Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Дальневосточный государственный университет путей сообщения»

Кафедра «Высшая математика»

Н.С. Константинов, М.С. Смотрова, Т.А. Богомякова

ВЫСШАЯ МАТЕМАТИКА

Методическое пособие по выполнению контрольных работ № 1, 2, 3, 4 для студентов ИИФО специальностей «Эксплуатация железных дорог», «Подвижной состав железной дороги», «Строительство железных дорог, мостов и транспортных тоннелей» и «Наземные транспортнотехнологические средства», «Наземные транспортно-технологические средства», «Строительство»

Хабаровск Издательство ДВГУПС 2013 УДК [512.64 + 517.2 + 517.3] (075.8) ББК В 11я73 К 650

Рецензент – кандидат физико-математических наук, доцент кафедры «Высшая математика» ДВГУПС В.И. Жукова

Константинов, Н.С.

П 650 Высшая математика : метод. пособие / Н.С. Константинов, М.С. Смотрова, Т.А. Богомякова, — Хабаровск : Изд-во ДВГУПС, 2012. — 49 с.: ил.

Методическое пособие разработано в соответствии с профессиональной образовательной программой.

Представлены 4 контрольные работы, которые разбиты на три раздела, также содержатся методические указания по выполнению заданий. В конце каждого раздела находятся теоретические вопросы и практические задания, которые студенту необходимо выполнить.

Предназначено для студентов 1-го курса ИИФО изучающих дисциплину «Высшая математика».

УДК [512.64 + 517.2 + 517.3] (075.8) ББК В 11я73

© ДВГУПС, 2013

ВВЕДЕНИЕ

Данное методическое пособие содержит четыре контрольные работы, рассчитанные на 2 семестра первого года обучения.

В пособие включены методические указания по выполнению заданий. Весь материал, содержащийся в контрольных работах, разбит на три раздела. Такое разбиение выбрано для того, чтобы студент мог самостоятельно пополнить материал, выдаваемый преподавателем за короткое время, отведенное на аудиторные занятия. В конце каждого раздела находятся теоретические вопросы, которые даны студенту в помощь при подготовке к сдаче экзамена (зачета). Отвечая на вопросы устно, студент выстраивает последовательность ответа, что способствует повышению уровня самоорганизации. Содержащиеся в пособии практические задания требуется выполнить в тетради и сдать на проверку. В данном пособии теоретические вопросы и практические задания выступают как средства развития интеллектуальных способностей.

Нумерация заданий в контрольных работах соответствует последней цифре шифра зачетной книжки студента. Примечание: если последняя цифра в шифре 0, то ей соответствует 10 вариант.

В пособие включен список литературы, которой студентам, по необходимости, рекомендуется пользоваться при выполнении заданий контрольных работ и для подготовки к сдаче экзамена.

Материал в пособии выстроен таким образом, чтобы помочь студенту выйти на уровень самоорганизации, самообразования и самовоспитания при подготовке к экзамену (зачету).

Контрольная работа № 1 ЭЛЕМЕНТЫ ЛИНЕЙНОЙ И ВЕКТОРНОЙ АЛГЕБРЫ

Раздел 1. Системы «n» линейных алгебраических уравнений с «n» неизвестными

Система «n» линейных алгебраических уравнений с «n» неизвестными

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n} = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n} = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn} = b_n \end{cases}$$

$$(1)$$

совместна и имеет единственное решение, если определитель, составленный из коэффициентов a_{ii} , отличен от нуля, т. е.

Рассмотрим три метода решения систем алгебраических уравнений.

І. Правило Крамера

Решение системы (1) имеет вид

$$x_i = \frac{\Delta_{x_i}}{\Lambda},$$

где Δ_{x_i} – дополнительный определитель, полученный из определителя Δ путём замены столбца коэффициентов при x_i столбцом свободных членов, состоящим из b_i правой части уравнения.

II. Метод Гаусса

При помощи элементарных преобразований [1] система уравнений (1) приводится к виду:

$$\begin{cases} c_{11}x_1 + c_{22}x_2 + \dots + c_{2n}x_n = d_1, \\ c_{22}x_2 + \dots + c_{2n}x_n = d_2, \\ \dots & \dots \\ c_{nn}x_n = d_n. \end{cases}$$

Из последнего уравнения непосредственно определяется неизвестная x_n , затем ее значение подставляется в предпоследнее и находится x_{n-1} . Этот процесс необходимо повторять до первого уравнения включительно.

III. Матричный метод решения

Систему (1) записываем в матричной форме [1]:

$$A \cdot X = B$$

где

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}$$

Из матричного уравнения следует, что $X = A^{-1} \cdot B$, где A^{-1} – обратная матрица.

Обратная матрица имеет вид:

$$A^{-1} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

где A_{ij} – алгебраическое дополнение к элементу a_{ij} матрицы A; i – номер строки; j – номер столбца.

Алгебраическое дополнение A_{ij} — это определитель, полученный из элементов матрицы A путём вычёркивания "i"-й строки и "j"-го столбца, взятый со знаком $(-1)^{i+j}$.

Рассмотрим решение системы алгебраических уравнений указанными методами.

Пример 1

Правило Крамера

$$\begin{cases} x_1 + x_2 + x_3 = 2, \\ 5x_1 - 2x_2 + x_3 = -5, \\ x_1 + 2x_2 + 3x_3 = 11. \end{cases}$$

Решение: вычислим Δ по правилу Сарруса. Для этого допишем справа два первых столбца определителя. Проведём главную диагональ и побочную, а также по две параллельных линии для каждой диагонали. Произведение элементов, стоящих на линиях, параллельных главной диагонали, берём со знаком «плюс», а произведение элементов, стоящих на линиях, параллельных побочной диагонали, со знаком «минус»:

$$\Delta = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 5 & 2 & 1 & 5 & 2 \\ 1 & 2 & 3 & 1 & 2 \end{vmatrix} = 6 + 1 + 10 - 2 - 2 - 15 = -2,$$

так как $\Delta \neq 0$, то данная система совместна и имеет единственное решение. Находим дополнительные определители:

$$\Delta_{x_1} = \begin{vmatrix} 2 & 1 & 1 \\ -5 & 2 & 1 \\ 11 & 2 & 3 \end{vmatrix} = 2, \quad \Delta_{x_2} = \begin{vmatrix} 1 & 2 & 1 \\ 5 & -5 & 1 \\ 1 & 11 & 3 \end{vmatrix} = 6, \quad \Delta_{x_3} = \begin{vmatrix} 1 & 1 & 2 \\ 5 & 2 & -5 \\ 1 & 2 & 11 \end{vmatrix} = -12,$$

следовательно, и

$$x_1 = \frac{\Delta_{x_1}}{\Lambda} = \frac{2}{-2} = -1; x_2 = \frac{\Delta_{x_2}}{\Lambda} = \frac{6}{-2} = -3; x_3 = \frac{\Delta_{x_3}}{\Lambda} = \frac{-12}{-2} = 6.$$

Пример 2

Метод Гаусса

Решение:
$$\begin{cases} x_1 + x_2 + x_3 = 2, & I_{cmp} \times (-5) + II_{cmp} \Rightarrow II_{cmp} \\ 5x_1 + 2x_2 + x_3 = -5, & I_{cmp} \times (-1) + III_{cmp} \Rightarrow III_{cmp} \\ x_1 + 2x_2 + 3x_3 = 11; & I_{cmp} \times (-1) + III_{cmp} \Rightarrow III_{cmp} \\ \begin{cases} x_1 + x_2 + x_3 = 2, \\ -3x_2 - 4x_3 = -15, \\ x_2 + 2x_3 = 9; & II_{cmp} + III_{cmp} \times 3 \Rightarrow III_{cmp} \\ x_2 + 2x_3 = 9; & III_{cmp} / (-3) \\ 2x_3 = 12; & III_{cmp} / 2 & III_{cmp} / 2 & III_{cmp} / 2 & III_{cmp} / 2 & III_{cmp} \Rightarrow x_2 \\ x_2 + \frac{4}{3}x_3 = 5, & nodcmabляем x_3 & ooldown II_{cmp} \Rightarrow x_2 \\ x_3 = 6; & nodcmabляем x_3 & ooldown II_{cmp} \Rightarrow x_2 & III_{cmp} \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 2, & \text{подставляем } x_3 \ u & x_2 \ e & I_{cmp} \Rightarrow x_1 \\ x_2 = -3, & & \\ x_3 = 6; & & \\ \end{cases}$$

$$\begin{cases} x_1 = -1, & & \\ x_2 = -3, & & \\ x_3 = 6. & & \end{cases}$$

Следовательно, $x_1 = -1$, $x_2 = -3$, $x_3 = 6$.

Пример 3

Запишем систему в виде

$$A \cdot X = B$$
.

где

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 5 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, B = \begin{pmatrix} 2 \\ -5 \\ 11 \end{pmatrix}.$$

Решение:

$$X = A^{-1} \cdot B.$$

Построим обратную матрицу A^{-1} . Вычислим алгебраические дополнения ко всем элементам, причём алгебраические дополнения, вычисленные для элементов первой строки, записываются первым столбцом матрицы A^{-1} и т. д.

Операция замены строк на столбцы называется транспонированием. Знак A_{ij} определяется как $(-1)^{i+j}$:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} = 4, \qquad A_{21} = -\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = -1, \qquad A_{31} = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -1,$$

$$A_{12} = (-1)^{1+2} \begin{vmatrix} 5 & 1 \\ 1 & 3 \end{vmatrix} = -14, \qquad A_{22} = \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = 2, \qquad A_{32} = -\begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} = 4,$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 5 & 2 \\ 1 & 2 \end{vmatrix} = 8, \qquad A_{23} = -\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = -1, \qquad A_{33} = \begin{vmatrix} 1 & 1 \\ 5 & 2 \end{vmatrix} = -3,$$

т. е. A^{-1} имеет вид:

$$A^{-1} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 4 & -1 & -1 \\ -14 & 2 & 4 \\ 8 & -1 & -3 \end{pmatrix}.$$

Примечания:

- 1. При умножении матрицы на число все элементы матрицы умножаются на это число.
- 2. Умножение матриц возможно, если число столбцов первого сомножителя равно числу строк второго сомножителя.
- 3. При умножении матриц элемент матрицы произведения равен сумме произведений элементов строки 1-го сомножителя матрицы на соответствующие элементы столбца 2-го сомножителя матрицы.

Находим матрицу-решение:

$$X = -\frac{1}{2} \begin{pmatrix} 4 & -1 & -1 \\ -14 & 2 & 4 \\ 8 & -1 & -3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ 11 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 4 \cdot 2 + (-1) \cdot (-5) + (-1) \cdot 11 \\ -14 \cdot 2 + 2 \cdot (-5) + 4 \cdot 11 \\ 8 \cdot 2 + (-1) \cdot (-5) + (-3) \cdot 11 \end{pmatrix} =$$
$$= -\frac{1}{2} \begin{pmatrix} 2 \\ 6 \\ -12 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \\ 6 \end{pmatrix}.$$

Таким образом,

$$x_1 = -1; x_2 = -3; x_3 = 6.$$

Теоретические вопросы к разделу 1

- 1. Определитель и его вычисление.
- 2. Алгебраическое дополнение и минор.
- 3. Определение матрицы, действия с матрицами.
- 4. Условие существования обратной матрицы. Единичная матрица.

Задание 1 к разделу 1

Решить систему алгебраических уравнений:

- 1) по правилу Крамера;
- 2) методом Гаусса;
- 3) матричным способом.

$$\begin{cases} x_1 + 2x_2 + 3x_3 = l, \\ 3x_1 + x_2 + x_3 = m, \\ 4x_1 + x_2 + 2x_3 = n. \end{cases}$$

Примечание: здесь l, m, n – три последних цифры шифра студента. Например: Шифр КТ-98-Э-176, то l=1, m=7, n=6.

Раздел 2. Элементы векторной алгебры и аналитической геометрии

Пусть заданы точки $A(x_A; y_A; z_A); B(x_B; y_B; z_B); C(x_C; y_C; z_C).$

Вектором AB называется направленный отрезок с координатами $\overline{AB}\{x_B-x_A;y_B-y_A;z_B-z_A\}.$

Модуль вектора $\overline{|AB|}$ (расстояние между точками A и B) равен $\overline{|AB|} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$.

Угол α между векторами \overline{AB} и AC находится из определения скалярного произведения [2]:

$$\alpha = \arccos \frac{\overline{AB} \cdot \overline{AC}}{|\overline{AB}| \cdot |\overline{AC}|},$$

если векторы заданы координатами, то $\overline{AB} \cdot \overline{AC}$ (скалярное произведение) равно сумме произведений соответствующих координат.

Пример 1

Найти скалярное произведение векторов $\overline{a} \cdot \overline{b}$, если \overline{a} (2;1;-4); \overline{b} (4;-2;1). Решение:

$$\bar{a} \cdot \bar{b} = 2 \cdot 4 + 1 \cdot (-2) + (-4) \cdot 1 = 2$$
.

Площадь \triangle ABC вычисляется из определения геометрического смысла векторного произведения:

$$S = \frac{1}{2} \left| \overline{AB} \times \overline{AC} \right|,$$

где $\overline{AB} \times \overline{AC}$ – векторное произведение, модуль которого равен:

$$\overline{AB} \times \overline{AC} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ x_B - x_A y_B - y_A z_B - z_A \\ x_C - x_A y_C - y_A z_C - z_A \end{vmatrix},$$

где \bar{i} , \bar{j} , \bar{k} — ортонормированный базис системы координат X, Y, Z. Уравнение прямой, проходящей через точки A и B, имеет вид [1]:

$$(AB): \frac{x-x_A}{x_B-x_A} = \frac{y-y_A}{y_B-y_A} = \frac{z-z_A}{z_B-z_A}.$$

Уравнение плоскости, проходящей через три точки, получаем из определения смешанного произведения [1], условия компланарности трех векторов:

$$(ABC): \begin{vmatrix} x - x_A & y - y_A & z - z_A \\ x_B - x_A & y_B - y_A & z_B - z_A \\ x_C - x_A & y_C - y_A & z_C - z_A \end{vmatrix} = 0.$$

Пример 2

Дано: А (2;1;3); В (2;0;5); С (5;-1;10).

Найти:

- 1) периметр $\triangle ABC$, с точностью до 0,01;
- 2) угол \angle *BCA*, с точностью до 0,1°;
- 3) площадь $\triangle ABC$, с точностью до 0,01;
- 4) уравнение прямой (АВ);
- 5) уравнение плоскости (АВС).

Решение:

1. Составим векторы \overline{AB} , \overline{AC} è \overline{BC}

$$\overline{AB} \{0; -1; 2\}; \overline{AC} \{3; -2; 7\}; \overline{BC} \{3; -1; 5\}.$$

Найдём длины сторон, или модули векторов:

$$|\overline{AB}| = \sqrt{0^2 + (-1)^2 + 2^2} = \sqrt{5} = 2,236; |\overline{AC}| = \sqrt{62} = 7,874;$$

 $|\overline{BC}| = \sqrt{35} = 5,916.$

Тогда периметр равен P = 2,236 + 7,874 + 5,916 = 16,026.

2. Угол ∠ АСВ находится с помощью скалярного произведения:

$$cos \ \angle ACB = \frac{\overline{AB} \cdot \overline{AC}}{\left| \overline{AB} \right| \overline{AC} } = \frac{0 \cdot 3 + (-1) \cdot (-2) + 2 \cdot 7}{2,236 \cdot 7,874} = 0,909,$$

- т. е. $\angle ACB = 24,6^{\circ}$.
- 3. Площадь $\triangle ABC$ определяется с учётом геометрического смысла векторного произведения:

$$S = \frac{1}{2} \left| \overline{AB} \times \overline{AC} \right|.$$

Векторное произведение

$$\overline{AB} \times \overline{AC} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 0 - 1 - 2 \\ 3 - 2 & 7 \end{vmatrix} = -11\overline{i} - 6\overline{j} + 3\overline{k},$$

следовательно, и

$$S = \frac{1}{2} \left| -11\overline{i} - 6\overline{j} + 3\overline{k} \right| = \frac{1}{2} \sqrt{(-11)^2 + (-6)^2 + 3^2} = \frac{1}{2} \sqrt{166} = 6.44 (\text{kg.ed.}) \ .$$

4. Уравнение прямой (АВ):

$$(AB): \frac{x - x_A}{x_B - x_A} = \frac{y - y_A}{y_B - y_A} = \frac{z - z_A}{z_B - z_A}$$

или

$$(AB): \frac{x-2}{0} = \frac{y-1}{-1} = \frac{z-3}{2}.$$

Уравнение плоскости, проходящей через точки А, В и С:

$$(ABC):\begin{vmatrix} x-x_A & y-y_A & z-z_A \\ x_B-x_A & y_B-y_A & z_B-z_A \\ x_C-x_A & y_C-y_A & z_C-z_A \end{vmatrix} = 0,$$

$$(ABC):\begin{vmatrix} x-2 & y-1 & z-3 \\ 0 & -1 & 2 \\ 3 & -2 & 7 \end{vmatrix} = 0,$$

$$-11(x-2)-6(y-1)+3(z-3)=0;$$

следовательно, и общее уравнение плоскости имеет вид: -11x - 6y + 3z + 19 = 0.

Теоретические вопросы к разделу 2

- 1. Вектор, его координаты, модуль.
- 2. Определение скалярного и векторного произведения.
- 3. Геометрический смысл модуля векторного и смешанного произведения.
- 4. Условия коллинеарности 2 векторов, уравнение прямой в пространстве.
- 5. Условие компланарности 3 векторов, уравнение плоскости.

Задание 1 к разделу 2

Даны координаты точек *A (0; 2; I); B (-1; 4; m); C (5; -1; n).* Найти:

- 1) периметр $\triangle ABC$;
- 2) больший угол $\triangle ABC$;
- 3) площадь $\triangle ABC$;
- 4) уравнение прямой (АВ);
- 5) уравнение плоскости $\triangle ABC$.

Примечание: *I, m, n* определяется также как и в задании 1 раздела 1.

Раздел 3. Базис. Разложение вектора по базисным векторам

Базисом в пространстве R_n называется совокупность «n» векторов, позволяющих представить любой вектор из этого пространства в виде разложения по данному базису. В R_2 базис образуют два любых неколлинеарных вектора, в R_3 — три любых некомпланарных вектора. Из свойства смешанного произведения известно, что произведение трёх некомпланарных векторов отлично от нуля.

Разложением вектора \overline{d} по базису a,b,c называется выражение

$$\overline{d} = \alpha \overline{a} + \beta \overline{b} + \gamma \overline{c} ,$$

где α,β,γ — коэффициенты разложения, или координаты вектора d в базисе \overline{a} , \overline{b} , \overline{c} .

Пример 1

Даны векторы \overline{a} {1;2;1}, \overline{b} {2;-2;1}, \overline{c} {1;-2;0} è \overline{d} {0;3;1}.

Установить, что векторы $\overline{a}, \overline{b}, \overline{c}$ образуют базис, и найти координаты вектора \overline{d} в этом базисе.

Решение:

Соотношение, записанное для вектора $\overline{d}=\alpha\overline{a}+\beta\overline{b}+\gamma\overline{c}$, справедливо для каждой из проекций

$$\begin{cases} \alpha \cdot 1 + \beta \cdot 2 + \gamma \cdot 1 = 0, \\ \alpha \cdot 2 - \beta \cdot 2 - \gamma \cdot 2 = 3, \\ \alpha \cdot 1 + \beta \cdot 1 + \gamma \cdot 0 = 1, \end{cases}$$

т. е. получена алгебраическая система трёх уравнений с тремя неизвестными.

Решение системы удобнее вычислять методом Крамера:

$$\alpha = -\frac{1}{2}$$
; $\beta = -\frac{1}{2}$; $\gamma = \frac{3}{2}$,

следовательно, вектор \overline{d} имеет разложение в базисе $\overline{a}, \overline{b}, \overline{c}$:

$$\overline{d} = -\frac{1}{2}\overline{a} - \frac{1}{2}\overline{b} + \frac{3}{2}\overline{c} = \left\{-\frac{1}{2}; -\frac{1}{2}; \frac{3}{2}\right\}.$$

Теоретические вопросы к разделу 3

- 1. Какие векторы образуют базис на плоскости и в пространстве.
- 2. Разложение вектора по базисным векторам.

Задание 1 к разделу 3

Установить, что векторы $\overline{a}\{0;2;l\}$, $\overline{b}\{m;-1;4\}$, $\overline{c}\{-5;1;2\}$ образуют базис, и найти координаты вектора \overline{d} в этом базисе, если $\overline{d}\{n;3;1\}$. Примечание: l,m,n определяется также как и в задании 1 раздела 1.

Контрольная работа № 2 КОМПЛЕКСНЫЕ ЧИСЛА, ПРЕДЕЛЫ, ИССЛЕДОВАНИЕ НЕПРЕРЫВНОСТИ ФУНКЦИИ

Раздел 1. Комплексные числа

Число вида z=x+iy называется комплексным числом, где x и y – действительные числа, а $i=\sqrt{-1}$ – называется мнимой единицей, x – называется действительной частью числа z, y – называется мнимой частью числа z.

Действия с комплексными числами:

Сложение, вычитание и умножение выполняется по правилу действия с многочленами, с учетом, что $i^2 = -1$:

1.
$$(a \pm ib) \pm (c \pm id) = (a \pm c) + i(b \pm d)$$
;

2.
$$(a+ib)(c+id) = ac+iad+ibc+i^2bd = (ac-bd)+i(ad+bc)$$
.

Комплексное число \bar{z} называют сопряжённым числу z ,если оно отличается знаком при мнимой части:

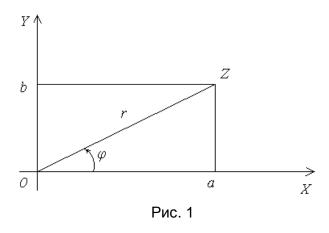
$$z = x + iy$$
; $\overline{z} = x - iy$,

тогда

$$z \cdot \overline{z} = x^2 + y^2$$
.

Для выполнения операции деления необходимо числитель и знаменатель умножить на комплексное число, сопряжённое знаменателю:

$$\frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}.$$



Рассмотрим тригонометрическую форму комплексного числа. Для этого ведём комплексную плоскость, на оси OX откладываем действительную часть комплексного числа, на OY – мнимую, тогда число $a\pm ib$ на плоскости обозначается буквой z.

Расстояние от начала координат до точки z называется модулем комплексного числа |z|=r, угол ϕ — аргумент комплексного числа (рис. 1).

Непосредственно из рис. 1 следует, что

$$r = |z| = \sqrt{a^2 + b^2}$$
; $\varphi = arctg\frac{b}{a}$; $a = rcos\varphi$; $b = rsin\varphi$,

т. е. алгебраическая форма комплексного числа может быть переписана в тригонометрической форме:

$$z = a + ib = r(\cos\varphi + i\sin\varphi)$$
.

Возведение в степень комплексного числа проводится по формуле Муавра, если $z = r(cos\phi + isin\phi)$, то $z^n = r^n(cosn\phi + isinn\phi)$, т. е. при возведение в степень "n" модуль возводится в эту степень, а аргумент увеличивается в "n" раз.

Решим уравнение вида $z^n = a + ib$.

Правую часть уравнения приводим к тригонометрической форме

$$z^n = r(\cos \varphi + i \sin \varphi),$$

и из формулы Муавра получаем общее выражение для корня z:

$$z = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right)$$

где

$$k = 0, 1, \dots (n-1);$$

при
$$k=0$$
 $z_0=\sqrt[n]{r}\bigg(cos\frac{\phi}{n}+isin\frac{\phi}{n}\bigg)$ при $k=1$ $z_1=\sqrt[n]{r}\bigg(cos\frac{\phi+2\pi}{n}+isin\frac{\phi+2\pi}{n}\bigg)$ и т.д.

т. е. для каждого последующего корня аргумент получает приращение $\frac{2\pi}{n}$.

Пример 1

Выполнить действие $(i-2)^2 + \frac{3}{i} + \frac{2}{1+i}$.

Решение:

$$(i-2)^2 + \frac{3}{i} + \frac{2}{1+i} = i^2 - 4i + 4 + \frac{3+3i+2i}{i(1+i)} = 3 - 4i + \frac{3+5i}{i-1} = 3 - 4i + \frac{(3+5i)(-i-1)}{(i-1)(-i-1)} = 3 - 4i + \frac{2-8i}{2} = 3 - 4i + 1 - 4i = 4 - 8i.$$

Пример 2

Решить уравнение:

$$z^3 = \frac{(i+1)}{(i-1)}.$$

Решение:

Преобразуем правую часть:

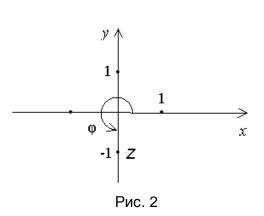
$$\frac{(i+1)}{(i-1)} = \frac{(i+1)(-i-1)}{(i-1)(-i-1)} = \frac{-i^2 - i - i - 1}{2} = -i.$$

Приведём число "-і" к тригонометриче- ской форме:

$$r = a + ib$$
; $a=0$; $b=-1$; $r=1$; $\phi = arctg \frac{-1}{0} = \frac{3}{2}\pi$ (puc. 2),

теперь уравнение имеет вид

$$z^3 = \left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$



Находим общее выражение корня уравнения:

$$z = \cos \frac{\frac{3\pi}{2} + 2\pi k}{3} + i \sin \frac{\frac{3\pi}{2} + 2\pi k}{3},$$

и все корни

$$k = 0; \ z_0 = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i,$$

$$k = 1; \ z_1 = \cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6} = -\frac{\sqrt{3}}{2} - \frac{1}{2}i,$$

$$k = 2; \ z_2 = \cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6} = \frac{\sqrt{3}}{2} - \frac{1}{2}i.$$

Теоретические вопросы к разделу 1

- 1. Алгебраическая форма комплексного числа и действия с ними.
- 2. Тригонометрическая форма комплексного числа. Модуль и аргумент.
- 3. Возведение комплексного числа в целую положительную степень.
- 4. Извлечение корня из комплексного числа.

Задание 1 к разделу 1

а) выполнить действия:

1. a)
$$\left(\frac{2i}{3-i}\right)^2 + 4i + i^8 =$$

2. a)
$$\frac{5-i}{3i} + (2i)^4 - \left(\frac{1}{2i}\right)^3 =$$

3. a)
$$\left(\frac{2i}{i-3}\right)^2 - 3i + i^2 =$$

4. a)
$$i^5 + (5-2i)^2 + \frac{2}{2i+1} =$$

5. a)
$$\left(\frac{i+1}{3}\right)^3 - \left(i+i^2\right)^2 + \frac{1}{i+2} =$$

6. a)
$$\frac{1}{2+i} + (2i)^2 + \frac{3i}{1-i} =$$

7. a)
$$\frac{i}{1+i} + \left(\frac{2}{i} - 1\right)^3 + 5i =$$

б) найти корни уравнения:

б)
$$z^3 = \sqrt{3} - i$$
,

6)
$$z^3 = \frac{1+i}{1-i}$$
.

6)
$$z^3 = \frac{1-i}{1+i}$$
,

6)
$$z^3 = \frac{1}{i}$$
,

б)
$$z^3 = 1 - i$$
,

6)
$$z^3 = \sqrt{3} + i$$
,

б)
$$z^3 = 1 - \sqrt{3}i$$
,

8. a)
$$\left(\frac{1+i}{i}\right)^2 + \frac{1}{i+4} + \frac{i-1}{1-i} =$$

б)
$$z^3 = 1 + i$$
,

9. a)
$$\frac{3}{2-i} + \frac{2i}{5} - \frac{i}{1+3i} =$$
,

б)
$$z^3 = i$$
,

10. a)
$$5i - 4 + \left(\frac{i^4}{3 + 2i}\right)^2 + \frac{2}{i^5} = 0$$

б)
$$z^3 = 1 + \sqrt{3}i$$
.

Раздел 2. Пределы

Рассмотрим пределы четырех типов:

I. Первый тип

$$\lim_{x \to \infty} \frac{Q_n(x)}{R_m(x)} = \left(\frac{\infty}{\infty}\right),$$

где $Q_n(x)$, $R_m(x)$ — многочлены с наивысшими степенями «n» и «m», причем $P_n(\infty) = \infty$ и $R_m(\infty) = \infty$. Тогда

$$\lim_{x \to \infty} \frac{Q_n(x)}{R_m(x)} = \begin{cases} 0, ecnu & m > n, \\ \infty, ecnu & n > m, \\ A, ecnu & m = n, \end{cases}$$

где A — отношение коэффициентов при старших степенях в числителе и знаменателе.

Пример 1

Вычислить:

$$\lim_{x \to \infty} \frac{5x^2 \sqrt{x+1} - 7x^2 + 4}{\sqrt{2x^5 + 2} + x - 19} \begin{pmatrix} \infty \\ \infty \end{pmatrix} = \lim_{x \to \infty} \frac{5\sqrt{x^5 + 1} - 7x^2 + 4}{\sqrt{2x^5 + 2} + x - 19} = \frac{5}{\sqrt{2}}.$$

Наивысшая степень в числителе и знаменателе равна $\frac{5}{2}$, при этом коэффициент при старшей степени в числителе равен 5, а в знаменателе – $\sqrt{2}$, поэтому предел равен отношению этих коэффициентов $\frac{5}{\sqrt{2}}$.

II. Второй тип

$$\lim_{x \to x_0} \frac{P_n(x)}{R_m(x)} = \left(\frac{0}{0}\right),$$

т.е.

$$P_n(x_0) = 0$$
 и $R_m(x_0) = 0$.

В этом случае в числителе и знаменателе необходимо выделить множитель вида ($x-x_0$) и сократить, чтобы устранить неопределенность ви-

да
$$\left(\frac{0}{0}\right)$$
.

Примечание: формулы, требующиеся для вычисления пределов второго типа:

1)
$$x^2 - x_0^2 = (x - x_0)(x + x_0)$$
;

2)
$$(x \pm x_0)^2 = x^2 \pm 2x_0x + x_0^2$$
;

3)
$$x^3 \pm x_0^3 = (x \pm x_0)(x^2 \mathbf{m} x_0 x + x_0^2);$$

4)
$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
, rge $x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$,

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

Пример 2

Вычислить:

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^3 - 1} = \left(\frac{0}{0}\right) = \lim_{x \to 1} \frac{(x - 1)(x - 2)}{(x - 1)(x^2 + x + 1)} =$$

$$= \lim_{x \to 1} \frac{x - 2}{x^2 + x + 1} = \frac{1 - 2}{1 + 1 + 1} = \frac{-1}{3}.$$

Пример 3

Вычислить:

$$\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}} = \left(\frac{0}{0}\right) = \lim_{x \to 2} \frac{(\sqrt{x} - \sqrt{2})(\sqrt{x} + \sqrt{2})}{\sqrt{x} - \sqrt{2}} = \lim_{x \to 2} (\sqrt{x} + \sqrt{2}) = \sqrt{2} + \sqrt{2} = 2\sqrt{2}.$$

III. Третий тип

Вычисление пределов этого типа основано на 1-ом замечательном пределе:

$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

и понятии эквивалентных бесконечно малых величин, т. е. под знаком предела можно одну бесконечно малую величину заменить эквивалентной.

Примеры эквивалентных бесконечно малых величин:

$$\sin \alpha x \sim \alpha x$$
, $\arcsin \alpha x \sim \alpha x$, $tg\alpha x \sim \alpha x$. $1-\cos \alpha x \sim \frac{\alpha^2 x^2}{2}$,

так как
$$1 - \cos \alpha x = 2 \sin^2 \frac{\alpha x}{2}$$
.

Пример 4

Вычислить:

$$\lim_{x\to 0} \frac{\sin x}{1 - \cos 5x} = \begin{vmatrix} \text{переходим к} \\ \text{эквивалентным} \\ \text{бесконечно малым} \end{vmatrix} = \lim_{x\to 0} \frac{x}{5^2 x^2} = \lim_{x\to 0} \frac{2x}{25x^2} = \lim_{x\to 0} \frac{2}{25x^2} = \lim_{x\to 0} \frac{2}{25x^$$

IV. Четвертый тип

При вычислении этого предела используется 2-ой замечательный предел:

$$\lim_{x\to\infty} \left(1 + \frac{1}{\alpha x}\right)^{\alpha x} = e.$$

Для этого необходимо выполнить преобразование под знаком предела.

Пример 5

Вычислить:

$$\lim_{x\to\infty} \left(\frac{x-5}{x}\right)^{2x} = \lim_{x\to\infty} \left(\frac{x}{x} - \frac{5}{x}\right)^{2x} = \lim_{x\to\infty} \left(1 - \frac{5}{x}\right)^{$$

$$=\lim_{x\to\infty}\left\{\left(1+\left(-\frac{1}{\frac{x}{5}}\right)\right)^{\left(-\frac{x}{5}\right)}\right\}^{\left(-\frac{5}{x}\right)2x} = \lim_{x\to\infty}e^{\frac{-10x}{x}} = e^{-10}.$$

Пример 6

$$\lim_{x \to \infty} \left(\frac{x+2}{x+3} \right)^{3x-7} = \lim_{x \to \infty} \left(\frac{(x+3)-1}{x+3} \right)^{3x-7} = \lim_{x \to \infty} \left(1 - \frac{1}{x+3} \right)^{3x-7} =$$

$$= \lim_{x \to \infty} \left(\left(1 + \frac{1}{-(x+3)} \right)^{-(x-3)} \right)^{-(x-3)} = \lim_{x \to \infty} e^{\frac{3x-7}{-(x+3)}} = e^{-3},$$

где степень -3 определяется следующим образом: наивысшие степени в числителе и знаменателе дроби равны 1, при этом коэффициент при старшей степени в числителе равен 3, а в знаменателе: -1, поэтому пре-

дел равен отношению этих коэффициентов $\frac{3}{-1} = -3$.

Теоретические вопросы к разделу 2

- 1. Определение первого замечательного предела.
- 2. Определение второго замечательного предела.
- 3. Определение эквивалентных бесконечно малых величин.
- 4. Применение эквивалентных бесконечно малых величин к вычислению пределов.

Задание 1 к разделу 2

Найти пределы функций, не пользуясь правилом Лопиталя:

1.
$$a
vert \lim_{x \to \infty} \frac{x^3 \cdot \sqrt{x} + 3\sqrt[3]{8x - 1}}{\sqrt{x^3} - 2x + 3};$$
 $b
vert \lim_{x \to 1} \frac{x^4 - x}{1 - \sqrt{x}};$ $c
vert \lim_{x \to 0} \frac{x(1 - \cos 2x)}{\sin x^2};$ $c
vert \lim_{x \to \infty} \left(\frac{2x - 2}{2x + 3}\right)^{x + 2};$

2.
$$a \lim_{x \to \infty} \frac{7\sqrt{x^5} + 5x^2 - 1}{x^3(\sqrt{x^5} + x)};$$
 $b \lim_{x \to 1} \frac{2x^2 - 6x + 4}{\sqrt{x} - x};$ $c \lim_{x \to 1} \frac{\cos 6x \cdot \arctan 9x}{\sin 5x};$ $c \lim_{x \to \infty} \frac{\sin \frac{3x - 1}{3x + 2}}{\sin x - 2x^3};$ $c \lim_{x \to \infty} \frac{5x^3 - 5x}{x^2 - 6x + 5};$ 3. $c \lim_{x \to 0} \frac{\sqrt{1 - \cos 3x}}{x \cdot \arcsin 2x};$ $c \lim_{x \to \infty} \frac{1 + x}{x - 2x^2};$

4.
$$a
vert \lim_{x \to \infty} \frac{x^2 \sqrt{3x} - 2x + 1}{x^2 (\sqrt{x} - 8)};$$
 $b
vert \lim_{x \to 1} \frac{x^2 - 7x + 6}{2(x - \sqrt{x})};$ $b
vert \lim_{x \to 0} \frac{3tgx \cdot sin^2 3x}{(1 - cos 6x)4x};$ $c
vert \lim_{x \to \infty} \left(\frac{x - 2}{1 + x}\right)^{x - 3};$

5.
$$a) \lim_{x \to \infty} \frac{3 - x - 5x^2 + \sqrt[7]{x^3}}{3x(\sqrt{x^3} + 2)}; \qquad \qquad 6) \lim_{x \to 1} \frac{x^3 - x}{x^2 - 5x + 4};$$
$$e) \lim_{x \to 0} \frac{(1 - \cos 2x) \sin 3x}{x^3}; \qquad \qquad e) \lim_{x \to \infty} \left(\frac{5x + 3}{5x + 1}\right)^{7x};$$
$$a) \lim_{x \to \infty} \frac{\sqrt{x}(4x^2 + x\sqrt{x})}{x^3}. \qquad \qquad 6) \lim_{x \to \infty} \frac{3(x^4 - x)}{5x + 1}.$$

6.
$$a
vert \lim_{x \to \infty} \frac{\sqrt{x}(4x^2 + x\sqrt{x})}{\sqrt{x^3} - 5x + 4};$$
 $6
vert \lim_{x \to 0} \frac{3(x^4 - x)}{\sqrt{x} - 1};$ $6
vert \lim_{x \to 0} \frac{1 - \cos 4x}{\cos 3x \cdot tg 2x};$ $6
vert \lim_{x \to \infty} \frac{3(x^4 - x)}{\sqrt{x} - 1};$ $6
vert \lim_{x \to \infty} \frac{3(x^4 - x)}{\sqrt{x} - 1};$

7.
$$a \lim_{x \to \infty} \frac{4\sqrt{x^8} - 7 + x^3}{x - x\sqrt{x^5}}; \qquad 6 \lim_{x \to 1} \frac{x^2 - 7x + 6}{x - x^4}; \\ \cos 6x \cdot \sin^2 7x \qquad (x+7)^{-4x-5}$$

8.
$$a) \lim_{x \to \infty} \frac{\sqrt{x}(x-8)}{3\sqrt{x^5} - \sqrt{x^3} + \sqrt{x}}; \qquad b) \lim_{x \to 1} \frac{x^2 - x^4}{2\sqrt{x} - 2};$$
8.
$$a) \lim_{x \to 0} \frac{(\cos 2x^2 - 1)3x}{\arctan (\cos 2x^3 \cdot \sin x)}; \qquad c) \lim_{x \to \infty} \left(\frac{2x - 5}{2x + 1}\right)^{2 - 3x};$$
9.
$$a) \lim_{x \to \infty} \frac{\sqrt{x^3} \sqrt{x} - 8x}{x - 3\sqrt{x^3} + 7x^2}; \qquad b) \lim_{x \to \infty} \frac{x - \sqrt{x}}{x^3 - 1};$$
9.
$$a) \lim_{x \to \infty} \frac{tg \frac{x}{7} \cdot \sin 5x}{1 - \cos \sqrt{x}}; \qquad c) \lim_{x \to \infty} \left(\frac{3x + 2}{3x - 4}\right)^{1 - x};$$

$$a) \lim_{x \to \infty} \frac{5x + 2\sqrt{x^4} + 2x^2}{3x^2 + \sqrt{x} - x}; \qquad c) \lim_{x \to 1} \frac{x^2 - 4x + 3}{x^3 - 3x^2 + 2x};$$
10.
$$a) \lim_{x \to 0} \frac{\cos x \cdot \cot \sin 2x}{5(x - x \cos 6x)}; \qquad c) \lim_{x \to \infty} \left(\frac{x - 3}{x - 1}\right)^{4x}.$$

Раздел 3. Исследование непрерывности функции в заданных точ-ках « x_1 » и « x_2 »

Функция f(x) считается непрерывной в точке $x=x_0$, если пределы слева и справа существуют и равны значению $f(x_0)$.

Пример 1

Дана функция $f(x) = 36^{\frac{1}{4-x}}$, исследовать на непрерывность в точках $x_1 = 4$; $x_2 = 2$, сделать схематический чертеж.

Решение:

Находим левосторонний и правосторонний пределы при $x_1 = 4$:

 $\lim_{x \to 4-0} 36^{\frac{1}{4-x}} = \infty$ (левосторонний предел при x < 4, поскольку $x \to 4-0$),

т. е. показатель степени

$$\lim_{x \to 4-0} \frac{1}{4-x} = \frac{1}{4-(4-0)} = \frac{1}{0+0} = +\infty,$$

следовательно, и

$$\lim_{x \to 4-0} 36^{\frac{1}{4-x}} = 36^{+\infty} = +\infty.$$

Правосторонний предел:

 $\lim_{\substack{x \to 4+0}} 36^{\frac{1}{4-x}} = 0$ (правосторонний предел при x > 4, поскольку $x \to 4+0$), т. е. показатель степени

$$\lim_{x \to 4+0} \frac{1}{4-x} = \frac{1}{4-(4+0)} = \frac{1}{0-0} = -\infty,$$

следовательно, и

$$\lim_{x\to 4+0} 36^{\frac{1}{4-x}} = 36^{-\infty} = \frac{1}{36^{+\infty}} = 0.$$

Таким образом, функция имеет разрыв в точке x = 4.

Рассмотрим эту функцию в окрестности $x_2 = 2$. В этом случае левосторонний и правосторонний пределы равны:

$$\lim_{x \to 2+0} 36^{\frac{1}{4-x}} = 36^{\frac{1}{4-(2+0)}} = 36^{\frac{1}{2}} = 6, \lim_{x \to 2-0} 36^{\frac{1}{4-x}} = 36^{\frac{1}{4-(2-0)}} = 36^{\frac{1}{2}} = 6$$

и равны значению функции в этой точке $f(2)=36^{\frac{1}{4-2}}=6$, следовательно, в точке $x_2=2$, функция непрерывна.

Схематический чертеж функции (рис. 3):

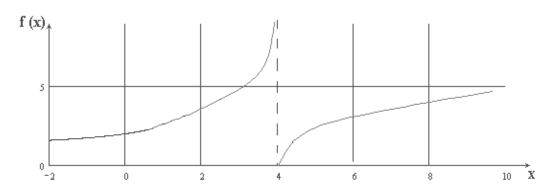


Рис. 3

Теоретические вопросы к разделу 3

- 1. Условия непрерывности функции в точке. Левосторонние и правосторонние пределы.
 - 2. Классификация точек разрыва.

Задание 1 к разделу 3.

Задана функция y = f(x) и два значения аргумента x_1 и x_2 . Требуется установить, является ли данная функция непрерывной или разрывной для каждого из данных значений аргумента, и сделать схематический чертеж.

ядого из данных значении аргумента, и сделать схемат 1.
$$f(x) = 24^{\frac{1}{2+x}}$$
, $x_1 = -2$, $x_2 = 4$; 2. $f(x) = 31^{\frac{1}{1-x}}$, $x_1 = 0$, $x_2 = 1$; 3. $f(x) = 17^{\frac{1}{1+x}}$, $x_1 = 3$, $x_2 = -1$; 4. $f(x) = 15^{\frac{1}{x-6}}$, $x_1 = 6$, $x_2 = 8$; 5. $f(x) = 22^{\frac{1}{3+x}}$, $x_1 = -3$, $x_2 = 5$; 6. $f(x) = 16^{\frac{1}{5-x}}$, $x_1 = 0$, $x_2 = 5$; 7. $f(x) = 35^{\frac{1}{9-x}}$, $x_1 = 5$, $x_2 = 9$; 8. $f(x) = 19^{\frac{1}{7-x}}$, $x_1 = 3$, $x_2 = 7$; 9. $f(x) = 27^{\frac{1}{8-x}}$, $x_1 = 0$, $x_2 = 5$; 10. $f(x) = 41^{\frac{1}{4+x}}$, $x_1 = -4$, $x_2 = 2$.

Задание 2 к разделу 3

Задана функция y = f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.

1.
$$f(x) = \begin{cases} -2x, & x \le 0; \\ x^2 + 1, & 0 < x \le 1; \\ 2, & x > 1; \end{cases}$$
6. $f(x) = \begin{cases} -x, & x \le 0; \\ -(x-1)^2, & 0 < x < 2; \\ x - 3, & x \ge 2; \end{cases}$

6.
$$f(x) = \begin{cases} -x, & x \le 0; \\ -(x-1)^2, & 0 < x < 2; \\ x-3, & x \ge 2; \end{cases}$$

2.
$$f(x) = \begin{cases} -x^2, & x \le 0; \\ tgx, & 0 < x \le \pi/4; \\ 2, & x > \pi/4; \end{cases}$$
3.
$$f(x) = \begin{cases} -x, & x \le 0; \\ sin x, & 0 < x \le \pi; \\ x - 2, & x > \pi; \end{cases}$$

3.
$$f(x) = \begin{cases} -x, & x \le 0; \\ \sin x, & 0 < x \le \pi; \\ x - 2, & x > \pi; \end{cases}$$

4.
$$f(x) = \begin{cases} x+2, & x \le -1; \\ x^2+1, & -1 < x \le 1; \\ -x+3, & x > 1; \end{cases}$$

5.
$$f(x) = \begin{cases} -2x, & x \le 0; \\ \sqrt{x}, & 0 < x < 4; \\ 1, & x \ge 4; \end{cases}$$

7.
$$f(x) = \begin{cases} \cos x, & x \le 0; \\ x^2 + 1, & 0 < x < 1; \\ x, & x \ge 1; \end{cases}$$

7.
$$f(x) = \begin{cases} \cos x, & x \le 0; \\ x^2 + 1, & 0 < x < 1; \\ x, & x \ge 1; \end{cases}$$
8.
$$f(x) = \begin{cases} x + 4, & x < -1; \\ x^2 + 2, & -1 \le x < 1; \\ 2x, & x \ge 1; \end{cases}$$
9.
$$f(x) = \begin{cases} -(x+1), & x \le -1; \\ (x+1)^2, & -1 < x \le 0; \\ x, & x > 0; \end{cases}$$

9.
$$f(x) = \begin{cases} -(x+1), & x \le -1; \\ (x+1)^2, & -1 < x \le 0; \\ x, & x > 0; \end{cases}$$

10.
$$f(x) = \begin{cases} -x, & x \le 0; \\ x^2, & 0 < x \le 2; \\ x+1, & x > 2. \end{cases}$$

Контрольная работа № 3 ПРОИЗВОДНЫЕ И ЭЛЕМЕНТЫ ИССЛЕДОВАНИЯ ФУНКЦИЙ

Раздел 1. Производные

Таблица производных основных элементарных функций:

1.
$$y = x^n$$
; $y' = nx^{n-1}$;

7.
$$y = ctgx$$
; $y' = \frac{-1}{\sin^2 x}$;

2.
$$y = a^x$$
; $y' = a^x lna$;

8.
$$y = arcsinx$$
; $y' = \frac{1}{\sqrt{1 - x^2}}$;

3.
$$y = e^x$$
; $y' = e^x$;

9.
$$y = \arccos x$$
; $y' = \frac{-1}{\sqrt{1 - x^2}}$;

4.
$$y = sinx$$
; $y' = cosx$;

10.
$$y = arctgx$$
; $y' = \frac{1}{1+x^2}$;

5.
$$y = cosx$$
; $y' = -sinx$;

11.
$$y = arcctgx$$
; $y' = \frac{-1}{1+x^2}$;

6.
$$y = tgx$$
; $y' = \frac{1}{\cos^2 x}$;

12.
$$y = lnx$$
; $y' = \frac{1}{x}$.

Правила дифференцирования:

1.
$$y = U + V$$
, $y' = U' + V'$,

2.
$$y = UV$$
, $y' = U'V + V'U$,

3.
$$y = \frac{U}{V}$$
, $y' = \frac{U'V - V'U}{V^2}$,

4.
$$y = f(ax+b), y' = af(ax+b),$$

5.
$$y = F(U(x)), y' = F'_{U}U'_{x}$$

6.
$$y = c$$
, $y' = 0$,

7.
$$y = cu$$
; $y' = (cu)' = cu'$,

где a, b, c – некоторые постоянные.

Правила действий со степенями:

1.
$$x^m \cdot x^n = x^{m+n}$$
;

$$2. \frac{x^m}{x^n} = x^{m-n};$$

$$3. \sqrt[n]{x^m} = x^{\frac{m}{n}};$$

4.
$$(x^m)^n = x^{mn}$$

Пример 1

Найти производную функции

$$y = \frac{\sqrt[3]{x^4 + 3x^2}}{\sqrt{x}} = \frac{x^{\frac{4}{3}} + 3x^2}{\frac{1}{x^2}} = x^{\frac{4}{3} - \frac{1}{2}} + 3x^{2 - \frac{1}{2}} = x^{\frac{5}{6}} + 3x^{\frac{3}{2}}.$$

Решение:

$$y' = \frac{5}{6}x^{\frac{-1}{6}} + 3 \cdot \frac{3}{2}x^{\frac{1}{2}} = \frac{5}{6\sqrt[6]{x}} + \frac{9}{2}\sqrt{x}$$
.

Пример 2

Найти производную функции

$$y = \sin^3 \ln 6x.$$

Решение: функция сложная, и её можно записать с помощью промежуточных аргументов:

$$y = u^3$$
; $u = \sin v$; $v = \ln w$; $w = 6x$.

Каждый из промежуточных аргументов является основной элементарной функцией (см. таблицу производных, стр. 25):

$$y' = ((\sin \ln 6x)^3)'(\sin \ln 6x)'(\ln 6x)'(6x)' = y'_u u'_v v'_w w'_x = 3u^2 \cos v \frac{1}{w} 6 =$$

$$= 3\sin^2 \ln 6x \cos \ln 6x \frac{1}{6x} 6 = \frac{3}{x}\sin^2 \ln 6x \cos \ln 6x.$$

Пример 3

Найти производную произведения 2-х функций:

$$y = \sqrt[4]{x^3} \sin^2 2x.$$

Решение:

$$y' = (\sqrt[4]{x^3})' \sin^2 2x + \sqrt[4]{x^3} (\sin^2 2x)' = \frac{3}{4\sqrt[4]{x}} \sin^2 2x + \sqrt[4]{x^3} \cdot 4 \sin 2x \cos 2x,$$

где

$$\left(\sqrt[4]{x^3}\right)^{1} = \left(x^{\frac{3}{4}}\right)^{1} = \frac{3}{4}x^{\frac{-1}{4}} = \frac{3}{4\sqrt[4]{x}};$$

$$(\sin^2 2x)^1 = 2\sin 2x \cos 2x \cdot 2 = 4\sin 2x \cos 2x.$$

Пример 4

Найти производную частного:

$$y = \frac{\sqrt[4]{\ln^3 x}}{3^x}.$$

Решение:

$$y' = \frac{(\sqrt[4]{\ln^3 x}) / 3^x - (3^x) \sqrt[4]{\ln^3 x}}{3^{2x}} =$$

$$= \left| (\sqrt[4]{\ln^3 x})' = \left(\ln^{\frac{3}{4}} x \right) = \frac{3}{4} \ln x^{-\frac{1}{4}} \frac{1}{x} = \frac{3}{4x \sqrt[4]{\ln x}} =$$

$$= \frac{3 \cdot 3^x}{4x \sqrt[4]{\ln x}} - 3^x \ln 3 \sqrt[4]{\ln^3 x} = \frac{3 - 4x \ln x}{4x \sqrt[4]{\ln x} 3^x}.$$

Теоретические вопросы к разделу 1

- 1. Определение производной в точке, геометрический смысл.
- 2. Правила дифференцирования суммы, частного двух функций.
- 3. Правило дифференцирования сложной функции.

Задание 1 к разделу 1

Найти производные данных функций:

1.
$$a) y = \frac{7\sqrt[3]{x^2} - x\sqrt{x^3} + x}{\sqrt[3]{x^2}};$$

$$b) y = \frac{2}{\sqrt[3]{x^2}} e^{7x};$$

$$c) y = \frac{\sin 5x}{3^x};$$

$$a) y = \frac{2\sqrt[3]{x^2} - x\sqrt[3]{x} + 2}{x};$$

$$b) y = tg 5x \cdot \sin^2 \frac{x}{2};$$

$$c) y = \frac{\ln(\cos 8x)}{5^x};$$

$$a) y = \frac{\sqrt[5]{x^3} + \sqrt[4]{x} + \frac{1}{2}x}{\sqrt[3]{x^3}};$$

$$a) y = \frac{\sqrt[5]{x^3} + \sqrt[4]{x} + \frac{1}{2}x}{\sqrt[3]{x^3}};$$

$$b) y = \ln^3 \ln \frac{x}{4};$$

$$c) y = \ln^3 \ln \frac{x}{4};$$

$$c) y = \ln^3 \ln \frac{x}{4};$$

$$c) y = \frac{6^x}{\ln^3 \frac{x}{5}};$$

$$a) y = \frac{\sqrt[4]{x^3} - \sqrt[5]{x^2} + 3\sqrt{x}}{2\sqrt[4]{x^5}};$$

$$a) y = \sqrt[3]{x^2} - \sqrt[5]{x^3} + 4x}{\sqrt[4]{x^4}};$$

$$c) y = \ln^4 tg \frac{3x}{5};$$

$$c) y = \frac{\sin^3 x}{\sqrt[6]{x^2}};$$

$$a) y = \frac{\sqrt[5]{x^2} - 8\sqrt[4]{x^3} - 3x^2}{\sqrt[3]{x^4}};$$

$$6.$$

$$6) y = \sqrt[5]{x^4 + x} \cdot ctg 2x;$$

$$a) y = \frac{\sqrt[5]{x^3} + \sqrt{x} - \sqrt{2}}{\sqrt[4]{x^5}};$$

$$7.$$

$$8) y = e^{x-2} \cdot \sqrt[4]{5x^5 + 2};$$

$$9) y = e^{x-2} \cdot \sqrt[4]{5x^5 + 2};$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

$$10.$$

Раздел 2. Экстремум функции, его классификация

Необходимое условие экстремума в точке $x=x_0$: $y'(x_0)=0$, или $y'(x_0)$ — не существует.

При этом:

- если $y'(x_0-0) > 0$; $y'(x_0+0) < 0$ в точке x_0 функция имеет максимум;
 - если $y'(x_0 0) < 0$; $y'(x_0 + 0) > 0$ минимум;
- если производная свой знак не меняет, то экстремума нет; точка x_0 называется критической или стационарной.

Пример 1

Исследовать на экстремум:

$$y = x^2 + 2x.$$

Решение:

$$y' = 2x + 2$$
; $y' = 0$; $2x + 2 = 0$; $x_0 = -1$ – критическая точка.

Находим знак производной слева и справа от точки $x_0 = -1$:

$$y'(-2) = 2(-2) + 2 = -2 < 0; y'(0) = 2 > 0,$$

т.е. y(-1) - min.

Пример 2

Исследовать на экстремум:

$$y = \sqrt[3]{x^2}.$$

Решение:

$$y' = \frac{2}{3\sqrt[3]{x}}$$
 – не существует в точке $x = 0$.

Находим знак производной в окрестности критической точки:

$$y'(-1) = \frac{-2}{3} < 0$$
; $y'(1) = \frac{2}{3} > 0$, τ . e. $y(0) - min$.

Пример 3

Исследовать на экстремум:

$$y = xe^{-x}$$
.

Решение:

$$y' = (x)'e^{-x} + (e^{-x})'x = e^{-x}(1-x); y' = 0; e^{x}(x-1) = 0;$$

 $x = 1$ – критическая точка.

Находим знаки производной в окрестности критической точки x = 1:

$$y'(0) = -1 < 0$$
; $y'(2) = 3e^{-2} > 0$, τ . e. $y(1) - min$.

Теоретические вопросы к разделу 2

- 1. Необходимые условия экстремума.
- 2. Достаточные условия экстремума.

Задание 1 к разделу 2

Исследовать на экстремум:

1. a)
$$y = \frac{x^2}{2} + \frac{8}{x^2}$$
,

2. a)
$$y = \frac{4x}{x^2 + 4}$$
,

3. a)
$$y = (x^2 - x)e^x$$
,

4. a)
$$y = x^2(x-6)$$
,

5. a)
$$v = 3 - 2x^2 - x^4$$
.

6. a)
$$y = 3x + tgx$$
,

7. a)
$$y = \frac{10}{4x^3 - 9x^2 + 6x}$$
,

8. a)
$$y = \sqrt[3]{2x^3 + 3x^2 - 36x}$$
,

9. a)
$$y = \sin x + \cos x$$
,

10. a)
$$y = \sqrt{x}e^x$$
,

$$a) \quad y = \frac{x^2}{e^x};$$

$$a) \quad y = x^3 - 3x^2 + 3x;$$

á)
$$y = x \ln x$$
;

$$a) \quad y = \frac{\sqrt{x}}{e^x};$$

á)
$$y = x^2 e^x$$
;

á)
$$y = 3 - 2\sqrt[3]{x^2}$$
;

(a)
$$y = \frac{x^2 + 2x}{e^x}$$
;

$$a) \quad y = \frac{\ln x}{x};$$

(a)
$$y = \frac{e^x}{x^2}$$
;

$$a) \quad y = \frac{e^x}{\sqrt{x}} \, .$$

Раздел 3. Наибольшее и наименьшее значение функции y = f(x) на отрезке [a;b]

Задача нахождения наибольшего и наименьшего значения функции на отрезке решается в такой последовательности:

- 1) находятся критические точки функции и отбираются те, которые попали в заданный интервал;
 - 2) находится значения функции в этих точках и на границе интервала;
 - 3) из полученных значений выбираются наибольшие и наименьшие.

Пример 1

Найти наибольшее и наименьшее значение функции y(x) на интервале [1;4]:

$$y(x) = x^3 - 3x^2 + 1$$

Решение:

1. Находим критические точки:

$$y' = 3x^2 - 6x = 0,$$

 $x(x-2) = 0,$
 $x_1 = 0; x_2 = 2;$

в интервал [1;4] попадает только x_2 .

2. Находим значение функции в точке $x_2 = 2$ и на границах интервала:

$$y(2) = -3$$
; $y(1) = -1$; $y(4) = 17$,

т. е. наибольшее значение функции y(4) = 17, наименьшее: y(2) = -3.

Теоретические вопросы к разделу 3

- 1. Условия существования критической точки.
- 2. Определение наибольшего и наименьшего значения функции на отрезке.

Задание 1 к разделу 3

Найти наибольшее и наименьшее значения функции f(x) на отрезке [a;b]:

1.
$$f(x) = 3 - 2x^2$$
; $[-1;4]$;

2.
$$f(x) = \frac{\sqrt{3}}{2}x - \sin x$$
; $\left[0, \frac{\pi}{2}\right]$;

3.
$$f(x) = 3x^4 - 16x^3 + 2$$
; $[-3,2]$;

4.
$$f(x) = \frac{\sqrt{3}}{2}x + \cos x$$
; $\left[0, \frac{\pi}{2}\right]$;

5.
$$f(x) = x - \sin x$$
; $[-\pi, \pi]$;

6.
$$f(x) = x^5 - \frac{5}{3}x^3 + 2$$
; [0;3];

7.
$$f(x) = x^3 - 3x + 1; \left[\frac{1}{2}; 3\right];$$

8.
$$f(x) = x^3 - 12x + 7$$
; $[-1;3]$;

9.
$$f(x) = x^4 + 4x$$
; $[-3,3]$;

10.
$$f(x) = 81x - x^4$$
; [-2;4].

Контрольная работа № 4 НЕОПРЕДЕЛЁННЫЙ И ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛЫ

Раздел 1. Неопределенный интеграл

Алгоритм решения неопределенных интегралов сводится к следующе-MV:

- 1. при помощи преобразований привести интеграл к табличному;
- 2. используя таблицу интегралов, найти первообразную по формуле: $\int f(x)dx = F(x) + C,$

где f(x) – подынтегральная функция; F(x) – первообразная; C – произвольная постоянная.

Ниже приведена таблица основных интегралов, где a и b – постоянные коэффициенты, причем $a \neq 0$, а b – любое.

Таблица интегралов:

1.
$$\int (ax+b)^n dx = \frac{1}{a} \frac{(ax+b)^{n+1}}{n+1} + C;$$
 1. $\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq 1;$

$$2. \int \frac{dx}{ax+b} = \frac{1}{a} \ln |ax+b| + C;$$

3.
$$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C;$$
 3. $\int \sin x dx = -\cos(x) + C;$

4.
$$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C;$$
 4.
$$\int \cos x dx = \sin x + C;$$

5.
$$\int tg(ax+b)dx = -\frac{1}{a}\ln|\cos ax + b| + C;$$
 5\cdot \int tgxdx = -\ln|\cos x| + C;

6.
$$\int ctg(ax+b)dx = \frac{1}{a}\ln\left|\sin(ax+b)\right| + C; \quad 6^{\cdot}. \int ctgxdx = \ln\left|\sin x\right| + C;$$

$$7. \int a^x dx = \frac{a^x}{\ln a} + C;$$

8.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} arctg \frac{x}{a} + C;$$

9.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C;$$

10.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C;$$

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq 1$$

$$2^{\sim}.\int \frac{dx}{x} = \ln + C;$$

$$3^{\circ}. \int \sin x dx = -\cos(x) + C$$

$$4^{\cdot}. \int \cos x dx = \sin x + C;$$

$$5^{\circ}. \int tgx dx = -\ln\left|\cos x\right| + C;$$

$$6`. \int ctgxdx = \ln|\sin x| + C;$$

7.
$$\int e^{ax} dx = \frac{e^{ax}}{a} + C;$$

9\cdot .
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C;$$

10`.
$$\int \frac{dx}{x^2 - 1} = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C;$$

11.
$$\int \frac{dx}{\cos^2(ax+b)} = \frac{1}{a}tg(ax+b) + C;$$
 11. $\int \frac{dx}{\cos^2 x} = tgx + C;$
12. $\int \frac{dx}{\sin^2(ax+b)} = -\frac{1}{a}ctg(ax+b) + C;$ 12. $\int \frac{dx}{\sin^2 x} = -ctgx + C.$

І. Интегрирование степенных функций

Наиболее распространенным является интеграл от степенной функции (таблица интегралов, с. 33). Для вычисления этих интегралов необходимо знать следующие правила действий со степенями, приведенными на стр. 26.

Пример 1

Вычислить:

$$\int \left(\frac{5}{8}x^{4} - 5x + \frac{5}{3\sqrt[4]{x}} - \frac{\sqrt[4]{x^{7}} - x\sqrt[3]{x} + 2x}{\sqrt{x}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5}{3x^{\frac{1}{4}}} - \frac{x^{\frac{7}{4}} - xx^{\frac{1}{3}} + 2x}{x^{\frac{1}{2}}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{7}{4} - \frac{1}{2}} + x^{\frac{1 + \frac{1}{3} - \frac{1}{2}}} - 2x^{\frac{1 - \frac{1}{2}}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{7}{4} - \frac{1}{2}} + x^{\frac{1 + \frac{1}{3} - \frac{1}{2}}} - 2x^{\frac{1 - \frac{1}{2}}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{5}{4}} + x^{\frac{5}{6}} - 2x^{\frac{1}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{5}{4}} + x^{\frac{5}{6}} - 2x^{\frac{1}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{5}{4}} + x^{\frac{5}{6}} - 2x^{\frac{1}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{5}{4}} + x^{\frac{5}{6}} - 2x^{\frac{1}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{1}{4}} + x^{\frac{5}{6}} - 2x^{\frac{1}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{1}{4}} + x^{\frac{5}{6}} - 2x^{\frac{1}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{1}{4}} + x^{\frac{5}{6}} - 2x^{\frac{1}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{1}{4}} + x^{\frac{5}{6}} - 2x^{\frac{1}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{1}{4}} + x^{\frac{5}{6}} - 2x^{\frac{1}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{4} - 5x + \frac{5x^{\frac{1}{4}}}{3} - x^{\frac{1}{4}} + x^{\frac{5}{6}} - 2x^{\frac{1}{2}}\right) dx =$$

$$= \int \left(\frac{5}{8}x^{5} - 5x^{2} + \frac{5}{3} - \frac{5x^{2}}{4} + \frac{5x^{\frac{1}{4}}}{4} + \frac{5x^{\frac{1}{4}}}{4} + \frac{5x^{\frac{1}{4}}}{5} - \frac{5x^{\frac{1}{4}}}{6} + \frac{5x^{\frac{1}{4}}}{2} + \frac{5x^{\frac{1}{4}}}{6} + \frac{5x^{\frac{1}{4}}}{2} + \frac{5x^{\frac{1}{4}$$

Задание 1 к разделу 1

1.
$$\int (x^3 + \frac{1}{\sqrt[7]{x}} - x - \frac{x\sqrt[3]{x^5} + \sqrt{x^3}}{\sqrt{x}}) dx;$$

2.
$$\int \left(\frac{x^2}{7} + \frac{1}{\sqrt{x^8}} + 2 - \frac{x^3 - x^2 \sqrt{x}}{\sqrt[6]{x^2}}\right) dx;$$

3.
$$\int (x^4 - \frac{5}{\sqrt[7]{x^2}} + 4x^5 - \frac{4x\sqrt{x} + 5x^2\sqrt{x^3}}{x^4})dx;$$

4.
$$\int \left(\frac{5x^3}{4} + \frac{2\sqrt{x}}{\sqrt[3]{x}} + \frac{5}{3}x + \frac{2\sqrt[3]{x^5} + \sqrt[4]{x^7}}{\sqrt[3]{x^6}}\right) dx;$$

5.
$$\int (\sqrt{x} + \frac{1}{2x} - 3x + \frac{x^4 \sqrt[3]{x^2} + 7\sqrt[5]{x^3}}{\sqrt[5]{x^7}}) dx;$$

6.
$$\int (3x^2 - \frac{7}{\sqrt[2]{x^5}} + x^2 - \frac{\sqrt{x^5} + 2x\sqrt[3]{x^5}}{\sqrt{x^7}}) dx;$$

7.
$$\int (\frac{5}{2}\sqrt{x^3} + \frac{1}{\sqrt[3]{x^7}} - 2x + \frac{\sqrt[3]{x^2} - x\sqrt[4]{x^3}}{2\sqrt{x^5}})dx;$$

8.
$$\int (2x - \frac{1}{\sqrt[5]{x^2}} + 2x^7 - \frac{3\sqrt{x^3} - \sqrt{x^5}}{\sqrt{x^6}}) dx;$$

9.
$$\int (9x^7 - \frac{5}{\sqrt{x^4}} - \frac{3}{8} + \frac{x^3 \sqrt[4]{x^3} - 2\sqrt[3]{x}}{\sqrt{x^3}}) dx;$$

10.
$$\int (\frac{2}{x^4} + \frac{3}{\sqrt{x}} + x - \frac{x\sqrt{x^5} + x^3\sqrt{x}}{\sqrt[4]{x^5}}) dx.$$

II. Интегрирование заменой переменной

Этот метод интегрирования основан на введении в подынтегральную функцию новой переменной величины и ее дифференциала, причем замену переменной необходимо подбирать таким образом, чтобы в исходном интеграле присутствовал дифференциал новой переменной в явном виде. Рассмотрим несколько примеров.

Пример 2

Вычислить:

$$\int \cos^7 5x \sin 5x dx = \begin{vmatrix} \cos 5x = t \\ -5 \sin 5x dx = dt \\ \sin 5x dx = \frac{dt}{-5} \end{vmatrix} = \int t^7 \left(\frac{dt}{-5}\right) = \frac{-1}{5} \int t^7 dt = \frac{-1}{5} \frac{t^8}{8} + C = \frac{-1}{5} \frac{\cos^8 x}{8} + C.$$

Пример 3

Вычислить:

$$\int \frac{e^x}{1+e^{2x}} dx = \begin{vmatrix} e^x = t \\ dt = e^x dx \end{vmatrix} = \int \frac{dt}{1+t^2} = \operatorname{arct} gt + C = \operatorname{arct} ge^x + C.$$

Пример 4

Вычислить:

$$\int \frac{4dx}{x \ln x} = \left| \frac{\ln x = t}{\frac{dx}{x}} = dt \right| = \int \frac{4dt}{t} = 4 \ln|t| + C = \ln \ln^4 x + C.$$

Замечание: после введения новой переменной и вычисления интеграла необходимо вернуться к исходной переменной.

Задание 2 к разделу 1

1.
$$\dot{a}$$
) $\int_{0}^{4} \sqrt{x^{4} + 4x}(x^{3} + 1)dx;$ δ) $\int_{0}^{4} \frac{arcsin^{3} x}{\sqrt{1 - x^{2}}} dx;$
2. a) $\int_{0}^{3} \sqrt{tgx} \frac{dx}{cos^{2} x};$ δ) $\int_{0}^{4} \frac{\ln^{2} x - 5 \ln x}{x} dx;$
3. a) $\int_{0}^{4} \frac{\sqrt{\ln x - 3}}{x} dx;$ δ) $\int_{0}^{4} e^{x} \sin e^{x} dx;$
4. a) $\int_{0}^{4} x^{3} \sqrt[4]{5x^{4} + 1} dx;$ δ) $\int_{0}^{4} \frac{arctg^{3} x}{1 + x^{2}} dx;$
5. a) $\int_{0}^{4} \frac{\ln x - 3}{x} dx;$ δ) $\int_{0}^{4} \frac{x dx}{\sqrt{x^{2} + 1}} dx;$

6.
$$a) \int \frac{e^{x}}{\cos^{2} e^{x}} dx;$$
 $b) \int xe^{1+x^{2}} dx;$
7. $a) \int 2x^{3} \cos x^{4} dx;$ $b) \int (x^{3} + 4)^{10} x^{2} dx;$
8. $a) \int \sqrt[3]{x^{2} + 2x} dx;$ $b) \int \frac{\cos x}{\sqrt[3]{1 + \sin x}} dx;$
9. $a) \int (1 + \cos^{2} x) \sin 2x dx;$ $b) \int x^{2} tgx^{3} dx;$
10. $a) \int \frac{x^{2}}{\sqrt[4]{x^{3} + 3}} dx;$ $b) \int \frac{e^{x}}{1 + e^{2x}} dx.$

III. Интегрирование по частям

Формула интегрирования по частям имеет вид $\int U dV = U \cdot V - \int V dU$, т. е. исходный интеграл $\int f(x) dx$ необходимо, вводя новые функции U и V, представить в виде $\int U dV$, а затем построить правую часть формулы. По такой формуле вычисляются интегралы вида: $\int x^n \sin x dx$; $\int x^n e^x dx$; $\int x^n \cos x dx$; причем, вместо x может быть линейная подстановка (ax+b).

В этом случае степенная функция x^n обозначается функцией U, а dV — все остальные множители. Формулу интегрирования по частям можно применять многократно, например, в вышеуказанных интегралах формулу необходимо применить «n» раз.

Пример 5

Вычислить:

$$\int x \cos 2x dx = \begin{vmatrix} x = U; dx = dU \\ \cos 2x dx = dV \end{vmatrix} =$$

$$V = \frac{1}{2} \sin 2x$$

$$\frac{x}{2} \sin 2x - \frac{1}{2} \int \sin 2x dx = \frac{x}{2} \sin 2x + \frac{1}{4} \cos 2x + C.$$

Кроме указанных интегралов по этой же формуле вычисляются интегралы вида: $\int \ln x dx$; $\int arctgx dx$; $\int arctgx dx$ и т.п.

Пример 6

Вычислить:

$$\int arctgx dx = \begin{vmatrix} arctgx = U; & dU = \frac{dx}{1+x^2} \\ dV = dx; & V = x \end{vmatrix} = xarctgx - \int \frac{xdx}{1+x^2} =$$

$$= xarctgx - \begin{vmatrix} 1+x^2 = t; \\ dt = 2xdx; \\ xdx = \frac{1}{2}dt \end{vmatrix} - \frac{1}{2}\int \frac{dt}{t} = xarctgx - \frac{1}{2}lnt + C = xarctgx - \frac{1}{2}ln|1+x^2| + C.$$

Пример 7

Вычислить:

$$\int \ln 5x dx = \begin{vmatrix} \ln 5x = U; & dU = \frac{dx}{x}; \\ dx = dV; & x = V \end{vmatrix} = x \ln 5x - \int \frac{x dx}{x} =$$

$$= x \ln 5x - \int dx = x \ln 5x - x + C.$$

Задание 3 к разделу 1

1.
$$\int ((x+5)\sin 7x + arctg 5x) dx$$
; 6. $\int ((x+5)\cos 3x + arctg 5x) dx$;
2. $\int ((2-3x)\sin \frac{x}{2} + arc\sin \frac{x}{3}) dx$; 7. $\int (x-7)e^{x-2} + x^4 \ln(x-5) dx$;
3. $\int ((7x-3)e^{x-2} + \ln \frac{x}{6}) dx$; 8. $\int (2x+9)\sin 3x dx + \ln(5 + \frac{2x}{7}) dx$;
4. $\int ((2x-1)\cos 3x + x \ln 9x) dx$; 9. $\int (3x+4)\cos \frac{5x}{2} - arc\sin \frac{x}{4} dx$;
5. $\int ((4-x)e^{x-1} dx + x^2 \ln \frac{x}{2}) dx$; 10. $\int (2+7x)e^{4-3x} dx + arctg 8x dx$.

IV. Интегрирование рациональных дробей

Рассмотрим интегрирование рациональных дробей вида:

$$\frac{Q_m(x)}{R_n(x)},$$

где $Q_m(x)$ и $R_n(x)$ – рациональные многочлены степени m и n. Если $m \geq n$, то дробь называется неправильной, если m < n , то дробь – правильная.

Интегрируются только правильные дроби, поэтому, если под интегралом дробь неправильная, то ее необходимо представить в виде суммы целой части и правильной дроби, а затем выполнять интегрирование.

Пример 8

Вычислить:

Рассмотрим теперь интегрирование правильной дроби. Для этого ее надо представить в виде суммы простейших дробей и привести к общему знаменателю:

$$\frac{7x-5}{x^2-3x+2} = \frac{7x-5}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2} = \frac{Ax-2A+Bx-B}{(x-1)(x-2)},$$

где A и B – неопределенные коэффициенты, так как $\frac{7x-5}{(x-1)(x+2)}$ =

$$=\frac{(A+B)x+(-2A-B)}{(x-1)(x-2)}$$
, то $7x-5=(A+B)x+(-2A-B)$, приравнивая ко-

эффициенты при x^1 и при x^0 , получаем систему:

$$\begin{cases} A+B=7, \\ -2A-B=-5, \end{cases} \Rightarrow A=-2; B=9.$$

Таким образом, правильная дробь представляется суммой двух простейших дробей:

$$\frac{7x-5}{(x-1)(x-2)} = \frac{-2}{x-1} + \frac{9}{x-2}.$$

Выполним теперь интегрирование исходного интеграла:

$$\int \frac{x^3 + 1}{x^2 - 3x + 2} dx = \int (x + 3) + \frac{7x - 5}{x^2 - 3x + 2} dx = \int (x + 3) dx + \int \frac{7x - 5}{(x - 1)(x - 2)} dx =$$

$$= \frac{x^2}{2} + 3x + \int \frac{-2}{x - 1} dx + \int \frac{9}{x - 2} dx = \frac{x^2}{2} + 3x - 2\ln|x - 1| + 9\ln|x - 2| + C.$$

Рассмотрим интегрирование квадратного трехчлена путем выделения полного квадрата и приведения исходного интеграла к табличному.

Пример 9

Вычислить:

$$\int \frac{dx}{x^2 + 2x + 5} = \int \frac{dx}{x^2 + 2x + 1^2 + 4} = \int \frac{dx}{(x+1)^2 + 2^2} = arctg \frac{x+1}{2} + C.$$

Пример 10

Вычислить:

$$\int \frac{dx}{x^2 + 4x + 3} = \int \frac{dx}{x^2 + 2 \cdot 2x + 2^2 - 1} = \int \frac{dx}{(x + 2)^2 - 1} = \frac{1}{2} ln \left| \frac{x + 2 - 1}{x + 2 + 1} \right| + C = \frac{1}{2} ln \left| \frac{x + 1}{x + 3} \right| + C.$$

Пример 11

Вычислить:

$$\int \frac{dx}{\sqrt{3-x^2-2x}} = \int \frac{dx}{\sqrt{4-x^2-2x-1^2}} = \int \frac{dx}{\sqrt{4-(x+1)^2}} = \int \frac{dx}{\sqrt{2^2-(x+1)^2}} = \arcsin \frac{x+1}{2} + C.$$

Теоретические вопросы к разделу 1

- 1. Неопределенный интеграл, его свойства.
- 2. Интегрирование заменой переменной.
- 3. Формула интегрирования по частям, типы интегралов, которые вычисляются по этой формуле.

Задание 4 к разделу 1

1. a)
$$\int \frac{4x^3 - 2x + 3}{x^2 - 7x + 12} dx$$
;

2.
$$a) \int \frac{3x^4 - x^3 + 2}{x^2 - 4x - 5} dx;$$

3. a)
$$\int \frac{3x^4 + 2x^2 + 1}{x^2 - 3x - 4} dx;$$

4. a)
$$\int \frac{x^4 + 2x^2 + 3}{x^2 - 3x - 4} dx;$$

5. a)
$$\int \frac{3x^4 + 4x^3 - 1}{x^2 - 4x + 3} dx;$$

6. a)
$$\int \frac{5x^4 - 3x + 4}{x^2 - 5x + 6} dx$$
;

7. a)
$$\int \frac{5x^4 + 3x^2 + 1}{x^2 - 4x - 5} dx;$$

8. a)
$$\int \frac{4x^4 + 3x^3 + 5}{x^2 - 7x + 10} dx$$
;

$$\delta) \int \frac{dx}{\sqrt{-x^2-2x}};$$

$$\tilde{o}) \int \frac{dx}{\sqrt{8-x^2+2x}};$$

$$\delta) \int \frac{dx}{x^2 + 4x + 1};$$

$$\delta) \int \frac{dx}{x^2 - 4x - 12};$$

$$6) \int \frac{dx}{\sqrt{3+2x-x^2}};$$

$$\delta) \int \frac{dx}{x^2 + 6x + 13};$$

$$\delta) \int \frac{dx}{x^2 + 4x};$$

$$\delta$$
) $\int \frac{dx}{x^2-2x+3}$;

9. *a*)
$$\int \frac{3x^4 + 2x^2 - 1}{x^2 - 3x + 2} dx;$$

$$6) \int \frac{dx}{x^2 - 2x};$$

10. a)
$$\int \frac{2x^4 - 3x + 1}{x^2 - 5x + 6} dx;$$

$$6) \int \frac{dx}{x^2 + 4x + 8}.$$

Раздел 2. Определенный интеграл

Определенный интеграл с постоянными пределами интегрирования имеет вид:

$$\int_{a}^{b} f(x)dx,$$

где a — нижний предел интегрирования; b — верхний предел интегрирования; f(x) — подынтегральная функция.

Вычисляется определенный интеграл по формуле Ньютона-Лейбница:

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a),$$

т. е. для вычисления необходимо найти первообразную F(x), подставив вместо x верхний предел b и вычесть значение первообразной при x=a.

Пример 1

Вычислить:

$$\int_{1}^{2} (2x - \frac{4 - \sqrt{x}}{\sqrt[3]{x}}) dx = \int_{1}^{2} (2x - 4x^{\frac{-1}{3}} + x^{\frac{1}{6}}) dx = (x^{2} - \frac{4x^{\frac{2}{3}}}{\frac{2}{3}} + \frac{x^{\frac{7}{6}}}{\frac{7}{6}}) \bigg|_{1}^{2} =$$

$$= (4 - 6\sqrt[3]{4} + \frac{6}{7}2\sqrt[6]{2}) - (1 - 6 + \frac{6}{7}) = 8\frac{1}{7} - 6\sqrt[3]{4} + \frac{6}{7}2\sqrt[6]{2}.$$

При вычислении определенного интеграла заменой переменных необходимо вводить новые пределы интегрирования, соответствующие новой переменной.

Пример 2

Вычислить:

$$\int_{0}^{p/2} \sqrt{1 + \cos x} \sin x dx = \begin{vmatrix} \cos x + 1 = t \\ dt = -\sin x dx \\ t_{Hux} = \cos 0 + 1 = 2; \\ t_{Bepx} = \cos \frac{p}{2} + 1 = 1 \end{vmatrix} = \int_{2}^{1} \sqrt{t} (-dt) = -\frac{2}{3} t^{\frac{3}{2}} \Big|_{2}^{1} = \frac{1}{3} \left(1^{\frac{3}{2}} - 2^{\frac{3}{2}} \right) = \frac{2}{3} (2\sqrt{2} - 1).$$

Вычисление определенного интеграла по частям.

Пример 3

Вычислить:

$$\int_{0}^{1} xe^{2x} dx = \begin{vmatrix} x = U; & dx = dU \\ e^{2x} dx = dV; & V = \frac{1}{2}e^{2x} \end{vmatrix} = \frac{x}{2}e^{2x} \Big|_{0}^{1} - \frac{1}{2}\int_{0}^{1} e^{2x} dx =$$

$$= \frac{1}{2}e^{2} - 0 - \frac{1}{4}e^{2x} \Big|_{0}^{1} = \frac{1}{2}e^{2} - 0 - \frac{1}{4}e^{2x} \Big|_{0}^{1} = \frac{1}{2}e^{2} - \frac{1}{4}e^{2} + \frac{1}{4} = \frac{e^{2}}{4} + \frac{1}{4}.$$

Теоретические вопросы к разделу 2

- 1. Определенный интеграл, его свойства. Формула Ньютона-Лейбница.
- 2. Интегрирование определенного интеграла заменой переменной и по частям.

Задание 1 к разделу 2

Вычислить:

1. a)
$$\int_{0}^{1} (5x - \frac{3\sqrt[3]{x^2}}{4} + x\sin 2x) dx;$$

$$\delta$$
) $\int_{0}^{1} \frac{dx}{\sqrt[4]{x^3} \cos^2 \sqrt[4]{x}} dx;$

2. a)
$$\int_{0}^{1} (7x^{2} - \frac{5}{4} \sqrt[5]{x^{3}} - xe^{-2x}) dx;$$

$$\delta \int_{1}^{e} \frac{dx}{(1+\ln^{2}x)\cdot x} dx;$$

3. a)
$$\int_{0}^{1} (x^2 - \frac{\sqrt[3]{x^2}}{4} - (2x+1)\sin 2x) dx;$$

$$\delta) \int_{0}^{1} \sqrt[5]{x} t g(x\sqrt[5]{x}) dx;$$

4. a)
$$\int_{0}^{1} (7x^3 - \sqrt[5]{x^3} - (2-x)e^{2x}) dx$$
;

$$\delta$$
) $\int_{0}^{1} \frac{e^{x}}{\sqrt{1-e^{2x}}} dx;$

5. a)
$$\int_{0}^{1} (\frac{x^3}{5} + 3\sqrt{x^3} + (5x - 1)\cos x) dx$$
;

6)
$$\int_{0}^{p/4} \frac{tg^{3}x - \sqrt[3]{tgx}}{\cos^{2}x} dx;$$

6. a)
$$\int_{0}^{1} (\frac{\sqrt[7]{x}}{3} + 6x^2 - x\sin(3x - 2))dx$$
;

$$\delta \int_{0}^{p/6} \frac{\cos x}{\sin^2 x - 4} dx;$$

7. a)
$$\int_{0}^{1} (x^4 + 2\sqrt[3]{x^2} + e^{-x} 5x) dx;$$

$$\delta) \int_{0}^{p} \sqrt{2 + \sin x} \cos x dx;$$

8.
$$a) \int_{0}^{1} (3x^3 - 2\sqrt[4]{x^6} - (7x - 2)e^{2x})dx;$$

6)
$$\int_{0}^{1} \frac{e^{x}}{1+e^{2x}} dx;$$

9. a)
$$\int_{0}^{1} (x^3 - \frac{1}{5}\sqrt[3]{x} + (x-2)\cos 2x)dx$$
;

$$(6) \int_{0}^{p/6} \frac{\cos x dx}{1 + \sin^2 x} dx;$$

10. a)
$$\int_{0}^{1} (3x^2 + \sqrt[4]{x^3} - (x+1)\sin\frac{x}{3})dx;$$

6)
$$\int_{0}^{e} \frac{\ln^{3} x + \sqrt[3]{\ln x} + 1}{x} dx$$
.

Раздел 3. Вычисление площади плоской фигуры

Последовательность вычисления площади плоской фигуры, с помощью определенного интеграла следующая (рис. 4):

- 1) находим точки пересечения заданных линий;
- 2) находим точки пересечения линий с координатными осями;
- 3) строим область, ограниченную линиями на плоскости ХОУ;
- 4) составим определенный интеграл и вычислим искомую площадь.

Пример 1

Найти площадь, ограниченную линиями $y = x^2 - 3x + 2$; y = x - 1.

Решение:

Находим точки пересечения линий. Для этого приравняем правые части уравнений:

$$x^{2} - 3x + 2 = x - 1 \Rightarrow x^{2} - 4x + 3 = 0;$$

 $x_{1,2} = 2 \pm 1; \quad x_{1} = 1; \quad x_{2} = 3,$

т. е. точки пересечения A(1;0); B(3;2) (рис. 4).

Строим заданные линии на плоскости ХОУ:

1) точки пересечения параболы: $y = x^2 - 3x + 2$ с осью *OX*:

$$x^2 - 3x + 2 = 0$$
; $x_1 = 1x_2 = 2$;

2) через точки A и B проводим прямую. Через точки $x_1 = 1$; $x_2 = 2$ на оси OX и точки A и B проводим параболу. Получаем область, ограниченную линиями, площадь которой необходимо вычислить;

3) составляем определенный интеграл:

$$S = \int_{X_a}^{X_b} (y_1 - y_2) dx,$$

где y_1 – линия, ограничивающая область сверху; y_2 – линия, ограничивающая область снизу; X_a – наименьшее значение переменной x в области; X_b – наибольшее значение переменной x в области.

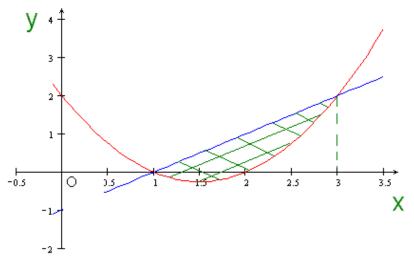


Рис. 4

В нашем случае:

$$S = \int_{1}^{3} ((x-1) - (x^2 - 3x + 2)) dx = \int_{1}^{3} (-x^2 + 4x - 3) = \int_{1}^{3} (-\frac{x^3}{3} + 2x^2 - 3x) \Big|_{1}^{3} =$$
$$= (-9 + 18 - 9) - (\frac{-1}{3} + 2 - 3) = 1\frac{1}{3} (e \pi^2).$$

Теоретические вопросы к разделу 2

1. Схема вычисления площади плоской фигуры определенным интегралом, нахождение пределов интегрирования, построение подынтегральной функции.

Задание 1 к разделу 3

Вычислить площадь, ограниченную линиями:

1. a)
$$y = x^2 - 6x + 5$$
; $y = -x - 1$; 6) $y = 6x - x^2$; $y = x^2 - 2x$;

2. *a*)
$$y = x^2 - 9x + 18$$
; $y = 8 - 2x$; *b*) $y = 2x - x^2$; $y = x^2 - 4x$;

3. a)
$$y = x^2 - 4x + 3$$
; $y = x - 1$; 6) $y = 6x - x^2$; $y = -x^2$;

4. a)
$$y = x^2 - 9x + 14$$
; $y = 4 - 2x$; 6) $y = x^2$; $y = 4x - x^2$;

5. *a*)
$$y = x^2 - 6x + 8$$
; $y = 2 - x$; *б*) $y = x^2 - 2x$; $y = -x$;

6. *a*)
$$y = x^2 - 5x + 4$$
; $y = 2 - 2x$; *b*) $y = 4x - 2x^2$; $y = x^2 - 2x$;

7. *a*)
$$y = x^2 - 10x + 16$$
; $y = 4 - 2x$; *b*) $y = x^2 - 2x$; $y = 4x - x^2$;

8. *a*)
$$y = x^2 - 7x + 12$$
; $y = 6 - 2x$; *b*) $y = x^2 + 4x$; $y = 2x - x^2$;

9. *a*)
$$y = x^2 - 7x + 10$$
; $y = 2 - x$; *b*) $y = x^2 - 4x$; $y = -x^2$;

10. *a*)
$$y = x^2 - 5x + 6$$
; $y = x - 2$; *b*) $y = x^2 - 7x$; $y = 3x - x^2$.

СПИСОК РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ

- 1. Беклемишев, Д.В. Курс аналитической геометрии и линейной алгебры : учеб. для вузов / Д.В. Беклемишев. М. : Физматлит, 2006. 312 с.
- 2. Боревич, З.И. Определители и матрицы : учеб. пособие / З.И. Боревич. СПб. : Лань, 2004. 192 с.
- 3. Привалов, И.И. Аналитическая геометрия : учебник / И.И. Привалов. СПб. : Лань, 2004. 304 с.
- 4. Пискунов, Н.С. Дифференциальное и интегральное исчисление для втузов : учеб. пособие для втузов. В 2 т. Т. 1 / Н.С. Пискунов. М. : Интеграл-Пресс, 2006. 416 с.
- 5. Пискунов, Н.С. Дифференциальное и интегральное исчисление: учеб. пособие для втузов. В 2 т. Т. 2 / Н.С. Пискунов. М.: Интеграл-Пресс, 2005. 544 с.
- 6. Данко, П.Е. Высшая математика в упражнениях и задачах : учеб. пособие для втузов. В 2 ч. Ч. 1 / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. М. : ОНИКС, 2007. 304 с.
- 7. Данко, П.Е. Высшая математика в упражнениях и задачах : учеб. пособие для втузов. В 2 ч. Ч. 2 / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. М. : ОНИКС, 2006. 416 с.
- 8. Шипачев, В.С. Высшая математика : учеб. пособие для втузов / В.С. Шипачев. М. : Высш. шк., 2006. 479 с.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
Контрольная работа № 1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ И ВЕКТОРНОЙ АЛГЕБРЫ	4
Раздел 1. Системы « <i>n</i> » линейных алгебраических уравнений с « <i>n</i> » неизвестными	
Раздел 2. Элементы векторной алгебры и аналитической геометрии Раздел 3. Базис. Разложение вектора по базисным векторам	
Контрольная работа № 2. КОМПЛЕКСНЫЕ ЧИСЛА, ПРЕДЕЛЫ, ИССЛЕДОВАНИЕ НЕПРЕРЫВНОСТИ ФУНКЦИИ	13
Раздел 3. Исследование непрерывности функции в заданных точках « x ₁ » и « x ₂ »	
Контрольная работа № 3. ПРОИЗВОДНЫЕ И ЭЛЕМЕНТЫ ИССЛЕДОВАНИЯ ФУНКЦИЙ	25
Раздел 1. Производные	
Раздел 2. Экстремум функции, его классификация	
на отрезке $\left[a;b ight]$	31
Контрольная работа № 4. НЕОПРЕДЕЛЁННЫЙ	
И ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛЫ	
Раздел 1. Неопределенный интеграл	
Раздел 2. Определенный интеграл	
Раздел 3. Вычисление площади плоской фигуры	
СПИСОК РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ	48

Учебное издание

Константинов Никита Сергеевич Смотрова Марьяна Сергеевна Богомякова Татьяна Анатольевна

ВЫСШАЯ МАТЕМАТИКА

Методическое пособие по выполнению контрольных работ № 1, 2, 3, 4 для студентов ИИФО

Отпечатано методом прямого репродуцирования

Технический редактор Н.В. Ларионова

План 2013 г. Поз. 9.17. Подписано в печать 20.02.2013. Гарнитура Arial. Печать RISO. Усл. печ. л. 2,8. Уч.-изд. л. 3,3. Зак. 95. Тираж 25 экз. Цена 105 р.

> Издательство ДВГУПС 680021, г. Хабаровск, ул. Серышева, 47.

Н.С. Константинов, М.С. Смотрова, Т.А. Богомякова

ВЫСШАЯ МАТЕМАТИКА

Методическое пособие по выполнению контрольных работ № 1, 2, 3, 4 для студентов ИИФО