МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ДЕПАРТАМЕНТ НАУЧНО-ТЕХНОЛОГИЧЕСКОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ ФГОУ ВПО КОСТРОМСКАЯ ГСХА

Кафедра высшей математики

МАТЕМАТИКА

Методические указания по организации самостоятельной работы и выполнению контрольных заданий для студентов 1 и 2 курсов инженерных специальностей заочной формы обучения

2-е издание, стереотипное

KOCTPOMA KΓCXA 2009 УДК 512 (076) ББК 22.1 М 34

Составители: сотрудники кафедры высшей математики Костромской ГСХА к.ф-м.н., доцент А.И. Марусич, доцент И.А. Батманова, ст. преподаватели Л.Б. Рыбина, М.К. Лобкова, Л.А. Глебцева.

Рецензент: д.э.н., профессор кафедры высшей математики Костромской ГСХА В.И. Цуриков.

Рекомендовано к изданию методической комиссией архитектурно-строительного факультета, протокол № 1 от 14 февраля 2008 года.

М 34 Математика : методические указания по организации самостоятельной работы и выполнению контрольных заданий для студентов 1 и 2 курсов инженерных специальностей заочной формы обучения / сост. А.И. Марусич, И.А. Батманова, Л.Б. Рыбина и др. — 2-е изд., стереотип. — Кострома : КГСХА, 2009. — 50 с.

В издании приведены программа курса по математике, общие указания по работе в сессионный и межсессионный периоды, варианты контрольных заданий и список рекомендуемых источников.

Методические указания предназначены для студентов 1 и 2 курсов специальностей 110304 «Технология обслуживания и ремонта машин в агропромышленном комплексе», 110302 «Электрификация сельского хозяйства» и 270102 «Промышленное и гражданское строительство» заочной формы обучения.

УДК 512 (076) ББК 22.1

ОГЛАВЛЕНИЕ

Введение	4
1. Программа курса «Математика»	5
1.1. Аналитическая геометрия. Элементы линейной алгебры.	
Элементы векторной алгебры	5
1.2. Введение в математический анализ	
1.3. Дифференциальное исчисление функции одной переменной	6
1.4. Комплексные числа	7
1.5. Интегральное исчисление функций одной переменной	7
1.6. Функции нескольких переменных	
1.7. Кратные и криволинейные интегралы	9
1.8. Дифференциальные уравнения	
1.9. Ряды	10
1.10. Теория вероятностей	11
2. Общие требования по выполнению контрольных работ	12
3. Контрольные задания	15
3.1. Задания для контрольной работы № 1	
3.2. Задания для контрольной работы № 2	
3.3. Задания для контрольной работы № 3	
3.4. Задания для контрольной работы № 4	31
3.5. Задания для контрольной работы № 5	36
3.6. Задания для контрольной работы № 6	
Список рекомендуемых источников	44
Приложения	45

ВВЕДЕНИЕ

Настоящие методические указания по изучению курса математики предназначены для студентов-заочников инженерных специальностей КГСХА.

Курс математики студенты изучают на 1-ом и 2-ом курсах в соответствии со следующим планом, таблица 1, выполняют 6 контрольных работ.

Таблица 1 Распределение учебных часов по сессиям

Курс	Ce-	Характер	Характер Аудиторная работа		Номер	Форма отчетности	
rtype	местр	сессии	лек.	прак.	к.р.	по к.р.	Итоговая
			JICK.	прак.		по к.р.	ттоговал
I	1	установочная	10	6	1 2	-	-
	2	экзаменационная	1	10	1, 2	собес.	экзамен
	2	установочная	10	6	-	1	-
II	2	экзаменационная	1	10	3, 4	собес.	экзамен
	3	установочная	10	6	-	1	-
	4	экзаменационная	ı	10	5, 6	собес.	зачет

Изучение курса математики начинается на установочной сессии, где студенты слушают обзорные лекции, приобретают навыки в решении примеров и задач и получают рекомендации по самостоятельной работе в межсессионный период.

После сессии студенты приступают к самостоятельному изучению программного материала по учебникам, пособиям и другой, имеющейся в наличии литературе, и выполняют контрольные работы (2 на первом курсе и 4 на втором).

Следует помнить, что самостоятельная работа является основной формой обучения студента-заочника.

Если в процессе работы у студента возникнут вопросы по изучаемому материалу, то он может обратиться за консультацией к преподавателю кафедры высшей математики (ауд. 214, тел. 657-025). Для получения письменной консультации писать по адресу: 156530, Костромская область, п. Караваево, Костромская ГСХА, кафедра высшей математики.

1. ПРОГРАММА КУРСА «МАТЕМАТИКА»

1.1. Аналитическая геометрия.

Элементы линейной алгебры. Элементы векторной алгебры.

- 1.1. Понятие матрицы, виды матриц, действия с матрицами.
- 1.2. Определители 2-го и 3-го порядков, их свойства. Миноры и алгебраические дополнения. Вычисление определителя разложением по строке (столбцу). Определители *n*-го порядка.
 - 1.3. Понятие обратной матрицы.
- 1.4. Системы линейных алгебраических уравнений, их решение по формулам Крамера, методом Гаусса и с помощью обратной матрицы.
- 1.5. Системы координат. Прямоугольные и полярные координаты на плоскости и связь между ними. Прямоугольные, цилиндрические и сферические координаты в пространстве.
- 1.6. Простейшие задачи на метод координат. Расстояние между двумя точками, деление отрезка.
- 1.7. Понятие вектора. Коллинеарные, равные и компланарные векторы.
 - 1.8. Линейные операции с векторами.
- 1.9. Проекция вектора на ось. Координаты вектора. Равенство векторов. Длина вектора. Связь между координатами вектора и координатами его концевых точек.
- 1.10. Линейные операции с векторами в координатной форме. Условие коллинеарности векторов.
- 1.11. Скалярное, векторное и смешанное произведения векторов, их основные свойства и выражение в координатной форме. Длина вектора, угол между векторами, условия параллельности и перпендикулярности; направляющие косинусы.
 - 1.12. Понятие об уравнении линии на плоскости.
- 1.13. Различные виды уравнений прямой на плоскости: с угловым коэффициентом, через одну точку, через две точки. Общее уравнение прямой.
- 1.14. Угол между прямыми на плоскости, условия параллельности и перпендикулярности, расстояние от точки до прямой.
- 1.15. Кривые второго порядка, их канонические уравнения. Эксцентрисистет эллипса и гиперболы. Асимптоты гиперболы. Уравнения кривых второго порядка со смещенным центром или вершиной.
- 1.16. Уравнения кривых в полярных координатах. Спираль Архимеда, лемниската Бернулли, кардиоида.

- 1.17. Уравнение поверхности в прямоугольных координатах. Цилиндрические поверхности.
- 1.18. Плоскость. Уравнение плоскости, проходящей через одну точку и перпендикулярной данному вектору; проходящей через три точки. Общее уравнение плоскости.
- 1.19. Угол между плоскостями; условия параллельности и перпендикулярности плоскостей.
- 1.20. Кривая в пространстве как линия пересечения двух поверхностей. Параметрические уравнения кривой. Прямая как частный случай кривой. Винтовая линия.
 - 1.21. Канонические уравнения поверхностей второго порядка.

1.2. Введение в математический анализ

- 2.1. Определение функции; область определения. Способы задания функции, графическое изображение. Классификация функций.
- 2.2. Предел последовательности и функции. Основные свойства пределов.
- 2.3. Бесконечно малые и бесконечно большие функции, их свойства.
- 2.4. Два замечательных предела. Число е. Экспоненциальная функция. Натуральные логарифмы.
- 2.5. Нахождение пределов в неопределенных ситуациях (раскрытие различных неопределенностей).
- 2.6. Сравнение бесконечно малых функций. Эквивалентные бесконечно малые.
- 2.7. Непрерывность функции в точке и на интервале. Точки разрыва, их виды. Изображение графика функции в окрестности точки разрыва.
- 2.8. Действия с непрерывными функциями. Непрерывность и точки разрыва элементарных функций.
 - 2.9. Свойства функций, непрерывных на замкнутых интервалах.

1.3. Дифференциальное исчисление функции одной переменной

- 3.1. Определение производной в произвольной точке, ее геометрический и физический смысл.
- 3.2. Производные основных элементарных функций. Таблица производных.
- 3.3. Правила дифференцирования суммы, произведения и отношения функций.

- 3.4. Производная сложной и неявно заданной функций. Производная обратной функции.
- 3.5. Параметрический способ задания функции. Параметрические уравнения окружности, эллипса, циклоиды. Производная параметрически заданной функции.
- 3.6. Производные высших порядков. Физический смысл производной второго порядка.
- 3.7. Дифференциал функции, инвариантность его формы и назначение. Дифференциалы высших порядков.
 - 3.8. Теоремы Ролля, Лагранжа, Коши.
 - 3.9. Правило Лопиталя.
 - 3.10. Формула Тейлора.
- 3.11. Возрастание и убывание функций. Применение первой производной к исследованию функций на возрастание и убывание.
- 3.12. Экстремум функции. Применение производных к исследованию функций на экстремум. Нахождение наименьшего и наибольшего значений функции на отрезке.
- 3.13. Выпуклость, вогнутость и перегиб графика функции. Исследование графиков функций с помощью второй производной.
 - 3.14. Асимптоты графика.
- 3.15. Схема общего исследования функции и построения ее графика.

1.4. Комплексные числа

- 4.1. Комплексные числа в алгебраической форме, действия с ними. Изображение комплексных чисел на плоскости.
- 4.2. Модуль и аргумент комплексного числа. Тригонометрическая и показательная формы записи комплексного числа. Формула Эйлера.
- 4.3. Действия с комплексными числами в тригонометрической и показательной формах.
- 4.4. Решение квадратных уравнений в случае отрицательного дискриминанта.

1.5. Интегральное исчисление функций одной переменной

- 5.1. Первообразная, неопределенный интеграл и его свойства. Таблица основных интегралов.
 - 5.2. Интегрирование заменой переменной и по частям.
 - 5.3. Интегралы от рациональных дробей.
 - 5.4. Интегралы от некоторых тригонометрических функций.

- 5.5. Интегралы от некоторых иррациональных функций. Понятие о неинтегрируемости в элементарных функциях.
- 5.6. Определенный интеграл, как предел интегральной суммы. Понятие об интегрируемости функций, формулировка теоремы существования.
- 5.7. Задачи, приводящие к понятию определенного интеграла. Геометрический смысл определенного интеграла.
 - 5.8. Свойства определенного интеграла, теорема о среднем.
- 5.9. Производная от интеграла по переменному верхнему пределу. Связь между определенным интегралом и первообразной. Формула Ньютона-Лейбница.
- 5.10. Вычисление определенных интегралов методами подстановки и по частям. Интегрирование четных и нечетных функций по симметричному интервалу.
- 5.11. Приближенное вычисление определенного интеграла по формулам прямоугольников, трапеций, Симпсона. Порядок погрешности.
- 5.12. Геометрические приложения определенного интеграла: вычисления площадей фигур, ограниченных кривыми в декартовой и полярной системах координат, объемов тел по площадям поперечных сечений и тел вращения, длин дуг кривых, площадей поверхностей вращения.
- 5.13. Приложения интеграла к решению простейших задач механики и физики: вычисление работы переменной силы, пути при переменной скорости, массы неоднородного стержня, статических моментов и моментов инерции, координат центра тяжести плоских фигур и линий.
- 5.14. Несобственные интегралы с бесконечными пределами интегрирования и от разрывных функций. Примеры сходящихся и расходящихся интегралов.

1.6. Функции нескольких переменных

- 6.1. Опредение функции нескольких независимых переменных ФНП.
 - 6.2. Предел и непрерывность ФНП.
 - 6.3. Частные производные ФНП первого и высших порядков.
- 6.4. Полный дифференциал ФНП и его применение в приближенных вычислениях. Условия, при которых выражение P(x,y)dx+Q(x,y)dy является полным дифференциалом.
- 6.5. Дифференцирование неявно заданной функции двух переменных.

- 6.6. Экстремум функции двух переменных. Необходимые и достаточные условия.
- 6.7. Условный экстремум. Отыскание наибольших и наименьших значений функции в замкнутой области.
- 6.8. Задача обработки наблюдений. Подбор параметров по способу наименьших квадратов.
 - 6.9. Скалярное и векторное поля. Поверхности и линии уровня.
- 6.10. Производная по направлению и вектор градиент. Связь градиента с поверхностями и линиями уровня.

1.7. Кратные и криволинейные интегралы

- 7.1. Определение двойного интеграла, формулировка теоремы существования.
- 7.2. Задачи, приводящие к понятию двойного интеграла. Геометрический смысл двойного интеграла.
 - 7.3. Свойства двойного интеграла.
- 7.4. Вычисление двойного интеграла по прямоугольной области. Перемена порядка интегрирования в двойном интеграле.
 - 7.5. Вычисление двойного интеграла в полярных координатах.
 - 7.6. Геометрические применения двойного интеграла.
 - 7.7. Механические применения двойного интеграла.
- 7.8. Понятия тройного интеграла. Его вычисление в прямоугольных, цилиндрических и сферических координатах.
 - 7.9. Интеграл по поверхности. Понятие о потоке векторного поля.
- 7.10. Определение криволинейного интеграла по координатам, его простейшие свойства, вычисление.
 - 7.11. Криволинейный интеграл по длине дуги.
 - 7.12. Задача о вычислении работы переменной силы.
- 7.13. Условия независимости криволинейного интеграла от пути интегрирования.
 - 7.14. Формула Грина.

1.8. Дифференциальные уравнения

- 8.1. Понятие дифференциального уравнения, порядка, решения. Интегральная кривая.
 - 8.2. Задачи, приводящие к дифференциальным уравнениям.
- 8.3. Дифференциаьные уравнения 1-го порядка. Начальное условие. Задача Коши. Теорема существования и единственности Коши. Понятие об общем, частном и особом решениях.
- 8.4. Решение некоторых дифференциальных уравнений первого порядка (с разделяющимися переменными, однородных, линейных, Бернулли).

- 8.5. Приближенное решение дифференциальных уравнений 1-го порядка.
- 8.6. Дифференциальные уравнения высших порядков, общее и частное решения.
- 8.7. Дифференциальные уравнения второго порядка, допускающие понижение порядка.
- 8.8. Линейные однородные дифференциальные уравнения второго порядка, свойства их решений, линейно-независимые частные решения, структура общего решения.
- 8.9. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами, характеристическое уравнение, запись общего решения в зависимости от корней характеристического уравнения.
- 8.10. Линейные неоднородные дифференциальные уравнения второго порядка, структура общего решения, теорема наложения.
- 8.11. Отыскание частных решений линейных неоднородных дифференциальных уравнений с постоянными коэффициентами в случае специальных видов правой части.
 - 8.12. Метод вариации произвольных постоянных.
- 8.13. Линейные дифференциальные уравнения высших порядков с постоянными коэффициентами.
- 8.14. Системы дифференциальных уравнений. Простейшие приемы решения систем линейных дифференциальных уравнений с постоянными коэффициентами.

1.9. Ряды

- 9.1. Понятие ряда. Числовые и функциональные ряды. Примеры.
- 9.2. Сходимость и расходимость числовых рядов. Геометрический и гармонический ряды. Необходимое условие сходимости числового ряда.
 - 9.3. Свойства сходящихся рядов.
- 9.4. Признаки сходимости знакоположительных рядов (сравнения, Даламбера, Коши).
- 9.5. Знакочередующиеся ряды. Признак Лейбница. Оценка остатка ряда.
 - 9.6. Абсолютная и условная сходимость знакопеременных рядов.
 - 9.7. Область сходимости функционального ряда.
- 9.8. Степенной ряд. Теорема Абеля. Радиус и интервал сходимости степенного ряда.
- 9.9. Свойства степенного ряда: непрерывность суммы, возможность почленного дифференцирования и интегрирования.

- 9.10. Ряд Тейлора и Маклорена. Примеры разложения в степенной ряд элементарных функций. Биномиальный ряд.
 - 9.11. Применения степенных рядов.
- 9.12. Понятие ряда Фурье, формулы для коэффициентов ряда. Ряд Фурье для четных и нечетных функций с периодом 2π .
 - 9.13. Ряд Фурье для функций с любым периодом.

1.10. Теория вероятностей

- 10.1. Комбинаторика. Формулы комбинаторики.
- 10.2. Понятие события. Виды событий. Полная группа событий. Вероятность события. Относительная частота события, ее свойство.
- 10.3. Произведение событий. Условная вероятность. Теорема умножения вероятностей.
 - 10.4. Сумма событий. Теорема сложения вероятностей.
- 10.5. Подсчет вероятности наступления хотя бы одного из группы независимых в совокупности событий. Формула полной вероятности. Формула Байеса.
- 10.6. Повторные независимые испытания. Формула Бернулли. Наивероятнейшее число наступления событий. Асимптотические формулы Муавра-Лапласа, Пуассона, интегральная формула Лапласа.
- 10.7. Случайные величины, их виды. Формы законов распределения дискретных и непрерывных случайных величин: ряд распределения, функция распределения, плотность распределения.
- 10.8. Свойства функции и плотности распределения, связь между ними. Вероятность попадания случайной величины на заданный интервал.
- 10.9. Примеры законов распределения дискретных случайных величин: биноминальное, Пуассона.
- 10.10. Нормальный закон распределения непрерывных случайных величин.
- 10.11. Числовые характеристики случайных величин: математическое ожидание, дисперсия, среднее квадратическое отклонение (для дискретных и непрерывных случайных величин), их свойства.
- 10.12. Числовые характеристики нормально распределенной случайной величины. Вычисление вероятности попадания на заданный интервал случайной величины имеющей нормальное распределение. Правило трех сигм.
 - 10.13. Закон больших чисел.

2. ОБЩИЕ ТРЕБОВАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ

- 1. Каждая работа должна быть выполнена в отдельной тетради (в клетку), на внешней обложке которой должны быть четко написаны: дисциплина, специальность, номер контрольной работы, фамилия и инициалы студента, шифр, дата отправки работы и домашний адрес студента.
- 2. Задачи в работе следует располагать под заданными в указаниях номерами и в том же порядке с полностью переписанным условием.
- 3. Решение задач требуется излагать подробно, делая соответствующие ссылки на вопросы теории (формулы, теоремы и т.п.).
- 4. Решение задач с геометрическим содержанием должно сопровождаться рисунками (можно на миллиметровой бумаге), выполненными аккуратно, с указанием координатных осей и единицы масштаба. Объяснения в тексте задачи должны соответствовать тем символам, которые указаны на рисунке.
- 5. На каждой странице тетради желательно оставлять поля шириной 3-5 сантиметров для замечаний рецензента и в конце работы приводить список использованной литературы.
- 6. Контрольные работы должны выполняться студентом самостоятельно и по своему варианту. Номер, варианта совпадает с последней цифрой шифра студента. При этом, если предпоследняя цифра шифра есть четное число (0, 2, 4, 6, 8), то номера задач для своего варианта следует взять из таблицы 2, если же нечетное число (1, 3, 5, 7, 9), то из таблицы 3.

Контрольные работы, выполненные без соблюдения этих требований, а также выполненные не по своему варианту или содержащие не все задачи, не проверяются или не зачитываются.

Допущенные к защите контрольные работы хранятся на кафедре высшей математики (ауд. 214) и выдаются студенту при устном собеседовании.

Незачтенные контрольные работы возвращаются студенту для исправления ошибок. Все исправления ошибок делаются в конце контрольной работы на чистых листах. Исправления в тексте прорецензированной работы не допускаются. Контрольную работу с исправлениями следует направить на повторное рецензирование.

После получения допуска следует устранить отмеченные рецензентом недочеты и пройти устное собеседование. На итоговый зачет или экзамен студент должен явиться с зачтенными контрольными работами.

Номер				Н	омера зад	дач для і	контрол	ьных р	абот				
варианта			Рабоп	na №1					Po	абота І	V <u>o</u> 2		
1	1	20	29	38	47	56	61	80	89)	98	107	116
2	2	11	30	39	48	57	62	71	90)	99	108	117
3	3	12	21	40	49	58	63	72	81	l 1	100	109	118
4	4	13	22	31	50	59	64	73	82	2	91	110	119
5	5	14	23	32	41	60	65	74	83		92	101	120
6	6	15	24	33	42	51	66	75	84		93	102	111
7	7	16	25	34	43	52	67	76	85		94	103	112
8	8	17	26	35	44	53	68	77	86	6	95	104	113
9	9	18	27	36	45	54	69	78	87	7	96	105	114
0	10	19	28	37	46	55	70	79	88	3	97	106	115
			Рабоп	na №3					Po	абота Ј	V <u>o</u> 4		
1	121	140	149	158	167	176	181	200	209	218	227	236	245
2	122	131	150	159	168	177	182	191	210	219	228	237	246
3	123	132	141	160	169	178	183	192	201	220	229	238	247
4	124	133	142	151	170	179	184	193	202	211	230	239	248
5	125	134	143	152	161	180	185	194	203	212	221	240	249
6	126	135	144	153	162	171	186	195	204	213	222	231	250
7	127	136	145	154	163	172	187	196	205	214	223	232	241
8	128	137	146	155	164	173	188	197	206	215	224	233	242
9	129	138	147	156	165	174	189	198	207	216	225	234	243
0	130	139	148	157	166	175	190	199	208	217	226	235	244
				na №5						абота Ј			
1	251	270	279	288			291	310	319	328	337	346	355
2	252	261	280	289			292	301	320	329	338	347	356
3	253	262	271	290			293	302	311	330	339	348	357
4	254	263	272	281			294	303	312	321	340	349	358
5	255	264	273	282			295	304	313	322	331	350	359
6	256	265	274	283			296	305	314	323	332	341	360
7	257	266	275	284			297	306	315	324	333	342	351
8	258	267	276	285			298	307	316	325	334	343	352
9	259	268	277	286			299	308	317	326	335	344	353
0	260	269	278	287			300	309	318	327	336	345	354

Номер	Номера задач для контрольных работ												
варианта			P	абота №	1					Рабоп	na №2		
1	10	11	22	33	44	55	60	61	72	83	94	105	116
2	9	20	21	32	43	54	59	70	71	82	93	104	115
3	8	19	30	31	42	53	58	69	80	81	92	103	114
4	7	18	29	40	41	52	57	68	79	90	91	102	113
5	6	17	28	39	50	51	66	67	78	89	100	101	112
6	5	16	27	38	49	60	55	66	77	88	99	110	111
7	4	15	26	37	48	59	54	65	76	87	98	109	120
8	3	14	25	36	47	58	53	64	75	86	97	108	119
9	2	13	24	35	46	57	52	63	74	85	96	107	118
0	1	12	23	34	45	56	51	62	73	84	95	106	117
			Рабоп	na №3					P	абота Л	<u>°o4</u>		
1	130	131	142	153	164	175	190	191	202	213	224	235	246
2	129	140	141	152	163	174	189	200	201	212	223	234	245
3	128	139	150	151	162	173	188	199	210	211	222	233	244
4	127	138	149	160	161	172	187	198	209	220	221	232	243
5	126	137	148	159	170	171	186	197	208	219	230	231	242
6	125	136	147	158	169	180	185	196	207	218	229	240	241
7	124	135	146	157	168	179	184	195	206	217	228	239	250
8	123	134	145	156	167	178	183	194	205	216	227	238	249
9	122	133	144	155	166	177	182	193	204	215	226	237	248
0	121	132	143	154	165	176	181	192	203	214	225	236	247
			Рабоп							абота Л			
1	260	261	272	283			300	301	312	323	334	345	356
2	259	270	271	282			299	310	311	322	333	344	355
3	258	269	280	281			298	309	320	321	332	343	354
4	257	268	279	290			297	308	319	330	331	342	353
5	256	267	278	289			296	307	318	329	340	341	352
6	255	266	277	288			295	306	317	328	339	350	351
7	254	265	276	287			294	305	316	327	338	349	360
8	253	264	275	286			293	304	315	326	337	348	359
9	252	263	274	285			292	303	314	325	336	347	358
0	251	262	273	284			291	302	313	324	335	346	357

3. КОНТРОЛЬНЫЕ ЗАДАНИЯ

3.1. Задания для контрольной работы № 1

Задачи 1-10. Даны матрицы:

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} -1 & 1 & 0 \\ 2 & 1 & 2 \\ 3 & 1 & -3 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Найти матрицу C.

<u>№</u> задачи	Матрица	№ задачи	Матрица
1	C = 2A + 3E + AB - BE	6	C = 2B - E + BA - AE
2	C = A - 2B + 3AE - AB	7	C = 3E - 2A + AB - EA
3	C = B + 2A - AE + 2AB	8	C = 2A - 3B + BA - 4EB
4	C = AB - 2E + 5A - BE	9	C = BA - AE - 2A + 3B
5	C = 2AB - 3E - B + AE	10	C = A + 3B - AB - 2BE

Задачи 11-20

Решить систему линейных алгебраических уравнений:

- 1) по формулам Крамера;
- 2) любым другим способом.

№ задачи	Система	№ задачи	Система
11	$\begin{cases} 2x + y + 2z = 5, \\ 3x - y - z = 4, \end{cases}$	16	$\begin{cases} 6x - y + 3z = 6, \\ 3x + y + 5z = 4, \end{cases}$
	x + 2y + 3z = 5.		$\int x - 2y - 4z = 0.$
	$\int x - 2y - 2z = -2,$		$\int 5x + 2y + 6z = 10,$
12	$\left \left\{ 2x + 2y - 3z = 13, \right. \right.$	17	$\left \left\{ 4x + y + 5z = 6, \right. \right.$
	$\int 3x - y + 2z = 1.$		x + 3y + 6z = 5.
	$\int 3x + y + 2z = 7,$		$\int 2x + 2y + 5z = 5,$
13	$\left \left\{ 2x - 2y + 3z = -5, \right. \right.$	18	$\bigg \Big\{ 4x - y - z = 6,$
	x + y + 2z = 3.		x + 2y + 5z = 3.
	$\int x - 3y - 2z = -5,$		$\int x + 3y + 6z = 5,$
14	$\left \left\{ 2x - 3y + 2z = -7, \right. \right.$	19	$\left \left\{ 2x + 5y + 10z = 9, \right. \right.$
	3x + 3y + 4z = 11.		$\int x - 2y - 3z = -1.$
	x + 4y + 4z = 10,		2x + 4y + 5z = 11,
15	$\left \left\{ 2x - 3y - z = -4, \right. \right.$	20	$\bigg \bigg \left x - 3y - 7z = 0, \right $
	3x - y + 2z = 1.		3x + y + 5z = 4.

Задачи 21-30

Даны координаты вершин пирамиды DABC . Средствами векторной алгебры найти:

- 1) координаты векторов $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{AC}$, $\vec{c} = \overrightarrow{AD}$;
- 2) длину вектора $\vec{d} = 2\vec{a} + \vec{b} 3\vec{c}$;
- 3) угол между векторами \vec{a} и \vec{b} ;
- 4) площадь грани АВС;
- 5) объем пирамиды DABC .

No	Вершины	№	Вершины
21	A(-2; 1; 3), B(1; -1; 1),	26	A(1; 4; 6), B(4; 2; 4),
21	C(4; -5; -2), D(-1; 1; -2)	26	C(7; -2; 1), D(2; 4; 1)
22	A(-1; 2; 4), B(2; 0; 2),	27	A(-5; -2; 0), B(-2; -3; -2),
22	C(5; -4; -1), D(0; 2; -1)	21	C(1; -8; -5), D(-4; -2; -5)
23	A(-3; 0; 2), B(0; -2; 0),	28	A(2; 5; 7), B(5; 3; 5),
23	C(3; -6; -3), D(-2; 0; -3)	20	C(9; -1; 2), D(3; 5; 2)
24	A(0; 3; 5), B(3; 1; 3),	29	A(-6; -3; -1), B(-3; -5; -3),
Z 4	C(6; -3; 0), D(1; 3; 0)	29	C(0; -9; -6), D(-5; -3; -6)
25	A(-4; -1; 1), B(-1; -3; -1),	30	A(3; 6; 8), B(6; 4; 6),
25	C(2; -7; -4), D(-3; -1; -4)	30	C(9; 0; 3), D(4; 6; 3)

Задачи 31-40

Даны координаты вершин треугольника ABC.

Требуется:

- 1) составить уравнение стороны AB;
- 2) найти точку пересечения медиан;
- 3) составить уравнение высоты CD;
- 4) найти внутренний угол при вершине A.

№	Вершины	№	Вершины
задачи		задачи	
31	A(1; -4), B(7; 2), C(4; 6)	36	A(0; 2), B(6; 4), C(3; 0)
32	A(2; -2), B(8; 4), C(5; 7)	37	A(-2; 3), B(4; 5), C(1; 0)
33	A(1; 0), B(7; 2), C(4; -4)	38	A(-1; 0), B(5; 2), C(2; 4)
34	A(-1; 4), B(5; 0), C(2; 7)	39	A(-2; 3), B(4; 5), C(1; 1)
35	A(-2; 3), B(4; 7), C(1; -1)	40	A(-1; -2), B(4; 6), C(7; 1)

Задачи 41-50

По заданным в задачах № 21-30 координатам точек A, B, C, D, требуется:

- 1) написать уравнения прямой AB и найти ее точки пересечения с координатными плоскостями;
- 2) составить уравнение плоскости АВС и найти ее нормальный вектор;
- 3) написать уравнения прямой, проходящей через точку D перпендикулярно плоскости ABC и найти точку пересечения этой прямой с плоскостью ABC.

Задачи 51-60

Даны уравнения. Требуется установить:

- 1) в пунктах (a), (b), (c) какая линия на плоскости xOy определяется заданным уравнением;
- 2) в пунктах (c) и (d) какая поверхность определяется заданным уравнением.

Каждый случай проиллюстрировать схематическим рисунком.

№ задачи	Уравнения
1	2
51	a) $3x - y = 6$; b) $4x^2 + 9y^2 - 36 = 0$; c) $x^2 + 3y = 0$; d) $x^2 + y^2 + z^2 - 4z = 0$
52	a) $2x + 3y = 6$; b) $x^2 + 4y^2 - 4 = 0$; c) $x^2 + 4y = 0$; d) $x^2 + y^2 + z^2 - 6z = 0$
53	a) $x-2y=4$; b) $2x^2+3y^2-12=0$; c) $x^2+0.5y=0$; d) $x^2+y^2+z^2=6z$
54	a) $x + y = 2$; b) $x^2 + y^2 - 6x = 0$; c) $y^2 + 2x = 0$; d) $x^2 + y^2 + 4z^2 - 16 = 0$

1	2
55	a) $x-3y = 9$; b) $x^2 + y^2 + 4x = 0$; c) $y^2 + 0.5x = 0$; d) $x^2 + 9y^2 + z^2 - 9 = 0$
56	a) $3x + 5y = 15$; b) $x^2 + y^2 - 4y = 0$; c) $y^2 - 2x = 0$; d) $4x^2 + 4y^2 + 9z^2 - 36 = 0$
57	a) $5x + y = 10$; b) $x^2 + y^2 - 8y = 0$; c) $y^2 - 6x = 0$; d) $x^2 + 4y^2 + 4z^2 - 16 = 0$
58	a) $x + y = 3$; b) $9x^2 + 4y^2 - 36 = 0$; c) $x^2 - 2y = 0$; d) $x^2 + y^2 + 2z = 0$
59	a) $x - y = 2$; b) $4x^2 - y^2 - 4 = 0$; c) $x^2 - 0,5y = 0$; d) $x^2 + y^2 + z^2 - 6z = 0$
60	a) $x-3y = 6$; b) $4x^2 - 25y^2 - 100 = 0$; c) $x^2 - 5y = 0$; d) $x^2 + y^2 + z^2 + 4y = 0$

Примечание. Задачи 1-20 относятся к разделу «Элементы линейной алгебры», задачи 21-30 к разделу «Элементы векторной алгебры», задачи 31-60 к разделу «Аналитическая геометрия».

3.2. Задания для контрольной работы № 2 Задачи 61-70

Найти указанные пределы (не используя правило Лопиталя).

№	Пределы					
задания	2					
1		2				
61	1) $x = \lim_{x \to 4} \frac{3x^2 - 14x + 8}{3x^2 - 12x}$; 3) $x = \lim_{x \to 2} \frac{\sqrt{x + 7} - \sqrt{3 - x}}{x + 2}$;	2) $x = \lim_{\infty} \frac{3x^2 - 14x + 8}{3x^2 - 12x}$; 4) $x = \lim_{\infty} \frac{1 - \cos 4x}{x^2}$.				
62	1) $x = \lim_{x \to -3} \frac{2x^2 + 5x - 3}{2x^2 + 6x}$;	2) $x \lim_{\infty} \frac{6x^2 + x - 8}{2x^2 + 12}$;				
	3) $x \underset{5}{\underline{\lim}} \frac{\sqrt{x-1} - \sqrt{9-x}}{x-5}$;					
63	1) $x = \lim_{x \to -4} \frac{7x^2 + 26x - 8}{2x^2 + 8x}$;	A 1 T				
	3) $x = \lim_{x \to 2} \frac{\sqrt{x+4} - \sqrt{8-x}}{x-2}$;					
64	1) $x = \lim_{x \to 0} \frac{3x^2 + 5x - 8}{6x^2 - 6x}$;	2) $x \lim_{\infty} \frac{5x^2 + 6x - 1}{10x^2 + 1}$;				
	3) $x \frac{\lim_{3} \frac{\sqrt{x-2} - \sqrt{4-x}}{x-3}};$	O				
65	1) $x = \lim_{x \to \infty} \frac{2x^2 - 5x - 3}{2x^2 - 6x}$;	77 1 0				
	3) $x \frac{\lim_{4} \sqrt{x-1} - \sqrt{7-x}}{x-4}$;	$4) x \frac{\lim_{0} \frac{x \cdot \sin 3x}{tg^2 2x}.$				
66	1) $x = \lim_{-5} \frac{2x^2 + 15x + 25}{4x^2 + 20x}$;	511 1 211 1 5				
	3) $x \xrightarrow{\lim_{4} \frac{x-4}{\sqrt{x-2}-\sqrt{6-x}}}$;	$4) \underset{x \to \sin 5x}{\underline{\lim}_{0}} \frac{1 - \cos 6x}{x \cdot \sin 5x}.$				
67	1) $x = \lim_{x \to 2} \frac{4x^2 - 7x - 2}{3x^2 - 6x}$;	2) $\lim_{x \to \infty} \frac{18 + 5x - 2x^2}{4x^2 + 7}$;				
	3) $x = \lim_{x \to 2} \frac{x-2}{\sqrt{x+2} - \sqrt{6-x}}$;	$4) \underset{x \to \sin 2x}{\underline{\lim}_0} \frac{tg^2 2x}{x \cdot \sin 2x}.$				

1		2
68	1) $x = \lim_{x \to -2} \frac{3x^2 + 11x + 10}{2x^2 + 4x}$;	2) $\lim_{x \to \infty} \frac{9x^2 + 5x + 1}{3x^2 - 9}$;
	3) $x \frac{\lim_{x \to 2} \frac{x-2}{\sqrt{x+3}-\sqrt{7-x}}}$;	$4) {}_{x} \underline{\lim}_{0} \frac{x \cdot \sin 5x}{tg^{2} 2x}.$
69	1) $x = \lim_{3} \frac{3x^2 - 10x + 3}{2x^2 - 6x}$;	2) $x \lim_{\infty} \frac{14 + x - 3x^2}{6x^2 + 7}$;
	3) $x \frac{\lim_{x \to 1} \frac{\sqrt{5-x^2}-2}{1-x}}{1}$;	$4) \underset{x}{\underline{\lim}}_{0} \frac{\sin 3x}{tg8x}.$
70	1) $x = \lim_{x \to 4} \frac{2x^2 - 9x + 4}{3x^2 - 12x}$;	2) $_x \underline{\lim}_{\infty} \frac{5x^2 + 2x + 3}{3x^2 + 4}$;
	3) $x \frac{\lim_{3} \frac{\sqrt{10-x^2}-1}{3-x}};$	$4) \underset{x}{\underline{\lim}_{0}} \frac{1 - \cos x}{5x^{2}}.$

Задачи 71-80

Исследовать на непрерывность функцию, найти точки разрыва, указать характер разрыва и построить график функции y = f(x)в области определения.

№	Функция		
1	2		
71	$f(x) = \begin{cases} -2x+1, & \text{if } \eth e - 2 \le x \le -1, \\ \frac{2}{x}, & \text{if } \eth e - 1 < x \le 1, \\ 2x, & \text{if } \eth e 1 < x \le 2. \end{cases}$		
72	$f(x) = \begin{cases} -x^2, & \text{if } \check{o} \grave{e} - 2 \le x \le -1, \\ \frac{2}{x}, & \text{if } \check{o} \grave{e} - 1 < x \le 1, \\ 3x - 1, & \text{if } \check{o} \grave{e} \ 1 < x \le 2. \end{cases}$		
73	$f(x) = \begin{cases} 2x^2, & \text{if } \delta \hat{\mathbf{e}} - 2 \le x \le 0, \\ \frac{1}{x - 1}, & \text{if } \delta \hat{\mathbf{e}} \ 0 < x \le 2, \\ 1, & \text{if } \delta \hat{\mathbf{e}} \ 2 < x \le 3. \end{cases}$		
74	$f(x) = \begin{cases} -x - 2, & \text{if } \eth e - 2 \le x \le -1, \\ \frac{1}{x}, & \text{if } \eth e - 1 < x \le 1, \\ \ln x, & \text{if } \eth e \ 1 < x \le e. \end{cases}$		

1	2
75	$f(x) = \begin{cases} -x^2, & \text{if } \eth \grave{e} - 2 \le x \le -1, \\ \frac{1}{x}, & \text{if } \eth \grave{e} - 1 < x \le \frac{\pi}{2}, \\ 2\sin x, & \text{if } \eth \grave{e} \frac{\pi}{2} < x \le \pi. \end{cases}$
76	$f(x) = \begin{cases} -x - 2, & \text{if } \delta \hat{e} - 3 \le x \le -1, \\ \frac{1}{x}, & \text{if } \delta \hat{e} - 1 < x \le 2, \\ 1, & \text{if } \delta \hat{e} \ 2 < x \le 3. \end{cases}$
77	$f(x) = \begin{cases} \left(\frac{1}{2}\right)^{x}, & \text{if } \eth \dot{e} - 1 \le x \le 0, \\ x^{2} + 1, & \text{if } \eth \dot{e} \ 0 < x \le 1, \\ \frac{1}{(x - 2)^{2}}, & \text{if } \eth \dot{e} \ 1 < x \le 3. \end{cases}$
78	$f(x) = \begin{cases} \frac{1}{(x+1)^2}, & \text{if } \delta e - 2 \le x \le 0, \\ 2x^2 - 1, & \text{if } \delta e \ 0 < x \le 1, \\ 1, & \text{if } \delta e \ 1 < x \le 3. \end{cases}$
79	$f(x) = \begin{cases} 2x^2 - 1, & \text{if } \delta \hat{\mathbf{e}} - 1 \le x \le 0, \\ \frac{1}{(x - 1)^2}, & \text{if } \delta \hat{\mathbf{e}} \ 0 < x \le 2, \\ x - 1, & \text{if } \delta \hat{\mathbf{e}} \ 2 < x \le 3. \end{cases}$
80	$f(x) = \begin{cases} \cos x, & \text{if } \eth \text{è} - \frac{\pi}{2} \le x \le 0, \\ \frac{1}{(x-1)^2}, & \text{if } \eth \text{è} \ 0 < x \le 2, \\ x+1, & \text{if } \eth \text{è} \ 2 < x \le 3. \end{cases}$

Задачи 81-90

В пункте 1 найти производную $y' = \frac{dy}{dx}$ и дифференциал dy; в пунктах 2-4 найти производную.

№ задачи	Функция		
1	2		
81	1) $y = 6x^{10} - \frac{3}{x^2} + 11\sqrt{x}$; 2) $y = x^5 \arcsin \sqrt{x}$; 3) $y = \frac{\ln x}{ctg 2x}$; 4) $x^3 + y^3 - 4xy = 0$.		
82	1) $y = 8x^{\frac{1}{8}} - \frac{2}{\sqrt{x}} + 9x$; 2) $y = x^4 \arccos \sqrt{x}$; 3) $y = \frac{2x+1}{e^{5x}}$; 4) $x^3 + y^3 - 4y + 2x = 0$.		
83	1) $y = \sin 5x - 5^x - 4x^2$; 2) $y = (x^5 + 2x)\ln(3x + 1)$; 3) $y = \frac{\cos x + 4}{5\sin x - 3}$; 4) $x^5 + 2y + y^3 - 5 = 0$.		
84	1) $y = 2x^5 + \sin 7x - \frac{2}{x}$; 2) $y = (x^3 + tg^2x)e^{3x-2}$; 3) $y = \frac{x^2 - 3x}{\cos 5x}$; 4) $x^2 + 5y + \sqrt{y} - 1 = 0$.		
85	1) $y = 2 \ln x + \frac{4}{x} - 5tg^2 x$; 2) $y = e^{8x} arctg 2x$; 3) $y = \frac{\cos 4x}{x^2 + 8}$; 4) $2x^3 + y^2 + y - 5 = 0$.		
86	1) $y = e^{6x} + \frac{6}{x} - \sqrt{x} + 2$; 2) $y = x^3 e^{8x+1}$; 3) $y = \frac{tg(2x+5)}{arctgx}$; 4) $8x^2 - 3y^2 + x^2y = 0$.		
87	1) $y = \sqrt{x^2 + 1} + \frac{5}{x} - 7x$; 2) $y = (e^{5x} + 6)\cos 4x$; 3) $y = \frac{\sin 3x}{\ln(2x - 1)}$; 4) $3x + 2y + x^3y^2 + 3 = 0$.		
88	1) $y = 3e^{6x} - 4\sin 3x + \frac{2}{x} - \sqrt[3]{x}$; 2) $y = \sqrt{x^3 + 2} \cdot \ln(3x - 1)$; 3) $y = \frac{e^{6x}}{1 + 5e^{2x}}$; 4) $arctg 2x - \cos 2y + x^2y^3 = 0$.		

1	2	
90	1) $y = 4\sqrt[3]{x} + \frac{8}{x^2} - 5e^{2x}$; 2) $y = \sqrt{4\sin x + 5} \cdot arctg4x$;	
89	3) $y = \frac{\ln x + 8}{x^2 + x}$; 4) $x^3 + y^3 - 2\ln y + xy^2 = 0$.	
	1) $y = 6\sqrt[3]{x^2} - 8\cos 3x + \frac{3}{x^2}$; 2) $y = \sqrt{2\ln x - 3} \cdot e^{-3x}$;	
90	3) $y = \frac{\sin 2x}{\operatorname{arctg} 4x}$; 4) $6x - 8y^2 + x^3y - 9 = 0$.	

Задачи 91-100Найти $\frac{d^2y}{dx^2}$ для следующих функций:

№	Функции			
задачи	1 2		3	
91	$y = x e^{-8x}$	$x^3 + y^3 - 4 = 0$	$\begin{cases} x = 4\sin 5t, \\ y = \cos 5t. \end{cases}$	
92	$y = x^3 \ln x$	$x^2 + y^2 - 5 = 0$	$\begin{cases} x = 2e^{3t} + 1, \\ y = e^{6t} - 4. \end{cases}$	
93	$y = e^{2x} + \cos 3x$	$x^2 + \sin y = 0$	$\begin{cases} x = t^2 + 1, \\ y = \sqrt{t}. \end{cases}$	
94	$y = 3 + \sin^2 x$	$x^2 + tg y + 1 = 0$	$\begin{cases} x = e^{-t}, \\ y = 2e^{3t} + 1. \end{cases}$	
95	$y = \cos^5 x + x - 2$	$x^2 + y^3 - 4 = 0$	$\begin{cases} x = \ln t, \\ y = 2t^2 + 1. \end{cases}$	
96	$y = e^{2x} + x^3 - 1$	$ \ln y + x^2 - 2 = 0 $	$\begin{cases} x = 2\sin 3t + 1, \\ y = \cos 3t - 2. \end{cases}$	
97	$y = \ln x + x^3 - 1$	$2x^2 - y^3 + 5 = 0$	$\begin{cases} x = \cos 2t, \\ y = 4\sin 2t - 1. \end{cases}$	
98	$y = \sin^3 x + x - 1$	$2x^3 + y^2 + 4 = 0$	$\begin{cases} x = e^{5t} + 2, \\ y = 2\ln t. \end{cases}$	
99	$y = arctgx^2 + 1$	$x^2 - \sin y + 2 = 0$	$\begin{cases} x = t^2 + 2t, \\ y = t^3 + 8t. \end{cases}$	
100	$y = \ln\left(x^2 + 5\right)$	$x^3 + \ln y + 2 = 0$	$\begin{cases} x = \sqrt{t} - 2, \\ y = t^3 + 4. \end{cases}$	

Задачи 101-110

Данную функцию исследовать методами дифференциального исчисления и построить ее график. Для этого рекомендуется:

- 1) определить, в каких интервалах функция существует и непрерывна;
- 2) выяснить, не является ли функция четной или нечетной, то есть не симметричен ли ее график относительно оси ординат или начала координат; периодической;
- 3) найти точки пересечения графика с осями координат;
- 4) определить вертикальные и невертикальные асимптоты;
- 5) найти интервалы монотонности и экстремумы функции;
- 6) найти интервалы выпуклости, вогнутости и точки перегиба графика функции;
- 7) построить график функции, используя все полученные данные.

При нахождении пределов можно пользоваться правилом Лопиталя.

№ задачи	Функция	№ задачи	Функция
101	$y = 2x \ln x$	106	$y = \ln(x^2 + 4)$
102	$y = \frac{x}{x^2 - 1}$	107	$y = (x+1) e^{2x}$
103	$y = \frac{x}{2} + \frac{2}{x^2}$	108	$y = \frac{2x^2 + 1}{x}$
104	$y = x^2 e^{-2x}$	109	$y = (x-1)e^{-2x}$
105	$y = \frac{3x^2 + 2}{x}$	110	$y = x^2 e^{2x}$

Задачи 111-120 Найти наибольшее M и наименьшее m значения функции y = f(x) на отрезке [a;b].

№ задачи	Функция, отрезок
111	$f(x) = x^3 + 3x^2 + 1$, [-1;1]
112	$f(x) = x^4 - 2x^2 + 1, [0; 2]$
113	$f(x) = x - 2 \operatorname{arctg} x, [0; 2]$
114	$f(x) = 3\sqrt[3]{x^2} - 2x$, [-1; 0]
115	$f(x) = x^3 - 2x^2 + x + 1$, [0; 2]
116	$f(x) = x^3 - 12x + 1, [-1; 3]$
117	$f(x) = x^3 - 3x^2 + 1$, [1; 3]
118	$f(x) = x^4 - 2x^2 + 3$, [-2; 0]
119	$f(x) = x^3 - 6x^2 + 1$, [-1; 2]
120	$f(x) = x^4 - 2x^2 + 5$, [0; 2]

Примечание. Задачи 61-80 относятся к разделу «Введение в математический анализ», задачи 81-100 к разделу «Производная», задачи 101-120 к разделу «Применения производной».

3.3. Задания для контрольной работы № 3

Задачи 121-130

Даны комплексные числа α_1 , α_2 , α_3 . Требуется:

- построить эти числа на комплексной плоскости;
- выполнить действия умножения и деления α_1 на α_2 ;
- записать число α_3 в тригонометрической и показательной формах;
- решить уравнение $c_1z^2+c_2z+c_3=0$, где $c_1={\rm Re}\,\alpha_1,\,c_2={\rm Im}\,\alpha_1,\,c_3={\rm Re}\,\alpha_2\,.$

$N_{\underline{0}}$		Числа		$N_{\underline{0}}$		Числа	
задачи	$lpha_1$	α_2	α_3	задачи	$lpha_1$	α_2	α_3
121	5-4i	1+3i	$1+i\sqrt{3}$	126	3-4i	4 + 5i	$\sqrt{3}-i$
122	1 + 4i	5-2i	$\sqrt{3}+i$	127	2+4i	3-2i	$1-i\sqrt{3}$
123	-1 + 4i	-5 + 3i	1 – i	128	3 + 4i	4-6i	3+3i
124	7 + 5i	1+2i	2-2i	129	2-4i	6+2i	3-3i
125	1-5i	7 + 4i	2+2i	130	5-2i	1+3i	$-\sqrt{3}+i$

Задачи 131-140

Найти неопределенные интегралы. В пунктах 2 и 3 результат проверить дифференцированием.

№ задачи	Интегралы	
1	2	
121	1) $\int \frac{6-x^4+3xtg(x)}{3x}dx$; 2) $\int \frac{x^3}{5+x^4}dx$; 3) $\int xe^{8x}dx$; 4) $\int \frac{x+1}{(x^2+1)(x-3)}dx$; 5) $\int \frac{x+1}{x+\sqrt{x}+1}dx$; 6) $\int tg^3(x)dx$	
131	4) $\int \frac{x+1}{(x^2+1)(x-3)} dx$; 5) $\int \frac{x+1}{x+\sqrt{x}+1} dx$; 6) $\int tg^3(x) dx$	
132	1) $\int \frac{x^3 + \sqrt{x} + 2}{x} dx$; 2) $\int \frac{x+1}{x^2 + 2x + 5} dx$; 3) $\int \frac{x}{\cos^2(x)} dx$;	
192	4) $\int \frac{x}{(x^2+4)(x-2)} dx$; 5) $\int \frac{1+\sqrt{x}}{2+\sqrt{x}} dx$; 6) $\int \sin^4(x) dx$	

1	2
122	1) $\int \frac{3x\sin^2(x) + 4}{\sin^2(x)} dx$; 2) $\int \frac{x^2}{x^3 - 2} dx$; 3) $\int x3^x dx$;
133	4) $\int \frac{x+2}{(x-1)(x-2)(x+3)} dx$; 5) $\int \frac{1+\sqrt{x-1}}{2+\sqrt{x-1}} dx$; 6) $\int \cos^2(x) \sin^3(x) dx$
134	1) $\int \frac{4x\cos^2(x) + 5}{\cos^2(x)} dx$; 2) $\int \frac{\cos(x)}{5 + 3\sin(x)} dx$; 3) $\int \arccos(3x) dx$;
131	4) $\int \frac{x}{x^3 + 8} dx$; 5) $\int \frac{\sqrt{x}}{1 + \sqrt[4]{x}} dx$; 6) $\int \cos^3(x) \sin^2(x) dx$
135	1) $\int \frac{2\sqrt{x}\cos^2(x) - \cos^3(x) + 4}{\cos^2(x)} dx$; 2) $\int \frac{x}{(8x^2 - 3)^4} dx$; 3) $\int \ln(x + 5) dx$;
	$4) \int \frac{x}{x^3 - 8} dx; \qquad 5) \int x \sqrt{x - 5} dx; \qquad 6) \int \sin^2(x) \cos^2(x) dx$
136	1) $\int \frac{6\sqrt{x}\cos^2(x) + 5\cos^3(x) - 4}{\cos^2(x)} dx$; 2) $\int x\sqrt{x^2 + 5} dx$; 3) $\int x\sin(5x) dx$;
130	4) $\int \frac{x-1}{x^3+1} dx$; 5) $\int \frac{x}{2+\sqrt{x+1}} dx$; 6) $\int tg^3(x) dx$
127	1) $\int (\sqrt{x} + 2x)^2 dx$; 2) $\int \frac{\sin(2x)}{4 + \cos^2(x)} dx$; 3) $\int xe^{-2x} dx$;
137	4) $\int \frac{x+2}{x(x^2+2x+1)} dx$; 5) $\int \frac{\sqrt{x+2}}{1+\sqrt{x+2}} dx$; 6) $\int tg^2(3x) dx$
120	1) $\int \frac{x^4}{x^2 + 1} dx$; 2) $\int \frac{x - 2}{x^2 - 4x + 8} dx$; 3) $\int \arccos(x) dx$;
138	4) $\int \frac{x^2}{x^4 - 1} dx$; 5) $\int \frac{\left(\sqrt{x + 1} + 4\right)^2}{\sqrt{x + 1}} dx$; 6) $\int \frac{dx}{5 - 3\cos(x)}$
139	$1) \int \left(\frac{1}{x} + 3x\right)^2 dx; \qquad 2) \int x^2 \sqrt{x^3 + 8} dx; \qquad 3) \int \arcsin(2x) dx;$
	4) $\int \frac{dx}{3x^2 - x^3}$; 5) $\int \frac{1 + \sqrt{x}}{2 + \sqrt[4]{x}} dx$; 6) $\int \cos^4(x) dx$
140	1) $\int \frac{d^2x}{e^{2x}} dx$; 2) $\int (5x+1)^{10} dx$; 3) $\int \ln(2x+1) dx$;
170	4) $\int \frac{x^2 + 2}{x(x+1)^2} dx$; 5) $\int \frac{x}{1 + \sqrt{x+5}} dx$; 6) $\int \frac{dx}{5 + 4\sin(x)}$

Задачи 141-150 Вычислить данные определенные интегралы.

No	Интегралы		
задачи	1	2	
141	$\int_{1}^{4} \frac{dx}{\sqrt{2x+1}}$	$\int_{0}^{\frac{\pi}{4}} x \cos(2x) dx$	
142	$\int_{1}^{4} \frac{1+x}{\sqrt{x}} dx$	$\int_{0}^{2} xe^{5x} dx$	
143	$\int_{-1}^{7} \sqrt[3]{9x+1} dx$	$\int_{0}^{0,5} xe^{2x} dx$	
144	$\int_{-2}^{6} \sqrt[3]{9x + 10} dx$	$\int_{0}^{\pi} x \cos \frac{x}{2} dx$	
145	$\int_{-3}^{5} \sqrt[3]{9x + 19} dx$	$\int_{0}^{\frac{\pi}{4}} x \sin(2x) dx$	
146	$\int_{-4}^{4} \sqrt[3]{9x + 28} dx$	$\int_{0}^{2} arctg \frac{x}{2} dx$	
147	$\int_{-5}^{3} \sqrt[3]{9x + 37} dx$	$\int_{0}^{2} \ln(x+2) dx$	
148	$\int_{0}^{8} \sqrt[3]{9x - 8} dx$	$\int_{-1}^{0} xe^{-2x} dx$	
149	$\int_{1}^{9} \sqrt[3]{9x - 17} dx$	$\int_{0}^{\frac{\pi}{2}} x \sin(x) dx$	
150	$\int_{2}^{10} \sqrt[3]{9x - 26} dx$	$\int_{1}^{e} x \ln(x) dx$	

Задачи 151-160Вычислить несобственные интегралы или установить их расходимость.

No॒	Интег	гралы
задачи	1	2
151	$\int_{1}^{+\infty} \frac{dx}{3x+1}$	$\int_{1}^{10} \frac{dx}{\sqrt{x-1}}$ $\int_{-1}^{3} \frac{dx}{\sqrt{x+1}}$
152	$\int_{1}^{+\infty} \frac{dx}{\sqrt[4]{x^3}}$	$\int_{-1}^{3} \frac{dx}{\sqrt{x+1}}$
153	$\int_{0}^{+\infty} e^{-5x} dx$	$\int_{0}^{1} \frac{dx}{x^{2}}$
154	$\int_{0}^{+\infty} \frac{dx}{x^2 + 4}$	$\int_{1}^{2} \frac{dx}{x \ln^{2} x}$
155	$\int_{2}^{+\infty} \frac{\ln(x)}{x} dx$	$\int_{0}^{2} \frac{x dx}{\sqrt{4 - x^2}}$
156	$\int_{2}^{+\infty} \frac{\ln(x)}{x} dx$ $\int_{-\infty}^{0} \frac{x}{x^{2} + 4} dx$	$\int_{0}^{2} \frac{x dx}{\sqrt{4 - x^{2}}}$ $\int_{1}^{e} \frac{dx}{x \sqrt{\ln(x)}}$
157	$\int_{0}^{+\infty} x \sin(x^2) dx$	$\int_{2}^{10} \frac{dx}{\sqrt[3]{(x-2)^2}}$ $\int_{0}^{2} \frac{dx}{(x-2)^3}$
158	$\int_{-\infty}^{0} \frac{dx}{x^2 + 9}$	$\int_{0}^{2} \frac{dx}{(x-2)^{3}}$
159	$\int_{1}^{+\infty} \frac{dx}{\sqrt[3]{x^4}}$	$\int_{2}^{5} \frac{dx}{(x-5)^3}$
160	$\int_{e}^{+\infty} \frac{dx}{x \ln^2(x)}$	$\int_{-1}^{0} \frac{dx}{\sqrt{(x+1)^3}}$

Примечание. Задачи 121-130, относятся к разделу «Комплексные числа», задачи 131-140 к разделу «Неопределенный интеграл», задачи 141-150 к разделу «Определенный интеграл», задачи 151-160 к разделу «Несобственный интеграл», а задачи 161-180 к разделу «Применения определенного интеграла».

Задачи 161-170

Построить фигуру, ограниченную заданными линиями, и вычислить: 1) ее площадь; 2) объем тела, образованного при вращении этой фигуры вокруг оси Ох.

$N_{\underline{0}}$	Уравнения линий	No॒	Уравнения линий
161	$y = 4x^2, y^2 = 16x$	166	$y = 0, y = 5x - x^2, y = x + 4$
162	$y = 0$, $y = 3x - x^2$, $y = x + 1$	167	$y = \frac{1}{2}x^3, y^2 = 8x$
163	$y=x^3, y^2=32x$	168	$y = 0, y = 4x - x^2, y = -2x + 9$
164	$y = 0, y = 5x - x^2, y = 9 - x$	169	$y = \frac{1}{4}x^3, \ y^2 = 2x$
165	$y=2x^3, y^2=4x$	170	$y = 0, y = 3x - x^2, y = 4 - x$

Задачи 171-180

Найти длину дуги кривой, заданной параметрическими уравнениями $\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases}$ при изменении параметра t от t_1 до t_2 , если:

<u>№</u> задачи	$\varphi(t)$	$\psi(t)$	t_1	t_2
171	$(t^2 - 2)\sin t + 2t\cos t$	$(t^2-2)\cos t - 2t\sin t$	0	π
172	2t	$\frac{4}{3}\sqrt{t^3}$	-1	0
173	$2(t-\sin t)$	$2(1-\cos t)$	0	2π
174	$\left[\frac{1}{3}t^3-t\right]$	t^2+2	0	3
175	$e^t \cos t$	$e^t \sin t$	0	$\ln \pi$
176	$8\sin t + 6\cos t$	$6\sin t - 8\cos t$	0	$\frac{\pi}{2}$
177	$\cos^3 t$	$\sin^3 t$	0	$\frac{\pi}{2}$
178	$4(t-\sin t)$	$4(1-\cos t)$	0	2π
179	$2(\cos t + t\sin t)$	$2(\sin t - t\cos t)$	0	π
180	t^2	$t - \frac{1}{3}t^3$	0	1

3.4. Задания для контрольной работы № 4

Задачи 181-190 (для студентов всех специальностей кроме специальности «Электрификация и автоматизация сельского хозяйства»).

Найти частные производные первого порядка функции.

№	Функция	№	Функция
181	$z = 2y + x^2y + x\sin(3x + y^2)$	186	$z = \frac{1}{5}x^5 + \ln y + x\cos(2x + e^y)$
182	$z = 3y + x^2 \ln(x + y^3)$	187	$z = 2e^{-3x} + \cos y + (y - x)\sin y$
183	$z = x^4 + 5y^2 + x^3\sin(xy)$	188	$z = \sin 3x + e^{6y} + x^2 arctg(xy^2)$
184	$z = \frac{1}{3}x^3 + e^{2y} + x\sin(x + \cos y)$	189	$z = 3x^2 + y^3 + y \ln(x^2 - 4y)$
185	$z = \frac{1}{2}e^{4x} + y^3 + y\ln(x^2 + y^2)$	190	$z = 3\ln x + y^4 + e^{2x}\cos(y^2 + x^2)$

Задачи 191-200 Найти экстремумы функции z = f(x; y).

$N_{\underline{0}}$	Функция	$N_{\underline{0}}$	Функция
191	z = xy(x+y-6)	196	z = xy(12 - x - y)
192	z = xy(x+y-12)	197	z = xy(6 - x - y)
193	z = xy(x+y-9)	198	z = xy(9 - x - y)
194	z = xy(x+y-3)	199	z = xy(3 - x - y)
195	z = xy(x+y-15)	200	z = xy(15 - x - y)

Задачи 201-210 (только для студентов специальности «Электрификация и автоматизация сельского хозяйства»).

Даны: функция u = u(x; y; z), точка $B(x_0; y_0; z_0)$ и вектор \vec{a} . Требуется найти:

- 1) \overrightarrow{gradu} в точке B;
- 2) производную функции u в точке B по направлению вектора \vec{a} .

№ задачи	Функция	Точка	Вектор
201	$u = xy^2z^3$	B(3; 2; 1)	$\vec{a} = 2\vec{i} + 2\vec{j} + \vec{k}$
202	$u = tgx + 3\sin y + ctgz$	$B\left(\frac{\pi}{4}; \frac{\pi}{3}; \frac{\pi}{2}\right)$	$\vec{a} = -\vec{i} + \vec{j} + \sqrt{2}\vec{k}$
203	$u = e^{2x} \sin y + \cos z$	$B\!\!\left(0;\frac{\pi}{2};\frac{\pi}{2}\right)$	$\vec{a} = 3\vec{i} + 2\vec{j} - \sqrt{3}\vec{k}$
204	$u = \left(y^3 - \sqrt{x}\right)e^{-z}$	B(2; 1; 0)	$\vec{a} = -2\vec{i} + \vec{j} + 2\vec{k}$
205	$u = arctg(xy) + z^3$	B(1;-1;2)	$\vec{a} = -2\vec{i} + 3\vec{j} + \sqrt{3}\vec{k}$
206	$u = \sin(2x + y) \cdot \sin z$	$B\!\!\left(0;\frac{\pi}{4};\frac{\pi}{2}\right)$	$\vec{a} = \sqrt{2}\vec{i} + \vec{j} - \vec{k}$
207	$u = \ln(x^2 + y) + \frac{y}{z}$	B(0; 1; 4)	$\vec{a} = \sqrt{3}\vec{i} - 2\vec{j} + 3\vec{k}$
208	$u = \left(x^2 + \sqrt{y} - \frac{1}{z}\right)^2$	B(0; 4; 1)	$\vec{a} = -\vec{i} - \sqrt{2}\vec{j} + \vec{k}$
209	$u = \sqrt{x + y} + y^2 z$	<i>B</i> (1; 0; – 2)	$\vec{a} = \sqrt{2}\vec{i} - \vec{j} + \vec{k}$
210	$u = y\sin^2 x + \sin 2z$	$B\left(\frac{\pi}{4};1;0\right)$	$\vec{a} = 3\vec{i} - \sqrt{3}\vec{j} + 2\vec{k}$

Задачи 211-220 Вычислить кратные интегралы.

№ задачи	Интегралы		
	$\int_{0}^{1} dx \int_{x}^{2x} (x+1)dy$	$\int_{0}^{1} dx \int_{1}^{2} dy \int_{0}^{y} (x - y) dz$	
212	$\int_{0}^{4} dx \int_{x^{2}}^{1} y dy$	$\int_{0}^{2} dx \int_{1}^{3x} dy \int_{0}^{y} xydz$	
213	$\int_{0}^{1} dx \int_{x}^{2\sqrt{x}} y dy$	$\int_{1}^{2} dx \int_{0}^{x} dy \int_{0}^{y} y dz$	
214	$\int_{0}^{3} dx \int_{-3x}^{x^2} x dy$	$\int_{1}^{4} dx \int_{0}^{x} dy \int_{y}^{2y} x dz$	
215	$\int_{1}^{4} dx \int_{0}^{x} (y+1)dy$	$\int_{1}^{4} dx \int_{0}^{2x} dy \int_{0}^{y} (x-2)dz$	
216	$\int_{1}^{2} dx \int_{0}^{x} (y+x)dy$	$\int_{0}^{1} dx \int_{1}^{x} dy \int_{0}^{y} y^{2} dz$	
217	$\int_{1}^{2} dx \int_{0}^{x} (x^{2} + 1) dy$	$\int_{0}^{2} dx \int_{1}^{4} dy \int_{0}^{x} (x+y)dz$	
218	$\int_{1}^{4} dx \int_{0}^{x} (x^2 + y) dy$	$\int_{0}^{2} dx \int_{1}^{x} dy \int_{0}^{y} z dz$	
219	$\int_{-1}^{2} dx \int_{0}^{x} (x - y) dy$	$\int_{0}^{2} dx \int_{1}^{4x} dy \int_{0}^{x} (y+1)dz$	
220	$\int_{0}^{1} dx \int_{x}^{\sqrt{x}} \sqrt{x} dy$	$\int_{0}^{1} dx \int_{2}^{x} dy \int_{1}^{x} z dz$	

Задачи 221-230 Изменить порядок интегрирования в интеграле.

№ задачи	Интеграл	№ задачи	Интеграл
221	$\int_{-2}^{0} dx \int_{-x-2}^{\sqrt{4-x^2}} f(x; y) dy$	226	$\int_{0}^{2} dx \int_{-\sqrt{4-x^2}}^{2-x} f(x;y) dy$
222	$\int_{-3}^{0} dx \int_{-\sqrt{9-x^2}}^{x+3} f(x;y) dy$	227	$\int_{0}^{1} dx \int_{x-1}^{\sqrt{1-x^2}} f(x;y) dy$
223	$\int_{-1}^{0} dx \int_{-x-1}^{\sqrt{1-x^2}} f(x;y) dy$	228	$\int_{0}^{3} dx \int_{-\sqrt{9-x^2}}^{3-x} f(x;y)dy$
224	$\int_{-4}^{0} dx \int_{-\sqrt{16-x^2}}^{x+4} f(x;y) dy$	229	$\int_{0}^{4} dx \int_{x-4}^{\sqrt{16-x^2}} f(x;y)dy$
225	$\int_{-3}^{0} dx \int_{-x-3}^{\sqrt{9-x^2}} f(x; y) dy$	230	$\int_{0}^{1} dx \int_{-\sqrt{1-x^2}}^{1-x} f(x;y)dy$

Задачи 231-240

С помощью кратного интеграла (двойного или тройного) вычислить объем тела, ограниченного указанными поверхностями. Сделать рисунок тела и его проекции на плоскость хОу.

No	Уравнения поверхностей
231	x = 0, y = 0, z = 0, 2x + 3y + z - 6 = 0
232	$z = 0, y = x^2, y + z = 2$
233	$z = 0, z = y, y = 4 - x^2$
234	$z = 0, z = 2y, y = 9 - x^2$
235	$z = 0, y = \frac{1}{3}x^2, y + z = 3$
236	$z = 0, x = y^2, x + z = 2$
237	$z = 0, x = 4 - y^2, z = 2x$
238	$z = 0, x = y^2, x + z = 3$
239	$z = 0, x = 9 - y^2, z = 2x$
240	$z = 0, x = \frac{1}{2}y^2, x + z = 2$

Задачи 241-250

Дан криволинейный интеграл и точки A(0; 1), B(3; 1), C(3; 10). Вычислить данный интеграл по трем различным путям l: 1) по ломаной ABC; 2) по прямой AC; 3) по параболе $y = x^2 + 1$ от точки A до точки C.

№ задачи	Интеграл	№ задачи	Интеграл
241	$\int_{l} (2x+y)dx + (y+x)dy$	246	$\int_{l} (y-x)dx + (x+y^2)dy$
242	$\int_{l} (x^2 - y) dx + (y - x) dy$	247	$\int_{l} (2y+x)dx + (2x-1)dy$
243	$\int_{l} 2xydx + x^2dy$	248	$\int\limits_{l} (y^2 + 1)dx + (1 + 2xy)dy$
244	$\int_{l} (x+y^2)dx + 2xydy$	249	$\int_{l} (x-1)dx + (y^2+2)dy$
245	$\int_{l} (x^2 + 2y)dx + (2x - y)dy$	250	$\int_{l} (x-2y)dx - (2x+y^2)dy$

Примечание. Задачи 181-210 относятся к разделу «Функции нескольких переменных», задачи 211-240 к разделу «Кратные интегралы», задачи 241-250 к разделу «Криволинейные интегралы».

3.5. Задания для контрольной работы № 5

Задачи 251-260

Найти общее решение дифференциальных уравнений первого порядка. В пункте 1 выделить частное решение, удовлетворяющее заданному начальному условию.

No	Уравнения	
задачи	1	2
251	y' + 2y = 4x, $y(0) = 0$	$\left(x^2 + y^2\right)dx - xydy = 0$
252	$y' + y = \cos x, y(0) = 1$	yy' = 2y - x
253	$y' - y \cdot tgx = \frac{1}{\cos x}, y(0) = 0$	$y' = e^{\frac{y}{x}} + \frac{y}{x}$
254	$y' + \frac{y}{x} = \frac{e^x}{x}, y(1) = 0$	$xy'\cos\frac{y}{x} = y\cos\frac{y}{x} - x$
255	$y' + \frac{y}{x} = x^2, y(1) = 2$	$xy' = y \ln \frac{y}{x}$
256	$y' + 4y = e^{-2x}, y(0) = 1$	$xdy = \left(y + \sqrt{x^2 + y^2}\right)dx$
257	$y' - y \ ctgx = 2x \sin x, y\left(\frac{\pi}{2}\right) = 0$	$xy' = y\left(1 + \ln\frac{y}{x}\right)$
258	$y' + \frac{y}{x} = 4x^2$, $y(1) = 2$	$y' = \frac{x^2 + y^2}{2xy}$
259	$y' - \frac{y}{x} = x, y(1) = 2$	$2x^2dx = \left(x^2 + y^2\right)dy$
260	$y' - \frac{y}{x} = x \cos x, y\left(\frac{\pi}{2}\right) = 0$	$y' = \frac{x+y}{x-y}$

Задачи 261-270 Решить дифференциальные уравнения второго порядка.

$N_{\underline{0}}$	Уравнения					
задачи	1	2				
261	$y''\cos x - 2y'\sin x = 0$	$yy'' = (y')^2$				
262	$\left(1+x^2\right)y''-2xy'=0$	$yy'' = 2(y')^2$				
263	xy'' + 2x = y'	$yy'' = 4(y')^2$				
264	xy'' = 3y'	$y'' \cdot tgy + (y')^2 = 0$				
265	y'' = y' + x	$yy'' + 4(y')^2 = 0$				
266	$xy'' = y' + x^2$	$yy'' + 2(y')^2 = 0$				
267	$y''\sin x + 2y'\cos x = 0$	$yy'' + 6(y')^2 = 0$				
268	y''x + 4y' = 0	$y'' \cdot ctgy - (y')^2 = 0$				
269	$xy'' + 2y' = x^2$	$y'' \cdot ctgy + 2(y')^2 = 0$				
270	y''x - 4y' = 0	$y'' \cdot tgy = 2(y')^2$				

Задачи 271-280

Найти общее решение дифференциального уравнения второго порядка и выделить частное решение, удовлетворяющее начальным условиям.

№ задачи	Уравнение
271	y'' - 9y' + 8y = 0; $y(0) = 2;$ $y'(0) = 9$
272	y'' + 8y' + 15y = 0; $y(0) = 2;$ $y'(0) = 8$
273	y'' + 6y' + 9y = 0; $y(0) = 2;$ $y'(0) = 0$
274	y'' + 4y' + 29y = 0; $y(0) = 5;$ $y'(0) = 0$
275	y'' + 2y' - 8y = 0; $y(0) = 2;$ $y'(0) = 4$
276	y'' - 4y' + 5y = 0; $y(0) = 3;$ $y'(0) = 4$
277	y'' - 8y' + 16y = 0; $y(0) = 2;$ $y'(0) = 5$
278	y'' + 2y' - 15y = 0; $y(0) = 5;$ $y'(0) = 6$
279	y'' + 4y' - 12y = 0; $y(0) = 3;$ $y'(0) = 2$
280	y'' - 8y' + 20y = 0; $y(0) = 3;$ $y'(0) = -2$

Задачи 281-290

Найти общее решение дифференциального уравнения второго порядка.

№ задачи	Уравнение
281	$x'' + 3x' + 2x = 3e^{-t} + \cos 4t$
282	$x'' - 3x' + 2x = 4e^t - 2\sin 3t$
283	$x'' - 2x' - 3x = 2e^{3t} + 5\cos t$
284	$x'' + 6x' + 9x = 9e^{2t} + \cos 3t$
285	$x'' + x' - 2x = 5e^{2t} + 6\sin 2t$
286	$x'' + 4x' = 5t^2 + 3e^{2t}$
287	$x'' + 2x' = 3e^{-t} + 2t^2$
288	$x'' - 2x' - 3x = 2e^{-t} + t^2$
289	$x'' + 9x' = 4t^2 + 9e^{9t}$
290	$x'' - x' = 3t^2 + 5e^{2t}$

Примечание. Задачи 251-290 относятся к разделу «Дифференциальные уравнения».

3.6. Задания для контрольной работы № 6

Задачи 291-300

Исследовать на сходимость числовые ряды. В пункте 2 исследовать ряд на абсолютную сходимость.

No	Ураві	нения
задачи	1	2
291	$\sum_{n=1}^{\infty} \frac{n(n+2)}{3^n}$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2 + 4}$
292	$\sum_{n=1}^{\infty} \frac{2^n}{(n+1)!}$	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5n+2}$
293	$\sum_{n=1}^{\infty} \frac{3^n}{n!}$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+5)}$
294	$\sum_{n=1}^{\infty} \frac{n^2}{(n+1)!}$	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(2n+1)}$
295	$\sum_{n=1}^{\infty} \frac{n}{(2n-1)5^n}$	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3n+2}$
296	$\sum_{n=1}^{\infty} \frac{3n+1}{(n+1)!}$	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 + 9}$
297	$\sum_{n=1}^{\infty} \frac{3^n}{(n+1)(n+2)}$	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 4}$
298	$\sum_{n=1}^{\infty} \frac{2^n}{n^2}$	$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n\sqrt{n}}$
299	$\sum_{n=1}^{\infty} \frac{5^n}{(n+1)!}$	$\sum_{n=2}^{\infty} \frac{\left(-1\right)^{n+1}}{n\left(\ln n\right)^2}$
300	$\sum_{n=1}^{\infty} \frac{2^n}{n(n+1)}$	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{4n-3}}$

Задачи 301-310 Найти область сходимости степенного ряда.

№ задачи	Ряд	№ задачи	Ряд
301	$\sum_{n=0}^{\infty} \frac{x^n}{(n+1)^2}$	306	$\sum_{n=1}^{\infty} \frac{3^n x^{n-1}}{n}$
302	$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n x^n}{n^2 + 1}$	307	$\sum_{n=1}^{\infty} \frac{x^{n-1}}{n \cdot 5^n}$
303	$\sum_{n=1}^{\infty} \frac{n x^n}{n^2 + 1}$	308	$\sum_{n=1}^{\infty} \frac{3^n x^n}{n+1}$
304	$\sum_{n=1}^{\infty} \frac{x^n \ 2^n}{\sqrt{n+1}}$	309	$\sum_{n=1}^{\infty} \frac{n x^n}{(n+1)(n+2)}$
305	$\sum_{n=1}^{\infty} \frac{2^n x^n}{\sqrt{n}}$	310	$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n} \ 2^n}$

Задачи 311-320

Разлагая подынтегральную функцию в степенной ряд, вычислить определенный интеграл с точностью $\delta = 10^{-3}$.

№ задачи	Интеграл	№ задачи	Интеграл
311	$\int_{0}^{0.5} \frac{x^2}{\sqrt{1+x^2}} dx$	316	$\int_{0}^{1} x^{3}e^{-x}dx$
312	$\int_{0}^{0.5} x^2 \ln(1+x^2) dx$	317	$\int\limits_{0}^{0.5} x^2 \sqrt{1+x^2} dx$
313	$\int_{0}^{0.5} x arct g x^{3} dx$	318	$\int_{0}^{1} x^2 \cos x^2 dx$
314	$\int_{0}^{1} x \sin x^{2} dx$	319	$\int_{0}^{1} x^{2} e^{-0.5x^{2}} dx$
315	$\int_{0}^{1} x^2 e^{-x^2} dx$	320	$\int_{0}^{0.5} x^2 arctgx^2 dx$

Задачи 321-330 (только для студентов специальности «Электрификация и автоматизация сельского хозяйства»).

Разложить в ряд Фурье 2π -периодическую функцию y = f(x), заданную на интервале $(-\pi; \pi)$ выражением:

№ задачи	Функция	№ задачи	Функция
321	f(x) = x - 1	326	f(x) = 4x
322	f(x) = 2x	327	f(x) = 2 - x
323	f(x) = 1 - x	328	f(x) = -4x
324	f(x) = -3x	329	f(x) = 2 + x
325	f(x) = x + 1	330	f(x) = 3x

Задачи 331-340 Решить задачи, используя теоремы сложения, умножения вероятностей и следствия из них.

№	Текст задачи
задачи	текет задачи
331	Для сигнализации об аварии установлены три независимо работающие устройства. Вероятность того, что об аварии сообщит первое устройство, равна 0,9, второе — 0,95, третье — 0,92. Найти вероятность того, что при аварии поступит сообщение: 1) со всех трех устройств; 2) только с одного устройства; 3) хотя бы с одного устройства.
332	В ящике находится 20 одинаковых шаров, среди которых 12 белого цвета. Случайным образом последовательно извлекаются 3 шара. Найти вероятность того, что: 1) все извлеченные шары белого цвета; 2) среди извлеченных шаров 2 белого цвета; 3) хотя бы один шар белого цвета.
333	Три стрелка одновременно стреляют по цели. Вероятность попадания в цель первым стрелком равна 0,9, для второго — 0,85, для третьего — 0,88. Найти вероятность того, что в цель попадут: 1) все три стрелка; 2) только один стрелок; 3) хотя бы один стрелок.
334	Преподаватель подготовил 40 экзаменационных вопросов. Студент не успел выучить 10 вопросов. На экзамене студенту были предложены 3 вопроса. Найти вероятность того, что студенту достались: 1) три выученных вопроса; 2) только 2 выученных вопроса; 3) хотя бы один выученный вопрос.

335	Вероятности безотказной работы в установленное время для каждого из 3-х приборов соответственно равны 0,90, 0,94, 0,98. Найти
333	вероятность того, что в установленное время будут работать: 1) все
	приборы; 2) только два прибора; 3) хотя бы один прибор.
	Для оповещения об аварии установлены четыре независимо ра-
	ботающих датчика. Вероятность срабатывания при аварии для каж-
336	дого из равна них 0,95. Найти вероятность того, что при аварии сра-
	ботают: 1) все четыре датчика; 2) два или три датчика; 3) хотя бы
	один датчик.
	В ящике находится 30 одинаковых по размеру шаров, среди ко-
	торых 20 белого цвета. Случайным образом извлекают 1 шар и сно-
337	ва возвращают его в ящик. Найти вероятность того, что при четырех
	извлечениях появилось: 1) четыре белых шара; 2) не менее двух бе-
	лых шаров; 3) хотя бы один шар белого цвета.
	Вероятность поражения цели стрелком при одном выстреле рав-
338	на 0,9. Найти вероятность того, что при четырех выстрелах про-
336	изойдет: 1) четыре попадания; 2) два или три попадания; 3) хотя бы
	одно попадание.
	В станке установлены четыре одинаковых датчика с вероятно-
339	стью безотказной работы, равной 0,95. Найти вероятность того, что
339	будут безотказно работать: 1) все четыре датчика; 2) не менее двух
	датчиков; 3) хотя бы один датчик.
	Монету подбрасывают четыре раза. Найти вероятность то-
340	го, что герб появится: 1) четыре раза; 2) два или три раза; 3)
	хотя бы один раз.

Задачи 341-350

На опытном участке посеяно n зерен с процентом всхожести p%. Найти вероятность того, что число взошедших зерен k будет колебаться между k_1 и k_2 .

No	Исходные данные				$N_{\underline{0}}$	И	сходные	даннь	ле
задачи	n	p(%)	k_1	k_2	задачи	n	p(%)	k_1	k_2
341	400	80	300	350	346	360	80	280	300
342	500	90	400	450	347	500	90	430	460
343	400	85	320	350	348	460	85	380	410
344	400	95	350	400	349	480	95	450	480
345	500	80	390	450	350	400	90	350	380

Задачи 351-360

Дана функция $y = f(x,\alpha)$. Выяснить, при каком значении α эта функция будет плотностью (дифференциальной функцией) распределения некоторой случайной величины X и найти для нее: 1) вероятность попадания на заданный интервал $P(a \le X \le b)$; 2) математическое ожидание M(X); 3) дисперсию D(X) и среднее квадратическое отклонение $\sigma(X)$; 4) функцию распределения (интегральную функцию распределения) F(x).

	Исходные данные			Исходные данные			
No	Функция	Ин- № тервал		Функция	Интер- вал		
				$y = \begin{cases} 0, & npu \ x < 0, \\ 2\alpha e^{-5x}, & npu \ x \ge 0. \end{cases}$	[-3;1]		
				$y = \begin{cases} 0, & npu \ x < 0, \\ 3\alpha e^{-3x}, & npu \ x \ge 0. \end{cases}$			
353	$y = \begin{cases} 0, & \text{npu } x < 0, \\ 4\alpha e^{-5x}, & \text{npu } x \ge 0. \end{cases}$	[-4;1]	358	$y = \begin{cases} 0, & npu \ x < 0, \\ 2\alpha e^{-2x}, & npu \ x \ge 0. \end{cases}$	[-2;3]		
354	$y = \begin{cases} 0, & \text{npu } x < 0, \\ 4\alpha e^{-2x}, & \text{npu } x \ge 0. \end{cases}$	[-3; 2]	359	$y = \begin{cases} 0, & npu \ x < 0, \\ 9\alpha e^{-3x}, & npu \ x \ge 0. \end{cases}$	[-2;1]		
355	$y = \begin{cases} 0, & npu \ x < 0, \\ 12\alpha e^{-3x}, & npu \ x \ge 0. \end{cases}$	[-1;1]	360	$y = \begin{cases} 0, & npu \ x < 0, \\ 10\alpha e^{-5x}, & npu \ x \ge 0. \end{cases}$	[-1; 2]		

Примечание. Задачи 291-330 относятся к разделу «Ряды», задачи 331-360 к разделу «Теория вероятностей».

СПИСОК РЕКОМЕНДУЕМЫХ ИСТОЧНИКОВ

а) учебники

- 1. Ефимов Н.В. Краткий курс аналитической геометрии. М.: Физматлит, 2002.
- 2. Пискунов Н.С. Дифференциальное и интегральное исчисления. Т. 1, 2. М.: Наука, 1985.
- 3. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. М.: Наука, 1989.
- 4. Игнатьева А.В., Краснощекова Т.И., Смирнов В.Ф. Курс высшей математики. М.: Высшая школа, 1968.
- 5. Шнейдер В.Е., Слуцкий А.И., Шумов А.С. Краткий курс высшей математики. Т. 1, 2. М. : Высшая школа, 1978.
- 6. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 2002.
- 7. Письменный Д.Т. Конспект лекций по высшей математике : в 2 ч. М. : Айрис-пресс, 2007.

б) задачники и руководства

- 8. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч. 1, 2. М.: высшая школа, 1980.
- 9. Минорский В.П. Сборник задач по высшей математике. М.: Физматлит, 2003.
- 109. Запорожец Г.И. Руководство к решению задач по математическому анализу для вузов. М.: Высшая школа, 1966.
- 11. Краснов М.Л., Киселев А.И., Макаренко Г.И. Сборник задач по обыкновенным дифференциальным уравнениям: учебное пособие для вузов. М.: Высшая школа, 1978.
- 12. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высшая школа, 2002.

в) справочники

- 13. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся вузов. М.: Наука, 1986.
- 14. Выгодский М.Я. Справочник по высшей математике. М.: Наука, 1977.

ПРИЛОЖЕНИЯ

Формулы сокращенного умножения и разложения на множители

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$a^2 - b^2 = (a+b)(a-b)$$

4.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

5.
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

6.
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

7.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Таблица основных значений тригонометрических функций

α, град	0	30	45	60	90	180	270	360
α, рад	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos α	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	1	0	1
tg α	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	0	_	0
ctg a	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	_	0	_

Некоторые полезные тригонометрические тождества

1.
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

2.
$$tg\alpha = \frac{\sin \alpha}{\cos \alpha}$$

3.
$$ctg\alpha = \frac{\cos\alpha}{\sin\alpha}$$

4.
$$tg\alpha \cdot ctg\alpha = 1$$

$$5. 1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$6. 1 + ctg^2\alpha = \frac{1}{\sin^2\alpha}$$

7.
$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$

8.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

9.
$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$

$$10. \cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

11.
$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

12.
$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

13.
$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

Таблица производных

dra dryumuu	dra dayumuu
для функции	∂ ля функции сложеного архуманта $z = a(x)$
простого аргумента х	сложного аргумента $z = \varphi(x)$
1. $(C)^{\prime} = 0$	1. $(C)^{\prime} = 0$
$2. \left(x^n\right)^{\prime} = nx^{n-1}$	$2. \left(z^n\right)_x^{\prime} = nz^{n-1}z_x^{\prime}$
2.1. $(x)^{'}=1$	$2.1. (z_x)' = z_x'$
$2.2. \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	$2.2. \left(\sqrt{z}\right)_x' = \frac{1}{2\sqrt{z}} z_x'$
$3. \left(a^{x}\right)^{\prime} = a^{x} \cdot \ln a$	$3. \left(a^z\right)_x^{\prime} = a^z \cdot \ln a \cdot z_x^{\prime}$
3.1. $(e^x)' = e^x$	$3.1. \left(e^z\right)_x^{\prime} = e^z \cdot z_x^{\prime}$
$4. \left(\log_a x\right)' = \frac{1}{x \cdot \ln a}$	$4. \left(\log_a z\right)_x^{\prime} = \frac{1}{z \cdot \ln a} \cdot z_x^{\prime}$
4.1. $(\ln x)^{'} = \frac{1}{x}$	4.1. $(\ln z)_x^{'} = \frac{1}{z} \cdot z_x^{'}$
$5. \left(\sin x\right)' = \cos x$	$5. \left(\sin z\right)_x' = \cos z \cdot z_x'$
$6. \left(\cos x\right)' = -\sin x$	$6. \left(\cos z\right)_x^{\prime} = -\sin z \cdot z_x^{\prime}$
$7. \left(tgx \right)^{\prime} = \frac{1}{\cos^2 x}$	$7. \left(tgz\right)_{x}^{\prime} = \frac{1}{\cos^{2}z} \cdot z_{x}^{\prime}$
$8. \left(ctgx \right)^{\prime} = -\frac{1}{\sin^2 x}$	$8. \left(ctgz\right)_{x}^{\prime} = -\frac{1}{\sin^{2}z} \cdot z_{x}^{\prime}$
9. $(\arcsin x)^{-1} = \frac{1}{\sqrt{1-x^2}}$	9. $\left(\arcsin z\right)_x' = \frac{1}{\sqrt{1-z^2}} \cdot z_x'$
	10. $(\arccos z)_{x}^{/} = -\frac{1}{\sqrt{1-z^{2}}} \cdot z_{x}^{/}$ 11. $(\arctan tgz)_{x}^{/} = \frac{1}{1+z^{2}} \cdot z_{x}^{/}$
10. $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$ 11. $(\operatorname{arctg} x)' = \frac{1}{1+x^2}$	11. $(\operatorname{arc} \operatorname{tg} z)_{x}^{/} = \frac{1}{1+z^{2}} \cdot z_{x}^{/}$
12. $(\operatorname{arc}\operatorname{ctg} x)' = -\frac{1}{1+x^2}$	11. $(\operatorname{arcctg} z)_{x}^{/} = -\frac{1}{1+z^{2}} \cdot z_{x}^{/}$

Правила дифференцирования

1.
$$(u+v-w)^{\prime} = u^{\prime} + v^{\prime} - w^{\prime}$$
.

2.
$$(u \cdot v)' = u' \cdot v + u \cdot v'$$
.

3.
$$(c \cdot u)' = c \cdot u'$$
, $c = const$.

$$4. \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

5. Если
$$y=f\left(z\right)$$
, где $z=\varphi(x)$, то $y_x'=y_z'\cdot z_x'$.

6. Если y задана неявно: F(x,y) = 0 , то дифференцируем это равенство по x и из полученного уравнения находим y.

7. Åñëè
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
, òî $y'_x = \frac{y'_t}{x'_t}$.

Свойства неопределенного интеграла

1. $(\int f(x)dx)' = f(x)$. Этим свойством пользуются для проверки полученного результата.

2. $d(\int f(x)dx) = f(x)dx$. Это свойство показывает, что операции интегрирования и дифференцирования взаимно обратные.

3.
$$\int (f(x) \pm \varphi(x)) dx = \int f(x) dx \pm \int \varphi(x) dx.$$

4.
$$\int kf(x)dx = k \int f(x)dx$$
, где $k\neq 0$ постоянное.

5. Если
$$\int f(x)dx = F(x) + C$$
, то $\int f(z)dz = F(z) + C$, где $z=z(x)$ – дифференцируемая функция.

Таблица основных интегралов

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C(n \neq -1)$$

$$1.1. \int dx = x + C$$

1.2.
$$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$$

$$1.3 \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$$

$$2. \int \frac{dx}{x} = \ln|x| + C$$

$$3. \int a^x dx = \frac{a^x}{\ln a} + C$$

$$3.1. \int e^x dx = e^x + C$$

3.2.
$$\int e^{kx} dx = \frac{1}{k} e^{kx} + C$$

$$4. \int \sin x dx = -\cos x + C$$

$$4.1. \int \sin kx dx = -\frac{1}{k} \cos kx + C$$

$$5. \int \cos x dx = \sin x + C$$

$$5.1. \int \cos kx dx = \frac{1}{k} \sin kx + C$$

$$6. \int \frac{dx}{\sin^2 x} = -ctgx + C$$

7.
$$\int \frac{dx}{\cos^2 x} = tg \ x + C$$

8.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

9.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

10.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

11.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

12.
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln |ax+b| + C$$

или $-\arccos\frac{x}{c} + C$

или $-\frac{1}{a} \operatorname{arcctg} \frac{x}{a} + C$

Учебно-методическое издание

Математика : методические указания по организации самостоятельной работы и выполнению контрольных заданий для студентов 1 и 2 курсов инженерных специальностей заочной формы обучения / сост. А.И. Марусич, И.А. Батманова, Л.Б. Рыбина и др. — 2-е изд., стереотип. — Кострома : КГСХА, 2009. — 50 с.

Гл. редактор Н.В. Киселева Редактор выпуска Т.В. Тарбеева