Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Дальневосточный государственный университет путей сообщения»

Кафедра «Высшая математика»

Н.С. Константинов, М.С. Смотрова, Т.А. Богомякова

ВЫСШАЯ МАТЕМАТИКА

Методическое пособие по выполнению контрольных работ № 5, 6, 7 для студентов ИИФО направления подготовки «Наземные транспортно-технологические средства», «Подвижной состав железной дороги», «Строительство железных дорог, мостов и транспортных тоннелей» (2 курс специалитет)

Хабаровск Издательство ДВГУПС 2013 УДК [517.5 + 519.21] (075.8) ББК В 11я73 К 650

Рецензент – кандидат физико-математических наук, доцент кафедры «Высшая математика» ДВГУПС В.И. Жукова

Константинов, Н.С.

П 650 Высшая математика : метод. пособие / Н.С. Константинов, М.С. Смотрова, Т.А. Богомякова. – Хабаровск : Изд-во ДВГУПС, 2012. – 48 с.: ил.

Методическое пособие разработано в соответствии с профессиональной образовательной программой.

Представлены 3 контрольные работы, которые студент должен выполнить на втором году обучения. В пособие включены методические указания по выполнению заданий. Пятая контрольная работа содержит 1 раздел, шестая — 3 раздела и седьмая — 5 разделов. В конце каждого раздела находятся теоретические вопросы и практические задания, которые студенту необходимо выполнить.

Предназначено для студентов 2 курса заочной формы обучения, изучающих дисциплину «Высшая математика».

УДК [517.5 + 519.21] (075.8) ББК В 11я73

ВВЕДЕНИЕ

Методические указания по выполнению контрольных работ составлены для студентов ИИФО специальностей «Наземно-транспортные технические средства», «Подвижной состав железной дороги», «Строительство железнодорожных мостов и транспортных тоннелей» (специалитет).

Курс обучения рассчитан на 4 семестра (два года обучения) для специальностей «Наземно-транспортные технические средства», «Подвижной состав железной дороги», «Строительство железнодорожных мостов и транспортных тоннелей». На втором году обучения студент должен выполнить 3 контрольные работы: две (№ 5, № 6) в третьем семестре, одну (№ 7) в четвертом семестре и сдать экзамен (зачет).

В пособие включены методические указания по выполнению заданий. Весь материал, содержащийся в контрольных работах, разбит на разделы. Такое разбиение выбрано для того, чтобы студент мог самостоятельно пополнить материал, выдаваемый преподавателем за короткое время, отведенное на аудиторные занятия. В конце каждого раздела находятся теоретические вопросы, которые даны студенту в помощь при подготовке к сдаче экзамена (зачета). Отвечая на вопросы устно, студент выстраивает последовательность ответа, что способствует повышению уровня самоорганизации. Содержащиеся в пособии практические задания требуется выполнить в тетради и сдать на проверку. В данном пособии теоретические вопросы и практические задания выступают как средства развития интеллектуальных способностей.

Нумерация заданий в контрольных работах соответствует последней цифре шифра зачетной книжки студента. Примечание: если последняя цифра в шифре 0, то ей соответствует 10 вариант.

В пособие включен список литературы, которой студентам, по необходимости, рекомендуется пользоваться при выполнении заданий контрольных работ и для подготовки к сдаче экзамена.

Материал в пособии выстроен таким образом, чтобы помочь студенту выйти на уровень самоорганизации, самообразования и самовоспитания при подготовке к экзамену (зачету).

Контрольная работа № 5 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

Раздел 1. Дифференциальные уравнения второго порядка с постоянными коэффициентами

Определение 1. Дифференциальным уравнением называется соотношение, связывающее независимую переменную x, независимую функцию y, и ее производные y', y'' и т. д., причем порядок уравнения равен порядку наивысшей производной.

Рассмотрим уравнение 2-го порядка:

$$y'' + ay' + by = f(x), \tag{1}$$

где a, b – постоянные действительные коэффициенты; f(x) – неизвестная функция.

Уравнение (1) дополняется начальными условиями

$$y(0) = y_0; \ y'(0) = y_0'.$$
 (2)

Решение уравнения (1) представляет собой сумму: $y = \overline{y} + y^*$, где y^* – частное решение уравнения (1), а \overline{y} – решение однородного уравнения

$$\overline{y}'' + a\overline{y}' + b\overline{y} = 0. \tag{3}$$

1.1. Однородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Решение уравнения (3) будем искать в виде $y = e^{kx}$, тогда для определения числа k получаем характеристическое уравнение:

$$k^2 + ak + b = 0, (4)$$

решение которого имеет вид:

$$k_{1,2} = -\frac{a}{2} \pm \sqrt{\frac{a^2}{4} - b} = -\frac{a}{2} \pm \sqrt{D}$$
,

где $D = \frac{a^2}{4} - b$ – дискриминант.

Рассмотрим три случая решения характеристического уравнения.

1. Если D>0, т. е. корни характеристического уравнения действительные и разные $k_1 \neq k_2$. Тогда обе функции $e^{k_1 x}$ и $e^{k_2 x}$ удовлетворяют уравнению (3), и общее решение имеет вид

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x}.$$

Для нахождения частного решения необходимо использовать условия (2).

Пример 1

Найти частное решение дифференциального уравнения y''-5y'+4y=0 с начальными условиями y(0)=1, y'(0)=2.

Решение:

Соответствующее характеристическое уравнение имеет вид:

$$k^2 - 5k + 4 = 0$$
.

Определим значение дискриминанта $D = \frac{(-5)^2}{4} - 4 = 2,25 > 0$ и най-

дем корни $k_{1,2}=-\frac{-5}{2}\pm\sqrt{\frac{(-5)^2}{4}-4} \Rightarrow k_1=1; \ k_2=4$ – действительные и разные $k_1\neq k_2$.

Тогда решение дифференциального уравнения:

$$y = C_1 e^{1 \cdot x} + C_2 e^{4 \cdot x}.$$

Для нахождения частного решения найдем производную y' от полученного уравнения:

$$y' = C_1 e^x + 4C_2 e^{4x}. (5)$$

Подставляя начальные условия при x=0 в найденные y(x) и y'(x), получим систему для определения постоянных C_1 и C_2 :

$$\begin{cases} C_1 + C_2 = 1; \\ C_1 + 4C_2 = 2; \end{cases} \Rightarrow \begin{cases} C_1 = 1 - C_2; \\ 1 - C_2 + 4C_2 = 2. \end{cases}$$

Отсюда

$$C_2 = \frac{1}{3};$$
 $C_1 = \frac{2}{3}.$

Подставляем коэффициенты C_1 и C_2 в уравнение (5), тогда частное решение исходного уравнения примет вид:

$$y(x) = \frac{1}{3}e^x + \frac{2}{3}e^{4x}$$
.

2. Если D=0, корни характеристического уравнения действительные и равные $k_1=k_2=k$, тогда общее решение записывается в виде:

$$y = (C_1 + C_2 x)e^{kx}.$$

Пример 2

Найти частное решение уравнения: y'' + 4y' + 4y = 0, с начальными условиями y(0) = 2, y'(0) = 1.

Решение:

Составим соответствующее характеристическое уравнение:

$$k^2 + 4k + 4 = 0$$
.

Вычислим дискриминант $D = \frac{4^2}{4} - 4 = 0$ и корни уравнения

$$k_{1,2} = -\frac{4}{2} \pm \sqrt{\frac{4^2}{4} - 4} \implies k_1 = k_2 = -2.$$

Таким образом, общее решение имеет вид:

$$y(x) = (C_1 + C_2 x)e^{-2x}$$
.

Найдем производную от полученного уравнения:

$$y'(x) = C_2 e^{-2x} - 2e^{-2x} (C_1 + C_2 x).$$
 (6)

Подставим начальные условия при x=0 в y(x) и y'(x). Таким образом, получим систему:

$$\begin{cases} C_1 = 2; \\ C_2 - 2C_1 = 1; \end{cases} \Rightarrow \begin{cases} C_1 = 2; \\ C_2 = 2C_1 + 1. \end{cases} \Rightarrow C_1 = 2, C_2 = 5.$$

При подстановке C_1 и C_2 в уравнение (6) частное решение примет вид:

$$y(x) = (2+5x)e^{-2x}$$
.

3. Если $\,D < 0\,,\,\,$ в этом случае корни характеристического уравнения комплексные:

$$k_{1,2} = -\frac{a}{2} \pm \sqrt{\frac{a^2}{4} - b} = \alpha \pm \beta i$$

где $\alpha = -\frac{a}{2}$, $\beta = \sqrt{\frac{a^2}{4} - b}$. Общее решение однородного дифференциального уравнения имеет вид:

$$y(x) = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x).$$

Пример 3

Найти общее решение дифференциального уравнения y''+4y'+13y=0. Решение:

Соответствующее характеристическое уравнение имеет вид:

$$k^2 + 4k + 13 = 0$$
.

Определим знак дискриминанта $D = \frac{4^2}{4} - 13 = -9 < 0$ и корни уравнения:

$$k_{1,2} = -\frac{4}{2} \pm \sqrt{\frac{4^2}{4} - 13} = -2 \pm 3i$$
,

где
$$k_{1,2} = -2 \pm 3i$$
, $\alpha = -2$; $\beta = 3$.

Тогда общее решение запишется в виде:

$$y(x) = e^{-2x} (C_1 \cos 3x + C_2 \sin 3x).$$

Задание 1 к разделу 1

1. *a*)
$$2y''-14y'+12y=0$$
; $y(0)=-1$; $y'(0)=1$;

$$\delta$$
) $v'' + 8v' + 16v = 0$; $v(0) = v'(0) = 2$;

2. a)
$$3y'' - 12y' + 9y = 0$$
; $y(0) = 2$; $y'(0) = 1$;

6)
$$y''-12y'+36y=0$$
; $y(0)=y'(0)=4$;

3.
$$a$$
) $-2y''-16y'-30y=0$; $y(0)=1$; $y'(0)=-2$;

$$\delta$$
) $y'' + 14y' + 49y = 0$; $y(0) = y'(0) = 3$;

4. *a*)
$$4y'' - 32y' + 48y = 0$$
; $y(0) = -2$; $y'(0) = 3$;

6)
$$y''-12y'+36y=0$$
; $y(0)=y'(0)=6$.

5.
$$a$$
) – 3 y "+18 y ' = 0; y (0) = –3; y '(0) = 2;

6)
$$y'' - 2y' + y = 0$$
; $y(0) = y'(0) = 7$;

6. *a*)
$$8y'' - 8y' = 0$$
; $y(0) = 2$; $y'(0) = 3$;

6)
$$y'' + 4y' + 4y = 0$$
; $y(0) = y'(0) = 5$;

7. *a*)
$$7y'' - 35y' + 28y = 0$$
; $y(0) = -3$; $y'(0) = 4$;

6)
$$y'' - 6y' + 9y = 0$$
; $y(0) = y'(0) = 8$;

8.
$$a$$
) $-9y''+27y'-18y=0$; $y(0)=4$; $y'(0)=7$;

$$\delta$$
) $y'' + 2y' + y = 0$; $y(0) = y'(0) = 2$;

9.*a*)
$$6y'' - 36y' + 30y = 0$$
; $y(0) = -3$; $y'(0) = 2$;

6)
$$y''-10y'+25y=0$$
; $y(0)=y'(0)=4$;

10.*a*)
$$7y'' - 28y = 0$$
; $y(0) = 5$; $y'(0) = -1$;

6)
$$y'' + 6y' - 9y = 0$$
; $y(0) = y'(0) = 6$.

1.2. Неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Рассмотрим построение общего решения уравнения (1).

Решение этого уравнения имеет вид:

 $y(x) = \bar{y}(x) + y^*(x)$, где \bar{y} – решение соответствующего однородного уравнения (см. подраздел 1.1 раздела 1).

Для нахождения функции $y^*(x)$ воспользуемся методом подбора.

Предположим, что выбор функции $y^*(x)$ не зависит от решения однородного уравнения.

Пусть правая часть дифференциального уравнения (1) имеет вид:

1)
$$f(x) = ae^{\alpha x}$$
, $\alpha \neq k_1 \neq k_2$, тогда $y^*(x) = Ae^{\alpha x}$;

2)
$$f(x) = \sum_{i=0}^{n} a_i x^i$$
, $a \neq 0$, тогда $y^*(x) = \sum_{i=1}^{n} A_i x^i$;

3)
$$f(x) = a \sin \beta x, \beta \neq k_1 \neq k_2$$
, тогда $y^*(x) = A_1 \sin \beta x + A_2 \cos \beta x$;

4)
$$f(x) = a\cos\beta x, \beta \neq k_1 \neq k_2$$
, тогда $y^*(x) = A_1\sin\beta x + A_2\cos\beta x$; причем A , $A_i(i=1,2,...,n)$, A_1,A_2 — неопределенные коэффициенты, k_1,k_2 — корни характеристического уравнения.

Пример 4

Найти частное решение уравнения: $y''-2y'+y=3e^{2x}$ с начальными условиями y(0)=1; y'(0)=3.

Решение:

Общее решение дифференциального уравнения будем искать в виде суммы:

$$y(x) = \overline{y}(x) + y^*(x),$$

где $\bar{y}(x) = e^x(C_1 + C_2 x)$ (см. подраздел 1.1 раздела 1).

Исходя из вида правой части исходного уравнения, выберем $y^*(x)$:

$$y^* = Ae^{2x}.$$

Для того чтобы вычислить значение неопределенного коэффициента $\it A$, находим производные:

$$(y^*)' = 2Ae^{2x}; (y^*)'' = 4Ae^{2x}$$

и подставляем их в левую часть исходного дифференциального уравнения, получим:

$$4Ae^{2x} - 4Ae^{2x} + Ae^{2x} = 3e^{2x}$$
.

Откуда следует, что A = 3 и $y^*(x) = 3e^{2x}$.

Следовательно, общее решение неоднородного уравнения имеет вид:

$$y(x) = (C_1 + C_2 x)e^x + 3e^{2x}$$
.

Найдем производную y'(x) от полученного решения, учитывая, что $\ C_1$ и $\ C_2$ – некоторые постоянные:

$$y'(x) = C_2 e^x + (C_1 + C_2 x)e^x + 6e^{2x},$$

и подставим начальные условия при x = 0 в y(x) и y'(x), тогда:

$$\begin{cases}
C_1 + 3 = 1; \\
C_2 + C_1 + 6 = 3,
\end{cases} \Rightarrow \begin{cases}
C_1 = -2; \\
C_2 - 2 + 6 = 3,
\end{cases} \Rightarrow C_1 = -2; C_2 = -1.$$

Таким образом, частное решение окончательно примет вид:

$$y = 3e^{2x} - (1+2x)e^x$$
.

Пример 5

Найти частное решение: $y''-2y'-3y=3x^2+4$ с начальными условиями y(0)=3; y'(0)=5.

Решение:

Общее решение дифференциального уравнения имеет вид:

$$y(x) = \bar{y} + y^*,$$

где $\bar{y} = C_1 e^{-x} + C_2 e^{3x}$ (см. подраздел 1.1 раздела 1).

Опираясь на вид правой части исходного уравнения, выбираем $y^*(x)$:

$$y^*(x) = Ax^2 + Bx + C$$

где A, B, C — неопределенные коэффициенты.

Для того чтобы вычислить значения неопределенных коэффициентов A,B,C, находим $(y^*)'$ и $(y^*)''$:

$$(y^*)' = 2Ax + B; (y^*)'' = 2A.$$

Полученные производные подставляем в левую часть исходного дифференциального уравнения:

$$2A - 2(2Ax + B) - 3(Ax^{2} + Bx + C) = 3x^{2} + 4;$$

$$-3Ax^{2} + (-4A - 3B)x + (2A - 2B - 3C) = 3x^{2} + 4.$$

Находим коэффициенты A,B,C следующим образом: приравниваем коэффициенты левой и правой части полученного уравнения при одинаковых степенях x:

Решением описанной выше системы из трех уравнений является:

$$A = -1; B = \frac{4}{3}; C = -\frac{26}{9}.$$

Следовательно, общее решение имеет вид:

$$y = C_1 e^{-x} + C_2 e^{3x} - x^2 + \frac{4}{3}x - \frac{26}{9}$$
.

Используя начальные условия, вычислим коэффициенты C_1 и C_2 . Находим производную:

$$y' = -C_1 e^{-x} + 3C_2 e^{3x} - 2x + \frac{4}{3}$$
.

Подставляем начальные условия при x = 0 в y(x) и y'(x), тогда получим систему:

$$\begin{cases} C_1 + C_2 - \frac{26}{9} = 3; \\ -C_1 + 3C_2 + \frac{4}{3} = 5, \end{cases}$$

откуда $C_1 = \frac{7}{2}$; $C_2 = \frac{43}{18}$, а, следовательно, частное решение имеет вид:

$$y = \frac{7}{2}e^{-x} + \frac{43}{18}e^{3x} - x^2 + \frac{4}{3}x - \frac{26}{9}$$
.

Теоретические вопросы к разделу 1

- 1. Определение дифференциального уравнения, начальные условия.
- 2. Структура общего решения дифференциального уравнения второго порядка, частное решение.
- 3. Однородное дифференциальное уравнение с постоянными коэффициентами, характеристическое уравнение.
- 4. Три случая решения характеристического уравнения и соответствующее общее решение однородного уравнения.
- 5. Структура общего решения дифференциального уравнения второго порядка.
- 6. Метод подбора частного решения неоднородного дифференциального уравнения с постоянными коэффициентами.

Задание 2 к разделу 1

Найти частные решения, удовлетворяющие начальным условиям (начальные условия для обоих уравнений одинаковы):

1. a)
$$-y'' + 4y' - 4y = 3e^{5x}$$
;
6) $2y'' - 14y' - 16y = 4 + 2x - 6x^2$;
2. a) $3y'' - 21y' + 30y = 5e^{-3x}$;
6) $-y'' - 4y' - 3y = -5 - 2x^2$;
 $y(0) = y'(0) = 2$;
 $y(0) = y'(0) = 4$;

Контрольная работа № 6 РЯДЫ И ИХ ПРИМЕНЕНИЕ

Раздел 1. Числовые ряды

Определение 1. Числовым рядом называется бесконечная сумма членов последовательности:

$$u_1 + u_2 + \ldots + u_n + \ldots = \sum_{i=1}^{\infty} u_i$$
.

Признаки сходимости знакопостоянного числового ряда можно разделить на необходимый и достаточные.

Необходимый признак сходимости состоит в том, что:

$$\lim_{n\to\infty}u_n=0.$$

Если этот признак не выполняется, то ряд расходится.

Рассмотрим четыре достаточных признака сходимости числового ряда $\sum_{i=1}^{\infty} u_i .$

1. Признак Даламбера.

Если
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = q$$
 , то $\begin{cases} npu & q < 1 \ psd \ cxodumcs, \\ npu & q > 1 \ psd \ pacxodumcs, \end{cases}$

при q = 1 получаем неопределенность.

2. Радикальный признак Коши.

Если
$$\lim_{n\to\infty} \sqrt[n]{u_n} = q$$
, $\begin{cases} npu & q<1 \ psd \ cxodumcs, \\ npu & q>1 \ psd \ pacxodumcs, \end{cases}$

при q = 1 получаем неопределенность.

3. Интегральный признак Коши.

Если $\int u_n dn$ существует, то ряд сходится; если интеграл не существует (т. е. равен $\pm \infty$) – ряд расходится.

4. Признак сравнения.

Если
$$\sum\limits_{n=1}^\infty v_n$$
 сходится и $u_n \leq v_n$, то $\sum\limits_{n=1}^\infty u_n$ также сходится, если $\sum\limits_{n=1}^\infty v_n$

расходится и $u_n \geq v_n$, то $\sum\limits_{n=1}^{\infty} u_n$ также расходится.

Для признака сравнения в качестве ряда
$$\sum\limits_{n=1}^{\infty}v_n$$
 часто используется $\sum\limits_{n=1}^{\infty}\frac{A}{n^{\alpha}}$, который $\begin{cases} npu & \alpha>1 \quad psd \quad cxodumcs, \\ npu & \alpha\leq 1 \quad psd \quad pacxodumcs, \end{cases}$ $A-$ произвольная

постоянная величина; причем $\lim_{n \to \infty} \frac{u_n}{v_n} \neq 0$.

Пример 1

Исследовать ряд $\sum_{n=1}^{\infty} \frac{3^{n+1}}{(n+1)!}$ на сходимость.

Решение:

Применим признак Даламбера:

$$u_n = \frac{3^{n+1}}{(n+1)!}; \ u_{n+1} = \frac{3^{n+1+1}}{((n+1)+1)!} = \frac{3^{n+2}}{(n+2)!};$$

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{3^{n+2} \cdot (n+1)!}{3^{n+1} \cdot (n+2)!} = \lim_{n\to\infty} \frac{3^n 3^2 \cdot (n+1)!}{3^n 3^1 \cdot (n+1)! (n+2)} =$$

$$= \lim_{n\to\infty} \frac{3}{n+2} = \frac{3}{\infty+2} = 0 < 1 \Rightarrow \text{ряд сходится}.$$

Пример 2

Исследовать ряд
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{1 + n - 3n^2} \right)^{3n}$$
 на сходимость.

Решение:

Применим радикальный признак Коши:

$$\lim_{n\to\infty} \sqrt[n]{\left(\frac{n^2+1}{1+n-3n^2}\right)^{3n}} = \lim_{n\to\infty} \left(\frac{n^2+1}{1+n-3n^2}\right)^3 = \left(\frac{1}{-3}\right)^3 = -\frac{1}{27} < 1 \Rightarrow \qquad \text{ряд}$$

сходится.

Замечание:
$$\lim_{n \to \infty} \left(\frac{n^2 + 1}{1 + n - 3n^2} \right)^3$$
 вычисляем следующим образом: так как

в числителе и знаменателе дроби старшие степени переменной n равны, то выписываем коэффициенты при n^2 соответственно из числителя и знаменателя.

Пример 3

Исследовать ряд $\sum_{n=1}^{\infty} \frac{\ln n}{3n}$ на сходимость.

Решение:

Применим интегральный признак Коши:

$$\int_{1}^{\infty} \frac{\ln x}{3x} dx = \begin{vmatrix} \ln x = t \\ dt = \frac{dx}{x} \\ x_{0} = 1 \Rightarrow t_{0} = \ln 1 = 0 \\ x_{1} = \infty \Rightarrow t_{1} = \ln \infty = \infty \end{vmatrix} = \int_{0}^{\infty} \frac{t}{3} dt = \frac{1}{3} \int_{0}^{\infty} t dt = \frac{1}{3} \int_{0}^{\infty} t dt = \frac{1}{3} \cdot \frac{t^{2}}{2} \Big|_{0}^{\infty} = \frac{1}{3} \cdot \frac{\infty^{2}}{2} - \frac{1}{3} \cdot \frac{0^{2}}{2} = \infty ,$$

так как интеграл не существует, то ряд расходится.

Пример 4

Исследовать ряд $\sum_{n=1}^{\infty} \frac{4}{n^2 + n - 3}$ на сходимость.

Решение:

Сравним ряд с $\sum_{n=1}^{\infty} \frac{4}{n^2}$, который сходится, так как степень α перемен-

ной
$$n: \alpha = 2 > 1$$
. При этом

ной
$$n$$
: $\alpha = 2 > 1$. При этом $\frac{4}{n^2 + n - 3} < \frac{4}{n^2}$, следовательно ряд

$$\sum_{n=1}^{\infty} \frac{4}{n^2 + n - 3}$$
 также сходится.

Теоретические вопросы к разделу 1

- 1. Необходимый признак сходимости числового ряда.
- 2. Достаточный признак Даламбера.
- 3. Радикальный признак Коши.
- 4. Интегральный признак Коши.
- Признак сравнения.

Задание 1 к разделу 1

Выписать три первых члена и исследовать сходимость числовых рядов:

15

1. a)
$$\sum_{n=1}^{\infty} \frac{5^n}{\sqrt{n} \cdot n!};$$

6)
$$\sum_{n=1}^{\infty} \frac{ln(n+1)}{n+1}$$
;

2. a)
$$\sum_{n=1}^{\infty} \frac{4^{n-1} \cdot n^2}{5^n \cdot (n-1)!}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{n^4}{(n^5+4n+2)^2}$$
;

3. a)
$$\sum_{n=1}^{\infty} \frac{7^{n+2}}{3^{n-2} \cdot (n+1)!}$$
;

$$6) \sum_{n=1}^{\infty} \frac{2\cos n}{\sqrt{n^3}};$$

4. a)
$$\sum_{n=1}^{\infty} \frac{5^{2n}(n-1)}{n \cdot (n+2)!}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{4n}{\sqrt[3]{n^5 + n^2 - 4}}$$
;

5. a)
$$\sum_{n=1}^{\infty} \frac{3^n \cdot n^3}{n!(n-1)}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 3\sqrt{n} - 1}$$
;

6. a)
$$\sum_{n=1}^{\infty} \frac{n^2}{3^{n-1} \sqrt{n}}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{1}{(n-4) \cdot ln(n-4)}$$
;

7. a)
$$\sum_{n=1}^{\infty} \frac{7^{n+2}}{3^{2n} \cdot \sqrt[4]{2n-1}};$$

6)
$$\sum_{n=1}^{\infty} \frac{2e^n}{4+e^{n2}}$$
;

8. a)
$$\sum_{n=1}^{\infty} \frac{5^{3n-1} \cdot (n-1)!}{(n+1)!};$$

6)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 - 5n}}{2n\sqrt{n}}$$
;

9. a)
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{4^n \cdot (n!)}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{8}{\sqrt[3]{n^2}(n-3)}$$
;

10. a)
$$\sum_{n=1}^{\infty} \frac{n!(n+1)!}{3^{2n-3} \cdot n}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{1+n^2}{n^6+5n^3-n}$$
.

Раздел 2. Степенные ряды

Определение 2. Степенные ряды имеют вид:

$$\sum_{n=0}^{\infty} a_n x^n$$
 – ряд по степеням x ;

$$\sum_{n=0}^{\infty} a_n (-x_0) -$$
 ряд по степеням $(x-x_0)$.

Определение 3. Если степенной ряд сходится на интервале (-R;R), то этот интервал называется областью сходимости ряда, т. е. для любого значения $x \in (-R;R)$ числовой ряд сходится. Половина этого интервала называется радиусом сходимости.

Для определения радиуса сходимости применяются следующие формулы:

$$R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}}; \ R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{a_n}}.$$

Затем определяется сходимость на концах интервала. Если на правой границе интервала ряд сходится, то на левой также сходится $(-R \le x \le R)$, так как соответствующий числовой ряд будет знакопеременным.

Если на правой границе интервала ряд расходится, то границы интервала не включаются в область сходимости (-R < x < R).

Рассмотрим примеры.

Пример 5

Определить область сходимости степенного ряда и проверить сходимость на границах интервала:

$$\sum_{n=1}^{\infty} \frac{5^n \cdot x^n}{3n^2 + 1}.$$

Решение:

$$a_n = \frac{5^n}{3n^2 + 1}; \quad a_{n+1} = \frac{5^{n+1}}{3(4+1)^2 + 1}.$$

Находим *R*:

$$R = \lim_{n \to \infty} \frac{5^n \cdot (3(n+1)^2 + 1)}{(3n^2 + 1) \cdot 5^{n+1}} = \lim_{n \to \infty} \frac{5^n \cdot (3n^2 + 6n + 4)}{(3n^2 + 1) \cdot 5^n \cdot 5^1} = \lim_{n \to \infty} \frac{1}{5} \cdot \frac{3}{3} = \frac{1}{5},$$

т.е. область сходимости $\left(-\frac{1}{5};\frac{1}{5}\right)$.

Проверим сходимость на границах интервала. На правой границе интервала $x=\frac{1}{5}$, соответствующий числовой ряд имеет вид:

$$\sum_{n=1}^{\infty} \frac{5^n \cdot \left(\frac{1}{5}\right)^n}{3n^2 + 1} = \sum_{n=1}^{\infty} \frac{1}{3n^2 + 1}.$$

Для проверки сходимости ряда сравним его с $\sum_{n=1}^{\infty}\frac{1}{n^2}$, который сходится, так как степень α переменной n: $\alpha=2>1$. При этом $\frac{1}{3n^2+1}<\frac{1}{n^2}$, тогда ряд $\sum_{n=1}^{\infty}\frac{1}{3n^2+1}$ также сходится $\Rightarrow -\frac{1}{5} \le x \le \frac{1}{5}$ – интервал сходимости.

Пример 6

Определить область сходимости степенного ряда и проверить сходимость на границах интервала:

$$\sum_{n=1}^{\infty} \frac{2^n \cdot (-1)^n}{3^{n-1}n}.$$

Решение:

$$a_n = \frac{2^n}{3^{n-1}n}; \ a_{n+1} = \frac{2^{n+1}}{3^{n+1-1}(n+1)} = \frac{2^{n+1}}{3^n(n+1)}.$$

Находим *R*:

$$R = \lim_{n \to \infty} \frac{2^n \sqrt{13^n}}{3^{n-1} n \cdot 2^{n+1}} = \lim_{n \to \infty} \frac{2^n \sqrt{13^n}}{3^n 3^{-1} n \cdot 2^n 2^1} = \frac{1}{3^{-1} \cdot 2} = \frac{3}{2}.$$

Тогда область сходимости

$$-\frac{3}{2} < x - 1 < \frac{3}{2} \Rightarrow -\frac{3}{2} + 1 < x < \frac{3}{2} + 1 \Rightarrow -\frac{1}{2} < x - 1 < \frac{5}{2}$$

Проверим сходимость на правой границе интервала $x = \frac{5}{2}$:

$$\sum_{n=1}^{\infty} \frac{2^n \cdot \left(\frac{5}{2}\right)^n}{3^{n-1}n} = \sum_{n=1}^{n=\infty} \frac{5^n}{3^{n-1}n}.$$

Для проверки сходимости ряда применим признак Даламбера:

$$u_{n} = \frac{5^{n}}{3^{n-1}n}; u_{n+1} = \frac{5^{n+1}}{3^{n+1-1}(n+1)} = \frac{5^{n+1}}{3^{n}(n+1)},$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_{n}} = \lim_{n \to \infty} \frac{5^{n+1}3^{n-1}n}{3^{n}(n+1) \cdot 5^{n}} = \lim_{n \to \infty} \frac{5^{n}5^{1}3^{n}3^{-1}n}{3^{n}(n+1) \cdot 5^{n}} = \frac{5 \cdot 3^{-1}}{1} = \frac{5}{3} > 1 \Rightarrow$$

ряд расходится. Значит, границы не включаются в область сходимости $-\frac{1}{2} < x < \frac{5}{2}$.

Теоретические вопросы к разделу 2

- 1. Степенной ряд по степеням x, $(x-x_0)$.
- 2. Область сходимости степенного ряда, радиус сходимости.
- 3. Формулы вычисления радиуса сходимости степенного ряда.

Задание 1 к разделу 2

Найти область сходимости и проверить сходимость на границах интервала:

1. a)
$$\sum_{n=1}^{\infty} \frac{3^{n+1}n}{2n-1} \cdot x^n$$
;

2. a)
$$\sum_{n=1}^{\infty} \frac{4^{n+1} \cdot x^n}{5^n n^2 \sqrt{n}}$$
;

3. a)
$$\sum_{n=1}^{\infty} \frac{3^{2n} \cdot x^n}{(n^2+1)\sqrt{n^3-2}}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{4^n (x-1)^n}{2^{n-1} n}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{2^{2n}(x+2)^n}{(n-1)3^{n-1}};$$

6)
$$\sum_{n=1}^{\infty} \frac{2^{n-1} \sqrt{n} (x-2)^n}{(n+1)4^{n+1}};$$

4. a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{5^n \cdot x^n}}{3(n^3 + 2)}$$
;

5. a)
$$\sum_{n=1}^{\infty} \frac{n \cdot x^n}{2^n (n+5)!}$$
;

6. a)
$$\sum_{n=1}^{\infty} \frac{4^{2n+1} \cdot x^n}{3^{2n-1} \cdot (n^2 - n + 1)};$$
 6) $\sum_{n=1}^{\infty} \frac{3^n (n+2)(x-1)^n}{7^{n+2} n^2};$

7. a)
$$\sum_{n=1}^{\infty} \frac{3^{n-1} \cdot x^n}{(n^3 + 4n + 2) \cdot 2^{n-1}};$$
 6) $\sum_{n=1}^{\infty} \frac{2^{2n} n^3 (x - 2)^n}{3^n (\sqrt{n^3 + 5n})};$

9. a)
$$\sum_{n=1}^{\infty} \frac{2^{n+3} \cdot x^n}{5^{2n-3}(n^2-3)}$$
;

10. a)
$$\sum_{n=1}^{\infty} \frac{3^{n-1} n! \cdot x^n}{2^n (2n)!}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{(n+1)5^{n-}(x-1)^n}{n^2 2^{3n+1}}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{(5n-1)(x-2)^n}{(2n^3+1)5^n};$$

6)
$$\sum_{n=1}^{\infty} \frac{3^n (n+2)(x-1)^n}{7^{n+2} n^2}$$

6)
$$\sum_{n=1}^{\infty} \frac{2^{2n} n^3 (x-2)^n}{3^n (\sqrt{n^3} + 5n)}$$

6)
$$\sum_{n=1}^{\infty} \frac{4^{n+3}(n+1)(x-1)^n}{2^{n-1}n^2}$$

6)
$$\sum_{n=1}^{\infty} \frac{3^{n+1}(n^3+2)(x-1)^n}{(2+n^2)\sqrt{n}};$$

6)
$$\sum_{n=1}^{\infty} \frac{(n^2+3)(x-2)^n}{3^{2n-1}n^24^{3n}}.$$

Раздел 3. Приложение степенных рядов

3.1. Приближенное вычисление определенных интегралов

В курсе высшей математики доказывается, что функцию f \P , которая бесконечное число раз дифференцируемая, в точке x = 0 можно записать в виде ряда:

$$f(x) = f(0) + \frac{x}{1}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \dots,$$

который называется рядом Маклорена.

Рассмотрим примеры разложений функций в ряд:

1.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} + R_n(x),$$
 (7)

2.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{x^n}{n!} + R_n(x)$$
,

3.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + R_n(x)$$
,

4.
$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^n}{n!} + R_n(x)$$
,

5.
$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + R_n(x),$$

6.
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n \cdot x^n + R_n(x)$$
,

где R_n — называют остаточным членом ряда, причем для знакопеременных рядов его величина ограничена последним отбрасываемым членом, n=0,1,2,...

Пример 7

Вычислить $sin10^{\circ}$ с точностью до 10^{-3} .

Так как $10^\circ = \frac{\pi}{18} \approx 0,174533$, то, подставляя $x = \frac{\pi}{18}$ в разложение функции sinx в ряд (7), получим $sin10^\circ = \frac{\pi}{18} - \frac{1}{3!} \left(\frac{\pi}{18}\right)^3 + \frac{1}{5!} \left(\frac{\pi}{18}\right)^5 - \frac{1}{7!} \left(\frac{\pi}{18}\right)^7 \dots$, причем, ограничиваясь первым двумя членами, получим $sin10^\circ \approx \frac{\pi}{18} - \frac{1}{3!} \left(\frac{\pi}{18}\right)^3 = 0,17364$, а точность приближения не превышает величины $\delta < \frac{1}{5!} \left(\frac{\pi}{18}\right)^5 < 1,35 \cdot 10^{-6}$.

Пример 8

Вычислить определенный интеграл с точностью до 0,001: Решение:

$$\int_{0}^{1} \frac{\sin x}{x} dx = \int_{0}^{1} \frac{1}{x} \left(x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots \right) dx = \int_{0}^{1} \left(1 - \frac{x^{2}}{3!} + \frac{x^{4}}{5!} - \frac{x^{6}}{7!} + \dots \right) dx = \\ \approx \left(x - \frac{x^{3}}{3 \cdot 3!} + \frac{x^{5}}{5 \cdot 5!} - \frac{x^{7}}{7 \cdot 7!} \right) \Big|_{0}^{1} = 1 - \frac{1}{3 \cdot 3!} + \frac{1}{5 \cdot 5!} - \frac{1}{7 \cdot 7!} = 1 - \frac{1}{18} + \frac{1}{600} - \frac{1}{35280} \approx \\ \approx 0.945786.$$

Причем точность вычисления $\delta < \frac{1}{97} = 2.7 \cdot 10^{-6}$.

Задание 1 к разделу 3

Вычислить определенный интеграл с точностью до 0.001.

1.
$$\int_{0}^{1} x^{-2} \cdot e^{x} dx$$
;
4. $\int_{0}^{1} \frac{\cos x}{5\sqrt{x}} dx$;

$$2. \int_{0}^{1} \frac{\ln(1+x)}{\sqrt{x}} dx;$$

2.
$$\int_{0}^{1} \frac{\ln(1+x)}{\sqrt{x}} dx$$
; 3. $\int_{0}^{1} \sqrt[5]{x^3} \cdot \cos x dx$;

$$4. \int_{0}^{1} \frac{\cos x}{5\sqrt{x}} dx$$

5.
$$\int_{0}^{1} \frac{\sqrt{x} \sin x}{3} dx$$
; 6. $\int_{0}^{1} \frac{e^{-x}}{\sqrt{x^3}} dx$;

6.
$$\int_{0}^{1} \frac{e^{-x}}{\sqrt{x^3}} dx$$
;

$$7. \int_{0}^{1} \frac{\sin\sqrt{x}}{5x^2} dx;$$

8.
$$\int_{0}^{1} 5e^{-3x} dx$$
;

8.
$$\int_{0}^{1} 5e^{-3x} dx$$
; 9. $\int_{0}^{1} \frac{\cos x^{2}}{x} dx$;

10.
$$\int_{0}^{1} \frac{\sqrt{x}}{6} \sin x^{2} dx$$
.

3.2. Интегрирование дифференциальных уравнений с помощью рядов

Рассмотрим уравнение вида: y' = f(x; y) с начальным условием $y(0) = y_0$.

Решение уравнения представляет собой степенной ряд:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$
 (8)

Задача заключается в последовательном нахождении коэффициентов a_i , i = 1,2,3,...,n,...

Вычислим коэффициент a_0 , подставив в начальное условие решение в виде ряда:

$$y(0) = a_0 + a_1 \cdot 0 + a_2 \cdot 0^2 + a_3 \cdot 0^3 + \dots + a_n \cdot 0^n + \dots \Rightarrow y(0) = a_0 \Rightarrow a_0 = y_0$$

Подставим теперь начальное условие в правую часть дифференциального уравнения:

$$y' = f(0; y_0) = y'_0.$$

Найдем производную от выражения (8), учитывая, что коэффициенты a_i , (i = 1,2,3,...,n,...) – некоторые постоянные:

$$y' = a_1 + 2a_2x + 3a_3x^2 + ... + na_nx^{n-1} + ...$$

Подставим начальное условие в полученное выражение, тогда:

$$y'(0) = a_1 + 2a_2 \cdot 0 + 3a_3 \cdot 0^2 + \dots +$$

 $+na_n \cdot 0^{n-1} + \dots \Rightarrow y'(0) = a_1 \Rightarrow a_1 = y_0'$

Таким образом, последовательно дифференцируя решение уравнения (8) и, подставляя каждый раз в полученную производную начальное условие, находим необходимое количество коэффициентов a_i , i = 1,2,3,...,n,...

Пример 9

Найти первые три отличных от нуля члена ряда:

$$y' = y^2 + x^2 + e^{-x}, y(0) = 2.$$

Решение:

Разложение в ряд имеет следующий вид:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots {9}$$

Из начального условия следует

$$a_0 = y_0 = y(0) = 2$$
.

Подставляем начальное условие в правую часть исходного уравнения:

$$y'(0) = y_0^2 + 0^2 + e^{-0} = 2^2 + 0 + 1 = 5.$$

Продифференцируем решение (9):

$$y' = a_1 + 2a_2x + 3a_3x^2 + \dots$$

Подставим в полученное выражение начальное условие, тогда:

$$y'(0) = a_1 + 2a_2 \cdot 0 + 3a_3 \cdot 0^2 + ... \Rightarrow y'(0) = a_1 = 5.$$

Продифференцируем левую и правую часть исходного дифференциального уравнения:

$$y'' = 2y \cdot y' + 2x - e^{-x}$$

и подставим в полученное выражение начальное условие:

$$y''(0) = 2y(0) \cdot y'(0) + 2 \cdot 0 - e^{-0} = 2 \cdot 2 \cdot 5 + 0 - 1 = 19$$

С другой стороны, вторая производная от уравнения (9) равна:

$$y'' = 2a_2 + 6a_3x + \dots \Rightarrow y''(0) = 2a_2 + 6a_3 \cdot 0 + \dots \Rightarrow$$
$$\Rightarrow y''(0) = 2a_2 \Rightarrow a_2 = \frac{y''(0)}{2}.$$

Тогда
$$a_2 = \frac{19}{2}$$
.

Таким образом, искомое решение в виде ряда:

$$y = 2 + 5x + \frac{19}{2}x^2.$$

Задание 2 к разделу 3

Найти три первых значащих члена разложения в степенной ряд решения дифференциального уравнения с заданным начальным условием:

1.
$$y' = yx + x^2 + 2e^{2x}$$
, $y(0) = 3$;

2.
$$y' = y^2 + 5x e^x$$
, $y(0) = -2$;

3.
$$y' = x^2y + y^2 - xe^{-x}$$
, $y(0) = 1$;

4.
$$y' = ye^x + y^2 - x$$
, $y(0) = 4$;

5.
$$y' = e^x + 2xy^2 - 1$$
, $y(0) = -2$;

6.
$$y' = x^2 + y^2 + xe^{-2x}$$
, $y(0) = 2$;

7.
$$y' = 2x^2y^2 + ye^x$$
, $y(0) = 2$;

8.
$$y' = x^2 - y^2 - xy + e^x$$
, $y(0) = -1$;

9.
$$y' = xy + x^2y^2 + e^{-x}$$
, $y(0) = -3$;

10.
$$y' = x - y^3 + xe^{-x}$$
, $y(0) = -4$.

Контрольная работа № 7 ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СЛУЧАЙНЫЕ СОБЫТИЯ

Раздел 1. Элементы комбинаторики

Определение 1. Комбинаторная задача — это такая задача, в которой нужно ответить на вопрос: сколькими способами можно из множества, содержащего m элементов выбрать k элементов. При этом появляется необходимость выяснить: какие подмножества получаются при решении такой задачи. Совокупность из k элементов называется выборкой.

Для того чтобы решить комбинаторную задачу, необходимо определить характер выборки:

- 1. Упорядоченная / неупорядоченная.
- 1.1. Упорядоченной называется выборка, в которой от перестановки элементов в выборке меняется сама выборка. Например, задано число 546, при перестановке цифр мы получим другое число.
- 1.2. Неупорядоченной называется выборка такая, что при изменении порядка выборка остается прежней. Например, из коробки с цветными карандашами вытянули три, среди которых оказались красный, синий и желтый.
 - 2. С повторениями / без повторений.
- 2.1. Считается, что заданная выборка с повторениями, если один и тот же элемент входит в выборку по крайней мере два раза. Например, в слове «КОЛОБОК» буква «О» повторяется 3 раза, буква «К» 2 раза.
- 2.2. Считается, что заданная выборка без повторений, если все элементы выборки различны. Например, из корзины, в которой находится 10 красных шаров, вынимают 5 шаров, причем каждый вытянутый шар в корзину не возвращается.

При решении комбинаторных задач опираются на правило произведения: если элемент X можно выбрать k способами, а элемент Y можно выбрать k способами, то пару XY можно составить k способами.

Рассмотрим основные комбинаторные соединения.

1. Размещение с повторением.

Из множества, содержащего m элементов, нужно выбрать k элементов, причем выбранный элемент, после того, как его взяли, вновь возвращается в исходное множество (то есть элементы в выбранном множестве могут повторяться). Характер выборки: упорядоченная, с повторениями. Следовательно, применяем формулу: $P_m^k = m^k$.

Пример 1

Пусть заданы цифры 2, 3, 5, 7. Сколько различных четырехзначных чисел можно составить из этих цифр?

Решение:

Первой цифрой в числе может быть любая из четырех имеющихся. То же самое можно сказать и о последующих цифрах числа, поэтому общее число комбинаций: $P_4^4 = 4^4 = 256$.

2. Размещение без повторений.

Из множества, содержащего m различных элементов, нужно выбрать упорядоченное подмножество из k элементов ($k \le m$), то есть такое подмножество, в котором элементы располагаются в определенном порядке, и изменение порядка элементов изменяет подмножество. Кроме этого, элементы в выбранном подмножестве не повторяются. Характер выборки:

упорядоченная, без повторений. Тогда общее число способов можно выразить формулой:

$$A_m^k = \frac{m!}{(m-k)!}.$$

Пример 2

Сколько различных четырехзначных чисел можно составить из цифр 1, 2, 3, 4, 5, 6, при условии, что цифры в числе не повторяются?

Решение:

Общее число комбинаций равно числу размещений из 6 элементов (ко-

личество цифр) по 4, т. к. числа четырехзначные:
$$A_6^4 = \frac{6!}{(6-4)!} = \frac{6!}{2!} = 360$$
 .

3. Перестановка без повторений.

Пусть множество содержит m различных элементов. Рассмотрим все возможные варианты перестановок элементов этого множества, т. е. нужно выбрать упорядоченное подмножество из k элементов. Характер выборки: упорядоченная, без повторений и при этом выполняется условие m=k. Тогда необходимо воспользоваться формулой:

$$P_m = m(m-1)(m-2)... \cdot 3 \cdot 2 \cdot 1 = m!$$

Пример 3

Сколько различных четырехзначных чисел можно составить из цифр 2, 3, 5. 7, если цифры в числе не повторяются?

Решение:

Количество чисел равно числу перестановок из четырех элементов, т. к. числа четырехзначные: $P_4=4!=4\cdot 3\cdot 2\cdot 1=24$.

4. Перестановка с повторениями.

Множество содержит m элементов, причем некоторые элементы входят в выборку определенное количество раз. Рассмотрим все возможные варианты перестановок элементов этого множества, т. е. нужно выбрать упорядоченное подмножество из k_i (i=1,2,...,n) элементов. Характер выборки: упорядоченная, с повторениями и при этом выполняется условие $m=k_1+k_2+...+k_n$. Тогда необходимо воспользоваться формулой:

$$P_{(k_1,k_2,...,k_n)} = \frac{m!}{k_1! \cdot k_2! \cdot ... \cdot k_n!}.$$

Пример 4

Вычислить сколько различных слов можно составить из слова «МАТЕ-МАТИКА».

Решение:

Количество букв в слове m=10, причем буква «А» повторяется 3 раза, «М» — 2 раза, «Т» — 2 раза, «Е» — 1 раз, «И» — 1 раз, «К» — 1 раз. Тогда $k_1=3, k_2=2, k_3=2, k_4=1, k_5=1, k_6=1$. Вычисляем по формуле:

$$P_{(3,2,2,1,1,1)} = \frac{10!}{3! \cdot 2! \cdot 2! \cdot 1! \cdot 1!} = 151200.$$

5. Сочетания.

Пусть из множества, содержащего m различных элементов, требуется выбрать подмножество, содержащее k различных элементов ($k \le m$). Характер выборки: неупорядоченная, без повторений. Число сочетаний из m элементов по k элементов вычисляется по формуле:

$$C_m^k = \frac{m!}{(m-k)!k!}.$$

Пример 5

В группе 10 студентов. Сколькими способами можно выбрать из этой группы троих студентов для участия в конференции?

Решение:

Число способов равно числу сочетаний из 10 элементов по 3 элемента:

$$C_{10}^3 = \frac{10!}{(10-3)! \cdot 3!} = \frac{7! \cdot 8 \cdot 9 \cdot 10}{7! \cdot 1 \cdot 2 \cdot 3} = 120.$$

Теоретические вопросы к разделу 1

- 1. Сформулировать правило произведения.
- 2. Указать формулы для подсчета числа размещений при выборке с повторениями и без повторений.
 - 3. Записать формулы для подсчета числа сочетаний.

Задание 1 к разделу 1

- 1. Сколько можно составить различных четырехзначных комбинаций кода для сейфа, если можно использовать цифры от 0 до 7?
- 2. Сколько можно составить пятизначных телефонных номеров из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9, если все цифры, входящие в номер, различные?
 - 3. Сколькими способами можно посадить 5 тюльпанов на клумбе?
- 4. Сколько различных трехбуквенных слов можно составить из слова «КОМПЬЮТЕР»? (Под словом понимаем любой набор букв.)

- 5. Сколько различных слов можно составить из слова «МАГНИТОФОН»?
- 6. На участке дороги от дома до магазина расположены 7 светофоров, на каждом из которых может зажигаться либо красный, либо зеленый свет. Сколько существует различных комбинаций положения светофоров?
- 7. В танце желают участвовать 9 человек. Сколько различных пар можно составить, если не имеет значения кто участвует в танце?
- 8. В группе 32 студента. Сколькими способами можно выбрать трех человек для дежурства в классе?
 - 9. Сколько можно составить трехзначных номеров на автомобиль?
- 10. На столе расположены 15 экзаменационных билета. Сколькими способами можно выбрать 3 билета, если выбранный билет возвращают обратно на стол и билеты перемешивают.

Раздел 2. Случайные события и вероятности

Определение 2. Испытанием (опытом, наблюдением, измерением) будем называть некоторую совокупность действий. Предполагается, в общем случае, что испытание можно повторить неограниченное число раз.

Определение 3. Событием (случайным событием) называется всякий факт, который может произойти или не произойти в результате опыта. События обозначаются буквами *A, B, C, D, ...*

Определение 4. Вероятностью события называется численная мера возможности появления события в результате данного опыта. Вероятность события A обозначается P(A).

Определение 5. Событие Ω называется достоверным, если оно обязательно произойдет в результате опыта: $P(\Omega) = 1$.

Определение 6. Событие \emptyset , которое никогда не может произойти в результате опыта, называется невозможным: $P(\emptyset) = 0$.

Определение 7. Событие A, о котором нельзя заранее сказать произойдет оно или нет в результате опыта, называется случайным: 0 ≤ P(A) ≤ 1.

Определение 8. Суммой событий *A+B* называется событие, состоящее в осуществлении хотя бы одного из событий «*A* или *B*» (безразлично, какого именно, или обоих, если это возможно).

Определение 9. События A и B называются несовместными, если они не могут произойти одновременно при одном и том же испытании. Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: P(A+B)=P(A)+P(B).

Определение 10. Два случайных события называются противоположными, если появление одного из них равносильно непоявлению другого. Если одно из этих событий обозначить A, то другое (противоположное) обозначают \overline{A} (читается «не A»). Событие \overline{A} означает, что A не произошло: $P(A) + P(\overline{A}) = 1$.

Определение 11. Произведением двух событий «A и B» называется событие, состоящее в том, что оба события произошли одновременно. Если появление каждого из событий не зависит от того, произошло или нет другое, то события называются независимыми, и вероятность их произведения равна произведению вероятностей этих событий: $P(AB)=P(A)\cdot P(B)$.

Определение 12. Если вероятность появления события B изменяется в зависимости от того, произошло или нет событие A, то такие события называются зависимыми. Вероятность события B при условии, что событие A уже произошло, обозначается $P_A(B)$. Вероятность произведения зависимых событий определяется формулой $P(AB) = P(A) \cdot P_A(B)$.

Определение 13. Если события A и B несовместные, то P(AB)=0.

Формула для вычисления вероятности суммы двух событий, все равно каких, совместных или нет, имеет вид: P(A+B)=P(A)+P(B)-P(AB).

Определение 14. Полной группой событий называется несколько событий таких, что в результате опыта непременно должно произойти хотя бы одно из них.

Определение 15. Несколько событий в данном опыте называются равновозможными, если нет оснований считать какое-либо из них более возможным, чем другое.

Определение 16. События $\omega_1, \omega_2, ..., \omega_n$ называются элементарными, если они образуют полную группу событий, несовместны (то есть никакие два из них не могут произойти одновременно) и равновозможны.

Определение 17. Элементарные события $\omega_i, \omega_{i+1}, ..., \omega_k$ называются благоприятствующими событию A, если некоторое событие A происходит в результате появления одного из элементарных событий.

Рассмотрим классическое определение вероятности.

Пусть в результате опыта может произойти одно из n элементарных событий, причем событию A благоприятствуют m из них $(m \le n)$. Тогда вероятностью события A называется отношение числа элементарных исходов, благоприятствующих появлению события A, к общему числу равновоз-

можных элементарных исходов:
$$P(A) = \frac{m}{n}$$
.

Пример 6

Из пяти букв разрезной азбуки составлено слово ДОМИК. Ребенок, не умеющий читать, рассыпал эти буквы и затем выложил три из них в произвольном порядке. Найти вероятность того, что у него получилось слово КОД. (Предполагается, что ребенок не переворачивает буквы.)

Решение:

Пусть случайное событие *A* состоит в том, что получено слово КОД. Число равновозможных элементарных исходов равно числу размещений из 5 элементов по 3:

$$n = A_5^3 = \frac{5!}{(5-3)!} = 60.$$

Поскольку все буквы в первоначальном слове разные, то среди 60 исходов не будет двух одинаковых, то есть слово КОД встречается только один раз: m=1.

Таким образом,
$$P(A) = \frac{1}{60}$$
.

Пример 7

В двух ящиках содержатся синие и красные шары: в первом ящике 6 синих и 7 красных, во втором ящике — 4 синих и 5 красных. Из каждого ящика извлекают по одному шару. Найти: 1) вероятность того, что хотя бы один из вынутых шаров будет красным; 2) вероятность того, что только один из шаров будет красным.

Решение:

1. 1-й способ: Пусть событие A состоит в том, что хотя бы один их вынутых шаров красный. Обозначим за A_1 и A_2 события, состоящие в извлечении красного шара из первого и из второго ящиков соответственно. Тогда событие A будет выражено через события A_1 и A_2 формулой $A = A_1 + A_2$, а вероятность этого события, согласно правилу нахождения вероятности суммы двух событий $P(A) = P(A_1) + P(A_2) - P(A_1 \cdot A_2)$.

События A_1 и A_2 – независимые, поэтому $P(A) = P(A_1)P(A_2)$.

Вычислим вероятности событий. В первом ящике находится 13 шаров (синих и красных), из них 7 красные, следовательно $P(A) = \frac{7}{13}$. Во втором

ящике – 9 шаров (синих и красных), из них 5 – красные, то есть $P(A) = \frac{5}{13}$.

$$P(A) = \frac{7}{13} + \frac{5}{9} - \left(\frac{7}{13} \cdot \frac{5}{9}\right) = \frac{31}{39}$$
.

2-й способ: Этот же результат можно было получить, рассматривая противоположное событие \overline{A} , состоящее в том, что ни один из вынутых шаров не оказался красным: $\overline{A} = \overline{A_1} \cdot \overline{A_2} \implies P(\overline{A}) = P(\overline{A_1}) \cdot P(\overline{A_2})$. Тогда вероятность того, что оба вытянутых шара окажутся красными, равна:

$$P(A)=1-P(\ ar{A})$$
. Подставив числовые значения $P(\overline{A_1})=rac{6}{13},\ P(\overline{A_2})=rac{4}{9},$ получим $P(A)=1-rac{6}{13}\cdotrac{4}{9}=rac{31}{39}$.

2. Пусть событие B состоит в том, что только один из вынутых шаров оказался красным $B=A_1\cdot\overline{A_2}+A_2\cdot\overline{A_1}$. События $A_1\cdot\overline{A_2}$ и $A_2\cdot\overline{A_1}$ несовместные, поэтому

$$P(B) = P(A_1) \cdot \overline{(A_2)} + P(A_2) \cdot P(\overline{A_1}),$$

$$P(B) = \frac{7}{13} \cdot \frac{4}{9} + \frac{5}{9} \cdot \frac{6}{13} = \frac{58}{117}.$$

Пример 8 (задача о выборке)

В лотерее 11 билетов, из них 4 выигрышных. Найти вероятность того, что среди взятых наугад 5 билетов будут 2 выигрышных.

Решение:

Пусть A — событие, состоящее в том, что среди выбранных наудачу 5 билетов оказались 2 выигрышных. По классическому определению вероятностей $P(A) = \frac{m}{n}$, где n — число способов, которыми из 11 имеющихся билетов можно выбрать любые 5 все равно в каком порядке:

$$n = C_{11}^5 = \frac{11!}{5!(11-5)!} = 462.$$

Число благоприятных исходов m равно числу способов, которыми можно выбрать 2 выигрышных билета из 5 имеющихся и еще 3 невыигрышных билета из 7 (11–4 = 7):

$$m = C_4^2 \cdot C_7^3 = \frac{4!}{2!(4-2)!} \cdot \frac{7!}{3!(7-3)!} = 6 \cdot 35 = 210.$$

Тогда по формуле классической вероятности, получим:

$$P(A) = \frac{210}{462} = \frac{105}{231} \approx 0,455.$$

В некоторых случаях не удается перечислить или посчитать все элементарные и благоприятствующие исходы. Тогда принимается какая-либо другая мера подсчета (например, площадь фигуры или объем тела). Такие ве-

роятности называются геометрическими. Если обозначить Ω – пространство элементарных исходов, то можно записать:

$$P(A) = \frac{mepa \ A}{mepa \ \Omega}.$$

Пример 9

В круг радиуса *R* вписан квадрат. Из круга наудачу выбирается точка. Какова вероятность того, что эта точка лежит внутри квадрата?

Решение:

Событие A состоит в том, что наудачу выбранная из круга точка оказалась лежащей внутри квадрата. Понятно, что посчитать количество точек внутри круга и внутри квадрата невозможно, поэтому мерой числа равновозможных элементарных исходов будет площадь круга $S_1 = \pi R^2$, а мерой числа благоприятных исходов – площадь квадрата $S_2 = 2R^2$

$$P(A) = \frac{S_2}{S_1} = \frac{2R^2}{\pi R^2} = \frac{2}{R}.$$

Теоретические вопросы к разделу 2

- 1. Понятие случайного, достоверного и невозможного событий.
- 2. Вероятность суммы и произведения событий.
- 3. Классическое определение вероятности.

Задание 1 к разделу 2

а) В ящике содержится k стандартных деталей из n. Из ящика наугад вынимают 5 любых деталей. Найти вероятность того, что среди извлеченных деталей окажутся 1) все 5 стандартных; 2) только 3 стандартных; 3) только 1 стандартная; 4) все нестандартные.

Nº	1	2	3	4	5	6	7	8	9	10
n	55	60	65	55	60	55	40	45	65	55
k	40	35	45	45	40	45	30	35	55	35

б) В упаковке с семенами три сорта гороха содержится. Вероятность того, что взойдет горох первого сорта, равна p_1 , второго — p_2 , третьего — p_3 . Найти вероятность всхожести: 1) только двух сортов гороха; 2) всех трех сортов.

Nº	1	2	3	4	5	6	7	8	9	10
p_1	0,9	0,6	0,7	0,9	0,7	0,4	0,5	0,4	0,7	0,7
p_2	0,8	0,7	0,6	0,5	0,8	0,4	0,7	0,5	0,6	0,4
p_3	0,7	0,2	0,5	0,7	0,2	0,5	0,8	0,3	0,8	0,9

Примечание: здесь номер варианта находится в первой строке таблицы.

Раздел 3. Последовательность независимых испытаний.

Пусть проводится серия из n испытаний, в каждом из которых событие A может наступить с одной и той же вероятностью p или не наступить с вероятностью q=1-p, независимо от номера испытания и результата предыдущего опыта. Такие серии опытов называются последовательностью независимых испытаний или схемой Бернулли.

Решение следующих задач совершают по схеме Бернулли:

- 1) найти вероятность того, что в серии из n испытаний событие A наступит ровно k раз: $P_n(k)$;
- 2) найти вероятность того, что в серии из n испытаний событие A наступит не менее чем k_1 раз и не более, чем k_2 раза: $P_n(k_1,k_2)$.

Указанные вероятности находят по формуле Бернулли, при условии n < 100: $P_n(k) = C_n^k \cdot p^k \cdot q^{n-k}$, $P_n(k_1, k_2) = P_n(k_1) + P_n(k_1 + 1) + ... + P_n(k_2)$.

Если число n велико ($n \ge 100$), а p не слишком мало, то для вычисления вероятности можно воспользоваться приближенными (асимптотическими) формулами Муавра—Лапласа (локальная теорема Муавра—Лапласа; интегральная теорема Муавра—Лапласа).

Локальная теорема Муавра-Лапласа:

$$P_n(k) = \frac{1}{\sqrt{npq}} \varphi(x),$$

где
$$x = \frac{k - np}{\sqrt{npq}}$$
 и $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

Интегральная теорема Муавра-Лапласа:

$$P_n(k_1,k_2) = \Phi(x_2) - \Phi(x_1),$$

где
$$x_2 = \frac{k_2 - np}{\sqrt{npq}}, x_1 = \frac{k_1 - np}{\sqrt{npq}}, \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt.$$

Функции $\phi(x)$ и $\Phi(x)$ табулированы, то есть таблицы значений этих функций приведены в каждом учебнике по теории вероятностей.

Этих функции обладают следующими свойства: $\phi(-x) = \phi(x)$; $\Phi(-x) = -\Phi(x)$; $\Phi(0) = 0$; $\Phi(x) \to 0,5$ при $x \to \infty$.

Если число испытаний n велико, а вероятность появления события A в каждом испытании мала, то для вычисления вероятности появления k раз события A в серии из n испытаний можно воспользоваться формулой Пуассона:

$$P_n(k) = \frac{e^{-\lambda}}{k!} \lambda^k,$$

где $\lambda = n \cdot p$.

Число m_0 успехов, при котором достигается наибольшая из возможных вероятностей, называется наивероятнейшим числом успехов. Оно определяется как целое число на промежутке $n\cdot p-q\leq m\leq n\cdot p+p$.

Пример 10

По некоторой цели произведено 4 независимых выстрела. Вероятность попадания в цель при одном выстреле равна 0,6. Найти вероятность того, что при 4 выстрелах было ровно 1 попадание, и определить наивероятнейшее число попаданий.

Решение:

Вероятность попадания при одном выстреле равна p=0,6, а вероятность промаха q = 1 – p = 0,4. Вероятность того, что будет ровно одно попадание, находим по формуле Бернулли:

$$P_4(1) = C_4^1 \cdot p^1 \cdot q^3 = \frac{4!}{3! \cdot 1!} \cdot 0.6 \cdot 0.4^3 = 0.1536$$
.

Наивероятнейшее число попаданий

$$4 \cdot 0.6 - 0.4 \le m_0 \le 4 \cdot 0.6 + 0.6 \implies 2 \le m_0 \le 3$$
.

Исходя из того, что m_0 — целое число, тогда имеется два наивероятнейших числа 2 или 3.

Пример 11

Вероятность наступления события A в каждом из одинаковых и независимых испытаний равна 0,7. Найти вероятность того, что в 1600 испытаниях событие A наступит: a) ровно 1100 раз; б) от 1100 до 1200 раз.

Решения:

Вычислим P(A) = p = 0.7 – вероятность появления события A при одном испытании; q = 1 - 0.7 = 0.3 – вероятность непоявления события A при одном испытании.

а) Воспользуемся локальной формулой Муавра-Лапласа:

$$P_n(k) = \frac{1}{\sqrt{npq}} \, \phi(x)\,,$$
 где $x=\frac{k-np}{\sqrt{npq}}$ и $\phi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\,.$

Из условия следует, что n = 1600, k = 1100. Тогда

$$x = \frac{1100 - 1600 \cdot 0.7}{\sqrt{1600 \cdot 0.7 \cdot 0.3}} = \frac{-20}{18,33} \approx -1.09.$$

По таблице ([5], прил. 1) вычисляем $\phi(-1,09) = \phi(1,09) = 0,2203$. Таким образом, P_{1600} (1100) = $\frac{1}{\sqrt{1600 \cdot 0.7 \cdot 0.3}}$ 0,2203 \approx 0,012 .

б) Воспользуемся интегральной формулой Лапласа

$$P_n(k_1,k_2) = \Phi(x_2) - \Phi(x_1),$$

где
$$x_2 = \frac{k_2 - np}{\sqrt{npq}}$$
, $x_1 = \frac{k_1 - np}{\sqrt{npq}}$.

Из условия следует, что $n = 1600, k_1 = 1100, k_2 = 1200$. Тогда

$$x_1 = \frac{1100 - 1600 \cdot 0,7}{\sqrt{1600 \cdot 0,7 \cdot 0,3}} = \frac{-20}{18,33} \approx -1,09$$
 и $x_2 = \frac{1200 - 1600 \cdot 0,7}{\sqrt{1600 \cdot 0,7 \cdot 0,3}} = \frac{80}{18,33} \approx 4,36$.

По таблице ([5], прил. 2) вычисляем $\Phi(4,36) \approx 0.5$; $\Phi(-1,09) = -0.3621$.

$$P_{1600}(1100;1200) \approx \Phi(4,36) - \Phi(-1,09) = 0.5 + 0.3621 = 0.8621.$$

Теоретические вопросы к разделу 3

- 1. Формула Бернулли.
- 2. Локальная формула Муавра-Лапласа.
- 3. Интегральная формула Муавра-Лапласа.
- 4. Формула Пуассона.

Задание 1 к разделу 3

Куплено n лотерейных билетов. Вероятность выигрыша на один лотерейный билет p=0,6. Найти а) вероятность того, что из n билетов k билетов выиграют; б) наивероятнейшее число выигрышных билетов.

Nº	1	2	3	4	5	6	7	8	9	10
n	17	14	16	18	15	12	11	19	10	16
k	5	3	2	9	7	3	5	8	4	9

Примечание: здесь номер варианта находится в первой строке таблицы.

Раздел 4. Дискретные случайные величины

Пусть производится некоторое испытание, результатом которого является одно из несовместных случайных событий $A_1, A_2, ... A_n$ (число событий или конечно или счетно, то есть события можно пронумеровать).

Определение 18. Каждому исходу A_i поставлено в соответствие некоторое действительное число x_i , то есть на множестве случайных событий задана действительная функция X со значениями $x_1, x_2, ... x_n$. Эта функция X называется дискретной случайной величиной (термин «дискретная» используется потому, что значения случайной величины — это отдельные числа, в отличие от непрерывных функций).

Поскольку значения случайной величины изменяются в зависимости от случайных событий, то основной интерес представляют вероятности, с которыми случайная величина принимает различные числовые значения.

Определение 19. Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Закон распределения может иметь различные формы. Для дискретной случайной величины законом распределения является совокупность пар чисел $(x_i; p_i)$, где x_i – возможные значения случайной величины, а p_i – вероятности, с которыми она принимает эти значения: $p_i = P(X = x_i)$; при

этом
$$\sum_{i=1}^{n} p_{i} = 1$$
.

Пары (x_i, p_i) можно рассматривать, как точки в некоторой системе координат. Соединив эти точки отрезками прямых, получим графическое изображение закона распределения — многоугольник распределения. Чаще всего закон распределения дискретной случайной величины записывается в виде таблицы, в которую внесены пары (x_i, p_i) .

X	<i>x</i> ₁	x_2	<i>x</i> ₃	 x_i	 x_n
p	p_1	p_2	p_3	 p_i	 p_n

Рассмотрим законы распределения дискретных случайных величин, часто встречающиеся при решении различных задач: геометрическое распределение, гипергеометрическое распределение, биномиальное распределение, распределение Пуассона.

- 1. Закон геометрического распределения вероятностей применяется в случае, если в задаче содержится условие «до первого попадания, приобретения, до первой встречи или израсходования всего...». Вероятности p_i для соответствующих x_i вычисляются по формуле: $p_i = q^{m-1} \cdot p$, где q = 1 p, m возможные значения случайной величины x_i .
- 2. Закон биномиального распределения вероятностей применяется в случае, если для множества, состоящего из n элементов, выполняется условие $n<100\,$ и в каждом испытании вероятность равна p. Вероятности p_i для соответствующих x_i вычисляются по формуле Бернулли: $p_i=C_n^m\cdot p^m\cdot q^{n-m}$, где q=1-p, m- возможные значения случайной величины x_i .
- 3. Закон Пуассона применяется в случае, если в задаче указанно условие $n \ge 100$, т. е. n очень велико, а p при этом очень мало $p \to 0$. Вероятности p_i для соответствующих x_i вычисляются по формуле Пуассона:

$$p_i = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$$
, где m – возможные значения случайной величины x_i , $\lambda = np$.

Пример 12

Произведено два выстрела по мишени. Составить закон распределения числа попаданий, если вероятность попадания в мишень равна 0,5.

Решение

Случайная величина X — число попаданий в мишень в данном испытании. Очевидно, что n=2<100 и X может принимать одно из трех значений: 0 (ни одного попадания), 1 (одно попадание), 2 (два попадания). Вероятность попадания при одном выстреле равна p=0,5, а непопадания q=1-p=0,5. Вероятности, с которыми случайная величина принимает перечисленные значения, найдем по формуле Бернулли:

$$p(X = 0) = p_0 = C_2^0 \cdot p^0 \cdot q^2 = 1 \cdot 1 \cdot 0.5^2 = 0.25;$$

$$p(X = 1) = p_1 = C_2^1 \cdot p^1 \cdot q^1 = 2 \cdot 0.5 \cdot 0.5 = 0.5;$$

$$p(X = 2) = p_2 = C_2^2 \cdot p^2 \cdot q^0 = 1 \cdot (0.5)^2 \cdot 1 = 0.25.$$

Закон распределения случайной величины X запишем в виде таблицы распределения:

X	0	1	2	
Р	0,25	0,5	0,25	

Проверка:
$$\sum_{i=1}^{3} p_i = 0.25 + 0.5 + 0.25 = 1.$$

Закон распределения дискретной случайной величины может быть задан с помощью функции распределения F(x), которая равна вероятности того, что случайная величина X будет принимать значения на промежутке $(-\infty; x) : F(x) = P(X < x)$.

Функция F(x) определена на всей действительной оси и обладает следующими свойствами:

- 1) $0 \le F(x) \le 1$;
- 2) *F(x)* неубывающая функция;
- 3) $F(-\infty) = 0, F(+\infty) = 1;$
- 4) $F(b) F(a) = P(a \le X \le b)$ вероятность того, что случайная величина X примет значения на промежутке f(a;b).

График функции F(x) для дискретной случайной величины состоит из отрезков прямых и лучей, параллельных оси OX или совпадающих с ней.

Пример 13

Случайная величина Х задана таблицей распределения:

X	-1	2	3	5
P	0,1	0,3	0,4	0,2

Составить функцию распределения F(x) случайной величины X и построить ее график.

Решение:

Если
$$x \le -1$$
, то $F(x) = P(X < x) = 0$; если $-1 < x \le 2$, то $F(x) = P(X < x) = P(X = -1) = 0,1$; если $2 < x \le 3$, то $F(x) = P(X = -1) + P(X = 2) = 0,1 + 0,3 = 0,4$; если $3 < x \le 5$, то $F(x) = P(X = -1) + P(X = 2) + P(X = 3) = 0,1 + 0,3 + 0,4 = 0,8$; если $x > 5$, то $F(x) = P(X = -1) + P(X = 2) + P(X = 3) + P(X = 5) = 1$

$$\begin{cases} 0, & x \le -1 \\ 0,1, & -1 < x \le 2 \end{cases}$$

$$\begin{cases} 0,4, & 2 < x \le 3 \\ 0,8, & 3 < x \le 5 \end{cases}$$

$$\begin{cases} 0,8, & 3 < x \le 5 \end{cases}$$

Построим график функции F(x) (см. рис. 1).

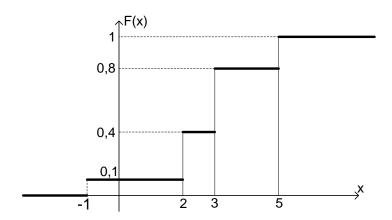


Рис. 1. График функции распределения F(x)

Рассмотрим числовые характеристики дискретных случайных величин. Пусть случайная величина *X* задана таблицей распределения:

X	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	 x_i	 x_n
p	p_1	p_2	p_3	 p_i	 p_n

Определение 20. Математическим ожиданием M(X) дискретной случайной величины X называется сумма произведений всех ее возможных значений x_i на соответствующие вероятности p_i :

$$M(X) = \sum_{i=1}^{n} x_i p_i$$

Математическое ожидание называют также средним значением случайной величины X, подчеркивая статистический смысл понятия, или центром распределения случайной величины X (по аналогии с понятием центра тяжести для системы материальных точек).

Свойства математического ожидания:

- 1) если случайная величина X принимает постоянное значение X = C = const, то M(C) = C;
 - 2) M(CX) = CM(X), где C = const;
- 3) математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий: M(X+Y) = M(X) + M(Y);
- 4) математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: $M(X \cdot Y) = M(X) \cdot M(Y)$.

Наряду с характеристиками положения большую роль играют характеристики рассеяния. Рассеяние случайной величины X связано с отклонением этой величины от ее центра распределения M(X). Чтобы учитывать отклонения противоположных знаков, удобно рассматривать квадраты отклонений.

Определение 21. Дисперсией D(X) случайной величины X называют средний квадрат отклонения случайной величины от ее центра распределения:

$$D(X) = M(X - M(X))^{2}.$$

Используя свойства математического ожидания, можно записать более удобную формулу для подсчета дисперсии

$$D(X) = M(X^2) - M^2(X)$$
.

Для того чтобы рассматривать отклонение в тех же единицах, что и значения случайной величины, вводится еще одна характеристика — среднее квадратическое отклонение $\sigma(X)$, которое определяется как

$$\sigma(X) = \sqrt{D(X)}$$
.

Свойства дисперсии:

- 1) $D(X) \ge 0$;
- 2) если C = const, то D(C) = 0;
- 3) $D(C \cdot X) = C^2 D(X)$, C=const,
- 4) $D(X \pm Y) = D(X) + D(Y)$.

Пример 14

Дискретная случайная величина Х задана таблицей распределения:

X	1	4	5	7	
P	0,5	0,2	0,2	0,1	

Найти M(X), D(X), $\sigma(X)$.

Решение:

Найдем математическое ожидание: M(X) = 1.0,5 + 4.0,2 + 5.0,2 + 7.0,1 = 3.

Дисперсию вычислим по формуле $D(X) = M(X^2) - M^2(X)$.

Вычислим: $M(X^2) = 1^2 \cdot 0.5 + 4^2 \cdot 0.2 + 5^2 \cdot 0.2 + 7^2 \cdot 0.1 = 13.6$;

$$D(X) = 13.6 - (3)^2 = 4.6;$$

$$\sigma(X) = \sqrt{4.6} \approx 2.145$$
.

Теоретические вопросы к разделу 4

- 1. Закон распределения дискретной случайной величины.
- 2. Функция распределения дискретной случайной величины.
- 3. Математическое ожидание дискретной случайной величины.
- 4. Дисперсия и среднее квадратическое отклонение дискретной случайной величины.

Задание 1 к разделу 4

Дискретная случайная величина может принимать только два значения: x_1 и x_2 , причем $x_1 < x_2$. Известны вероятность p_1 возможного значения x_1 , математическое ожидание M(X) и дисперсия D(X). Найти закон распределения этой случайной величины.

Nº	1	2	3	4	5	6	7	8	9	10
p_1	0,1	0,3	0,5	0,7	0,9	0,9	0,8	0,6	0,4	0,2
M(X)	3,9	3,7	3,5	3,3	3,1	2,2	3,2	3,4	3,6	3,8
D(X)	0,09	0,21	0,25	0,21	0,09	0,36	0,16	0,24	0,24	0,16

Примечание: здесь номер варианта находится в первой строке таблицы.

Раздел 5. Непрерывные случайные величины

Определение 22. Случайные величины, возможные значения которых сплошь заполняют некоторый интервал (α,β) конечный или бесконечный, называются непрерывными.

Закон распределения вероятностей непрерывной случайной величины X должен позволять находить вероятность попадания ее значений в любой интервал, лежащий внутри (α,β) . При этом вероятность попадания случайной величины в интервал $(x;x+\Delta x)$ малой длины $\Delta x>0$ можно приближенно считать пропорциональной длине этого интервала:

$$P(x < X < x + \Delta x) \approx f(x) \cdot \Delta x$$
, где функция $f(x) = \lim_{\Delta x \to 0} \frac{p(x < X < x + \Delta x)}{\Delta x}$

называется функцией плотности распределения вероятностей случайной величины X, а произведение $f(x) \cdot \Delta x = f(x) dx$ – элементом вероятности.

Свойства функции плотности:

- 1) $f(x) \ge 0, x \in (-\infty; +\infty);$
- 2) вероятность попадания случайной величины X в интервал (x_1, x_2)

равна
$$p(x_1 < x < x_2) = \int_{x_1}^{x_2} f(x) dx$$
; $p(X = x_0) = 0$;

3)
$$\int_{-\infty}^{\infty} f(x) dx = 1.$$

Плотность распределения вероятностей вполне определяет закон распределения непрерывной случайной величины X.

Так как $p(x_1 \le X < x_2) = \int\limits_{x_1}^{x_2} f(x) dx = F(x_2) - F(x_1)$, то функция F(x) является первообразной функции f(x): F'(x) = f(x), откуда следует, что для

непрерывной случайной величины X функция распределения F(x) является непрерывной. Если задана функция плотности f(x), то функция распределения может быть найдена по формуле:

$$F(x) = p(-\infty < X < \infty) = \int_{-\infty}^{x} f(t)dt.$$

Функция F(x) называется интегральной функцией, а функция f(x) – дифференциальной.

Определение 23. Математическим ожиданием (средним значением, центром распределения) M(X) непрерывной случайной величины X называется интеграл от произведения ее значений X на плотность распределения вероятностей f(x):

$$M(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

Определение 24. Дисперсию непрерывной случайной величины вычисляют по формуле, которая совпадает с формулой, применяемой в дискретном случае:

$$D(X) = M(X^2) - M^2(X),$$

где
$$M(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$
.

Укажем некоторые из наиболее часто встречающихся законов распределения непрерывных случайных величин.

1. Равномерное распределение в интервале (a,b).

Говорят, что случайная величина распределена равномерно в конечном интервале (a,b), если все ее возможные значения сосредоточены на этом интервале, и плотность распределения ее вероятностей на этом интервале постоянна.

Функция плотности распределения задается формулой:

$$f(x) = egin{cases} rac{1}{b-a}, & ecnu & a < x < b; \ 0, & вне & интервала & (a,b). \end{cases}$$

Рассмотрим числовые характеристики равномерного закона распреде-

ления:
$$M(X) = \frac{a+b}{2}$$
, $D(X) = \frac{(b-a)^2}{12}$; $\sigma(X) = \frac{b-a}{2\sqrt{3}}$.

2. Нормальный закон распределения.

Плотность распределения вероятностей непрерывной случайной величины X и числовые характеристики, присущие указанному закону распределения, имеют вид:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\tau^2}}, x \in (-\infty; +\infty),$$

где a = M(X), $\sigma = \sigma(X)$.

Вероятность того, что случайная величина X примет значения из интервала (x_1,x_2) определяется с помощью интегральной функции Лапласа

$$p(x_1 < X < x_2) = \Phi\left(\frac{x_2 - a}{\sigma}\right) - \Phi\left(\frac{x_1 - a}{\sigma}\right).$$

Справедливо «правило трех сигм»: $P(/X-a/<3\sigma)=0.9973$, которое позволяет при решении практических задач применять нормальный закон распределения к случайным величинам, заданным на конечном интервале. К нормальному распределению обычно приводят задачи, связанные с распределением сумм большого числа случайных величин.

3. Показательный закон распределения.

Плотность вероятностей определяется формулой:

$$f(x) = \begin{cases} 0, & ecnu \quad x < 0; \\ \lambda e^{-\lambda x} & ecnu \quad x \ge 0 \end{cases}.$$

Формула распределения показательного закона:

$$F(x) = \begin{cases} 0, & ec\pi u \quad x < 0; \\ 1 - e^{-\lambda x} & ec\pi u \quad x \ge 0 \end{cases}.$$

Числовые характеристики:
$$M(X) = \frac{1}{\lambda}$$
, $D(X) = \frac{1}{\lambda^2}$, $\sigma(X) = \frac{1}{\lambda}$.

К показательному закону распределения вероятностей приводит задача о распределении промежутка времени X между двумя последовательными событиями в простейшем потоке.

Пример 15

Случайная величина Х задана функцией распределения:

$$f(x) = \begin{cases} 0, & ecnu \quad x \le -1 \\ Cx^2, & ecnu \quad -1 < x \le 3 \\ 0, & ecnu \quad x > 3 \end{cases}$$

Требуется:

- 1) определить коэффициент С;
- 2) найти функцию распределения F(x);
- 3) схематично построить графики функций f(x) и F(x);

- 4) вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины X;
- 5) определить вероятность того, что X примет значения из интервала (1; 2).

Решение:

1. Коэффициент C можно определить из условия $\int_{-\infty}^{\infty} f(x) dx = 1$.

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{-1} 0dx + \int_{-1}^{3} Cx^{2}dx + \int_{3}^{\infty} 0dx = C \int_{-1}^{3} x^{2}dx = C \frac{x^{3}}{3} \Big|_{-1}^{3} = C \left(\frac{3^{3}}{3} - \frac{1^{3}}{3} \right) = C \frac{26}{3} = 1 \Rightarrow C \frac{26}{3} = 1 \Rightarrow C = \frac{3}{26}.$$

Тогда

$$f(x) = \begin{cases} 0, & ecnu \quad x \le -1, \\ \frac{3x^2}{26}, & ecnu \quad -1 < x \le 3, \\ 0, & ecnu \quad x > 3. \end{cases}$$

2. Функцию распределения найдем из соотношения $F(x) = \int_{-\infty}^{x} f(t) dt$:

если *x*≤1, то
$$F(x) = \int_{-\infty}^{x} 0 dt = 0$$
;

если -1<х≤3, то

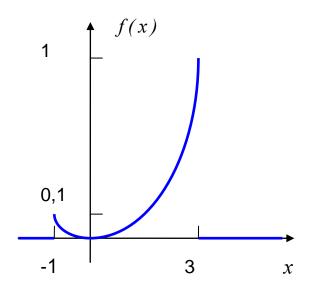
$$F(x) = \int_{-\infty}^{-1} 0 dt + \int_{-1}^{x} \frac{3t^2}{26} dt = \frac{3t^3}{26 \cdot 3} \bigg|_{-1}^{x} = \frac{x^3}{26} - \frac{(-1)^3}{26} = \frac{(x+1)^3}{26};$$

если x>3, то
$$F(x) = \int_{-\infty}^{-1} 0 dt + \int_{-1}^{3} \frac{3t^2}{26} dt + \int_{3}^{x} 0 dt = 1.$$

Таким образом, функция распределения имеет вид:

$$F(x) = \begin{cases} 0, & ecnu \quad x \le -1, \\ \frac{(x+1)^3}{26}, & ecnu \quad -1 < x \le 3. \\ 1, & ecnu \quad x > 3 \end{cases}$$

3. графики функций f(x) и F(x) изображены на рисунках:



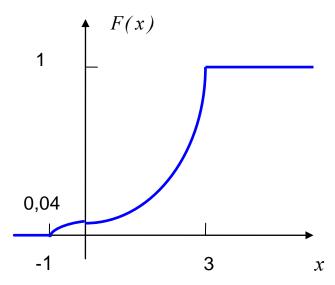


Рис. 2. Функция плотности

Рис. 3. Функция распределения

4. Найдем математическое ожидание и дисперсию случайной величины X:

$$M(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx = \int_{-\infty}^{-1} 0 dx + \int_{-1}^{3} x \cdot \frac{3x^{2}}{26} dx + \int_{3}^{+\infty} 0 dx =$$
$$= \frac{3}{26} \frac{x^{4}}{4} \Big|_{-1}^{3} = \frac{3}{26} \left(\frac{3^{4}}{4} - \frac{(-1)^{4}}{4} \right) = \frac{30}{13}.$$

Для вычисления дисперсии найдем $M(X^2)$:

$$M(X^{2}) = \int_{-\infty}^{+\infty} x^{2} \cdot f(x) dx = \int_{-\infty}^{-1} 0 dx + \int_{-1}^{3} x^{2} \cdot \frac{3x^{2}}{26} dx + \int_{3}^{+\infty} 0 dx =$$
$$= \frac{3}{26} \left[\frac{x^{5}}{5} \right]_{-1}^{3} = \frac{3}{26} \left(\frac{3^{5}}{5} - \frac{(-1)^{5}}{5} \right) = \frac{366}{65}.$$

Воспользуемся формулой $D(X) = M(X^2) - M^2(X)$:

$$D(X) = \frac{366}{65} - \left(\frac{30}{13}\right)^2 \approx 0.306$$
.

Среднее квадратическое отклонение случайной величины X: $\sigma(X) = \sqrt{D(X)} = \sqrt{0.306} \approx 0.553$.

5. Вероятность того, что случайная величина попадет в некоторый интервал, можно найти или с помощью функции плотности, или с помощью функции распределения. Рассмотрим оба варианта:

a)
$$P(1 < X < 2) = F(2) - F(1) = 1 - \frac{3 \cdot 2^2}{26} = \frac{7}{13}$$
;

6)
$$P(1 < X < 2) = \int_{1}^{2} f(x) dx = \int_{1}^{2} \frac{3x^{2}}{26} dx = \frac{3x^{3}}{26 \cdot 3} \Big|_{1}^{2} = \frac{2^{3}}{26} - \frac{1^{3}}{26} = \frac{7}{26}$$

Теоретические вопросы к разделу 5

- 1. Функция плотности распределения вероятностей.
- 2. Числовые характеристики непрерывных случайных величин.
- 3. Функция распределения вероятностей непрерывной случайной величины.
 - 4. Равномерное распределение.
 - 5. Показательный закон распределения.
 - 6. Нормальный закон распределения.

Задание 1 к разделу 5

Непрерывная случайная величина X задана своей плотностью распределения вероятностей f(x). Требуется:

- 1) определить коэффициент C;
- 2) найти функцию распределения F(x);
- 3) схематично построить графики функций f(x) и F(x);
- 4) вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины *X*;
- 5) определить вероятность того, что X примет значения из интервала (α, β) .

1.
$$f(x) = \begin{cases} 0, & ecnu \quad x < -2, \\ Cx^3, & ecnu \quad -2 \le x \le 5, \quad \alpha = 0, \beta = 4. \\ 0, & ecnu \quad x > 5, \end{cases}$$
2. $f(x) = \begin{cases} 0, & ecnu \quad x < 0, \\ C, & ecnu \quad 0 \le x \le 5, \alpha = 1, \beta = 4. \\ 0, & ecnu \quad x > 5, \end{cases}$

$$3. \ f(x) = \begin{cases} 0, & ecnu \quad x < -1, \\ \frac{Cx}{3}, & ecnu \quad -1 \le x \le 4, \ \alpha = 2, \beta = 3. \\ 0, & ecnu \quad x > 4, \end{cases}$$

$$4. \ f(x) = \begin{cases} 0, & ecnu \quad x < -3, \\ \frac{Cx^2}{4}, & ecnu \quad -3 \le x \le 2, \ \alpha = -1, \beta = 0. \\ 0, & ecnu \quad x > 2, \end{cases}$$

$$5. \ f(x) = \begin{cases} 0, & ecnu \quad x < -2, \\ \frac{C}{8}, & ecnu \quad -2 \le x \le 3, \ \alpha = -1, \beta = 1. \\ 0, & ecnu \quad x > 3, \end{cases}$$

$$6. \ f(x) = \begin{cases} 0, & ecnu \quad x < -1, \\ 3Cx^4, & ecnu \quad -1 \le x \le 7, \ \alpha = 1, \beta = 5. \\ 0, & ecnu \quad x > 7, \end{cases}$$

$$7. \ f(x) = \begin{cases} 0, & ecnu \quad x < 0, \\ 4Cx, & ecnu \quad 0 \le x \le 2, \ \alpha = 0, \beta = 1. \\ 0, & ecnu \quad x > 2, \\ 0, & ecnu \quad x < 0, \end{cases}$$

4.
$$f(x) = \begin{cases} \frac{Cx^2}{4}, & ecnu - 3 \le x \le 2, \ \alpha = -1, \beta = 0. \\ 0, & ecnu x > 2, \end{cases}$$

5.
$$f(x) = \begin{cases} 0, & ecnu & x < -2, \\ \frac{C}{8}, & ecnu & -2 \le x \le 3, \ \alpha = -1, \beta = 1. \\ 0, & ecnu & x > 3, \end{cases}$$

6.
$$f(x) = \begin{cases} 3Cx^4, & ecnu \\ -1 \le x \le 7, & \alpha = 1, \beta = 5, \\ 0, & ecnu \\ x > 7, \end{cases}$$

7.
$$f(x) = \begin{cases} 0, & ecnu \quad x < 0, \\ 4Cx, & ecnu \quad 0 \le x \le 2, \ \alpha = 0, \beta = 1. \\ 0, & ecnu \quad x > 2, \end{cases}$$

8.
$$f(x) = \begin{cases} -Cx^2, & ec\pi u & 0 \le x \le 3, \ \alpha = 1; \beta = 2. \\ 0, & ec\pi u & x > 3, \end{cases}$$

$$\begin{cases} 0, & ecnu \quad x > 2, \\ 0, & ecnu \quad x < 0, \\ -Cx^2, & ecnu \quad 0 \le x \le 3, \ \alpha = 1; \beta = 2. \\ 0, & ecnu \quad x > 3, \end{cases}$$

$$9. \ f(x) = \begin{cases} 0, & ecnu \quad x < -3, \\ -2Cx, & ecnu \quad -3 \le x \le 2, \ \alpha = -2; \beta = 1. \\ 0, & ecnu \quad x > 2, \end{cases}$$

$$0, ecnu \quad x > 2,$$

$$10. \ f(x) = \begin{cases} 0, ecnu & x < -1, \\ 5Cx^3, ecnu & -1 \le x \le 5, \alpha = 3, \beta = 4. \\ 0, ecnu & x > 5, \end{cases}$$

СПИСОК РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ

- 1. Пискунов, Н.С. Дифференциальное и интегральное исчисление для втузов: учеб. пособие для втузов. В 2 т. Т. 1 / Н.С. Пискунов. М. : Интеграл-Пресс, 2006. 416 с.
- 2. Пискунов, Н.С. Дифференциальное и интегральное исчисление: учеб. пособие для втузов. В 2 т. Т. 2 / Н.С. Пискунов. М. : Интеграл-Пресс, 2005. 544 с.
- 3. Шестаков. А.А. Курс высшей математики: Интегральное исчисление. Дифференциальные уравнения. Векторный анализ : учеб. для студентов втузов / А.А. Шестаков, И.А. Малышева, Д.П. Полозов. – М. : Высш. шк., 1987.
- 4. Краснов, М.А. Функции комплексного переменного. Операционное исчисление. Теория устойчивости / М.А. Краснов, А.И. Киселев, Г.И. Макаренко. М.: Наука, 1981.
- 5. Гмурман, В.Е. Теория вероятностей и математическая статистика / В.Е. Гмурман. М.: Высш. шк., 1997. 479 с.
- 6. Гмурман, В.Е. Руководство к решению задач по теории вероятностей и математической статистике / В.Е. Гмурман. М.: Высш. шк., 1997. 400 с.
- 7. Данко, П.Е. Высшая математика в упражнениях и задачах : учеб. пособие для втузов. В 2 ч. Ч. 1 / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. М. : ОНИКС, 2007. 304 с.
- 8. Данко, П.Е. Высшая математика в упражнениях и задачах : учеб. пособие для втузов. В 2 ч. Ч. 2 / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. М. : ОНИКС, 2006. 416 с.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
 Контрольная работа № 5. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА	
Раздел 1. Дифференциальные уравнения второго порядка с постоянными коэффициентами	
Контрольная работа № 6. РЯДЫ И ИХ ПРИМЕНЕНИЕ	12
Раздел 1. Числовые ряды	12
Раздел 2. Степенные ряды	
Раздел 3. Приложение степенных рядов	
Контрольная работа № 7. ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СЛУЧАЙНЫЕ СОБЫТИЯ	23
Раздел 1. Элементы комбинаторики	
Раздел 2. Случайные события и вероятности	
Раздел 3. Последовательность независимых испытаний	
Раздел 4. Дискретные случайные величины	
Раздел 5. Непрерывные случайные величины	
СПИСОК РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ	47

Учебное издание

Константинов Никита Сергеевич **Смотрова** Марьяна Сергеевна **Богомякова** Татьяна Анатольевна

ВЫСШАЯ МАТЕМАТИКА

Методическое пособие по выполнению контрольных работ № 5, 6, 7 для студентов ИИФО

Отпечатано методом прямого репродуцирования

Технический редактор Н.В. Ларионова

План 2013 г. Поз. 9.19. Подписано в печать 20.02.2013. Гарнитура Arial. Печать RISO. Усл. печ. л. 2,7. Уч.-изд. л. 3,0. Зак. 97. Тираж 25 экз. Цена 100 р.

> Издательство ДВГУПС 680021, г. Хабаровск, ул. Серышева, 47.

Н.С. Константинов, М.С. Смотрова, Т.А. Богомякова

ВЫСШАЯ МАТЕМАТИКА

Методическое пособие по выполнению контрольных работ № 5, 6, 7 для студентов ИИФО