МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т.Ф. Горбачева»

Кафедра математики

МАТЕМАТИКА

Контрольная работа № 3 и методические указания для студентов 2 курса специальности БЭсз 080101.65 /заочной формы обучения/

Составитель В. И. Грибков

Кемерово 2014

Контрольная работа № 3 составлена в соответствии с программой курса «Математика» для студентов специальности «Экономическая безопасность» заочной формы обучения.

Номера задач контрольной работы студент должен выбрать по таблице «Выбор номеров контрольных задач» следующим образом:

- выбрать строку, соответствующую первой букве фамилии;
- выбрать столбец, соответствующий последней цифре номера зачетной книжки;
- на пересечении выбранных строки и столбца взять номера задач.

Контрольная работа, выполненная не по своему варианту, возвращается непроверенной. Требования к оформлению смотрите на сайте кафедры: matematika.kuzstu.ru/ Студентам.

ПРОГРАММА 2 КУРСА (3 СЕМЕСТР)

Рабочая программа дисциплины «Математика» составлена в соответствии с ФГОС ВПО и примерной ООП подготовки специалистов «Экономическая безопасность» заочной формы обучения.

- 1. Неопределённый интеграл
- 1.1. Первообразная (неопределённый интеграл), её свойства. Таблица интегралов.
- 1.2. Непосредственное интегрирование. Интегрирование по частям и подстановкой.
- 1.3. Использование таблиц (справочников) неопределённых интегралов.
 - 2. Определённый интеграл
 - 2.1. Задачи, приводящиеся к понятию определённого интеграла.
 - 2.2. Определённый интеграл как предел интегральных сумм.
 - 2.3. Основные свойства определённого интеграла.
 - 2.4. Формула Ньютона-Лейбница.
 - 2.5 Приложения определенного интеграла.
 - 3. Теория функций комплексного переменного.
 - 3.1. Комплексные числа и действия над ними.
 - 3.2. Алгебраические действия над комплексными числами.

Выбор номеров задач контрольной работы

	0	1	2	3	4	5	6	7	8	9
АВД	1 37 52	2 38 53	3 39 54	4 40 55	5 41 54	6 42 55	7 43 56	8 44 57	9 45 58	10 46 59
	75	76	77	78	79	80	81	82	83	84
БЕЗ	11 32 47	12 33 48	13 34 49	14 35 50	15 36 51	16 37 52	17 38 53	18 39 54	19 40 55	20 41 56
	85	86	87	88	89	90	61 137	62	63	64
ГЖ	21 42 57	22 43 58	23 44 59	24 45 60	25 31 46	26 32 47	27 33 48	28 34 49	29 35 50	30 36 51
ИЛ	65	66	67	68	69	70	71	72	73	74
К	1 38 53	2 39 54	3 40 55	4 41 56	5 42 57	6 43 58	7 44 59	8 45 60	9 31 46	10 32 47
	76	77	78	79	80	81	82	83	84	85
МН	11 34 49	12 32 41	13 35 50	14 36 51	15 37 52	16 38 53	17 39 54	18 40 55	19 41 56	20 42 57
O	86	87	88	89	90	61	62	63	64	65
ПХЦ	21 43 58	22 44 59	23 45 60	24 31 46	25 32 47	26 33 48	27 34 49	28 35 50	29 36 51	30 37 52
Ш	65	66	67	68	69	70	71	72	73	84
СУЁ	1 39 59	2 37 57	3 38 58	4 40 60	5 31 44	6 32 45	7 33 46	8 34 47	9 35 48	10 36 49
ЫЙ	74	75	76	77	78	79	80	81	82	83
РΤΦ	21 41 57	22 42 58	23 43 59	24 44 60	25 36 50	26 31 44	27 32 45	28 33 46	29 34 47	30 35 48
	66	67	68	69	70	71	72	73	74	75
ЕЩР	11 33 43	12 39 49	13 40 50	14 41 51	15 42 52	16 43 53	17 44 54	18 45 55	19 46 56	20 47 57
КО	86	87	88	89	90	61	62	63	64	65

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ

Для вычисления неопределённых интегралов (№ 1-30) необходимо проработать в литературе раздел «Неопределенный интеграл. Методы интегрирования».

Для выполнения задания 1-30 (пункт а) нужно из таблицы интегралов выбрать такой, к которому можно свести данный интеграл.

Пример 1. При вычислении

$$\int \frac{dx}{\sqrt[3]{(5x+2)^5}} = \int (5x+2)^{-\frac{5}{3}} dx,$$

используем табличный интеграл

$$\int u^n du = \frac{u^{n+1}}{n+1} + c.$$

Согласно этой формуле, подводим под знак дифференциала основание степени. Так как $\mathbf{d}(5\mathbf{x}+2)=5\mathbf{d}\mathbf{x}$, то умножим и разделим интеграл на 5, то есть

$$\int \frac{dx}{\sqrt[3]{(5x+2)^5}} = \int (5x+2)^{-\frac{5}{3}} dx = \frac{1}{5} \int (5x+2)^{-\frac{5}{3}} \cdot 5 dx = \frac{1}{5} \int (5x+2)^{-\frac{5}{3}} d(5x+2) = \int (5x+2)^{-\frac{5}{3}} dx = \frac{1}{5} \int (5$$

$$=\frac{1}{5}\cdot\frac{\left(5x+2\right)^{-\frac{5}{3}+1}}{-\frac{5}{3}+1}+c=-\frac{3}{10}\left(5x+2\right)^{-\frac{2}{3}}+c=-\frac{3}{10\sqrt[3]{\left(5x+2\right)^2}}+c.$$

Пример 2. Интеграл $\int x \cdot e^{3x^2 - 1} dx$ сводится к табличному $\int e^u du = e^u + c$ путём подведения под знак дифференциала показателя степени $d(3x^2 - 1) = 6xdx$. Таким образом

$$\int x \cdot e^{3x^2 - 1} dx = \frac{1}{6} \int e^{3x^2 - 1} 6x dx = \frac{1}{6} \int e^{3x^2 - 1} d(3x^2 - 1) = \frac{1}{6} e^{3x^2 - 1} + c.$$

Пример 3. В интеграле $\int \frac{3\cos x \cdot dx}{2 + \sin x}$ используем формулу $\int \frac{du}{u} = \ln |u| + c$, где под знак дифференциала подводится знаменатель дроби. Так как $d(2 + \sin x) = \cos x dx$, то

$$3\int \frac{\cos x dx}{2 + \sin x} = 3\int \frac{d(2 + \sin x)}{2 + \sin x} = 3 \cdot \ln|2 + \sin x| + c.$$

При вычислении интегралов в пункте б) применяются методы подстановки и интегрирования по частям, то есть по формуле $\int \mathbf{u} d\mathbf{v} = \mathbf{u} \mathbf{v} - \int \mathbf{v} d\mathbf{u}$ мы от исходного интеграла $\int \mathbf{u} d\mathbf{v}$ переходим к более простому интегралу $\int \mathbf{v} d\mathbf{u}$.

Пример 4. $\int \mathbf{x} \cdot \mathbf{arctgxdx} = \int \mathbf{arctgx} \cdot \mathbf{xdx}$, то есть возьмём

$$\begin{bmatrix} u = arctgx \Rightarrow du = \frac{dx}{1 + x^2}, \\ dv = xdx \Rightarrow v = \int dv = \int xdx = \frac{x^2}{2}. \end{bmatrix}$$

(здесь при нахождении ${\bf v}$ константу ${\bf c}$ полагаем равной 0). Получим

$$\int x \cdot \operatorname{arctgxdx} = \int \operatorname{arctgx} \cdot x dx = \frac{x^2}{2} \operatorname{arctgx} - \frac{1}{2} \int x^2 \cdot \frac{dx}{1 + x^2}.$$

Возьмём $\int x^2 \cdot \frac{dx}{1+x^2}$ отдельно

$$\int x^{2} \cdot \frac{dx}{1+x^{2}} = \int \frac{x^{2}+1-1}{x^{2}+1} dx = \int \left(1 - \frac{1}{1+x^{2}}\right) dx = \int dx - \int \frac{dx}{1+x^{2}} = x - \arctan x + c$$

Итак

$$\int x \cdot \operatorname{arctgxdx} = \frac{x^2}{2} \operatorname{arctgx} - \frac{1}{2} (x - \operatorname{arctgx}) + c.$$

Пример 5. Найти $\int \mathbf{x} \cdot \mathbf{e}^{-3x} \mathbf{dx}$. Пусть

$$\begin{bmatrix} u = x \Rightarrow du = dx, \\ dv = e^{-3x} dx \Rightarrow v = \int e^{-3x} dx = -\frac{1}{3} \int e^{-3x} d(-3x) = -\frac{1}{3} e^{-3x} \end{bmatrix}.$$

$$\int x \cdot e^{-3x} dx = x \left(-\frac{1}{3} e^{-3x} \right) - \int \left(-\frac{1}{3} e^{-3x} \right) dx = -\frac{x e^{-3x}}{3} + \frac{1}{3} \int e^{-3x} dx =$$

$$= -\frac{x e^{-3x}}{3} - \frac{e^{-3x}}{9} + c.$$

Пример 6. При вычислении интеграла $\mathbf{I} = \int \frac{2+\sqrt{x+1}}{x+3} dx$ сделаем подстановку $\mathbf{u} = \sqrt{x+1} \Rightarrow \mathbf{u}^2 = x+1 \Rightarrow x = \mathbf{u}^2 - 1 \Rightarrow dx = 2\mathbf{u}d\mathbf{u}$, $x+3 = \mathbf{u}^2 - 1 + 3 = \mathbf{u}^2 + 2$.

Получим
$$I = \int \frac{2 + \sqrt{x+1}}{x+3} dx = \int \frac{2+u}{u^2+2} 2u du = 2 \int \frac{2u+u^2}{u^2+2} du$$
.

Дробь $\frac{2u+u^2}{u^2+2}$ неправильная (степень числителя не меньше степени знаменателя). Выделим целую часть

$$\begin{split} \frac{\left(u^2+2\right)-2+2u}{u^2+2} &= 1 - \frac{2}{u^2+2} + \frac{2u}{u^2+2} \,. \\ \text{Итак } I = 2\int \frac{2u+u^2}{u^2+2} \, du = 2 \left(\int du - \int \frac{2du}{u^2+2} + \int \frac{2udu}{u^2+2}\right) = 2u - \frac{4}{\sqrt{2}} \arctan \frac{u}{\sqrt{2}} + \\ &+ 2 \cdot \ln \left(u^2+2\right) + c = 2\sqrt{x+1} - \frac{4}{\sqrt{2}} \arctan \left(\frac{x+1}{2}\right) + 2 \cdot \ln \left|x+3\right| + c \,. \end{split}$$

Здесь $\int d\mathbf{u}$ и $\int \frac{d\mathbf{u}}{\mathbf{u}^2 + 2}$ табличные, а

$$\int \frac{2u du}{u^2 + 2} = \int \frac{d(u^2 + 2)}{u^2 + 2} = \ln(u^2 + 2) + c.$$

Для нахождения площадей плоских фигур и объёмов тел вращения в задачах № 31-60 рекомендуется изучить в литературе раздел «Определенный интеграл. Свойства определенного интеграла. Приложения определенного интеграла».

Пример 7. Найти площади частей, на которые круг $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{12}$ делится параболой $\mathbf{v} = \mathbf{x}^2$.

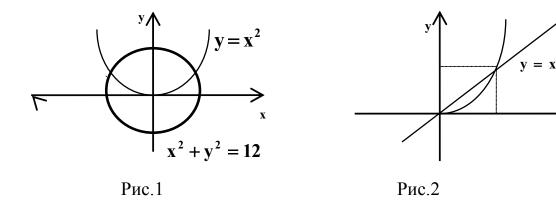
Сделаем схематический чертёж (рис.1) и найдём точки пересечения этих линий

$$\begin{cases} x^{2} + y^{2} = 12 \\ y = x^{2} \end{cases} \Rightarrow \begin{cases} x^{2} = 12 - y^{2} \\ x^{2} = y \end{cases} \Rightarrow 12 - y^{2} = y \Rightarrow$$

$$y^{2} + y - 12 = 0 \Rightarrow y = \frac{-1 \pm \sqrt{1 + 48}}{2} = \frac{-1 \pm 7}{2}, y = 3.$$

В точке пересечения $\mathbf{x^2} = \mathbf{3} \Rightarrow \mathbf{x_1} = -\sqrt{3}$, $\mathbf{x_2} = \sqrt{3}$. Площадь меньшей

$$S_{1} = \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{12 - x^{2}} dx - \int_{-\sqrt{3}}^{\sqrt{3}} x^{2} dx = \left(\frac{x}{2}\sqrt{12 - x^{2}} + 6 \cdot \arcsin\frac{x}{\sqrt{12}}\right) \Big|_{-\sqrt{3}}^{\sqrt{3}} - \frac{x^{3}}{3} \Big|_{-\sqrt{3}}^{\sqrt{3}} = \frac{\sqrt{3}}{2}\sqrt{12 - 3} + 6 \cdot \arcsin\sqrt{\frac{3}{12}} - \left(-\frac{\sqrt{3}}{2}\sqrt{12 - 3} - 6 \cdot \arcsin\sqrt{\frac{3}{12}}\right) - \left(\frac{3\sqrt{3}}{3} - \frac{3\sqrt{3}}{3}\right) = 3\sqrt{3} + 12 \cdot \frac{\pi}{6} - 2\sqrt{3} = \sqrt{3} + 2\pi.$$



Площадь большей части $\mathbf{S}_2 = \pi \mathbf{r}^2 - \mathbf{S}_1 = \pi \cdot \mathbf{12} - \sqrt{3} - 2\pi = \mathbf{10}\pi - \sqrt{3}$.

Пример 8. Найти объём тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями y = x, $y = x\sqrt{\sin x}$, $0 \le x \le \pi$.

Сделаем схематический чертёж (рис.2) и найдём точки пересечения этих

линий
$$\begin{cases} y = x \\ y = x\sqrt{\sin x} \Rightarrow x - x\sqrt{\sin x} = 0, x_1 = 0, 1 - \sqrt{\sin x} = 0, \sin x = 1, x_2 = \frac{\pi}{2}. \end{cases}$$

$$V = V_1 - V_2 = \pi \int_a^b y_1^2 dx - \pi \int_a^b y_2^2 dx = \pi \int_0^{\frac{\pi}{2}} x^2 dx - \pi \int_0^{\frac{\pi}{2}} x^2 \cdot \sin x dx =$$

$$= \pi \left(\frac{x^3}{3} - 2x \sin x + \left(x^2 - 2 \right) \cos x \right) \Big|_0^{\frac{\pi}{2}} = \pi \left(\frac{\pi^3}{24} - \pi + 2 \right),$$

$$\int x^2 \sin x dx = 2x \sin x - \left(x^2 - 2 \right) \cos x.$$

При нахождении длины дуги в задачах № 31-60 и массы неоднородной линии в задачах № 61-90 следует помнить, что дифференциал длины дуги выражается различными.

- 1) $\mathbf{ds} = \sqrt{1 + (\mathbf{y_x'})^2} \cdot \mathbf{dx}$, если линия задана в декартовых координатах; 2) $\mathbf{ds} = \sqrt{(\mathbf{x_t'})^2 + (\mathbf{y_t'})^2} \cdot \mathbf{dt}$, если линия задана параметрически
- 2) $\mathbf{ds} = \sqrt{(\mathbf{x}_t')^2 + (\mathbf{y}_t')^2} \cdot \mathbf{dt}$, если линия задана параметрически $\mathbf{x} = \mathbf{x}(\mathbf{t}), \quad \mathbf{y} = \mathbf{y}(\mathbf{t});$
- 3) $\mathbf{ds} = \sqrt{\mathbf{r}^2 + \left(\mathbf{r}'(\theta)\right)^2} \cdot \mathbf{d}\theta$, если линия задана в полярных координатах $\mathbf{r} = \mathbf{r}(\theta)$.

Пример 9. Найти длину дуги кривой
$$\mathbf{r} = \cos^2 \frac{\theta}{2}$$
, $0 \le \theta \le \frac{\pi}{2}$.

Вычисляем
$$ds = \sqrt{r^2 + \left(r'(\theta)\right)^2} \cdot d\theta, r'_{\theta} = 2\cos\frac{\theta}{2} \cdot \left(-\sin\frac{\theta}{2}\right) \cdot \frac{1}{2}.$$

$$\begin{split} r^2 + \left(r'(\theta)\right)^2 &= \cos^4\frac{\theta}{2} + \cos^2\frac{\theta}{2} \cdot \sin^2\frac{\theta}{2} = \cos^2\frac{\theta}{2} \cdot \left(\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}\right) = \cos^2\frac{\theta}{2}, \\ ds &= \sqrt{\cos^2\frac{\theta}{2}}d\theta = \cos\frac{\theta}{2}d\theta, \end{split}$$

$$S = \int_{0}^{\frac{\pi}{2}} \cos \frac{\theta}{2} d\theta = 2 \sin \frac{\theta}{2} \Big|_{0}^{\frac{\pi}{2}} = 2 \left(\sin \frac{\pi}{4} - \sin \theta \right) = 2 \cdot \frac{\sqrt{2}}{2} = \sqrt{2}.$$

Пример 10. Найти массу участка линии

$$L: \begin{cases} x = a\big(t-sint\big), \\ y = a\big(1-cost\big), \end{cases} 0 \leq t \leq 2\pi \,, \text{ если плотность } \gamma = 3y \,.$$

$$\mathbf{m} = \int_{\mathbf{I}} \mathbf{\gamma} \cdot \mathbf{ds} \; .$$

Найдём
$$ds = \sqrt{(x'_t)^2 + (y'_t)^2} \cdot dt$$
,

$$x'_t = a(1 - \cos t), \quad y'_t = a \cdot \sin t,$$

$$ds = \sqrt{a^2(1 - \cos t)^2 + a^2 \sin^2 t} \cdot dt =$$

$$= a\sqrt{1 - 2\cos t + \cos^2 t + \sin^2 t} \cdot dt =$$

$$= a\sqrt{2 - 2\cos t} \cdot dt = a\sqrt{2}\sqrt{2\sin^2 \frac{t}{2}} \cdot dt = 2a\sin \frac{t}{2} \cdot dt.$$

$$m = \int_{0}^{2\pi} 3a(1-\cos t) \cdot 2a \cdot \sin \frac{t}{2} dt = 6a^{2} \int_{0}^{2\pi} 2\sin^{2} \frac{t}{2} \cdot \sin \frac{t}{2} dt = 12a^{2} \int_{0}^{2\pi} \sin^{3} \frac{t}{2} dt =$$

$$=12a^{2}\left(-2\cos\frac{t}{2}+\frac{1}{3}\cdot2\cdot\cos^{3}\frac{t}{2}\right)\Big|_{0}^{2\pi}=12a^{2}\left(2-\frac{2}{3}+2-\frac{2}{3}\right)=32a^{2}.$$

- 3. Теория функций комплексного переменного
- 3.1. Комплексные числа и действия над ними.

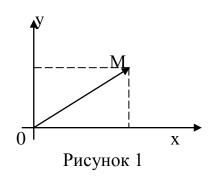
По данному разделу лучше взять учебник Письменного и пособие Рябушко, ч.2.

Комплексными числами называются числа вида $\mathbf{z} = \mathbf{x} + \mathbf{i} \ \mathbf{y}$, где $\mathbf{i}^2 = -\mathbf{1}, \ \mathbf{x}, \ \mathbf{y}$ — действительные числа, $\mathbf{x} = \mathbf{Re} \ \mathbf{z}$ — действительная часть, $\mathbf{y} = \mathbf{Im} \ \mathbf{z}$ — мнимая часть комплексного числа.

По определению, два комплексных числа: $\mathbf{z_1} = \mathbf{x_1} + \mathbf{i} \ \mathbf{y_1}$ и $\mathbf{z_2} = \mathbf{x_2} + \mathbf{i} \ \mathbf{y_2}$ – равны тогда и только тогда, когда равны их действительные и мнимые части.

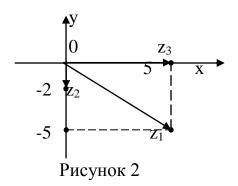
Комплексное число \overline{z} называется сопряженным комплексному числу z, если $Re\ \overline{z} = Re\ z$, $Im\ \overline{z} = -Im\ z$. Другими словами, если $z = x + i\ y$, то $\overline{z} = x - i\ y$.

Всякому комплексному числу $\mathbf{x} + \mathbf{i} \ \mathbf{y}$ можно поставить в соответствие единственную точку плоскости $\mathbf{M}(\mathbf{x}, \ \mathbf{y})$ и обратно, всякую точку $\mathbf{M}(\mathbf{x}, \ \mathbf{y})$ плоскости \mathbf{XOY} можно рассматривать как геометрический образ единственного комплексного числа $\mathbf{x} + \mathbf{i} \ \mathbf{y}$.

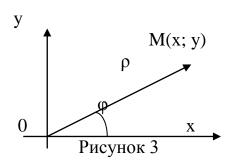


Для сокращения изложения не говорят: "точка, соответствующая комплексному числу x + i y", а говорят просто – "точка $\mathbf{x} + \mathbf{i} \mathbf{y}$ ". При ЭТОМ множество действительных чисел изображается точками оси абсцисс, которая поэтому действительной осью, называется чисто мнимых чисел множество i y оси ординат, называемой точками мнимой осью. Заметим, что одна точка мнимой оси, а именно начало координат,

изображает действительное число нуль. Плоскость, точки которой изображают комплексные числа, называется комплексной плоскостью. В некоторых случаях удобно считать геометрическим изображением числа $\mathbf{x} + \mathbf{i} \ \mathbf{y}$ радиус-вектор точки $\mathbf{M}(\mathbf{x}, \mathbf{y})$.



Пример 11. Построить $z_1 = 5 - 5i$, $z_2 = -2i$, $z_3 = 5$. дальнейшем, наряду представлением комплексных чисел в декартовых координатах, полезно иметь их представление в обобщенных полярных координатах. Рассмотрим x + i y, число которому на плоскости соответствует точка $\mathbf{M}(\mathbf{x},\mathbf{y})$. Ее координаты в полярной системе координат (ρ, ϕ) .



$$y = \rho \sin \phi$$
.
 $z = x + i y = \rho \cos \phi + i \rho \sin \phi =$
 $= \rho (\cos \phi + i \sin \phi)$.

Тогда $x = \rho \cos \varphi$,

Полярный радиус ρ =|OM| называется модулем комплексного числа и обозначается $|\mathbf{z}|$ = ρ .

Полярный угол ϕ называется аргументом комплексного числа и обозначается $\phi = \mathbf{Arg} \ \mathbf{z}$. Тогда

$$z = \rho(\cos \varphi + i \sin \varphi) = |z|(\cos Arg z + i \sin Arg z).$$

Эта форма называется тригонометрической формой комплексного числа.

Модуль комплексного числа определяется однозначно: $|\mathbf{z}| = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$.

Аргумент комплексного числа определяется с точностью до слагаемого, кратного 2π . Главным значением аргумента называется значение, заключенное в интервале $(-\pi, \pi]$. Обозначается оно $\arg z$. Таким образом, $-\pi < \arg z \le \pi$.

Очевидно, $\mathbf{Arg} \ \mathbf{z} = \mathbf{arg} \ \mathbf{z} + 2\mathbf{k} \ \pi$.

Главное значение аргумента определяется однозначно.

Так как $\mathbf{tg} \ \mathbf{arg} \ \mathbf{z} = \frac{\mathbf{y}}{\mathbf{x}},$

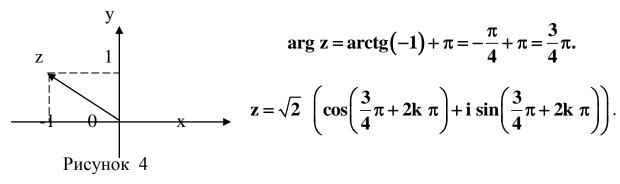
$$\arg z = \begin{cases} \arctan \left(x, y \right) \in I, IV \text{ четвертям,} \\ \arctan \left(x, y \right) \in II \text{ четверти,} \\ \arctan \left(x, y \right) \in II \text{ четверти,} \\ \arctan \left(x, y \right) \in III \text{ четверти.} \end{cases}$$

Тригонометрическая форма комплексного числа будет иметь вид

$$z = |z|(\cos(\arg z + 2k\pi) + i\sin(\arg z + 2k\pi)).$$

Пример 12. Написать в тригонометрической форме комплексное число $\mathbf{z} = -\mathbf{1} + \mathbf{i}$.

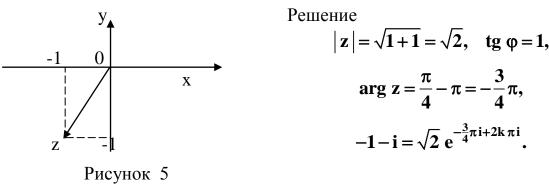
Решение.
$$|z| = \sqrt{1+1} = \sqrt{2}$$
, tg $\varphi = -1$,



Пусть $\mathbf{z} = \mathbf{x} + \mathbf{i} \ \mathbf{y} = |\mathbf{z}| (\cos \mathbf{Arg} \ \mathbf{z} + \mathbf{i} \sin \mathbf{Arg} \ \mathbf{z})$. Используя формулу Эйлера $\cos \phi + \mathbf{i} \sin \phi = \mathbf{e}^{\mathbf{i}\phi}$, получаем так называемую показательную форму записи комплексного числа:

$$z = |z| e^{i Arg z}$$
.

Пример 13. Представить в показательной форме комплексное число $\mathbf{z} = -\mathbf{1} - \mathbf{i}$.



Пример 14. Вычислить $e^{\pi i}$.

Решение. По формуле Эйлера $e^{\pi i} = \cos \pi + i \sin \pi = -1$.

3.2. Алгебраические действия над комплексными числами.

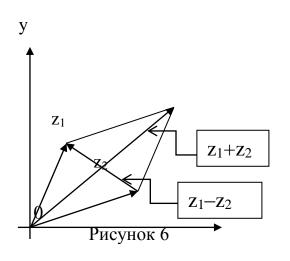
Сложение и умножение комплексных чисел производится по правилам сложения и умножения алгебраических многочленов с учетом $\mathbf{i} \cdot \mathbf{i} = -1$. При записи результата следует отделить действительную часть от мнимой части, т. е. собрать отдельно члены, содержащие множитель \mathbf{i} и члены, не содержащие множитель \mathbf{i} :

$$(x_1 + i y_1) + (x_2 + i y_2) = (x_1 + x_2) + i(y_1 + y_2),$$

$$(x_1 + i y_1) \cdot (x_2 + i y_2) = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2),$$

$$(x_1 + i y_1) - (x_2 + i y_2) = (x_1 - x_2) + i(y_1 - y_2).$$

В частности, $\mathbf{z} \cdot \overline{\mathbf{z}} = |\mathbf{z}|^2$. Операции сложения и вычитания сводятся к сложению и вычитанию векторов, изображающих эти числа. Отсюда расстояние между точками $\rho(\mathbf{z}_1, \mathbf{z}_2) = |\mathbf{z}_1 - \mathbf{z}_2|$.



Пример 15.

 $|\mathbf{z} - \mathbf{z_0}| = \mathbf{R}$ — уравнение окружности с центром в точке $\mathbf{z_0}$

и радиусом равным **R**.

Деление на комплексное число, отличное от нуля, определяется как действие, обратное действию умножения.

Для представления частного в виде $\mathbf{Re} \ \mathbf{z} + \mathbf{i} \ \mathbf{Im} \ \mathbf{z}$ следует провести простые преобразования, показанные на следующем примере.

Пример 16.
$$\frac{3-i}{1+2i} = \frac{(3-i)(1-2i)}{(1+2i)(1-2i)} = \frac{3-6i-i-2}{1+4} = \frac{1-7i}{5} = \frac{1}{5} - \frac{7}{5}i.$$

Для модуля и аргумента произведения и частного справедливы следующие утверждения:

1.
$$|\mathbf{z}_1 \cdot \mathbf{z}_2| = |\mathbf{z}_1| \cdot |\mathbf{z}_2|$$
, $\operatorname{Arg}(\mathbf{z}_1 \cdot \mathbf{z}_2) = \operatorname{Arg} \mathbf{z}_1 + \operatorname{Arg} \mathbf{z}_2$.

Пример 17. Найти модуль и аргумент произведения $\mathbf{z} \cdot \mathbf{i}$.

Решение.
$$|\mathbf{z} \cdot \mathbf{i}| = |\mathbf{z}|$$
, $\mathbf{Arg}(\mathbf{z} \cdot \mathbf{i}) = \mathbf{Arg} \mathbf{z} + \left(\frac{\pi}{2} + 2\mathbf{k} \pi\right)$.

Таким образом, умножение на i соответствует повороту вектора z на

угол
$$\frac{\pi}{2}$$
;

2.
$$\left| \frac{\mathbf{z}_1}{\mathbf{z}_2} \right| = \frac{|\mathbf{z}_1|}{|\mathbf{z}_2|}$$
, $\operatorname{Arg} \frac{\mathbf{z}_1}{\mathbf{z}_2} = \operatorname{Arg} \mathbf{z}_1 - \operatorname{Arg} \mathbf{z}_2$.

Пусть $z = |z|(\cos Arg z + i \sin Arg z).$

Тогда
$$\mathbf{z}^2 = \mathbf{z} \cdot \mathbf{z} = |\mathbf{z}|^2 (\cos 2 \operatorname{Arg} \mathbf{z} + \mathbf{i} \sin 2 \operatorname{Arg} \mathbf{z}).$$

Можно доказать методом полной математической индукции, что для любого целого $\mathbf{n} > \mathbf{0} : \mathbf{z}^{\mathbf{n}} = |\mathbf{z}|^{\mathbf{n}} \left(\cos \mathbf{n} \ \operatorname{Arg} \mathbf{z} + \mathbf{i} \sin \mathbf{n} \ \operatorname{Arg} \mathbf{z}\right)$ (формула Муавра). Формула справедлива и для целых отрицательных \mathbf{n} .

Пример 18. Вычислить $(\sqrt{3} - i)^5$.

Решение
$$\begin{vmatrix}
\sqrt{3} & | \sqrt{3} - \mathbf{i} | = \sqrt{3} + 1 = 2, \\
1 & | \sqrt{3} - \mathbf{i} | = \sqrt{3} + 1 = 2, \\
-1 & | \sqrt{3} - \mathbf{i} | = \sqrt{3} + 1 = 2, \\
\text{arg}\left(\sqrt{3} - \mathbf{i}\right) = \operatorname{arctg}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6},$$

Рисунок 7

$$\sqrt{3} - i = 2 \left(\cos \left(-\frac{\pi}{6} + 2k\pi \right) + i \sin \left(-\frac{\pi}{6} + 2k\pi \right) \right),$$

$$\left(\sqrt{3} - i \right)^5 = 2^5 \left(\cos \left(-\frac{5}{6}\pi + 10k\pi \right) + i \sin \left(-\frac{5}{6}\pi + 10k\pi \right) \right) =$$

$$= 32 \left(-\frac{\sqrt{3}}{2} - i\frac{1}{2} \right) = -16\sqrt{3} - 16i.$$

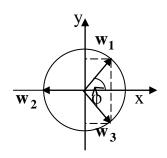
Корнем \mathbf{n} - ой степени из комплексного числа называется такое число \mathbf{w} , для которого $\mathbf{w}^{\mathbf{n}} = \mathbf{z}$.

Используя формулу Муавра, получим

$$|w| = \sqrt[n]{|z|}, \quad \text{Arg } w = \frac{\text{Arg } z}{n} = \frac{\text{arg } z + 2k \pi}{n}, \quad k = 0, 1, 2, ..., n-1.$$

Для других значений ${\bf k}$ аргументы будут отличаться от полученных на число кратное 2π , и, следовательно, получатся значения корня, совпадающие с рассмотренными ранее. Итак, корень ${\bf n}$ - ой степени из комплексного числа имеет ${\bf n}$ различных значений.

Пример 19. Найти все значения 3√8 и построить их.



Решение.
$$|-8| = 8$$
, $arg(-8) = \pi$,

$$-8 = 8(\cos(\pi + 2k\pi) + i\sin(\pi + 2k\pi)),$$

$$-8 = 8\left(\cos\left(\pi + 2k\pi\right) + i\sin\left(\pi + 2k\pi\right)\right),$$

$$\sqrt[3]{-8} = 2\left(\cos\frac{\pi + 2k\pi}{3} + i\sin\frac{\pi + 2k\pi}{3}\right),$$

Рисунок 8

$$k = 0$$
, $w_1 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 1 + i\sqrt{3}$,

$$k = 1$$
, $w_2 = 2\left(\cos\frac{\pi + 2\pi}{3} + i\sin\frac{\pi + 2\pi}{3}\right) = 2\left(-1 + i\cdot 0\right) = -2$,

$$k = 2$$
, $w_3 = 2\left(\cos\frac{\pi + 4\pi}{3} + i\sin\frac{\pi + 4\pi}{3}\right) = 2\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 1 - i\sqrt{3}$.

Контрольная работа №3

1-30. Вычислить неопределённые интегралы.

$$1. \ a) \int \frac{\mathrm{d}x}{\sqrt[3]{3x+1}},$$

2. a)
$$\int \frac{dx}{x \cdot \ln^2 x}$$
,

3. a)
$$\int \frac{x dx}{x^4 + 1}$$
,

$$4. a) \int \frac{\mathrm{dx}}{4x^2 + 7},$$

5. a)
$$\int x \cdot \cos(x^2) dx$$
,

6. a)
$$\int \sqrt{\sin x} \cdot \cos x dx$$
,

7. a)
$$\int x^2 \cdot \sqrt{x^3 + 5} \cdot dx,$$

8. a)
$$\int \frac{\left(2\ln x + 3\right)^3}{x} dx,$$

b)
$$\int \arccos x \cdot dx$$
.

b)
$$\int \frac{\sqrt{x+1}}{x+5} \cdot dx$$
.

b)
$$\int \frac{\ln x}{\sqrt[3]{x}} \cdot dx$$
.

b)
$$\int \frac{1}{\sqrt{x-3}-1} \cdot dx$$

b)
$$\int \frac{1+x}{1+\sqrt{x}} \cdot dx.$$

b)
$$\int \frac{1}{(x+12)\sqrt{x+3}} \cdot dx$$
.

b)
$$\int \frac{\sqrt{x-1}}{1+\sqrt{(x-1)^3}} \cdot dx.$$

b) $\int \arcsin x \cdot dx$.

9. a)
$$\int \frac{x dx}{4x^2 + 7}$$
,

10. a)
$$\int \frac{e^{2x} dx}{e^{4x} + 5}$$
,

11. a)
$$\int \frac{e^{\sqrt{2x+1}}dx}{\sqrt{2x+1}},$$

12. a)
$$\int x(x^2+1)^{\frac{3}{2}}dx$$
,

13. a)
$$\int \cos(\sin x) \cdot \cos x dx$$
,

14. a)
$$\int \frac{\sin x dx}{4 - \cos x}$$
,

15. a)
$$\int \frac{\sqrt{3-\ln 2x} \cdot dx}{x},$$

16. a)
$$\int x \cdot e^{x^2 - 3} dx,$$

17. a)
$$\int \frac{2dx}{4x - x \ln x}$$
,

18. a)
$$\int \frac{dx}{1+\cos 6x}$$
,

19. a)
$$\int \frac{\sin 2x \cdot dx}{1 - \cos 2x},$$

20. a)
$$\int \frac{x^2 dx}{\sqrt{x^3 - 5}}$$
,

21. a)
$$\int \frac{4dx}{\sqrt{2-6x^2}}$$
,

22. a)
$$\int \frac{\cos x \cdot dx}{\sqrt[3]{\sin^2 x}}$$
,

23. a)
$$\int \mathbf{x} \cdot \mathbf{e}^{-\mathbf{x}^2} d\mathbf{x}$$
,

24. a)
$$\int \frac{\sin \sqrt{x} \cdot dx}{\sqrt{x}}$$
,

25. a)
$$\int \frac{x^2 dx}{\sqrt{x^6 - 1}}$$
,

26. a)
$$\int \frac{\cos x \cdot dx}{\sqrt[3]{3 + 5\sin x}}$$

b)
$$\int x \cdot \operatorname{arctg} x \cdot dx$$
.

b)
$$\int \frac{1-\sqrt{x}}{x+3\sqrt{x}} \cdot dx.$$

b)
$$\int \frac{1-\sqrt{x+2}}{(x+2)-2\sqrt{x+2}} \cdot dx.$$

b)
$$\int \frac{\sin^2 \sqrt{x}}{\sqrt{x}} \cdot dx$$
.

b)
$$\int \frac{1+\sqrt{x+4}}{x+5} \cdot dx$$
.

b)
$$\int (x+2) \ln x \cdot dx$$
.

b)
$$\int x^2 \arcsin x \cdot dx$$
.

b)
$$\int \operatorname{arctg} \sqrt{\mathbf{x} \cdot \mathbf{dx}}$$
.

b)
$$\int x^2 \cdot e^{3x} \cdot dx$$
.

b)
$$\int \frac{x}{\sin^2 x} \cdot dx$$
.

b)
$$\int \frac{x \cdot \sin x}{\cos^2 x} \cdot dx$$
.

b)
$$\int \frac{4+x}{\sqrt{x+1}+7} \cdot dx$$
.

b)
$$\int \frac{\sqrt{x+2}}{x+11} \cdot dx$$
.

b)
$$\int \frac{1}{\sqrt{3+e^x}} \cdot dx$$
.

b)
$$\int \frac{\ln^2 x}{x^2} \cdot dx$$
.

b)
$$\int \frac{e^{3x}}{\sqrt{1-e^x}} \cdot dx.$$

b)
$$\int x^2 \cdot e^{-2x} \cdot dx$$
.

b)
$$\int \ln\left(x+\sqrt{1+x^2}\right)\cdot dx$$
.

27. a)
$$\int \frac{dx}{x \cdot \ln^3 x}$$
,

b)
$$\int x^2 \cdot \cos x \cdot dx$$
.

28. a)
$$\int \frac{dx}{\left(\arccos x\right)^5 \cdot \sqrt{1-x^2}},$$

b)
$$\int \sqrt{x} \cdot \ln^2 x \cdot dx$$
.

29. a)
$$\int \frac{dx}{\operatorname{arctg}^3 x \cdot \left(1 + x^2\right)},$$

b)
$$\int \frac{x^2}{\sqrt{x-1}} \cdot dx$$
.

30. a)
$$\int \frac{\sqrt{\arcsin^3 x} \cdot dx}{\sqrt{1-x^2}},$$

- b) $\int x^2 \cdot \sin 2x \cdot dx$.
- 31-60. Задачи на геометрические приложения определённого интеграла
- 31. Найти площади частей, на которые круг $\mathbf{x^2} + \mathbf{y^2} \leq \mathbf{8}$ делится параболой $\mathbf{y} = \frac{1}{2}\mathbf{x^2}$.
- 32. Найти площадь фигуры, ограниченной линией $y = x(x-1)^2$ и осью абсцисе **О**x.
- 33. Найти длину дуги параболы $\mathbf{y} = \mathbf{x}^2$ от точки (0,0) до точки (1,1).
- 34. Найти объём тела, образованного вращением вокруг оси $\mathbf{O}\mathbf{x}$ фигуры, ограниченной линиями $\mathbf{y} = \frac{1}{2}\mathbf{x}^2$ и $2\mathbf{x} + 2\mathbf{y} 3 = \mathbf{0}$.
- 35. Найти объём тела, образованного вращением вокруг оси $\mathbf{O}\mathbf{x}$ фигуры, ограниченной линиями $\mathbf{y} = \mathbf{0}$ и $\mathbf{y} = \sin^2\mathbf{x}$, $(\mathbf{0} \le \mathbf{x} \le \pi)$.
- 36. Найти площадь фигуры, ограниченной параболами $\mathbf{x^2 + 8y = 8}$ и $\mathbf{x^2 24y = 40}$.
- 37. Найти площадь фигуры, ограниченной линией $y = \ln x$ и прямыми x = e, $x = e^2$, y = 0.
- 38. Найти длину дуги кривой $y = \frac{1}{3}(3-x)\sqrt{x}$ между точками её пересечения с осью Ox.
- 39. Вычислить объём тела, образованного вращением вокруг оси **Ох** фигуры, ограниченной линиями $y = \sqrt{4x}$, y = 0, x = 1.
- 40. Найти длину дуги кривой $\mathbf{y} = \mathbf{ln}\,\mathbf{x}$ от точки $\mathbf{x} = \sqrt{3}\,$ до точки $\mathbf{x} = \sqrt{8}\,$.
- 41. Вычислить площадь криволинейной трапеции, ограниченной линией $\mathbf{y} = \mathbf{x} \mathbf{x}^{\frac{3}{2}} \text{ и осью абсцисс } \mathbf{O}\mathbf{x} \, .$

- 42. Найти объём тела, образованного вращением вокруг оси **Ох** фигуры, ограниченной линиями $\mathbf{y} = \mathbf{x} \cdot \mathbf{e}^{\mathbf{x}}$, $\mathbf{x} = \mathbf{1}$, $\mathbf{y} = \mathbf{0}$.
- 43. Найти площади фигур, на которые парабола $\mathbf{y^2} = 6\mathbf{x}$ делит круг $\mathbf{x^2} + \mathbf{y^2} \leq \mathbf{16}$.
- 44. Вычислить площадь фигуры, заключённой между линией $y = \frac{1}{1+x^2}$ и параболой $y = 0.5x^2$.
- 45. Найти объём тела, образованного вращением вокруг оси **Оу** фигуры, ограниченной линиями $y = 0.5(x-2)^2$ и y = 2.
- 46. Найти длину дуги кривой $\mathbf{x} = \frac{1}{6}\mathbf{t}^6$, $\mathbf{y} = \mathbf{4} \frac{1}{4}\mathbf{t}^4$ между точками её пересечения с осями координат.
- 47. Найти объём тела, образованного вращением вокруг оси **Ох** фигуры, ограниченной линиями $y = e^{2x} 1$, $y = e^{-x} + 1$, x = 0.
- 48. Найти длину дуги кривой $\mathbf{y} = \ln(1 \mathbf{x}^2)$ от точки $\mathbf{x} = \mathbf{0}$ до точки $\mathbf{x} = \mathbf{0}$,5.
- 49. Вычислить площадь фигуры, ограниченной линиями $\mathbf{y} = \ln \mathbf{x}$ и $\mathbf{v} = \ln^2 \mathbf{x}$.
- 50. Найти площадь фигуры, ограниченной линией $y = \arcsin x$ и прямыми x = 0, $y = \frac{\pi}{2}$.
- 51. Найти длину дуги кривой $\mathbf{x} = \mathbf{e^t} \cos \mathbf{t}$, $\mathbf{y} = \mathbf{e^t} \sin \mathbf{t}$ от $\mathbf{t} = \mathbf{0}$ до точки $\mathbf{t} = \mathbf{1}$.
- 52. Найти объём тела, образованного вращением параболического сегмента с основанием **2a** и высотой **h** вокруг высоты.
- 53. Вычислить площадь фигуры, ограниченной линиями $y^2 = x + 1$ и $y^2 = 9 x$.
- 54. Вычислить площадь фигуры, ограниченной линиями $y = \sin x$, $y = \cos x$, y = 0, x = 0, $x = \frac{\pi}{2}$.
- 55. Найти длину дуги астроиды $\mathbf{x} = \mathbf{a} \cdot \mathbf{cos}^3 \mathbf{t}$, $\mathbf{y} = \mathbf{a} \cdot \mathbf{sin}^3 \mathbf{t}$, $\mathbf{0} \le \mathbf{t} \le \frac{\pi}{2}$.
- 56. Найти длину дуги полукубической параболы $y^2 = x^3$ от начала координат до точки M(4,8).

- 57. Фигура ограничена кривой $\mathbf{x} = \mathbf{a} \cdot \cos \mathbf{t}$, $\mathbf{y} = \mathbf{a} \cdot \sin \mathbf{t}$, $\mathbf{0} \le \mathbf{t} \le \frac{\pi}{2}$ и осями координат $\mathbf{O}\mathbf{x}$, $\mathbf{O}\mathbf{y}$. Найти объём тела вращения.
- 58. Вычислить площадь фигуры, ограниченной линиями $y = 2\sqrt{x}$, $y = \sqrt{x} + 3$ и осью Oy.
- 59. Вычислить площадь фигуры, ограниченной кривыми $y = e^x 1$, $y = e^{2x} 3$, x = 0.
- 60. Найти площадь фигуры, ограниченной кривыми $y = 1, y = 4, y = 2x, y = \sqrt{x}$.

Задачи № 61-90. Задания: а) представить комплексное число в тригонометрической форме, б) представить комплексное число в показательной форме; в) выполнить указанные действия над комплексными числами, г) вычислить корень или решить уравнение.

61. a)
$$1+i$$
, 6) $3-3\sqrt{3}i$, B) $\frac{7-5i}{1-2i}+i(1-i)$, Γ) $\sqrt[4]{1-i}$;

62. a)
$$1-i$$
 б) $2-2i$, в) $\frac{7-2i}{2+i}+(i)^{11}$, г) $\sqrt[4]{1+\sqrt{3}i}$;

63. a)
$$-1+i$$
 6) $\frac{7}{2}+\frac{7}{2\sqrt{3}}i$, B) $\frac{5}{1+2i}+(i)^{18}$, Γ) $\sqrt{-1,2-1,2i}$;

64. a)
$$-1-i$$
, б) $-5+5i$, в) $\frac{1+i}{1-i}+(i)^4$, г) $\sqrt[3]{3i-\sqrt{3}}$;

65. a)
$$-2i$$
, 6) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$, B) $-\frac{12}{5}i + i(2+i)^2$, Γ) $\sqrt[4]{1 - \frac{1}{\sqrt{3}}i}$;

66. a)
$$-\frac{1}{2} + \frac{1}{2}i$$
, б) $1 + \sqrt{3}i$, в) $(i)^{23} - \frac{17 - 6i}{3 - 4i}$, г) $\sqrt{7 + 7i}$;

67. a)
$$-\sqrt{3} + i$$
, б) $4i$ в) $\frac{4}{1+\sqrt{3}i} + \frac{\sqrt{3}}{i}$, Γ) $\sqrt[3]{-\sqrt{2}-\sqrt{6}i}$;

68. a)
$$-\sqrt{2}-\sqrt{2}i$$
, б) $-\frac{2\sqrt{3}}{3}+2i$ в) $(3i+2)\cdot(-i)^9+\frac{i+1}{i-1}$, г) $\sqrt[5]{i-1}$;

69. a)
$$\sqrt{3} + i$$
, б) $-\sqrt{2} - \sqrt{6}i$, в) $(0,2-0,3i) \cdot (0,5+0,6i) + (i)^{26}$, г) $\sqrt[3]{\sqrt{3}-i}$;

70. a)
$$0.5 + 0.5\sqrt{3}i$$
, б) $1-i$, в) $(3+\sqrt{3}i)\cdot(3-\sqrt{3}i)+(i)^{33}$, г) $\sqrt[4]{-1+\sqrt{3}i}$;

71. a)
$$-\sqrt{3} + \sqrt{3}i$$
 б) $2i$, в) $\frac{1+i}{1-i} + \frac{1-i}{1+i}$, Γ) $\sqrt[3]{-2-2i}$;

72. a)
$$3\sqrt{3} - 3i$$
, б) $-\sqrt{3} + i$, в) $(i)^{37} + \frac{7 + 5i}{1 - 2i}$, г) $z^4 - 1 - \frac{1}{\sqrt{3}}i = 0$;

73. a)
$$0.5 - 0.5i$$
, 6) -2 B) $(i)^{25} - \frac{3 - 4i}{4 - 3i}$, Γ) $z^2 - 7 + 7i = 0$;

74. a)
$$4i$$
, 6) i , B) $\frac{32}{1+3\sqrt{3}i} - \frac{3\sqrt{7}}{2i}$, Γ) $z^6 - \sqrt{3} - i = 0$;

75. a)
$$-0.7 + 0.7i$$
, б) $1+i$ в) $\frac{1-i^2}{(1+i)^2} + 3+i$, г) $z^4 + 1 + \sqrt{3}i = 0$;

76. a)
$$1 - \sqrt{3}i$$
, б) $-1 + i$, в) $(i)^{44} - \frac{1 - i}{i}$, г) $z^4 - \sqrt{2}i = 0$;

77. a)
$$-2 + 2i$$
, $6i - 1 - i$, $6i - 0$;

78. a)
$$3i$$
, 6) $\sqrt{3} + i$ B) $\left(\frac{1 + \sqrt{7}i}{2}\right)^4$, Γ) $z^5 + 1 + i = 0$;

79. a)
$$-1,2,6$$
) $-2i,B$) $\left(2-\sqrt{2}i\right)^2 + \frac{1+i}{i},\Gamma$) $z^4 - 1 + \sqrt{3}i = 0$;

80. a)
$$\frac{\sqrt{3}}{2} - \frac{1}{2}i$$
, б) $3 - 3i$, в) $(i)^{17} + \frac{2i}{(3-i)}$, Γ) $z^2 + 2 - 2i = 0$;

81. a)
$$-\sqrt{2} - \sqrt{6}i$$
, б) $-3i$, в) $\frac{(2-i)}{3+i} \cdot (1+i^6) + (\sqrt{2} - \sqrt{2}i)^2$, г) $z^3 - \frac{i}{8} = 0$.

82. a)
$$\sqrt{3} - i$$
, б) $2 + 2i$, в) $\frac{(i)^{13} \cdot (i-1)}{2+i} + 1$, г) $z^3 - 8i = 0$;

83.a)
$$-\frac{2\sqrt{3}}{3} + 2i$$
, 6) $2 - 2\sqrt{3}i$, B) $(1 + 2i) \cdot (i)^{21} + \frac{5-i}{i}$, Γ) $z^3 - i = 0$;

84. a)
$$-5i$$
, б) $3-3\sqrt{3}i$, в) $(i)^{23}-\frac{17-6i}{3-4i}$, г) $z^4-\sqrt{3}+i=0$;

85. a)
$$3-3\sqrt{3}i$$
, 6) $2-2i$, B) $-\frac{12}{5i}+i(2+i)^2$, Γ) $z^3-\sqrt{3}i-3=0$;

86. a)
$$1+\sqrt{3}i$$
, б) $\frac{7}{2}+\frac{7}{2\sqrt{3}}i$, в) $\frac{1+i}{1-i}+(i)^4$, г) $z^3-\sqrt{6}+\sqrt{2}i=0$;

87. a)
$$-2\sqrt{2}-2\sqrt{2}i$$
, б) $-5+5i$, в) $\frac{5}{1+2i}+(i)^{18}$, г) $z^3+1+\sqrt{3}i=0$;

88. a)
$$-\frac{1}{2} - \frac{1}{2}i$$
, б) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$, в) $\frac{7-2i}{2+i} + (i)^{11}$, г) $z^4 - \sqrt{3}i + 1 = 0$;

89. a)
$$-8i$$
, б) $-\frac{1}{2} + \frac{1}{2}i$, в) $\frac{7-5i}{1-2i} + i(1-i)$, г) $z^3 - \sqrt{2} - \sqrt{6}i = 0$;

90. a)
$$-\sqrt{2} + \sqrt{2}\mathbf{i}$$
, б) $\mathbf{1} + \sqrt{3}\mathbf{i}$, в) $\left(\mathbf{i}\right)^{22} + \frac{7+5\mathbf{i}}{1-2\mathbf{i}}$, г) $\mathbf{z}^3 + 3\mathbf{i} - \sqrt{3} = \mathbf{0}$.

Список рекомендуемой литературы

- 1. Письменный Д. Т. Конспект лекций по высшей математике: полный курс. М.: АЙРИС ПРЕСС, 2006. 608 с.
- 2. Индивидуальные задания ПО высшей математике: Комплексные Неопределенные и 2. числа. определенные интегралы. Функции нескольких переменных. Обыкновенные дифференциальные уравнения: учеб. пособие для студентов технич. специальностей вузов / под общ. ред. А. П. Рябушко. - Минск: Вышэйшая школа, 2007. - 396 с.
- 3. Лунгу К. Н., Макаров Е. В. Высшая математика. Руководство к решению задач. Ч. 1. 2-е изд., перераб. и доп. М.; ФИЗМАТЛИТ, 2010.-216 с.
- 4. Лунгу К. Н., Макаров Е. В. Высшая математика. Руководство к решению задач. Ч. 2. М.; ФИЗМАТЛИТ, 2007. 384 с.
- 5. Данко П.Е. Высшая математика в упражнениях и задачах: в 2 ч. Ч.1: учеб. пособие для вузов / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова, С. П. Данко. М.: ОНИКС, 2006. 304 с.
- 6. Данко П.Е. Высшая математика в упражнениях и задачах: в 2 ч. Ч.2: учеб. пособие для вузов: в 2 ч. // П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова, С. П. Данко. М.: ОНИКС: Мир и образование, 2006.-416 с.