МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т.Ф. Горбачева»

Кафедра математики

МАТЕМАТИКА

Контрольная работа № 4 и методические указания для студентов 2 курса специальности БЭсз 080101.65 заочной формы обучения

Составитель: В. И. Грибков

Кемерово 2015

Контрольная работа № 4 составлена в соответствии с программой курса «Математика» для студентов специальности «Экономическая безопасность» заочной формы обучения.

Номера заданий контрольной работы студент должен выбрать по табл. 1. «Номера заданий» следующим образом:

- выбрать строку, соответствующую первой букве фамилии;
- выбрать столбец, соответствующий последней цифре номера зачетной книжки;
- на пересечении выбранных строки и столбца взять номера заданий.

Контрольная работа, выполненная не по своему варианту или не в соответствии с требованиями к оформлению, возвращается непроверенной. Требования к оформлению смотрите на сайте кафедры: matematika.kuzstu.ru/ Студентам.

ПРОГРАММА 2 КУРСА (4 СЕМЕСТР)

Рабочая программа дисциплины «Математика» составлена в соответствии с ФГОС ВПО и примерной ООП подготовки специалистов «Экономическая безопасность» заочной формы обучения.

- 1. Обыкновенные дифференциальные уравнения
- 1.1. Задачи, приводящиеся к дифференциальным уравнениям. Основные определения.
- 1.2. Дифференциальные уравнения первого порядка. Задача Коши. Теорема существования и единственности решения задачи Коши.
- 1.3. Интегрирование простейших типов дифференциальных уравнений: с разделяющимися переменными, однородных и линейных.
- 1.4. Дифференциальные уравнения второго порядка. Задача Коши. Уравнения, допускающие понижение порядка.
- 1.5. Линейные дифференциальные уравнения с постоянными коэффициентами.
- 1.6. Применение дифференциальных уравнений для решения задач физики и механики.
 - 2. Числовые и функциональные ряды.
 - 2.1. Числовые ряды. Признаки сходимости.
 - 2.2. Степенные ряды.
 - 2.3. Разложение функции в степенной ряд.
 - 2.4. Применение рядов к вычислению пределов, нахождению асимптот графиков функций, вычислению интегралов.

Таблица 1: Номера заданий.

	0	1	2	3	4	5	6	7	8	9
	1	2	3	4	5	6	7	8	9	10
	37	38	39	40	41	42	43	44	45	46
АВДЯ	75	76	77	78	79	80	81	82	83	84
	100	91	99	98	97	96	95	94	93	92
	129	128	127	126	125	124	123	122	121	130
	11	12	13	14	15	16	17	18	19	20
	47	48	49	50	51	52	53	54	55	56
Б Е З	85	86	87	88	89	90	61	62	63	64
	110	109	108	107	106	105	104	103	102	101
	133	134	135	136	137	138	139	140	131	132
	21	22	23	24	25	26	27	28	29	30
	57	58	59	60	31	32	33	34	35	36
ГЖИЛ	65	66	67	68	69	70	71	72	73	74
	120	119	118	117	116	115	114	113	112	111
	144	145	146	147	148	149	150	141	142	143
	1	2	3	4	5	6	7	8	9	10
	38	39	40	41	42	$\frac{3}{43}$	44	45	31	$\begin{vmatrix} 10 \\ 32 \end{vmatrix}$
K	76	77	78	79	80	81	82	83	84	85
I I	100	99	98	97	96	95	94	93	92	91
	125	126	127	128	129	130	121	122	$\frac{32}{123}$	$\begin{vmatrix} 31\\124 \end{vmatrix}$
	11	120	13	14	15	16	17	18	19	20
	$\begin{vmatrix} 11\\34 \end{vmatrix}$	$\frac{12}{32}$	$\frac{15}{35}$	36	$\frac{13}{37}$	53	54	55	56	$\begin{vmatrix} 20\\57\end{vmatrix}$
M H O	86	32 87	88	89	90	61	62	63	64	$\begin{vmatrix} 57 \\ 65 \end{vmatrix}$
M H O	101	102	103	105	104	106	107	108	110	109
	136	$\frac{102}{137}$		139		131	I			
			138		140		132	133	134	135
	21	22	23	24	25	26	27	28	29	30
	58	59	60	46	47	48	49	50	51	52
ПХЦШ	65	66	67	68	69	70	71	72	73	84
	114	115	116	117	118	119	120	111	112	113
	142	143	144	145	146	150	149	148	147	141
	1	2	3	4	5	6	7	8	9	10
~ # *	39	37	38	40	31	32	33	34	35	36
СЁЫЙ	74	75	76	77	78	79	80	81	82	83
	94	95	96	97	98	99	100	91	92	93
	150	149	148	147	146	145	144	143	142	141
	21	22	23	24	25	26	27	28	29	30
	41	42	43	44	36	44	45	46	47	48
$P Y T \Phi$	66	67	68	69	70	71	72	73	74	75
	102	103	104	105	106	107	108	109	110	101
	140	139	138	137	136	135	134	133	132	131
	11	12	13	14	15	16	17	18	19	20
	43	49	50	51	52	53	54	55	56	57
ч щ э ю	86	87	88	89	90	61	62	63	64	65
	117	118	119	120	116	115	114	113	112	111
	130	129	128	127	126	125	124	123	122	121

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

1. Обыкновенные дифференциальные уравнения.

А -- №№ 1-30 -- [1, стр. 325-334].

Перед решением задач нужно определить тип уравнения и метод решения, при этом можно руководствоваться табл.2.

Таблица 2. Дифференциальные уравнения первого порядка

Тип	Вид уравнения	Метод решения
дифференциального		
уравнения первого		
порядка		
1.Сразделяющимися переменными	$\frac{\mathrm{d}y}{\mathrm{d}x} = f_1(x) \cdot f_2(y)$	$\int \frac{\mathrm{d}y}{f_2(y)} = \int f_1(x) \mathrm{d}x$
2. Однородное	$\frac{\mathrm{dy}}{\mathrm{dx}} = f\left(\frac{y}{x}\right)$	Подстановка $\frac{y}{x} = u, y = 0$
	ux 😗	ux,
		y' = u'x + uприводит к
		уравнению первого типа
3. Линейное	$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$	Подстановка $y = u(x)$.
	$dx = \frac{1}{2} (x)y - Q(x)$	v(x)
		приводит к уравнениям
		первого типа
		$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x) \cdot v = 0,$
		$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}} \cdot \mathbf{v} = Q(\mathbf{x})$

Пример 1.1. Найти общее решение уравнения $\frac{y'}{\sin x} = y$. Так как $y' = \frac{dy}{dx}$, то получаем уравнение $\frac{dy}{dx} = y \cdot \sin x$ — уравнение первого типа. Разделяем переменные

$$\frac{dy}{y} = \sin x \cdot dx, \int \frac{dy}{y} = \int \sin x dx, \ln|y| = -\cos x + c,$$

где с – произвольная постоянная. Можно оставить решение в таком виде или выразить у в явном виде

$$y = e^{-\cos x + c}$$
.

Пример 1.2. Найти общее решение уравнения $y' = e^{\frac{y}{x}} + \frac{y}{x}$.

Это уравнение второго типа, однородное, следовательно, делаем подстановку $\frac{y}{x} = u$, y = ux, y' = u'x + u. Уравнение примет вид

$$u'x + u = e^u + u, \frac{du}{dx} \cdot x = e^u, \frac{du}{dx} = \frac{e^u}{x}.$$

Получили уравнение с разделяющимися переменными

$$\frac{\mathrm{du}}{e^u} = \frac{\mathrm{dx}}{x}, \int \frac{\mathrm{du}}{e^u} = \int \frac{\mathrm{dx}}{x}, -e^{-u} = \ln|x| + \ln c.$$

Здесь мы обозначили произвольную постоянную не c, а $\ln c$ для удобства записи

$$-e^{-u} = \ln|\operatorname{cx}|, u = \frac{y}{x} \Rightarrow -e^{-\frac{y}{x}} = \ln|\operatorname{cx}|.$$

Можно оставить решение в таком виде, а можно y выразить явно

$$e^{-\frac{y}{x}} = -\ln|cx|, e^{-\frac{y}{x}} = \ln\frac{1}{|cx|}, -\frac{y}{x} = \ln\ln\frac{1}{|cx|}, y = -x\ln\ln\frac{1}{|cx|}.$$

Пример1.3. Найти общее решение уравнения y' + 2y = x.

Это линейное уравнение P(x)=2, Q(x)=x (табл. 2.). Делаем подстановку $y=u(x)\cdot v(x), y'=u'v+uv'.$ Подставив эти соотношения в исходное уравнение, получаем u'v+uv'+2uv=x. Одну из функций находим из уравнения

$$uv' + 2uv = 0, \frac{dv}{dx} + 2v = 0,$$

тогда вторая функция u определяется из уравнения u'v = x. Решая первое уравнение, находим функцию v, то есть

$$\frac{dv}{dx} = -2v, \frac{dv}{v} = -2dx, \int \frac{dv}{v} = -\int 2dx, \ln|v| = -2x, v = e^{-2x},$$

произвольную константу для функцииv полагаем равной нулю. Получаем уравнение для нахождения функции u

$$\frac{du}{dx} \cdot e^{-2x} = x, du = \frac{x}{e^{-2x}} dx, du = x \cdot e^{2x} dx, \int du = \int x \cdot e^{2x} dx,$$
$$u = \frac{1}{2} x \cdot e^{2x} - \frac{1}{2} \int e^{2x} dx = \frac{1}{2} x \cdot e^{2x} - \frac{1}{4} e^{2x} + c.$$

Решение исходного уравнения имеет вид

$$y = uv = \left(\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c\right) \cdot e^{-2x}.$$

В -- №№ 31-60 -- [1, стр. 350-357].

При решении задач №№31-60 используются приёмы решения дифференциальных уравнений второго порядка с постоянными коэффициентами.

Для нахождения общего решения однородного дифференциального уравнения используется табл. 3, а для нахождения частного решения неоднородного дифференциального уравнения используется табл. 4.

Пример1.4. Найти частное решение дифференциального уравнения $y'' + 8y' + 16y = 2xe^{-4x}$,

удовлетворяющее начальным условиям y(0) = 1, y'(0) = 2.

Общее решение неоднородного уравнения можно записать в виде $y = y_0 + Y$, где y_0 – общее решение однородного уравнения

$$y'' + 8y' + 16y = 0,$$

которое определяется по табл. 2, а Y — частное решение неоднородного уравнения, которое определяется по табл. 4.

Для определения y_0 составим характеристическое уравнение

$$k^2 + 8k + 16 = 0$$
.

Его корни $k_1=k_2$ =-4. Следовательно, согласно табл. 2.:

$$y_0 = e^{-4x}(c_1 + c_2 x).$$

Так как правая часть уравнения $f(x) = 2xe^{-4x}$, то согласно табл. 3.:

$$Y = x^2 \cdot e^{-4x} (Ax + B).$$

Здесь a=-4, $P_n(x)=2x$, r=2.

$$Y = e^{-4x}(Ax^{3} + Bx^{2}).$$

$$Y' = -4e^{-4x}(Ax^{3} + Bx^{2}) + e^{-4x}(3Ax^{2} + 2Bx) =$$

$$e^{-4x}(-4Ax^{3} + x^{2}(-4B + 3A) + 2Bx).$$

$$Y'' = -4e^{-4x}(-4Ax^3 + x^2(-4B + 3A) + 2Bx) + e^{-4x}(12Ax^2 + 2x(-4B + 3A) + 2B) = e^{-4x}(16Ax^3 + x^2(16B - 24A) + x(-16B + 6A) + 2B).$$

Подставив эти выражения в наше уравнение, получим равенство:

$$e^{-4x}(16Ax^3 + x^2(16B - 24A) + x(-16B + 6A) + 2B) + 8e^{-4x}(-4Ax^3 + x^2(-4B + 3A) + 2Bx) + 16e^{-4x}(Ax^3 + Bx^2) = 2xe^{-4x}.$$

Сократим на e^{-4x} и сгруппируем члены с равными степенями:

$$x^{3} \left(16 A - 32 A + 16 A\right) + x^{2} \left(16 B - 24 A - 32 B + 24 A + 16 B\right) +$$

$$+x(-16B+6A+16B)+2B=2x,$$

или
$$6Ax + 2B = 2x$$
.

Таблица 3. Общее решение однородного уравнения

Вид общего решения однородного	Корни характеристического
уравнения	уравнения
$1. y_0 = c_1 e^{k_1 x} + c_2 e^{k_2 x}$	k_1 , k_2 – вещественные, $k_1^{\ 1}k_2$
$2. y_0 = (c_1 + c_2 x)e^{kx}$	k_1 , k_2 – вещественные, $k_1 = k_2$
$3. y_0 = (c_1 \cos \beta x + c_2 \sin \beta x)e^{\alpha x}$	k_1 , k_2 – комплексные, $k_1 = \alpha$ +
	$\beta i, k_2 = \alpha - \beta i$

Таблица 4. Частное решение неоднородного уравнения

Вид правой части	Вид частного решения
неоднородного	
дифференциального	
уравнения	
$f(x) = e^{ax} \cdot P_n(x),$	$y = x^r \cdot e^{ax} \cdot Q_n(x)$, где
$P_n(x)$ — многочлен степени n	(0, если а не является корнем
	характерист. уравнения
	1,если а равно одному корню
	r = { 1, если а равно одному корню характерист. уравнения
	2,если оба корня характерист.
	уравнения равны а
	$Q_n(x)$ - многочлен степени n с
	неопределёнными коэффициентами
$(P_n(x)\cos bx +)$	$y = x^{r} \cdot e^{ax} \cdot \left(S_{N}(x)\cos bx + Z_{N}(x)\sin bx\right)$
$\int f(x) = e^{-x} \cdot \left(+Q_m(x)\sin bx \right) P_n(x) - $	$y = x^{r} \cdot e^{ax} \cdot \left(S_{N}(x)\cos bx + Z_{N}(x)\sin bx\right)$ $\left(0, \mathbf{ec}, \mathbf{u} + \mathbf{b}, \mathbf{u} + $
многочлен степени п,	
$Q_m(x)$ – многочлен степени m	r =
	характерист. уравнения
	N равно наибольшей из степеней n и m

Приравниваем коэффициенты многочленов, стоящих в левой и правой части равенства, при одинаковых степенях x

Получаем систему уравнений для определения А, В.

$$\begin{cases} 6A = 2, \\ 2B = 0. \end{cases} \Rightarrow \begin{cases} A = \frac{1}{3}, \\ B = 0. \end{cases}$$

Итак, $Y = e^{-4x} \cdot \frac{1}{3}x^3$.

Общее решение неоднородного уравнения имеет вид

$$y = e^{-4x} (c_1 + c_2 x) + e^{-4x} \cdot \frac{1}{3} x^3$$
, отсюда

$$y' = -4e^{-4x}(c_1 + c_2x) + e^{-4x} \cdot c_2 - 4e^{-4x} \cdot \frac{1}{3}x^3 + e^{-4x} \cdot x^2$$
.

Подставляя в эти выражения начальные условия x = 0, y = 1, y' = 2, найдём c_1, c_2 .

$$\begin{cases} 1 = c_1, \\ 2 = -4c_1 + c_2. \end{cases} \Rightarrow \begin{cases} c_1 = 1, \\ c_2 = 6. \end{cases}$$

Итак, искомое решение имеет вид

$$y = e^{-4x} (1+6x) + e^{-4x} \cdot \frac{1}{3} x^3$$
.

Пример1.5. Найти частное решение дифференциального уравнения

$$y'' + 6y' + 13y = 4\sin 5x,$$

удовлетворяющее начальным условиям y(0) = 0,235; y'(0) = 0.

Общее решение неоднородного уравнения можно записать в виде $y = y_0 + Y$, где y_0 — общее решение однородного уравнения

$$y'' + 6y' + 13y = 0,$$

которое определяется по табл. 3, а Y — частное решение неоднородного уравнения, которое определяется по табл. 4.

Для определения y_0 составим характеристическое уравнение

$$k^2 + 6k + 13 = 0$$

Его корни
$$k_{1,2} = \frac{-6 \pm \sqrt{36 - 52}}{2} = \frac{-6 \pm \sqrt{-16}}{2} = \frac{-6 \pm 4i}{2} = -3 \pm 2i$$
.

Согласно табл.3. $\alpha = -3$, $\beta = 2$, то есть $y_0 = e^{-3x} \left(c_1 \cos 2x + c_2 \sin 2x \right)$.

Для определения Y используем табл. 4. Так как $f(x) = 4\sin 5x$, то $a = 0, b = 5, P_0(x) = 0, Q_0(x) = 4, r = 0$. Следовательно,

$$Y = A\cos 5x + B\sin 5x.$$

Для определения A, B подставим Y в первоначальное уравнение

$$Y' = -5A\sin 5x + 5B\cos 5x$$
,
 $Y'' = -25A\cos 5x - 25B\sin 5x$.

Тогда уравнение примет вид

$$-25A\cos 5x - 25B\sin 5x + 6(-5A\sin 5x + 5B\cos 5x) +$$

+13(A\cos 5x + B\sin 5x) = 4\sin 5x.

Приравнивая коэффициенты при $\cos 5x$ и $\sin 5x$ в левой и правой частях этого уравнения, получим систему

$$\begin{cases} -12A + 30B = 0, \\ -30A - 12B = 4. \end{cases} A = \frac{30}{12}B = \frac{5}{2}B, \quad -30 \cdot \frac{5}{2}B - 12B = 4, \quad B = -0,115, \\ A = \frac{5}{2}(-0,115) = -0,046. \quad Y = -0,115\cos 5x - 0,046\sin 5x. \end{cases}$$

Общее решение нашего уравнения имеет вид

$$y = e^{-3x} (c_1 \cos 2x + c_2 \sin 2x) - 0.115 \cos 5x - 0.046 \sin 5x$$
.

Отсюда

$$y' = -3e^{-3x} \left(c_1 \cos 2x + c_2 \sin 2x \right) + e^{-3x} \left(-2c_1 \sin 2x + 2c_2 \cos 2x \right) + 0.575 \sin 5x - 0.23 \cos 5x.$$

Найдём из начальных условий y(0) = 0,235; y'(0) = 0 постоянные c_1, c_2 .

$$\begin{cases} 0,235 = c_1 - 0,115, \\ 0 = -3c_1 + 2c_2 - 0,23. \end{cases} \Rightarrow \begin{cases} c_1 = 0,35, \\ c_2 = 0,64. \end{cases}$$

Итак, искомое решение имеет вид

$$y = e^{-3x} (0.35\cos 2x + 0.64\sin 2x) - 0.115\cos 5x - 0.046\sin 5x$$
.

2. Числовые и функциональные ряды.

С -- №№ 61-90 -- [1, стр. 438-454].

Выражение вида

$$u_1 + u_2 + u_3 + ... + u_n + ... = \sum_{n=1}^{\infty} u_n$$
,

где $u_1, u_2, u_3, ..., u_n, ...$ — бесконечная числовая последовательность, называется <u>числовым рядом.</u>

 u_1, u_2, u_3, \dots – члены ряда, u_n – общий член ряда.

Сумма вида $S_n = u_1 + u_2 + u_3 + ... + u_n$ называется п-ой частичной суммой ряда. Если существует $\lim_{n \to \infty} S_n = S$, то ряд называется сходящимся, S - c суммой ряда. В противном случае ряд называется расходящимся, расходящиеся ряды суммы не имеют. Разность $r_n = S - S_n = u_{n+1} + u_{n+2} + ...$ называется остатком ряда.

Пример 2.1. Показать, что ряд $\sum_{n=1}^{\infty} \frac{n+1}{n^2(n+2)^2}$ сходится, найти его сумму.

Решение. Общий член ряда $u_n = \frac{n+1}{n^2(n+2)^2}$ является рациональной

дробью и может быть представлен в виде суммы простейших дробей:

$$\frac{n+1}{n^{2}(n+2)^{2}} = \frac{A}{n} + \frac{B}{n^{2}} + \frac{C}{n+2} + \frac{D}{(n+2)^{2}} =$$

$$= \frac{An(n+2)^{2} + B(n+2)^{2} + Cn^{2}(n+2) + Dn^{2}}{n^{2}(n+2)^{2}}.$$

Пусть n = 0, тогда 1 = 4B, то есть B = 1/4; n = -2, тогда -1 = 4D, D = -1/4. Для отыскания A и C приравниваем коэффициенты при одинаковых степенях n числителей справа и слева равенства:

при $n^3A + C = 0$, при $n^24A + B + 2C + D = 0$. Отсюда A = C = 0. Таким образом,

$$\frac{n+1}{n^2(n+2)^2} = \frac{0}{n} + \frac{1/4}{n^2} + \frac{0}{n+2} - \frac{1/4}{(n+2)^2} = \frac{1}{4} \left(\frac{1}{n^2} - \frac{1}{(n+2)^2} \right).$$

По этой формуле запишем любой член ряда

$$S_n = u_1 + u_2 + u_3 + \dots + u_n =$$

$$= \frac{1}{4} \left(1 - \frac{1}{9} + \frac{1}{4} - \frac{1}{16} + \frac{1}{9} - \frac{1}{25} + \frac{1}{16} - \frac{1}{36} + \dots + \frac{1}{n^2} - \frac{1}{(n+2)^2} \right) =$$

$$= \frac{1}{4} \left(\frac{5}{4} - \frac{1}{(n+2)^2} \right);$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{1}{4} \left(\frac{5}{4} - \frac{1}{(n+2)^2} \right) = \frac{1}{4} \cdot \frac{5}{4} = \frac{5}{16}.$$

Таким образом, ряд сходится и его сумма равна $\frac{5}{16}$.

Если ряд сходится, то его общий член стремится к нулю. Необходимый признак сходимости ряда является достаточным признаком расходимости ряда. Если общий член ряда не стремится к нулю, то ряд расходится.

Пример 2.2. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n^2}{3n^2+2}$.

Решение. Рассмотрим $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{n^2}{3n^2+2} = \frac{1}{3}$, значит, ряд расходится.

Пример 2.3. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} e^{-\frac{1}{n}}$.

Решение. Рассмотрим $\lim_{n\to\infty} u_n = \lim_{n\to\infty} e^{-\frac{1}{n}} = e^0 = 1$, значит, ряд расходится.

<u>Признаки сравнения.</u> Если имеем два ряда $\sum_{n=1}^{\infty} u_n$ и $\sum_{n=1}^{\infty} v_n$ с неотрицательными членами, причём члены первого ряда не превосходят членов второго ряда $(0 \le u_n \le v_n)$, то:

- а) из сходимости ряда $\sum_{n=1}^{\infty} v_n$ следует сходимость ряда $\sum_{n=1}^{\infty} u_n$;
- б) из расходимости ряда $\sum_{n=1}^{\infty} u_n$ следует расходимость ряда $\sum_{n=1}^{\infty} v_n$.

Для сравнения используются ряды:

- $1.\sum_{n=1}^{\infty}\frac{1}{n}$ гармонический, расходящийся ряд;
- 2. $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ обобщённый гармонический ряд, сходится при $\alpha > 1$,

расходится при $\alpha \le 1$;

3. ряд — геометрическая прогрессия, сходится, если знаменатель прогрессии |q| < 1; расходится, если $|q| \ge 1$.

Пример 2.4. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+3)}}$.

Решение. Справедливы неравенства:

$$\frac{1}{\sqrt{n(n+3)}} > \frac{1}{\sqrt{(n+3)(n+3)}} = \frac{1}{n+3}$$
.

Ряд $\sum_{n=1}^{\infty} \frac{1}{n+3}$ расходится, как гармонический, значит, исходный ряд тоже расходится.

Пример 2.5. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{n(n+4)}$.

Решение. Имеем $\frac{1}{n(n+4)} < \frac{1}{n^2}$.

Ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, значит, исходный ряд тоже сходится.

Для исследования сходимости рядов с положительными членами удобна предельная форма признака сравнения.

Если $\sum_{n=1}^{\infty} u_n$ и $\sum_{n=1}^{\infty} v_n$ — ряды с положительными членами и существует конечный предел $\lim_{n\to\infty} \frac{u_n}{v_n} = A \neq 0$, то рассматриваемые ряды одновременно сходятся или расходятся.

Пример 2.6. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{n^n \sqrt{n}}$.

Решение. Сравним данный ряд с рядом $\sum_{n=1}^{\infty} \frac{1}{n}$, который расходится.

$$\lim_{n \to \infty} \frac{\frac{1}{n^{\frac{n}{\sqrt{n}}}}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{n^{\frac{1}{n}}} = \lim_{n \to \infty} \frac{1}{\left(e^{\ln n}\right)^{\frac{1}{n}}} = \lim_{n \to \infty} e^{-\frac{\ln n}{n}}$$
$$= e^{-\frac{\lim_{n \to \infty} \frac{\ln n}{n}}{n}} = e^{-\frac{\lim_{n \to \infty} \frac{1}{n}}{n}} = e^{0} = 1.$$

Для нахождения предела применено правило Лопиталя.

Так как предел конечный, отличный от нуля, то исходный ряд тоже расходится.

Пример 2.7. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2} \right)$.

Решение. Сравним данный ряд с рядом $\sum_{n=1}^{\infty} \frac{1}{n^2}$, который сходится.

$$\lim_{n\to\infty}\frac{\ln\left(1+\frac{1}{n^2}\right)}{\frac{1}{n^2}}=\lim_{n\to\infty}\frac{\frac{1}{n^2}}{\frac{1}{n^2}}=1.$$

 $\ln \left(1 + \frac{1}{n^2} \right)$ и $\frac{1}{n^2}$ — эквивалентные бесконечно малые величины при $n \to \infty$. Значит, исходный ряд тоже сходится.

Ряды вида $\sum_{n=1}^{\infty} \frac{P_m(n)}{Q_l(n)}$ удобно сравнивать с рядами $\sum_{n=1}^{\infty} \frac{1}{n^{l-m}}$, которые сходятся при l-m>1 и расходятся при $l-m\leq 1$.

Пример 2.8. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n+1}{n^2+n+1}$.

Решение. Так как m=1, l=2, l-m=1, сравним данный ряд с рядом $\sum_{n=1}^{\infty} \frac{1}{n}: \lim_{n\to\infty} \frac{(n+1)\cdot n}{(n^2+n+1)\cdot 1} = 1 \neq 0$, значит, исходный ряд расходится.

Пример 2.9. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$.

Решение. Сравним данный ряд с рядом $\sum_{n=1}^{\infty} \frac{1}{n^2}$, который сходится. $\lim_{n\to\infty} \frac{1\cdot n^2}{(n^2+1)\cdot 1} = 1 \neq 0$, значит, исходный ряд тоже сходится.

сходится, а при l>1 ряд расходится, при l=1 вопрос о сходимости остаётся открытым (необходимо применение других признаков сходимости).

Пример 2.10. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{(n!)^2}{2^{n^2}}$.

Решение.
$$u_n = \frac{\left(n!\right)^2}{2^{n^2}}, u_{n+1} = \frac{\left((n+1)!\right)^2}{2^{(n+1)^2}},$$

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{\left(\left(n+1\right)!\right)^2 \cdot 2^{n^2}}{2^{(n+1)^2} \cdot \left(n!\right)^2} =$$

$$= \lim_{n\to\infty} \frac{\left(n+1\right)!\left(n+1\right)! \cdot 2^{n^2}}{n!n! \cdot 2^{n^2+2n+1}} = \lim_{n\to\infty} \frac{\left(n+1\right)\left(n+1\right)}{2^{2n+1}} = \left(\frac{\infty}{\infty}\right) = \lim_{n\to\infty} \frac{2n+2}{2^{2n+1} \cdot \ln 2 \cdot 2} =$$

$$= \lim_{n\to\infty} \frac{n+1}{2^{2n+1} \cdot \ln 2} = \left(\frac{\infty}{\infty}\right) = \lim_{n\to\infty} \frac{1}{2^{2n+1} \cdot \ln^2 2 \cdot 2} = \frac{1}{\infty} = 0 < 1,$$

значит, ряд сходится.

Пример 2.11. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{5^n \cdot n!}{n}$.

Решение.
$$u_n = \frac{5^n \cdot n!}{n^n}, u_n = \frac{5^{(n+1)} \cdot (n+1)!}{(n+1)^{(n+1)}},$$

$$\lim_{n \to \infty} \frac{5^{n+1} \cdot (n+1)! \cdot n^n}{(n+1)^{(n+1)} \cdot 5^n \cdot n!} = 5 \lim_{n \to \infty} \frac{(n+1) \cdot n^n}{(n+1)^{(n+1)}} = 5 \lim_{n \to \infty} \frac{1}{(n+1)^n} = 5 \lim_{n \to$$

значит, ряд расходится.

Признак Коши. Если для ряда

$$u_1 + u_2 + u_3 + \dots + u_n + \dots = \sum_{n=1}^{\infty} u_n$$

с положительными членами существует $\lim_{n\to\infty} \sqrt[n]{u_n} = l$, то этот ряд при l < 1 сходится, а при l > 1 расходится, при l = 1 вопрос о сходимости остаётся открытым (необходимо применение других признаков сходимости).

Пример 2.12. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n}$.

Решение. $\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{\left(\ln n\right)^n}} = \lim_{n\to\infty} \frac{1}{\ln n} = \frac{1}{\infty} = 0 < 1$, значит, данный ряд сходится.

Пример 2.13. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{3^n}{\left(\frac{n+1}{n}\right)^{n^2}}$.

Решение.
$$\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n+1}{n}\right)^{n^2}} = \lim_{n \to \infty} \frac{3}{\left(\frac{n+1}{n}\right)^n} = \frac{3}{e} > 1$$
, ряд расходится.

Интегральный признак сходимости рядов с положительными членами. Если $\phi(x)$ положительная, ограниченная, интегрируемая функция на интервале $a \le x < +\infty$, где a — натуральное число, то ряд

$$\phi(a) + \phi(a+1) + \phi(a+2) + ... + \phi(a+n) + ...$$

и несобственный интеграл $\int_{a}^{\infty} \phi(x) dx$ или оба сходятся, или оба расходятся.

Пример 2.14. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{3\sqrt[3]{n^2}} \cdot e^{-\sqrt[3]{n}}$.

Решение.
$$\phi(x) = \frac{1}{3\sqrt[3]{x^2}} \cdot e^{-\sqrt[3]{x}}$$
. Рассмотрим интеграл
$$\int_{1}^{\infty} \frac{1}{3\sqrt[3]{x^2}} \cdot e^{-\sqrt[3]{x}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{3\sqrt[3]{x^2}} \cdot e^{-\sqrt[3]{x}} dx = \lim_{b \to \infty} \left(-e^{-\sqrt[3]{b}} \right) \Big|_{1}^{b} = \lim_{b \to \infty} \left(-e^{-\sqrt[3]{b}} + e^{-\sqrt[3]{1}} \right) = e^{-1} = \frac{1}{e}.$$

Таким образом, интеграл сходится, значит, ряд тоже сходится.

Ряд $a_1 - a_2 + a_3 - a_4 + ...$, где $a_n > 0$, называется знакочередующимся.

<u>Теорема Лейбница.</u> Знакочередующийся ряд, члены которого убывают по абсолютной величине, а общий член стремится к нулю, сходится, а его остаток имеет знак своего первого члена и меньше его по абсолютной величине.

Если ряд $\sum |a_n|$ сходится, то ряд $\sum a_n$ называется <u>абсолютно</u> <u>сходящимся;</u>если ряд $\sum |a_n|$ расходится, а ряд $\sum a_n$ сходится, то эта сходимость называется <u>условной.</u>

Пример 2.15. Исследовать на сходимость ряд

$$\frac{1}{3} - \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 - \dots + \left(-1\right)^{n+1} \left(\frac{n}{2n+1}\right)^n + \dots$$

Решение. Ряд из абсолютных величин $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^n$ сходится, так как

$$\lim_{n\to\infty} \sqrt[n]{\left(\frac{n}{2n+1}\right)^n} = \lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2} < 1.$$

Значит, данный ряд сходится абсолютно.

Пример 2.16. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt[3]{n}}$.

Решение. Ряд из абсолютных величин $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{3}}}$ расходится;

проверим условия Лейбница: a.)
$$\frac{1}{\sqrt[3]{1}} > \frac{1}{\sqrt[3]{2}} > \frac{1}{\sqrt[3]{3}} > \frac{1}{\sqrt[3]{4}} > \dots;$$
 б.)

$$\lim_{n\to\infty}\frac{1}{\sqrt[3]{n}}=0.$$

По теореме Лейбница знакочередующийся ряд сходится. Так как ряд из абсолютных величин расходится, то эта сходимость условная.

Д -- №№ 91-120 -- [1, стр. 457-462].

Ряд вида $\sum_{n=0}^{\infty} c_n (x-a)^n$ называется степенным,

 c_n — коэффициентами степенного ряда. При a = 0 степенной ряд имеет вид $\sum_{n=0}^{\infty} c_n x^n$. Этот ряд сходится при x = 0. Если он сходится при $x \neq 0$, то областью его сходимости является интервал (-R,R).

Число R называетсярадиусом сходимости. Если степенной ряд сходится на всей числовой оси, то $R = \infty$. Внутри интервала сходимости степенной ряд сходится абсолютно, а сходимость на концах интервала проверяют дополнительно.

Пример 2.17. Определить радиус сходимости степенного ряда

$$\sum_{n=1}^{\infty} \frac{\left(n!\right)^2}{\left(2n\right)!} x^n .$$

Решение. Применим признак Даламбера.

$$u_{n} = \frac{(n!)^{2}}{(2n)!} x^{n}; \ u_{n+1} = \frac{((n+1)!)^{2}}{(2n+2)!} x^{n+1};$$

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_{n}} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!(n+1)! x^{n+1} (2n)!}{(2n+2)! n! n! x^{n}} \right| =$$

$$= \lim_{n \to \infty} \left| \frac{(n+1)(n+1)x}{(2n+1)(2n+2)} \right| = |x| \lim_{n \to \infty} \frac{(n+1)(n+1)}{(2n+1)(2n+2)} = \frac{1}{4} |x|.$$

Ряд сходится, если $\frac{1}{4}|x| < 1$, тогда |x| < 4, отсюда R = 4.

Пример 2.18. Найти интервал и радиус сходимости степенного ряда

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} x^n.$$

Решение. Применим радикальный признак сходимости Коши.

$$\lim_{n \to \infty} \sqrt[n]{|u_n|} = \lim_{n \to \infty} \sqrt[n]{\left(1 + \frac{1}{n}\right)^{n^2} x^n} = |x| \lim_{n \to \infty} \sqrt[n]{\left(1 + \frac{1}{n}\right)^{n^2}} =$$

$$= |x| \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = |x| \cdot e.$$

Ряд сходится, если $|x| \cdot e < 1$, тогда $|x| < \frac{1}{e}$, $-\frac{1}{e} < x < \frac{1}{e}$, отсюда $R = \frac{1}{e}$. Проверим сходимость на концах интервала сходимости.

Пусть
$$x = \frac{1}{e}$$
, $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} \frac{1}{e^n}$.

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{\left(1+\frac{1}{n}\right)^{n^2}}{e^n} = \lim_{n\to\infty} \frac{e^n}{e^n} = 1.$$

Необходимый признак сходимости не выполняется, значит, ряд расходится.

Пусть
$$x = -\frac{1}{e}$$
, $\sum_{n=1}^{\infty} (-1)^{n+1} \left(1 + \frac{1}{n}\right)^{n^2} \frac{1}{e^n}$.

При этом $\lim_{n\to\infty}u_n\neq 0$, значит, ряд расходится.

OTBET:
$$R = \frac{1}{e}$$
; $\left(-\frac{1}{e}; \frac{1}{e}\right)$.

Е -- №№ 121-150 -- [1, стр. 463-477].

Если функция f(x) имеет на некотором интервале, содержащем точку a, производные всех порядков, то к ней может быть применена формула Тейлора:

$$f(x) = f(a) + f'(a)(x-a) + f''(a)\frac{(x-a)^{2}}{2!} + \dots$$
$$\dots + f^{(n-1)}(a)\frac{(x-a)^{n-1}}{(n-1)!} + R_{n},$$

где R_n — остаточный член ряда, $R_n = f^{(n)}(c) \frac{(x-a)^n}{n!}$ (a < c < x).

Если для некоторых $x \lim_{n\to\infty} R_n = 0$, то в пределе формула Тейлора обращается для этого значения x в ряд Тейлора:

$$f(x) = f(a) + f'(a)(x-a) + f''(a)\frac{(x-a)^2}{2!} + \dots$$
$$\dots + f^{(n)}(a)\frac{(x-a)^n}{n!} + \dots = \sum_{n=1}^{\infty} f^{(n)}(a)\frac{(x-a)^n}{n!}.$$

При a = 0 имеем ряд

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!} + \dots$$
$$= \sum_{n=1}^{\infty} f^{(n)}(0)\frac{x^n}{n!}$$

который называется рядом Маклорена.

Функция f(x) может быть разложена в ряд Тейлора, если

- 1) она имеет производные всех порядков;
- $2) \lim_{n\to\infty} R_n = 0.$

Многократное дифференцирование и нахождение значений производных в данной точке часто связано с громоздкими выкладками. Эту трудность можно обойти на основании теоремы о единственности разложения функции в ряд, позволяющей утверждать, что полученное любым путём разложение функции в ряд будет её разложением в ряд Тейлора.

При разложении в ряд Тейлора могут быть использованы готовые разложения некоторых важных функций:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots;$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} + \dots;$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + \left(-1\right)^{n+1} \frac{x^{2n-2}}{(2n-2)!} + \dots;$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + \left(-1\right)^{n+1} \frac{x^{n}}{n} + \dots;$$

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!} x^{2} + \dots + \frac{m(m-1)\dots(m-n+1)}{n!} x^{n} + \dots;$$

$$arctgx = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots + \left(-1\right)^{n+1} \frac{x^{2n-1}}{(2n-1)} + \dots;$$

$$arcsin x = x + \frac{1}{2} \cdot \frac{x^{3}}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^{5}}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^{7}}{7} + \dots;$$

$$shx = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \frac{x^{7}}{7!} + \dots + \frac{x^{2n-1}}{(2n-1)!} + \dots;$$

$$chx = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots + \frac{x^{2n-2}}{(2n-2)!} + \dots$$

Пример 2.19. Разложить в ряд функцию $f(x) = \ln \sqrt[5]{\frac{1+2x}{1-x}}$ по степеням x.

Решение.
$$f(x) = \frac{1}{5} \left(\ln(1+2x) - \ln(1-x) \right);$$

$$\ln(1+2x) = 2x - \frac{2^2 x^2}{2} + \frac{2^3 x^3}{3} - \frac{2^4 x^4}{4} + \dots;$$

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} \dots;$$

$$f(x) = \ln \sqrt[5]{\frac{1+2x}{1-x}} =$$

$$= \frac{1}{5} \left(2x - \frac{2^2 x^2}{2} + \frac{2^3 x^3}{3} - \frac{2^4 x^4}{4} + \dots + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots \right) =$$

$$= \frac{1}{5} \left(3x - \frac{3}{2} x^2 + \frac{9}{3} x^3 - \frac{15}{4} x^4 + \dots \right) =$$

$$= \frac{3}{5} x - \frac{3}{10} x^2 + \frac{3}{5} x^3 - \frac{3}{4} x^4 + \dots$$

Пример 2.20. Разложить функцию $f(x) = \frac{e^{x^2} - e^{-x^2}}{2x^3}$ в степенной ряд по степеням x.

Решение.
$$f(x) = \frac{e^{x^2} - e^{-x^2}}{2} \cdot \frac{1}{x^3} = \frac{shx^2}{x^3} = \frac{1}{x^3} \cdot shx^2;$$

$$f(x) = \frac{1}{x^3} \cdot \left(x^2 + \frac{x^6}{3!} + \frac{x^{10}}{5!} + \frac{x^{14}}{7!} + \dots\right) =$$

$$= \frac{1}{x} + \frac{x^3}{3!} + \frac{x^7}{5!} + \frac{x^{11}}{7!} + \dots$$

Определённый интеграл не может быть вычислен по формуле Ньютона-Лейбница, если первообразная не выражается в элементарных функциях.

Если подынтегральная функция разлагается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то приближённое вычисление интеграла возможно с наперёд заданной точностью.

Пример 2.21.Вычислить $\int_{0}^{\frac{1}{4}} e^{-x^{2}} dx$ с точностью до 10^{-4} .

Решение. Разложим подынтегральную функцию в ряд

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!}; -\infty < x < \infty;$$

в данном интеграле пределы интегрирования входят в область сходимости.

$$\int_{0}^{\frac{1}{4}} e^{-x^{2}} dx = \int_{0}^{\frac{1}{4}} \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{n!} dx =$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{\frac{1}{4}} x^{2n} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{x^{2n+1}}{2n+1} \Big|_{0}^{\frac{1}{4}} =$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{1}{(2n+1) \cdot 4^{2n+1}} = \frac{1}{4} - \frac{1}{3 \cdot 4^{3}} + \frac{1}{2! \cdot 5 \cdot 4^{5}} - \dots;$$

$$\frac{1}{4} = 0,25000; \quad \frac{1}{3 \cdot 4^{3}} \cong 0,00521; \quad \frac{1}{2! \cdot 5 \cdot 4^{5}} \cong 0,000098 < 10^{-5}.$$

Для достижения требуемой точности уже третий член ряда может быть отброшен (признак Лейбница). Таким образом, с точностью до 10⁻⁴

$$\int_{0}^{\frac{1}{4}} e^{-x^{2}} dx \approx 0,25000 - 0,00521 = 0,24479 \approx 0,2448.$$

Ответ: 0,2448.

Пример 2.22.Вычислить $\int_{0}^{\frac{1}{10}} \frac{\ln(1+x)}{x} dx$ с точностью до 10^{-3} .

Решение.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \dots;$$

$$\frac{\ln(1+x)}{x} = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \frac{x^4}{5} - \frac{x^5}{6} + \dots;$$

$$\int_0^{\frac{1}{10}} \frac{\ln(1+x)}{x} dx = \left(x - \frac{x^2}{4} + \frac{x^3}{9} - \frac{x^4}{16} + \frac{x^5}{25} - \dots\right)\Big|_0^{\frac{1}{10}} =$$

$$= \frac{1}{10} - \frac{1}{10^2 \cdot 4} + \frac{1}{10^3 \cdot 9} - \frac{1}{10^4 \cdot 16} + \frac{1}{10^5 \cdot 25} - \dots;$$

$$\frac{1}{10} = 0,1000; \quad \frac{1}{10^2 \cdot 4} = 0,0025;$$
$$\frac{1}{10^3 \cdot 9} \cong 0,0001; \quad \frac{1}{10^4 \cdot 16} < 10^{-4};$$

Значит, для вычисления интеграла с точностью 10^{-3} достаточно взять три члена ряда:

три члена ряда:
$$\int_{0}^{\frac{1}{10}} \frac{\ln(1+x)}{x} dx = 0,1000 - 0,0025 + 0,0001 = 0,0976 \cong 0,098.$$

Ответ: 0,098.

Контрольные задания

№№ 1-30. Найти общее решение дифференциального уравнения первого порядка.

1.
$$y' + \frac{y}{x} - x = 0$$
.

$$2. \left(x^2 + y^2\right) dy = 2xy dx.$$

3.
$$y' + ay = e^{mx}$$

4.
$$ydy + (x-2y)dx = 0$$
.

5.
$$xdy = (x + y)dx$$
.

$$6. \ y - x \cdot y' = y \ln \frac{x}{y}.$$

7.
$$(1-x^2)y'-xy=1$$
.

8.
$$y - x \cdot y' = x + yy'$$
.

9.
$$xdy - ydx = ydy$$
.

$$10. \frac{dx}{dy} - x + y = 0.$$

11.
$$(x-y)y-x^2y'=0$$
.

12.
$$xdy - 2ydx = ydy$$
.

13.
$$y' + 3y + x = 0$$
.

14.
$$(y^2 - 3x^2)dx + 2xydy = 0$$
.

15.
$$y' + 2y = e^{-x}$$
.

16.
$$y^2 + x^2 \cdot y' = xyy'$$
.

17.
$$y' - \frac{1+2x}{x^2}y = 1$$
.

18.
$$xy' = y - xe^{\frac{y}{x}}$$
.

19.
$$y' + 2xy - x^3 = 0$$

20.
$$(y-x)dx = (x+y)dy$$
.

21.
$$y' - y = xe^x$$
.

$$22. \quad ydx + \left(2\sqrt{xy} - x\right)dy = 0.$$

23.
$$(1+x^2)y'-2xy=(1+x^2)^2$$
.

$$24. \ y' = tg \frac{y}{x} + \frac{y}{x}.$$

$$25. (x+2y) y dx = x^2 dy.$$

26.
$$y' - x = y$$
.

$$27. \ y' \cdot \ln x + \frac{y}{x} = x.$$

28.
$$y' \cdot \cos x - y \cdot \sin x = x$$
.

29.
$$y' \cdot arctgx + \frac{y}{1+x^2} = 2x$$
.

30.
$$2xy' - yy' = y$$
.

№№ 31-60. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям.

31.
$$y'' + 9y = \cos 3x$$
, $y(0) = 2$, $y'(0) = 3$.

32.
$$y'' - 6y' + 9y = 2e^{3x}$$
, $y(0) = 1$, $y'(0) = 0$.

33.
$$y'' - 2y' + y = xe^x$$
, $y(0) = 5$, $y'(0) = 3$.

34.
$$y'' + y' = x^2 - 5$$
, $y(0) = 0$, $y'(0) = 2$.

35.
$$y'' + 4y' + 29y = x^2 - x$$
, $y(0) = 5$, $y'(0) = 0$.

36.
$$y'' + 3y' + 2y = 3e^{-x}$$
, $y(0) = 1$, $y'(0) = 4$.

37.
$$y'' + 2y' = x^2 + 3x + 4$$
, $y(0) = -1$, $y'(0) = 4$.

38.
$$y'' - y' - 6y = -2e^{3x}$$
, $y(0) = -3$, $y'(0) = 1$.

39.
$$y'' + y' - 2y = (x - 2)e^x$$
, $y(0) = 3$, $y'(0) = 0$.

40.
$$y'' + y = 6\cos 2x - \sin 2x$$
, $y(\pi) = 1$, $y'(\pi) = 1$.

41.
$$y'' - 4y' + 13y = \sin 3x$$
, $y(0) = \frac{5}{7}$, $y'(0) = \frac{1}{7}$.

42.
$$2y'' + 5y' = 30x^2 - 4$$
, $y(0) = 4$, $y'(0) = \frac{5}{2}$.

43.
$$y'' - y' = e^{2x}$$
, $y(0) = -3$, $y'(0) = 1$.

44.
$$y'' + 2y' + 5y = x^2 - 3x$$
, $y(0) = 4$, $y'(0) = -2$.

45.
$$y'' - 3y' = -3e^{3x}$$
, $y(0) = -1$, $y'(0) = 6$.

46.
$$y'' + 4y' + 4y = 15e^{3x}$$
, $y(0) = 1$, $y'(0) = 3$.

47.
$$y'' + y' - 2y = 2e^x$$
, $y(0) = 4$, $y'(0) = 1$.

48.
$$y'' - 5y' + 6y = -3e^{-x}$$
, $y(0) = 4$, $y'(0) = 0$.

49.
$$4y'' + 4y' + y = x^2 + x - 1$$
, $y(0) = 5$, $y'(0) = 0.5$.

50.
$$y'' + 2y' + 2y = 2e^{2x}$$
, $y(\pi) = -3$, $y'(\pi) = 4$.

51.
$$y'' - 2y' - 3y = 8e^{3x}$$
, $y(0) = 1$, $y'(0) = -2$.

52.
$$y'' - 4y = 4x^2 + x - 8$$
, $y(0) = 3$, $y'(0) = 1$.

53.
$$y'' - y = 6e^x$$
, $y(0) = 1$, $y'(0) = -3$.

54.
$$y'' + 5y' + 6y = 10e^{2x}$$
, $y(0) = 5$, $y'(0) = -2$.

55.
$$y'' - 8y' + 7y = 6xe^x$$
, $y(0) = 1$, $y'(0) = 7$.

56.
$$y'' - 6y' + 13y = x^2 - x$$
, $y(0) = -2$, $y'(0) = 0$.

57.
$$y''-y=8e^{3x}$$
, $y(0)=3$, $y'(0)=-2$.

58.
$$y'' - 2y' = 6x^2 - 3$$
, $y(0) = 3$, $y'(0) = -4$.

59.
$$y'' + 4y = x^2 - x + 1$$
, $y(\frac{\pi}{2}) = 1$, $y'(\pi) = 4$.

60.
$$y'' + 6y' + 10y = 2e^{-3x}$$
, $y(0) = 4$, $y'(0) = -1$.

№№ 61–90. Исследовать на сходимость ряд.

61. a)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{\ln n}};$$

$$5) \sum_{n=1}^{\infty} \frac{(3n+2)!}{10^n n^2};$$

B)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)};$$

62. a)
$$\sum_{n=0}^{\infty} n^2 e^{-n^3}$$
;

$$\mathsf{G}) \; \sum_{n=1}^{\infty} \frac{2n!}{\sqrt{2^n + 3}};$$

B)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{2n+1}\right)^n$$
;

63. a)
$$\sum_{n=1}^{\infty} \left(\frac{n}{10n+5} \right)^{n2}$$
; 6) $\sum_{n=1}^{\infty} \frac{3^n}{(n+2)!4^n}$;

6)
$$\sum_{n=1}^{\infty} \frac{3^n}{(n+2)!4^n}$$
;

B)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\ln(n+1)};$$

64. a)
$$\sum_{n=1}^{\infty} n^4 \left(\frac{2n}{3n+5} \right)^n$$
;

$$6) \sum_{n=1}^{\infty} \frac{5^{n} (n+1)!}{(2n)!};$$

B)
$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{3^n}{\left(2n+1\right)^n};$$

65. a)
$$\sum_{n=0}^{\infty} n \cos 2n$$
;

$$6) \sum_{n=1}^{\infty} \frac{(n!)^2}{(3^n+1)(2n)!};$$

B)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(n+1)2^{2n}};$$

66. a)
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{n+1} \right)^{n^2}$$
;

$$\delta) \sum_{n=1}^{\infty} \frac{(n+1)!}{n^n};$$

B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin 3^n}{3^n};$$

67. a)
$$\sum_{n=0}^{\infty} e^{-n} \cos n$$
;

6)
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5L (2n-1)}{3^n (n+1)!}$$
;

B)
$$\sum_{n=1}^{\infty} \left(-1\right)^n \sin \frac{\pi}{\sqrt{n}};$$

68. a)
$$\sum_{n=1}^{\infty} \left(\frac{n+2}{3n-1} \right)^{n^2}$$
;

$$6) \sum_{n=1}^{\infty} \frac{7^{2n}}{(2n-1)!};$$

$$B) \sum_{n=1}^{\infty} \left(-1\right)^n \cos \frac{\pi}{6n};$$

69. a)
$$\sum_{n=e}^{\infty} \frac{1}{n(\ln n)^{\frac{3}{2}}}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{n!}{2n!} tg \frac{1}{5^n};$$

B)
$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$$
;

70. a)
$$\sum_{n=2}^{\infty} \left(\frac{n+1}{2n-3} \right)^{n^2}$$
;

$$\mathsf{G}) \sum_{n=1}^{\infty} \frac{n^2}{(n+2)!};$$

B)
$$\sum_{n=1}^{\infty} \frac{\sin n}{n!};$$

71. a)
$$\sum_{n=0}^{\infty} n \cos n;$$

$$\mathsf{G}) \; \sum_{n=1}^{\infty} \frac{n^n}{(n!)^2};$$

B)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{3n+1} \right)^n$$
;

72. a)
$$\sum_{n=1}^{\infty} \left(\frac{2n-1}{3n+1} \right)^{\frac{n}{2}}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{(2n+2)!}{2^n (3n+5)};$$

B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n-1}{3n};$$

73. a)
$$\sum_{n=0}^{\infty} e^{-n} \sin n$$
;

6)
$$\sum_{n=1}^{\infty} \frac{2^{n+1} (n^3+1)}{(n+1)!};$$

B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{(n+1)!};$$

74. a)
$$\sum_{1}^{\infty} \left(\frac{n}{3n-1} \right)^{n^3}$$
;

$$6) \sum_{n=1}^{\infty} \frac{(n!)^{2}}{2^{n^{2}}};$$

B)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(n+1)(\frac{3}{2})^n};$$

75. a)
$$\sum_{n=1}^{\infty} e^{-\sqrt{n}} \frac{1}{\sqrt{n}}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{10^n \cdot 2 \cdot n!}{(2n)!};$$

B)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(n+1) \cdot 3^{3n}};$$

76. a)
$$\sum_{n=1}^{\infty} n^2 \sin^n \frac{\pi}{2n}$$
;

6)
$$\sum_{n=2}^{\infty} \frac{(n+1)}{2^n (n-1)!}$$
;

B)
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{3n+1}{n(n-1)}$$
;

77. a)
$$\sum_{n=1}^{\infty} \frac{arctgn}{n^2};$$

$$6) \sum_{n=1}^{\infty} \frac{n!(2n+1)!}{(3n)!};$$

B)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\ln(n+3)}$$
;

78. a)
$$\sum_{n=1}^{\infty} \frac{n^5 3^n}{(2n+1)^n}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{(3n+2)!}{4^n \cdot n^2}$$
;

B)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{3n+1} \right)^n$$
;

79. a)
$$\sum_{n=0}^{\infty} n \sin n$$
;

$$\mathsf{G}) \sum_{n=1}^{\infty} \frac{n! \sqrt[5]{n}}{5^n + 2};$$

B)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{5^n}{(2n+1)^n};$$

80. a)
$$\sum_{n=0}^{\infty} e^{-n^2} n^3$$
;

$$6) \sum_{n=1}^{\infty} \frac{5^n}{(n+2)! \cdot 6^n};$$

$$\mathbf{B}) \sum_{n=1}^{\infty} \left(-1\right)^n \sin \frac{\pi}{\sqrt[3]{n}};$$

81. a)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^{n^2} \frac{1}{2^n}$$
;

$$6) \sum_{n=1}^{\infty} \frac{4n!}{\sqrt{2^n + 3}};$$

B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin \frac{5}{n}}{5^n};$$

82. a)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n}$$
;

$$6) \sum_{n=1}^{\infty} \frac{2^{n} (n+2)!}{(2n)!};$$

B)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(n+2) \cdot 9^n};$$

83. a)
$$\sum_{n=1}^{\infty} \frac{n^2}{(2n^2+1)^{\frac{n}{2}}};$$

$$\mathsf{G}) \sum_{n=1}^{\infty} \frac{7^n \cdot n!}{n^n};$$

B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin 3^n}{3^n};$$

84. a)
$$\sum_{n=0}^{\infty} ne^{-n^2}$$
;

$$\mathsf{G}) \sum_{n=1}^{\infty} \frac{(n+3)!}{n^n};$$

B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 4}$$

85. a)
$$\sum_{n=0}^{\infty} e^{-2n}$$
;

$$6) \sum_{n=1}^{\infty} \frac{6^n \cdot \sqrt[5]{n^2}}{(n+1)!};$$

$$B) \sum_{n=1}^{\infty} \left(-1\right)^n \cos \frac{\pi}{6n};$$

86. a)
$$\sum_{n=3}^{\infty} \frac{1}{n \cdot \sqrt[3]{\ln n}};$$

$$\delta) \sum_{n=1}^{\infty} \frac{n!}{n^n};$$

B)
$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2};$$

87. a)
$$\sum_{n=0}^{\infty} n \cdot \cos 3n;$$

$$6) \sum_{n=1}^{\infty} \frac{(n!)^2}{(4^n+1)(2n)!};$$

$$\mathbf{B}) \quad \sum_{n=1}^{\infty} \frac{\sin n}{n!};$$

88. a)
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{5n^2 + 4} \right)^{n^2}$$
; 6) $\sum_{n=1}^{\infty} \frac{3^n}{(n+2)! \cdot 4^n}$;

6)
$$\sum_{n=1}^{\infty} \frac{3^n}{(n+2)! \cdot 4^n}$$
;

B)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{3n+1} \right)^n$$
;

89. a)
$$\sum_{n=0}^{\infty} n \cdot \sin 4n$$
;

$$6) \sum_{n=1}^{\infty} n! \sin \frac{\pi}{3^n};$$

B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n-1}{3n};$$

90. a)
$$\sum_{n=1}^{\infty} \left(\frac{n+3}{4n-1} \right)^{n^2}$$
;

$$6) \sum_{n=1}^{\infty} \frac{2n!}{\sqrt{2^n + 3}};$$

B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{(n+1)!};$$

№№ 91–120. Найти интервал и радиус сходимости ряда.

91.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n n^3}{(n^4+1)^2};$$

106.
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{(2n+1)2^n};$$

92.
$$\sum_{n=1}^{\infty} \frac{3^n (x-2)^n}{n^3};$$

107.
$$\sum_{n=1}^{\infty} \frac{(x-5)^{2n+1}}{3n+8};$$

93.
$$\sum_{n=1}^{\infty} \frac{(x-3)^n n^2}{(n^4+1)^2};$$

108.
$$\sum_{n=1}^{\infty} \frac{\left(x+2\right)^{2n} \left(2n+9\right)^{5}}{3n+5};$$

94.
$$\sum_{n=1}^{\infty} \frac{5^n (x+4)^n}{n^2+1};$$

109.
$$\sum_{n=1}^{\infty} \frac{4^n (x+1)^{2n}}{n};$$

95.
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{(n+4)3^n};$$

110.
$$\sum_{n=1}^{\infty} \frac{(3n-2)(x-3)^n}{(n+1)^2 2^{n+1}};$$

96.
$$\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{n9^n};$$

111.
$$\sum_{n=1}^{\infty} \frac{(x+5)^n}{4^n (2n-1)};$$

97.
$$\sum_{n=1}^{\infty} \frac{x^n}{n!};$$

112.
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{(n+1)5^n};$$

98.
$$\sum_{n=1}^{\infty} \frac{n^3 (x-2)^n}{3^n};$$

113.
$$\sum_{n=1}^{\infty} \frac{n^3 (x-3)^n}{(n^4+3)^2};$$

99.
$$\sum_{n=1}^{\infty} \frac{(x+4)^n}{(2n+1)\cdot 3^n};$$

114.
$$\sum_{n=1}^{\infty} \frac{5^n (x-3)^n}{n^3};$$

100.
$$\sum_{n=1}^{\infty} \frac{(x-3)^{2n+1}}{2n+7};$$

115.
$$\sum_{n=1}^{\infty} \frac{(x-4)^n \cdot n^2}{\left(n^4+1\right)^2};$$

101.
$$\sum_{n=1}^{\infty} \frac{(x-3)^{2n} (3n+7)^3}{4n+5};$$

116.
$$\sum_{n=1}^{\infty} \frac{(x-3)^n 3^n}{n^2 + 3};$$

102.
$$\sum_{n=1}^{\infty} \frac{(x+1)^{2n} 4^n}{n};$$

117.
$$\sum_{n=1}^{\infty} \frac{\left(x-5\right)^n n^2}{\left(n^4+1\right)^2};$$

103.
$$\sum_{n=1}^{\infty} \frac{5^n (x+4)^n}{n^2+1};$$

118.
$$\sum_{n=1}^{\infty} \frac{(3n-2)(x-3)^n}{(n+1)^2 2^{n+1}};$$

104.
$$\sum_{n=1}^{\infty} \frac{(x+5)^n}{4^n (2n-1)};$$

119.
$$\sum_{n=1}^{\infty} \frac{n^3 (x-2)^n}{3^n};$$

105.
$$\sum_{n=1}^{\infty} \frac{(x+4)^n}{(2n+1)\cdot 3^n};$$

120.
$$\sum_{n=1}^{\infty} \frac{(x-4)^n \cdot n^2}{(n^4+1)^2};$$

№№ 121–150. Найти приближённое значение интеграла:

121.
$$\int_{0}^{0.1} \sin(100x^{2}) dx, \ \varepsilon = 0,001;$$
 136.
$$\int_{0}^{2} \frac{dx}{\sqrt[3]{64 + x^{3}}}, \quad \varepsilon = 0,001;$$

136.
$$\int_{0}^{2} \frac{dx}{\sqrt[3]{64 + x^{3}}}, \quad \varepsilon = 0,001;$$

122.
$$\int_{0}^{0.2} \frac{1 - e^{-x}}{x} dx, \quad \varepsilon = 0,001;$$
 137.
$$\int_{0}^{1} \frac{dx}{\sqrt[3]{8 + x^{3}}}, \quad \varepsilon = 0,001;$$

137.
$$\int_{0}^{1} \frac{dx}{\sqrt[3]{8+x^{3}}}, \quad \varepsilon = 0,001$$

123.
$$\int_{0}^{0.5} \cos(4x^2) dx, \quad \varepsilon = 0,001;$$

123.
$$\int_{0}^{0.5} \cos(4x^2) dx, \quad \varepsilon = 0{,}001; \qquad 138. \quad \int_{0}^{0.4} \sin(\frac{5x}{2})^2, \quad \varepsilon = 0{,}001;$$

124.
$$\int_{0}^{0.5} \sin(4x^2) dx, \quad \varepsilon = 0,001;$$

124.
$$\int_{0}^{0.5} \sin(4x^2) dx, \quad \varepsilon = 0{,}001;$$
 139.
$$\int_{0}^{0.2} \cos(25x^2) dx, \quad \varepsilon = 0{,}001;$$

125.
$$\int_{0}^{0.4} \frac{1 - e^{-\frac{x}{2}}}{x} dx, \quad \varepsilon = 0,001;$$

140.
$$\int_{0}^{0.2} e^{-2x^2} dx, \quad \varepsilon = 0,001;$$

126.
$$\int_{0}^{1} \cos x^{2} dx, \quad \varepsilon = 0,001;$$

141.
$$\int_{0}^{1} \frac{\ln\left(1+\frac{x}{5}\right)}{x} dx, \quad \varepsilon = 0,001;$$

127.
$$\int_{0}^{0.1} e^{-6x^2} dx, \quad \varepsilon = 0,001;$$

142.
$$\int_{0}^{1.5} \frac{dx}{\sqrt[3]{27 + x^3}}, \quad \varepsilon = 0,001;$$

128.
$$\int_{0}^{0.1} \sin(10x^2) dx, \quad \varepsilon = 0,001;$$

$$\int_{0}^{0.1} \sin(10x^{2}) dx, \quad \varepsilon = 0,001; \qquad 143 \qquad \int_{0}^{0.4} \frac{1 - e^{-\frac{x}{2}}}{x} dx, \quad \varepsilon = 0,001;$$

129.
$$\int_{0}^{0.1} \sin(100x^{2}) dx, \ \varepsilon = 0,001;$$
 144.
$$\int_{0}^{2} \frac{dx}{\sqrt[3]{64 + x^{3}}}, \quad \varepsilon = 0,001;$$

144.
$$\int_{0}^{2} \frac{dx}{\sqrt[3]{64 + x^{3}}}, \quad \varepsilon = 0,001;$$

130.
$$\int_{0}^{0.2} \frac{1 - e^{-x}}{x} dx, \quad \varepsilon = 0,001;$$

145.
$$\int_{0}^{1} \frac{dx}{\sqrt[3]{8+x^{3}}}, \quad \varepsilon = 0,001;$$

131.
$$\int_{0}^{0.5} \cos(4x^2) dx, \quad \varepsilon = 0.001;$$

146.
$$\int_{0}^{0.4} \sin\left(\frac{5x}{2}\right)^{2}, \quad \varepsilon = 0,001;$$

132.
$$\int_{0}^{0.5} \sin(4x^2) dx, \quad \varepsilon = 0,001;$$

147.
$$\int_{0}^{0.2} \cos(25x^2) dx, \quad \varepsilon = 0,001;$$

133.
$$\int_{0}^{0.1} \sin(10x^2) dx, \quad \varepsilon = 0,001;$$

148.
$$\int_{0}^{0.2} e^{-2x^2} dx, \quad \varepsilon = 0,001;$$

134.
$$\int_{0}^{1} \cos x^2 dx, \quad \varepsilon = 0,001;$$

149.
$$\int_{0}^{1} \frac{\ln\left(1+\frac{x}{5}\right)}{x} dx, \quad \varepsilon = 0,001;$$

135.
$$\int_{0}^{0.1} e^{-6x^2} dx, \quad \varepsilon = 0,001;$$

150.
$$\int_{0}^{1.5} \frac{dx}{\sqrt[3]{27+x^3}}, \quad \varepsilon = 0,001;$$

Список рекомендуемой литературы

- 1. Письменный Д. Т. Конспект лекций по высшей математике: полный курс. М.: АЙРИС ПРЕСС, 2006. 608 с.
- 2. Индивидуальные задания по высшей математике: в 4 ч. Ч. 2. Комплексные числа. Неопределенные и определенные интегралы. Функции нескольких переменных. Обыкновенные дифференциальные уравнения: учеб. пособие для студентов технич. специальностей вузов / под общ. ред. А. П. Рябушко. Минск: Вышэйшая школа, 2007. 396 с.
- 3. Лунгу К. Н., Макаров Е. В. Высшая математика. Руководство к решению задач. Ч. 1. 2-е изд., перераб. и доп. М.; ФИЗМАТЛИТ, 2010. 216 с.
- 4. Лунгу К. Н., Макаров Е. В. Высшая математика. Руководство к решению задач. Ч. 2. М.; ФИЗМАТЛИТ, 2007. 384 с.
- 5. Данко П.Е. Высшая математика в упражнениях и задачах: в 2 ч. Ч.1: учеб. пособие для вузов / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова, С. П. Данко. М.: ОНИКС, 2006. 304 с.
- 6. Данко П.Е. Высшая математика в упражнениях и задачах: в 2 ч. Ч.2: учеб. пособие для вузов: в 2 ч. // П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова, С. П. Данко. М.: ОНИКС: Мир и образование, 2006.- 416 с.