = e^{-4}$$

Пример № 10

$$\lim_{x \to 0} \frac{\sin x}{x^2} = \lim_{x \to 0} \left[\left(\frac{\sin x}{x} \right) \frac{1}{x} \right] = \lim_{x \to 0} (1 + 2x)^{\frac{\sin x}{x^2}} = \lim_{x \to 0} \left[(1 + 2x)^{\frac{1}{2x}} \right]^{\frac{2\sin x}{x}} = \left(\lim_{x \to 0} (1 + 2x)^{\frac{1}{2x}} \right)^{2\lim_{x \to 0} \frac{\sin x}{x}} = l^{2x1} = l^2$$

К заданию № 2

$\frac{\Pi p u м e p No 1}{y = (\sqrt{x} + 5)^3}$

Функцию можно представить в виде

$$y = u^3$$
; $y = 3u^2 \times u' = 3(\sqrt{x} + 5)^2(\sqrt{x} + 5)' = \frac{3(\sqrt{x} + 5)^2}{2\sqrt{x}}$

<u>Пример № 2</u>

$$y = \sqrt[3]{\frac{x^2 - 1}{x^2 + 1}}$$

Имеем $y = \sqrt[3]{u}$, где $u = \frac{x^2 - 1}{x^2 + 1}$

$$y' = \frac{1}{3}u^{-\frac{2}{3}}u' = \frac{1}{3}\left(\frac{x^2}{x^2}\right)^{-\frac{2}{3}}\left(\frac{x^2-1}{x^2+1}\right)' = \frac{1}{3}\sqrt[3]{\left(\frac{x^2+1}{x^2-1}\right)^2\frac{2x(x^2+1)-(x^2-1)\times 2x}{(x^2+1)^2}} = \frac{4x}{3(x^2+1)\sqrt[3]{(x^2+1)(x^2-1)}}$$

Пример № 3

$$y = \frac{12}{x^2 + x + 1}$$
$$y' = 12\left(\frac{1}{x^2 + x + 1}\right)' = 12\left(-\frac{1}{\left(x^2 + x + 1\right)^2}\right)\left(x^2 + x + 1\right)' = \frac{-12(2x + 1)}{\left(x^2 + x + 1\right)^2}$$

к заданию № 3

Исследовать функцию с помощью производной и простроить ее график.

$$f(x) = \frac{3 - x^2}{x + 2}$$

- 1) $D(f)=(-\infty;-2)\cup(-2;+\infty)$
- 2) $f(-x) = \frac{3-x^2}{-x+2}$ не читая X=0 f(0)=1,5 функция общего вида

$$f(x)=0$$
 $\frac{3-x^2}{x+2}=0$ $3-x^2=0$ $x^2=3$ $x_1=\sqrt{3}$ $x_2=\sqrt{3}$

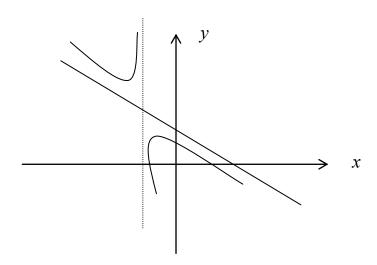
3)
$$f'(x) = -\frac{(x+3)(x+1)}{(x+2)^2}$$

критические точки x=-3, x=-1

- · L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• 10 1111111	2,00					
	X	$(-\infty; -3)$	-3	(-3;-2)	-2	(-2;-1)	-1	$(-1;+\infty)$
	f'(x)	-		+		+		-
	f(x)	7	6	<i>></i>	Не	7	2 -	1
					существу			
					ет			

4)
$$f''(x) = -\frac{2}{(x+2)^3}$$

$$x < -2$$
 , $f'' > 0$, график функции вогнут вниз


$$x>-2$$
 , $f''<0$, график функции вогнут вверх

5) Асимптомы графика функции

$$\lim_{x\to -2} \frac{3-x^2}{x+2} = \infty$$
, то прямая $x=-2$ является вертикальной асимптомой

$$k = \lim_{x \to \infty} \frac{3 - x^2}{x^2 + 2x} = -1$$
 Прямая $y = 2 - x$ является наклонной асимптомой

$$b = \lim_{x \to \infty} \left(\frac{3 - x^2}{x + 2} + x \right) = 2$$

к заданию № 4

Нахождение неопределенных интегралов

Пример № 1
Найти
$$\int (5x^4 - 4x^3 + 3x^2 - 1) dx$$

$$\int (5x^4 - 4x^3 + 3x^2 - 1)dx = \int 5x^4 dx - \int 4x^3 dx + \int 3x^2 dx - \int dx = 5\frac{x^5}{5} - 4\frac{x^4}{4} + 3\frac{x^3}{3} - +c = x^5 - x^4 + x^3 - x + c$$

Пример № 2

Найти
$$\int \frac{2x\sqrt{x}dx}{\sqrt[8]{x}}$$

Преобразуем

$$\frac{2x\sqrt{x}dx}{\sqrt[8]{x}} = 2xx^{\frac{1}{2}}x^{-\frac{1}{3}}dx = 2x^{\frac{7}{6}}dx$$

$$\int 2x^{\frac{7}{6}}dx = 2\frac{x^{\frac{13}{6}}}{\frac{13}{6}} + c = \frac{12}{13}\sqrt[6]{x^{13}} + c = \frac{12}{13}x^{2}\sqrt[6]{x} + c$$

Пример № 3

Найти
$$\int \frac{x^2+1}{x} dx$$

$$\int \frac{x^2 + 1}{x} dx = \int \left(x + \frac{1}{x} \right) dx = \int x dx + \int \frac{dx}{x} = \frac{x^2}{2} + \ln|x| + c$$

Пример № 4
Найти
$$\int (1+x)^5 dx$$

Пусть
$$1+x=z$$

$$\int (1+x)^5 dx = \int z^5 dz = \frac{z^6}{6} + c = \frac{1}{6} (1+x)^6 + c$$

Пример № 5

Найти
$$\int (x^3 + 1) \ln x dx$$

Пусть

$$u = \ln x$$
, тогда $dv = xdx$

$$du = d\ln x = \frac{dx}{x}$$
 и $v = \int dv = \int x dx = \frac{x^2}{2}$

$$\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \frac{1}{x} dx = \frac{x^2}{2} \ln x - \frac{1}{2} \int x dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + c$$

к заданию № 5

Приближенное вычисление определенных интегралов

Пример № 1

$$\int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1^{3}}{3} - \frac{0^{3}}{3} = \frac{1}{3}$$

Пример № 3

$$\int_{0}^{1} x(2-x^{2})^{5} dx$$

Пусть

$$t = 2 - x^2$$

$$dt = d(2-x^2) = (2-x^2)' dx = -2xdx$$

$$xdx = -\frac{1}{2}dt$$

Если
$$x = 0$$
, тт $t = 2 - 0^2 = 2$, и если $x = 1$, тт $t = 2 - 1^2 = 1$

Следовательно,

$$\int_{0}^{1} x (2 - x^{2})^{5} dx = \int_{2}^{1} t^{5} \left(-\frac{1}{2} \right) dt = -\frac{1}{2} \int_{2}^{1} t^{5} dt = \frac{1}{2} \left(\frac{t^{6}}{6} \Big|_{2}^{1} \right) = -\frac{1}{12} \left(t^{6} \Big|_{2}^{1} \right) = -\frac{1}{12} \left(1 - 2^{6} \right) = \frac{21}{4}$$

Пример № 4

Вычислить
$$\int_{0}^{1} \ln(1+x) dx$$

$$u = \ln(1+x), dv = dx$$

Тогда

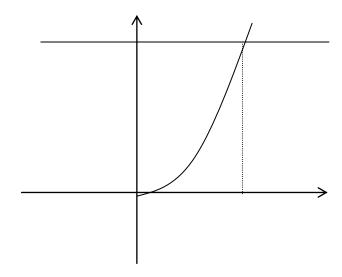
$$du = d(\ln(1+x)) = (\ln(1+x))' dx = \frac{dx}{1+x} - u$$

$$v = \int dv = \int dx = x$$

$$\int_{0}^{1} \ln(1+x)dx = x \ln(1+x)\Big|_{0}^{1} - \int_{0}^{1} x \frac{dx}{1+x}$$

Для нахождения полученного интеграла положим 1+x=t. Тогда dx=dt, x=t-1, и если $x=\frac{l}{1}$, то t=2, Следовательно

$$\int_{0}^{1} \ln(1+x)dx = \ln(1+x)\Big|_{0}^{1} - \int_{1}^{2} \frac{t-1}{t}dt = \ln 2 - \int_{1}^{2} \frac{dt}{t} = \ln 2 - t\Big|_{1}^{2} = \ln 2 - (2-1) + \ln 2 - \ln 1 = \ln 4 - 1$$


к заданию № 6

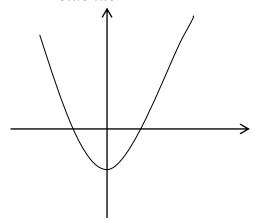
Решение задач с помощью определенных интегралов.

Пример № 1

Найти площадь фигуры, ограниченной линиями $x = \sqrt{y}, x = 0, y = 4$.

Решение

S = S0ABC - S0BC, каждая из которых находится по геометрическому смыслу определенного интеграла. Решая систему $\begin{cases} y = 4 \\ x = \sqrt{y} \end{cases}$, получается, что точка В пересекается прямой y = 4 и кривой $x = \sqrt{y}$ имеет координаты (2; 4). Тогда $S0BC = \int_{0}^{2} 4 dx = 4 \int_{0}^{2} dx = 4x \Big|_{0}^{2} = 8$,


$$S0DC \int_{0}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{2} = \frac{8}{3}$$

$$S = 8 - \frac{3}{3} = \frac{16}{3} \left(eg^2 \right)$$

Пример № 2

Найти площадь фигуры, ограниченной линиями $y = x^2 - 2$, y = x.

Решение

Найдем координаты точек пересечения параболы $y = x^2 - 2$, и прямой y = x, решив систему этих уравнений (-1; -1) и (2; 2). Абсциссы точек A и B пересечения наших линий зададут пределы интегрирования:

$$S = \int_{1}^{2} \left(x - \left(x^{2} - 2 \right) \right) dx = \frac{x^{2}}{2} \Big|_{-1}^{2} - \frac{x^{3}}{3} \Big|_{-1}^{2} + 2x \Big|_{-1}^{2} = \frac{1}{2} \left(4 - \left(-1 \right)^{2} \right) - \frac{1}{3} \left(2^{3} - \left(-1 \right)^{3} \right) + 2\left(2 - \left(-1 \right) \right) = 4,5 \left(e \partial \right)^{2}$$

Информационное обеспечение

Литература

Основная:

- 1. А.А. Дадаян Математика. М.: Инфра М, 2005 552с.
- 2. А.А. Дадаян Сборник задач по математике. М.: Инфра М, 2005 352c.
 - 3. И.Д.Пехлецкий Математика М.: Академия, 2005-304с.

Дополнительная:

- 4. Н.Ш. Кремера Высшая математика для экономистов. М.:ЮНИТИ М, 2007-479c.
- 5. А.Н. Колесников Краткий курс математики для экономистов. М.: Инфра М. 2005-208с.
 - 6. Е.С. Кундышева Математика М.: «Дашков и К^о» М, 2006-536с.
 - 7. С.Г. Григорьев, С.В. Задулина М.: Академия, 2005-384с.
- 8. П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова Высшая математика у упражнениях и задачах (часть 1) М.: «Мир и Образование», 2005-304с.

Электронные ресурсы

- 9. http://www.onecomplex.ru/
- 10. http://www.mathedu.ru/