Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Кафедра математики

МАТЕМАТИКА

Методические указания и контрольная работа № 2 для студентов 1 курса (2 семестр) специальности 130400.65 «Горное дело», специализаций 130401.65, 130403.65, 130405.65, 130406.65 заочной формы обучения

Составители А. И. Бабин Е. А. Волкова Е. В. Прейс

Утверждены на заседании кафедры Протокол № 1 от 29.08.2012 Рекомендованы к печати учебно-методической комиссией специальности 130400.65 Протокол № 02/12 от 19.04.2012 Электронная копия находится в библиотеке КузГТУ

Контрольная работа № 2 составлена в соответствии с программой курса «Математика» для студентов специальности 130400.65 «Горное дело» заочной формы обучения.

В составлении работы и методических указаний к ней принимали участие преподаватели: В. М. Волков, В. А. Гоголин, И. А. Ермакова.

Номера задач контрольной работы студент должен выбрать по таблице «Выбор номеров контрольных задач» следующим образом:

- найти строку, соответствующую первой букве фамилии;
- найти столбец, соответствующий последней цифре шифра;
- на пересечении найденных строки и столбца взять номера задач контрольной работы № 2.

Контрольная работа, выполненная не по своему варианту, возвращается непроверенной.

ПРОГРАММА 1 КУРСА (2 СЕМЕСТР)

«Математика» составлена программа дисциплины ΦΓΟC ВПО c примерной ООП соответствии И подготовки 130400.65 бакалавров специальности «Горное дело», 130403.65, 130404.65, 130401.65, 130405.65, специализаций 130406.65 заочной формы обучения

- 1. Неопределённый интеграл
- 1.1. Первообразная (неопределённый интеграл), её свойства. Таблица интегралов.
- 1.2. Непосредственное интегрирование. Интегрирование по частям и подстановкой.
- 1.3. Использование таблиц (справочников) неопределённых интегралов.
 - 2. Определённый интеграл
- 2.1. Задачи, приводящиеся к понятию определённого интеграла.
 - 2.2. Определённый интеграл как предел интегральных сумм.
 - 2.3. Основные свойства определённого интеграла.
- 2.4. Производная интеграла по переменному верхнему пределу. Формула Ньютона-Лейбница.

Выбор номеров задач контрольной работы

	0	1	2	3	1	5		7	8	9
		1	2		4		6	· · · · · · · · · · · · · · · · · · ·		_
А,В,Д	1 37 75	2 38 76	3 39 77	4 40 78	5 41 79	6 42 80	7 43 81	8 44 82	9 45 83 98	10 46 84 99
	120 121	91 122	92 123	93 124	94 125	95 126	96 127	97 128	129	130
Б,Е,З	11 47 85	12 48 86	13 49 87	14 50 88	15 51 89	16 52 90	17 53 91	18 54 92	19 55 93	20 56 64
	100 131	101 132	102 133	103 134	104 135	105 136	106 137	107 138	108 139	109 140
Г,Ж,	21 57 65	22 58 66	23 59 67	24 30 68	25 31 69	26 32 70	27 33 71	28 34 72	29 35 73	30 36 74
И,Л	110 121	111 122	112 123	113 124	114 125	115 126	116 127	117 128	118 129	119 130
К	1 38 75	2 39 76	3 40 77	4 41 78	5 42 79	6 43 80	7 44 81	8 45 82	9 46 83 98	10 47 84 99
	120 131	91 132	92 133	93 134	94 135	95 136	96 137	97 138	139	140
М,Н,О	11 49 85	12 48 86	13 50 87	14 51 88	15 52 89	16 53 90	17 54 61	18 55 62	19 56 63	20 57 64
	100 141	101 142	102 143	103 144	104 145	105 146	106 147	107 148	108 149	109 150
П,Х,Ц,	21 58 65	22 59 66	23 60 67	24 60 68	25 39 69	26 31 70	27 32 71	28 33 72	29 34 73	30 35 74
Ш	110 121	111 122	112 123	113 124	114 125	115 126	116 127	117 128	118 129	119 130
С,У,Ё,	1 36 75	2 37 76	3 38 77	4 40 78	5 41 79	6 42 80	7 43 81	8 44 82	9 45 83 98	10 46 84 99
Ы,Й	91 131	92 132	93 133	94 134	95 135	96 136	97 137	120 138	139	140
Р,Т,Ф	21 57 65	22 58 66	23 59 67	24 60 68	25 36 69	26 31 70	27 32 71	28 33 72	29 34 73	30 35 74
	110 141	111 142	112 143	113 144	114 145	115 146	116 147	117 148	118 149	119 150
Е,Щ,Р	11 47 85	12 48 86	13 49 87	14 50 88	15 51 89	16 52 90	17 53 61	18 54 62	19 55 63	20 56 64
. К,	100 150	101 121	102 122	103 123	104 124	105 125	106 126	107 127	108 128	109 129

- 3. Теория функций комплексного переменного
- 3.1. Комплексные числа и действия над ними.
- 3.2. Алгебраические действия над комплексными числами.
- 4. Обыкновенные дифференциальные уравнения
- 4.1. Задачи, приводящиеся к дифференциальным уравнениям. Основные определения.
- 4.2. Дифференциальные уравнения первого порядка. Задача Коши. Теорема существования и единственности решения задачи Коши.
- 4.3. Интегрирование простейших типов дифференциальных уравнений: с разделяющимися переменными, однородных и линейных.
- 4.4. Дифференциальные уравнения второго порядка. Задача Коши. Уравнения, допускающие понижение порядка.
- 4.5. Линейные дифференциальные уравнения с постоянными коэффициентами.
- 4.6. Применение дифференциальных уравнений для решения задач физики и механики.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ

Для вычисления неопределённых интегралов (№ 1-30) необходимо проработать литературу: [2, гл.І, §1 - §7, с. 8-54; 4, п. 6, с. 148 - 168], где содержатся практические рекомендации по данной теме.

Для выполнения задания 1-30 (пункт а) нужно из таблицы интегралов выбрать такой, к которому можно свести данный интеграл.

Например, при вычислении

$$\int \frac{dx}{\sqrt[3]{(5x+2)^5}} = \int (5x+2)^{-\frac{5}{3}} dx,$$

используем табличный интеграл

$$\int u^n du = \frac{u^{n+1}}{n+1} + c.$$

Согласно этой формуле, подводим под знак дифференциала основание степени. Так как d(5x+2)=5dx, то умножим и разделим интеграл на 5, то есть

$$\int \frac{dx}{\sqrt[3]{(5x+2)^5}} = \int (5x+2)^{-\frac{5}{3}} dx = \frac{1}{5} \int (5x+2)^{-\frac{5}{3}} \cdot 5 dx = \frac{1}{5} \int (5x+2)^{-\frac{5}{3}} d(5x+2) =$$

$$= \frac{1}{5} \cdot \frac{\left(5x+2\right)^{-\frac{5}{3}+1}}{-\frac{5}{3}+1} + c = -\frac{3}{10} \left(5x+2\right)^{-\frac{2}{3}} + c = -\frac{3}{10\sqrt[3]{\left(5x+2\right)^2}} + c.$$

Интеграл $\int x \cdot e^{3x^2 - 1} dx$ сводится к табличному $\int e^u du = e^u + c$ путём подведения под знак дифференциала показателя степени $d(3x^2 - 1) = 6xdx$. Таким образом

$$\int x \cdot e^{3x^2 - 1} dx = \frac{1}{6} \int e^{3x^2 - 1} 6x dx = \frac{1}{6} \int e^{3x^2 - 1} d(3x^2 - 1) = \frac{1}{6} e^{3x^2 - 1} + c.$$

В примере $\int \frac{3\cos x \cdot dx}{2+\sin x}$ используем формулу $\int \frac{du}{u} = \ln |u| + c$, где под знаком дифференциала находится знаменатель дроби. Так как $d(2+\sin x) = \cos x dx$, то

$$3\int \frac{\cos x dx}{2 + \sin x} = 3\int \frac{d(2 + \sin x)}{2 + \sin x} = 3 \cdot \ln|2 + \sin x| + c.$$

При вычислении интегралов в пункте б) применяются методы подстановки и интегрирования по частям, то есть по формуле $\int u dv = uv - \int v du$ мы от исходного интеграла $\int u dv$ переходим к более простому интегралу $\int v du$.

Пример. $\int \mathbf{x} \cdot \mathbf{arctgxdx} = \int \mathbf{arctgx} \cdot \mathbf{xdx}$, то есть возьмём

$$\begin{bmatrix} u = arctgx \Rightarrow du = \frac{dx}{1 + x^2}, \\ dv = xdx \Rightarrow v = \int dv = \int xdx = \frac{x^2}{2}. \end{bmatrix}$$

(здесь при нахождении ${\bf v}$ константу ${\bf c}$ полагаем равной 0). Получим

$$\int x \cdot \operatorname{arctgxdx} = \int \operatorname{arctgx} \cdot x dx = \frac{x^2}{2} \operatorname{arctgx} - \frac{1}{2} \int x^2 \cdot \frac{dx}{1 + x^2}.$$

Возьмём $\int x^2 \cdot \frac{dx}{1+x^2}$ отдельно

$$\int x^2 \cdot \frac{dx}{1+x^2} = \int \frac{x^2+1-1}{x^2+1} dx = \int \left(1 - \frac{1}{1+x^2}\right) dx = \int dx - \int \frac{dx}{1+x^2} = x - \arctan x + c$$

Итак

$$\int x \cdot \operatorname{arctgxdx} = \frac{x^2}{2} \operatorname{arctgx} - \frac{1}{2} (x - \operatorname{arctgx}) + c.$$

Пример. Найти $\int x \cdot e^{-3x} dx$. Пусть

$$\begin{bmatrix} u = x \Rightarrow du = dx, \\ dv = e^{-3x} dx \Rightarrow v = \int e^{-3x} dx = -\frac{1}{3} \int e^{-3x} d(-3x) = -\frac{1}{3} e^{-3x} \end{bmatrix}.$$

$$\int x \cdot e^{-3x} dx = x \left(-\frac{1}{3} e^{-3x} \right) - \int \left(-\frac{1}{3} e^{-3x} \right) dx = -\frac{x e^{-3x}}{3} + \frac{1}{3} \int e^{-3x} dx =$$

$$= -\frac{x e^{-3x}}{3} - \frac{e^{-3x}}{9} + c.$$

Пример. При вычислении интеграла $I = \int \frac{2 + \sqrt{x+1}}{x+3} dx$ сделаем подстановку $u = \sqrt{x+1} \Rightarrow u^2 = x+1 \Rightarrow x = u^2 - 1 \Rightarrow dx = 2udu$, $x+3 = u^2 - 1 + 3 = u^2 + 2$. Получим

$$I = \int \frac{2 + \sqrt{x + 1}}{x + 3} dx = \int \frac{2 + u}{u^2 + 2} 2u du = 2 \int \frac{2u + u^2}{u^2 + 2} du.$$

Дробь $\frac{2u+u^2}{u^2+2}$ неправильная (степень числителя не меньше степени знаменателя). Выделим целую часть

$$\frac{\left(u^{2}+2\right)-2+2u}{u^{2}+2}=1-\frac{2}{u^{2}+2}+\frac{2u}{u^{2}+2}.$$

$$\text{Итак } \mathbf{I}=2\int\frac{2u+u^{2}}{u^{2}+2}du=2\left(\int du-\int\frac{2du}{u^{2}+2}+\int\frac{2udu}{u^{2}+2}\right)=2u-\frac{4}{\sqrt{2}}\arctan\frac{u}{\sqrt{2}}+2\cdot\ln\left(u^{2}+2\right)+c=2\sqrt{x+1}-\frac{4}{\sqrt{2}}\arctan\left(\frac{x+1}{2}+2\cdot\ln\left(x+3\right)+c\right).$$

Здесь $\int du$ и $\int \frac{du}{u^2 + 2}$ табличные, а

$$\int \frac{2u du}{u^2 + 2} = \int \frac{d(u^2 + 2)}{u^2 + 2} = \ln(u^2 + 2) + c.$$

Для нахождения площадей плоских фигур и объёмов тел вращения в задачах № 31-60 рекомендуется изучить литературу [2, гл. II, § 2, с. 67 - 68; 4, п. 7.11 - 7.12, с. 185-190].

Пример. Найти площади частей, на которые круг $x^2 + y^2 = 12$ делится параболой $y = x^2$.

Сделаем схематический чертёж (рис.1) и найдём точки пересечения этих линий

$$\begin{cases} x^{2} + y^{2} = 12 \\ y = x^{2} \end{cases} \Rightarrow \begin{cases} x^{2} = 12 - y^{2} \\ x^{2} = y \end{cases} \Rightarrow 12 - y^{2} = y \Rightarrow$$

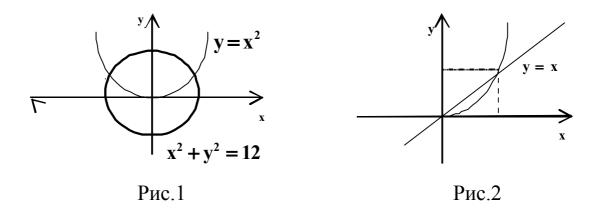
$$y^{2} + y - 12 = 0 \Rightarrow y = \frac{-1 \pm \sqrt{1 + 48}}{2} = \frac{-1 \pm 7}{2}, y = 3.$$

В точке пересечения $x^2 = 3 \Rightarrow x_1 = -\sqrt{3}$, $x_2 = \sqrt{3}$. Площадь меньшей

$$S_{1} = \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{12 - x^{2}} dx - \int_{-\sqrt{3}}^{\sqrt{3}} x^{2} dx = \left(\frac{x}{2}\sqrt{12 - x^{2}} + 6 \cdot \arcsin\frac{x}{\sqrt{12}}\right) \Big|_{-\sqrt{3}}^{\sqrt{3}} - \frac{x^{3}}{3} \Big|_{-\sqrt{3}}^{\sqrt{3}} =$$

$$= \frac{\sqrt{3}}{2}\sqrt{12 - 3} + 6 \cdot \arcsin\sqrt{\frac{3}{12}} - \left(-\frac{\sqrt{3}}{2}\sqrt{12 - 3} - 6 \cdot \arcsin\sqrt{\frac{3}{12}}\right) -$$

$$-\left(\frac{3\sqrt{3}}{3} - \frac{-3\sqrt{3}}{3}\right) = 3\sqrt{3} + 12 \cdot \frac{\pi}{6} - 2\sqrt{3} = \sqrt{3} + 2\pi.$$



Площадь большей части $S_2 = \pi r^2 - S_1 = \pi \cdot 12 - \sqrt{3} - 2\pi = 10\pi - \sqrt{3} \ .$

Пример. Найти объём тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями y = x, $y = x\sqrt{\sin x}$, $0 \le x \le \pi$.

Сделаем схематический чертёж (рис.2) и найдём точки пересечения этих линий

$$\begin{cases} y = x \\ y = x\sqrt{\sin x} \Rightarrow x - x\sqrt{\sin x} = 0, x_1 = 0, 1 - \sqrt{\sin x} = 0, \sin x = 1, x_2 = \frac{\pi}{2}. \end{cases}$$

$$V = V_1 - V_2 = \pi \int_a^b y_1^2 dx - \pi \int_a^b y_2^2 dx = \pi \int_0^{\frac{\pi}{2}} x^2 dx - \pi \int_0^{\frac{\pi}{2}} x^2 \cdot \sin x dx = 1$$

$$= \pi \left(\frac{x^3}{3} - 2x \sin x + \left(x^2 - 2 \right) \cos x \right) \Big|_0^{\frac{\pi}{2}} = \pi \left(\frac{\pi^3}{24} - \pi + 2 \right),$$

$$\int x^2 \sin x dx = 2x \sin x - \left(x^2 - 2 \right) \cos x.$$

При нахождении длины дуги в задачах № 31-60 и массы неоднородной линии в задачах № 61-90 следует помнить, что дифференциал длины дуги выражается различными формулами [2, гл. II, § 2.2, с. 68; 4, п. 7.10.11, с. 184 - 185].

1) $ds = \sqrt{1 + (y_x')^2} \cdot dx$, если линия задана в декартовых координатах;

- 2) $ds = \sqrt{(x'_t)^2 + (y'_t)^2} \cdot dt$, если линия задана параметрически x = x(t), y = y(t);
- 3) $ds = \sqrt{r^2 + (r'(\theta))^2} \cdot d\theta$, если линия задана в полярных координатах $r = r(\theta)$.

Пример. Найти длину дуги кривой $\mathbf{r} = \cos^2\frac{\theta}{2}, \quad 0 \le \theta \le \frac{\pi}{2}.$ Вычисляем $\mathbf{d}\mathbf{s} = \sqrt{\mathbf{r}^2 + \left(\mathbf{r}'(\theta)\right)^2} \cdot \mathbf{d}\theta, \, \mathbf{r}'_{\theta} = 2\cos\frac{\theta}{2} \cdot \left(-\sin\frac{\theta}{2}\right) \cdot \frac{1}{2}.$ $\mathbf{r}^2 + \left(\mathbf{r}'(\theta)\right)^2 = \cos^4\frac{\theta}{2} + \cos^2\frac{\theta}{2} \cdot \sin^2\frac{\theta}{2} = \cos^2\frac{\theta}{2} \cdot \left(\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}\right) = \cos^2\frac{\theta}{2},$ $\mathbf{d}\mathbf{s} = \sqrt{\cos^2\frac{\theta}{2}}\mathbf{d}\theta = \cos\frac{\theta}{2}\mathbf{d}\theta,$ $\mathbf{S} = \int_0^{\frac{\pi}{2}} \cos\frac{\theta}{2}\mathbf{d}\theta = 2\sin\frac{\theta}{2}\Big|_0^{\frac{\pi}{2}} = 2\Big(\sin\frac{\pi}{4} - \sin\theta\Big) = 2 \cdot \frac{\sqrt{2}}{2} = \sqrt{2}.$

Пример. Найти массу участка линии

$$L: \begin{cases} x = a(t-\sin t), \\ y = a(1-\cos t), \end{cases} 0 \le t \le 2\pi, \text{ если плотность } \gamma = 3y.$$

$$m = \int \gamma \cdot ds.$$

Найдём
$$ds = \sqrt{(x_t')^2 + (y_t')^2} \cdot dt$$
, $x_t' = a(1-\cos t)$, $y_t' = a \cdot \sin t$, $ds = \sqrt{a^2(1-\cos t)^2 + a^2\sin^2 t} \cdot dt =$ $= a\sqrt{1-2\cos t + \cos^2 t + \sin^2 t} \cdot dt =$ $= a\sqrt{2-2\cos t} \cdot dt = a\sqrt{2}\sqrt{2\sin^2\frac{t}{2}} \cdot dt = 2a\sin\frac{t}{2} \cdot dt$. $m = \int_0^{2\pi} 3a(1-\cos t) \cdot 2a \cdot \sin\frac{t}{2}dt = 6a^2\int_0^{2\pi} 2\sin^2\frac{t}{2} \cdot \sin\frac{t}{2}dt = 12a^2\int_0^{2\pi} \sin^3\frac{t}{2}dt =$

$$=12a^{2}\left(-2\cos\frac{t}{2}+\frac{1}{3}\cdot2\cdot\cos^{3}\frac{t}{2}\right)\Big|_{0}^{2\pi}=12a^{2}\left(2-\frac{2}{3}+2-\frac{2}{3}\right)=32a^{2}.$$

3. Теория функций комплексного переменного

3.1. Комплексные числа и действия над ними.

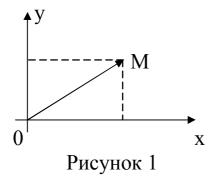
Более подробный теоретический материал и практические рекомендации по данной теме (\mathbb{N}_{2} 61-90) можно найти, например, в следующих учебниках: [1, т. 1, гл. VI, § 1, 2, с. 134 - 137; 3, т.2, § 5.3, с. 239-244].

Комплексными числами называются числа вида z = x + i y, где $i^2 = -1$, x, y — действительные числа, x = Re z — действительная часть, y = Im z — мнимая часть комплексного числа.

По определению, два комплексных числа: $\mathbf{z}_1 = \mathbf{x}_1 + \mathbf{i} \ \mathbf{y}_1$ и $\mathbf{z}_2 = \mathbf{x}_2 + \mathbf{i} \ \mathbf{y}_2$ — равны тогда и только тогда, когда и $\mathbf{y}_1 = \mathbf{y}_2$.

Комплексное число \overline{z} называется сопряженным комплексному числу z, если $Re\ \overline{z} = Re\ z$, $Im\ \overline{z} = -Im\ z$. Другими словами, если $z = x + i\ y$, то $\overline{z} = x - i\ y$.

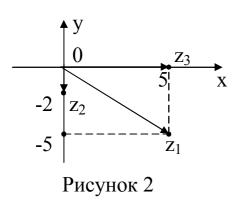
Всякому комплексному числу $\mathbf{x} + \mathbf{i} \mathbf{y}$ можно поставить в соответствие единственную точку плоскости $\mathbf{M}(\mathbf{x}, \mathbf{y})$ и обратно, всякую точку $\mathbf{M}(\mathbf{x}, \mathbf{y})$ плоскости \mathbf{XOY} можно рассматривать как геометрический образ единственного комплексного числа $\mathbf{x} + \mathbf{i} \mathbf{y}$.



Для сокращения изложения "точка, говорят: соответствующая x + i y''числу комплексному говорят просто – "точка х+і у". При этом множество всех действительных изображается чисел точками абсцисс, которая поэтому называется действительной осью, множество чисто мнимых чисел і у точками оси ординат, называемой мнимой осью. Заметим, что одна точка мнимой оси, а именно начало координат,

изображает действительное число нуль. Плоскость, точки которой изображают комплексные числа, называется комплексной плоскостью.

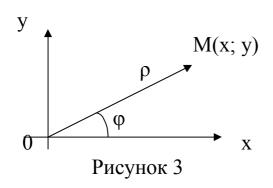
В некоторых случаях удобно считать геометрическим изображением числа $\mathbf{x} + \mathbf{i} \ \mathbf{y}$ радиус-вектор точки $\mathbf{M}(\mathbf{x}, \mathbf{y}) - \overrightarrow{\mathbf{O} \ \mathbf{M}} \ \{\mathbf{x}, \mathbf{y}\}$.



Пример 1. Построить точки $z_1 = 5 - 5i$, $z_2 = -2i$, $z_3 = 5$.

В дальнейшем, наряду с представлением комплексных чисел в декартовых координатах, полезно иметь их представление в обобщенных полярных координатах.

Рассмотрим число x + i y, которому на плоскости соответствует точка M(x, y). Ее координаты в полярной системе координат (ρ, ϕ) .



Тогда
$$x = \rho \cos \varphi$$
,
 $y = \rho \sin \varphi$.
 $z = x + i y = \rho \cos \varphi + i \rho \sin \varphi =$
 $= \rho (\cos \varphi + i \sin \varphi)$.

Полярный радиус $\rho = |\overrightarrow{OM}|$ называется *модулем* комплексного числа и обозначается $|\mathbf{z}| = \rho$.

Полярный угол ϕ называется *аргументом* комплексного числа и обозначается $\phi = \operatorname{Arg} z$. Тогда

$$z = \rho(\cos \varphi + i \sin \varphi) = |z|(\cos Arg z + i \sin Arg z).$$

Эта форма называется тригонометрической формой комплексного числа.

Модуль комплексного числа определяется однозначно: $|\mathbf{z}| = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$.

Аргумент комплексного числа определяется с точностью до слагаемого, кратного 2π . Главным значением аргумента называется значение, заключенное в интервале $(-\pi, \pi]$. Обозначается оно $\arg z$. Таким образом, $-\pi < \arg z \le \pi$.

Очевидно, Arg $z = arg z + 2k \pi$.

Главное значение аргумента определяется однозначно.

Так как
$$tg arg z = \frac{y}{x}$$
,

$$\arg z = \begin{cases} \arctan \left(x, y \right) \in I, IV \text{ четвертям,} \\ \arctan \left(x, y \right) \in II \text{ четверти,} \\ \arctan \left(x, y \right) \in III \text{ четверти,} \\ \arctan \left(x, y \right) \in III \text{ четверти.} \end{cases}$$

Тригонометрическая форма комплексного числа будет иметь вид

$$z = |z|(\cos(\arg z + 2k\pi) + i\sin(\arg z + 2k\pi)).$$

Пример 2. Написать в тригонометрической форме комплексное число z = -1 + i.

Решение.
$$|z| = \sqrt{1+1} = \sqrt{2}$$
, tg $\varphi = -1$,

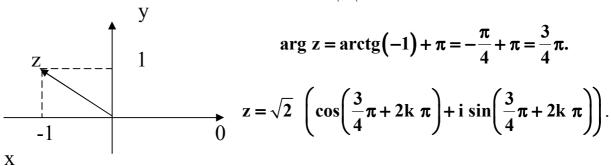


Рисунок 4

Пусть $\mathbf{z} = \mathbf{x} + \mathbf{i} \ \mathbf{y} = |\mathbf{z}| (\cos \operatorname{Arg} \mathbf{z} + \mathbf{i} \sin \operatorname{Arg} \mathbf{z})$. Используя формулу Эйлера $\cos \mathbf{\varphi} + \mathbf{i} \sin \mathbf{\varphi} = \mathbf{e}^{\mathbf{i} \mathbf{\varphi}}$, получаем так называемую *показательную форму* записи комплексного числа:

$$z = |z| e^{i Arg z}$$
.

Пример 3. Представить в показательной форме комплексное число z = -1 - i.

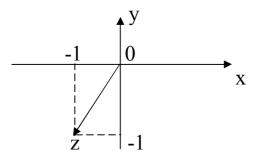


Рисунок 5

Решение

$$|z| = \sqrt{1+1} = \sqrt{2}, \quad \text{tg } \varphi = 1,$$

$$\arg z = \frac{\pi}{4} - \pi = -\frac{3}{4}\pi,$$

$$-1 - i = \sqrt{2} e^{-\frac{3}{4}\pi i + 2k \pi i}.$$

Пример 4. Вычислить $e^{\pi i}$.

Решение. По формуле Эйлера $e^{\pi i} = \cos \pi + i \sin \pi = -1$.

3.2. Алгебраические действия над комплексными числами.

Для выполнения алгебраических действий над комплексными числами (№ 91-120) необходимо проработать литературу: [1, т. 1, гл. VI, \S 3, с. 137, 138; 3, т.2, \S 5.3, с. 239-244], где содержатся теоретический материал и практические рекомендации по данной теме.

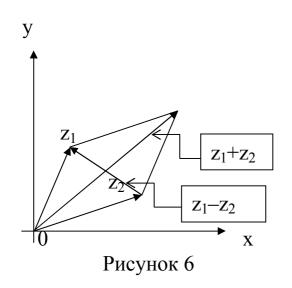
Сложение и умножение комплексных чисел производится по правилам сложения и умножения алгебраических многочленов с учетом $i \cdot i = -1$. При записи результата следует отделить действительную часть от мнимой части, т. е. собрать отдельно члены, содержащие множитель i, и члены, не содержащие множитель i:

$$(x_1 + i y_1) + (x_2 + i y_2) = (x_1 + x_2) + i(y_1 + y_2),$$

$$(x_1 + i y_1) \cdot (x_2 + i y_2) = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2),$$

$$(x_1 + i y_1) - (x_2 + i y_2) = (x_1 - x_2) + i(y_1 - y_2).$$

В частности, $\mathbf{z} \cdot \overline{\mathbf{z}} = |\mathbf{z}|^2$. Операции сложения и вычитания сводятся к сложению и вычитанию векторов, изображающих эти числа. Отсюда расстояние между точками $\rho(\mathbf{z}_1, \mathbf{z}_2) = |\mathbf{z}_1 - \mathbf{z}_2|$.



Пример 5.

 $|{\bf z} - {\bf z}_0| = {\bf R}$ — уравнение окружности с центром в точке ${\bf z}_0$ и радиусом равным ${\bf R}$.

Деление на комплексное число, отличное от нуля, определяется как действие, обратное действию умножения.

Для представления частного в виде $\mathbf{Re} \ \mathbf{z} + \mathbf{i} \ \mathbf{Im} \ \mathbf{z}$ следует провести простые преобразования, показанные на следующем примере.

Пример 6.
$$\frac{3-i}{1+2i} = \frac{(3-i)(1-2i)}{(1+2i)(1-2i)} = \frac{3-6i-i-2}{1+4} = \frac{1-7i}{5} = \frac{1}{5} - \frac{7}{5}i$$
.

Для модуля и аргумента произведения и частного справедливы следующие утверждения:

1.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
, Arg $(z_1 \cdot z_2) = \text{Arg } z_1 + \text{Arg } z_2$.

Пример 7. Найти модуль и аргумент произведения z·i.

Решение.
$$|\mathbf{z} \cdot \mathbf{i}| = |\mathbf{z}|$$
, Arg $(\mathbf{z} \cdot \mathbf{i}) = \text{Arg } \mathbf{z} + \left(\frac{\pi}{2} + 2k\pi\right)$.

Таким образом, умножение на і соответствует повороту вектора

$$z$$
 на угол $\frac{\pi}{2}$;

2.
$$\left| \frac{\mathbf{z}_1}{\mathbf{z}_2} \right| = \frac{|\mathbf{z}_1|}{|\mathbf{z}_2|}$$
, $\operatorname{Arg} \frac{\mathbf{z}_1}{\mathbf{z}_2} = \operatorname{Arg} \mathbf{z}_1 - \operatorname{Arg} \mathbf{z}_2$.

Пусть $z = |z| (\cos Arg z + i \sin Arg z)$.

Тогда
$$z^2 = z \cdot z = |z|^2 (\cos 2 \operatorname{Arg} z + i \sin 2 \operatorname{Arg} z)$$
.

Можно доказать методом полной математической индукции, что для любого целого $\mathbf{n} > 0$: $\mathbf{z}^{\mathbf{n}} = |\mathbf{z}|^{\mathbf{n}} \left(\cos \mathbf{n} \operatorname{Arg} \mathbf{z} + \mathbf{i} \sin \mathbf{n} \operatorname{Arg} \mathbf{z}\right)$ (формула Муавра). Формула справедлива и для целых отрицательных \mathbf{n} .

Пример 8. Вычислить $(\sqrt{3} - i)^5$.

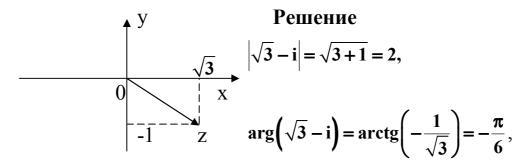


Рисунок 7

$$\sqrt{3} - i = 2 \left(\cos \left(-\frac{\pi}{6} + 2k\pi \right) + i \sin \left(-\frac{\pi}{6} + 2k\pi \right) \right),$$

$$\left(\sqrt{3} - i \right)^5 = 2^5 \left(\cos \left(-\frac{5}{6}\pi + 10k\pi \right) + i \sin \left(-\frac{5}{6}\pi + 10k\pi \right) \right) =$$

$$= 32 \left(-\frac{\sqrt{3}}{2} - i\frac{1}{2} \right) = -16\sqrt{3} - 16i.$$

Корнем ${\bf n}$ - ой степени из комплексного числа называется такое число ${\bf w}$, для которого ${\bf w}^{\bf n}={\bf z}$.

Используя формулу Муавра, получим

$$|w| = \sqrt[n]{|z|}$$
, Arg $w = \frac{\text{Arg } z}{n} = \frac{\text{arg } z + 2k \pi}{n}$, $k = 0, 1, 2, ..., n-1$.

Для других значений \mathbf{k} аргументы будут отличаться от полученных на число кратное 2π , и, следовательно, получатся значения корня, совпадающие с рассмотренными ранее. Итак, корень \mathbf{n} - ой степени из комплексного числа имеет \mathbf{n} различных значений.

Пример 9. Найти все значения $\sqrt[3]{-8}$ и построить их.

Решение.
$$|-8| = 8$$
, $\arg(-8) = \pi$, $-8 = 8(\cos(\pi + 2k\pi) + i\sin(\pi + 2k\pi))$, $\sqrt[3]{-8} = 2(\cos\frac{\pi + 2k\pi}{3} + i\sin\frac{\pi + 2k\pi}{3})$,

Рисунок 8

$$k = 0, \quad w_1 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 1 + i\sqrt{3},$$

$$k = 1, \quad w_2 = 2\left(\cos\frac{\pi + 2\pi}{3} + i\sin\frac{\pi + 2\pi}{3}\right) = 2\left(-1 + i\cdot 0\right) = -2,$$

$$k = 2, \quad w_3 = 2\left(\cos\frac{\pi + 4\pi}{3} + i\sin\frac{\pi + 4\pi}{3}\right) = 2\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 1 - i\sqrt{3}.$$

4. Обыкновенные дифференциальные уравнения

В задачах № 91-120 при отыскании общего решения дифференциального уравнения первого порядка следует использовать литературу [2, т. 2, гл. VI, § 3, 4, с. 161 - 166; 4, п. 12.5-12.8, с. 169-277].

Перед решением задач нужно определить тип уравнения и метод решения, при этом можно руководствоваться табл.1.

Пример. Найти общее решение уравнения $\frac{\mathbf{y'}}{\sin \mathbf{x}} = \mathbf{y}$.

Так как $\mathbf{y'} = \frac{\mathbf{dy}}{\mathbf{dx}}$, то получаем уравнение $\frac{\mathbf{dy}}{\mathbf{dx}} = \mathbf{y} \cdot \sin \mathbf{x}$ — уравнение первого типа. Разделяем переменные

$$\frac{dy}{y} = \sin x \cdot dx, \int \frac{dy}{y} = \int \sin x dx, \ln |y| = -\cos x + c,$$

где **с** – произвольная постоянная. Можно оставить решение в таком виде или выразить **у** в явном виде

$$y = e^{-\cos x + c}.$$

Пример. Найти общее решение уравнения $y' = e^{\frac{y}{x}} + \frac{y}{x}$.

Это уравнение второго типа, однородное, следовательно, делаем подстановку $\frac{y}{x} = u, y = ux, y' = u'x + u$. Уравнение примет вид

$$u'x + u = e^{u} + u$$
, $\frac{du}{dx} \cdot x = e^{u}$, $\frac{du}{dx} = \frac{e^{u}}{x}$.

Получили уравнение с разделяющимися переменными

$$\frac{du}{e^{u}} = \frac{dx}{x}, \quad \int \frac{du}{e^{u}} = \int \frac{dx}{x}, \quad -e^{-u} = \ln|x| + \ln c.$$

Здесь мы обозначили произвольную постоянную не ${f c}$, а ${f lnc}$ для удобства записи

$$-e^{-u} = \ln |cx|, \quad u = \frac{y}{x} \Rightarrow -e^{-\frac{y}{x}} = \ln |cx|.$$

Можно оставить решение в таком виде, а можно у выразить явно

$$e^{-\frac{y}{x}} = -\ln|cx|, \quad e^{-\frac{y}{x}} = \ln\frac{1}{|cx|}, \quad -\frac{y}{x} = \ln\ln\frac{1}{|cx|}, \quad y = -x\ln\ln\frac{1}{|cx|}.$$

Пример. Найти общее решение уравнения y' + 2y = x.

Это линейное уравнение P(x) = 2, Q(x) = x (табл.1). Делаем подстановку $y = u(x) \cdot v(x)$, y' = u'v + uv'. Подставив эти соотношения в исходное уравнение, получаем u'v + uv' + 2uv = x. Одну из функций находим из уравнения

$$uv' + 2uv = 0, \quad \frac{dv}{dx} + 2v = 0,$$

тогда вторая функция \mathbf{u} определяется из уравнения $\mathbf{u'v} = \mathbf{x}$. Решая первое уравнение, находим функцию \mathbf{v} , то есть

$$\frac{dv}{dx} = -2v, \quad \frac{dv}{v} = -2dx, \quad \int \frac{dv}{v} = -\int 2dx, \quad \ln|v| = -2x, \quad v = e^{-2x},$$

Таблица 1 Дифференциальные уравнения первого порядка

Тип	Вид уравнения	Метод решения		
дифференциального				
уравнения первого				
порядка				
1.С разделяющимися	$\frac{dy}{dy} = f_1(y) \cdot f_2(y)$	$\int \frac{dy}{dx} - \int \int \int \int \int \int dx$		
переменными	$\frac{\mathrm{d}y}{\mathrm{d}x} = f_1(x) \cdot f_2(y)$	$\int \frac{\mathrm{d}y}{f_2(y)} = \int f_1(x) \mathrm{d}x$		
2. Однородное	$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{y}{x}\right)$	Подстановка		
	dx (x)	$\frac{y}{x} = u, y = ux$		
		X		
		y' = u'x + u приводит к		
		уравнению первого типа		
3. Линейное	$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$	Подстановка		
	$\frac{dx}{dx} + 1(x)y - Q(x)$	$y = u(x) \cdot v(x)$		
		приводит к уравнениям		
		первого типа		
		$\frac{dy}{dx} + P(x) \cdot v = 0,$ $\frac{du}{dx} \cdot v = Q(x)$		
		dx '		
		$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{v}} \cdot \mathbf{v} = \mathbf{O}(\mathbf{x})$		
		dx		

произвольную константу для функции ${f v}$ полагаем равной нулю. Получаем уравнение для нахождения функции ${f u}$

$$\frac{du}{dx} \cdot e^{-2x} = x, \quad du = \frac{x}{e^{-2x}} dx, \quad du = x \cdot e^{2x} dx, \quad \int du = \int x \cdot e^{2x} dx,$$

$$u = \frac{1}{2} x \cdot e^{2x} - \frac{1}{2} \int e^{2x} dx = \frac{1}{2} x \cdot e^{2x} - \frac{1}{4} e^{2x} + c.$$

Решение исходного уравнения имеет вид

$$y = uv = \left(\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c\right) \cdot e^{-2x}$$
.

При решении задач № 121-150 используются приёмы решения дифференциальных уравнений второго порядка с постоянными

коэффициентами, изложенные в литературе [2, т. 2, гл. VI, § 8, 9, с. 186 - 197; 4, п. 12.11-12.13, с. 279-286].

Для нахождения общего решения однородного дифференциального уравнения используется табл. 2, а для нахождения частного решения неоднородного дифференциального уравнения используется табл. 3.

Пример. Найти частное решение дифференциального уравнения

$$y'' + 8y' + 16y = 2xe^{-4x}$$
,

удовлетворяющее начальным условиям y(0) = 1, y'(0) = 2.

Таблица 2. Общее решение однородного уравнения

		1 1			
Вид	общего	решения	Корни характеристическо	ОГО	
одноро	дного уравнен	R ИН	уравнения		
1. $y_0 =$	$c_1 e^{k_1 x} + c_2 e^{k_2 x}$		$\mathbf{k_1}, \mathbf{k_2}$ – вещественные, $\mathbf{k_1} \neq \mathbf{k_2}$		
2. $y_0 =$	$(c_1 + c_2 x)e^{kx}$		k_1, k_2 — вещественные, $k_1 = k_2$		
3. $y_0 = (c_1 \cos \beta x + c_2 \sin \beta x)e^{\alpha x}$			$\mathbf{k_1, k_2}$ – комплексные,		
	•	•	$k_1 = \alpha + \beta i, k_2 = \alpha - \beta i$	ļ	

Решение. Общее решение неоднородного уравнения можно записать в виде $y = y_0 + Y$, где y_0 — общее решение однородного уравнения

$$y'' + 8y' + 16y = 0$$
,

которое определяется по табл. 3, а Y — частное решение неоднородного уравнения, которое определяется по табл. 4.

Для определения $\mathbf{y_0}$ составим характеристическое уравнение

$$k^2 + 8k + 16 = 0$$
.

Его корни $\mathbf{k}_1 = \mathbf{k}_2 = -4$. Следовательно, $\mathbf{y}_0 = \mathrm{e}^{-4x} (\mathbf{c}_1 + \mathbf{c}_2 \mathbf{x})$.

Так как правая часть уравнения $f(x) = 2xe^{-4x}$, то $Y = x^2 \cdot e^{-4x} (Ax + B)$.

Здесь
$$a = -4$$
, $P_n(x) = 2x$, $r = 2$.

$$Y = e^{-4x} \left(Ax^3 + Bx^2 \right).$$

$$Y' = -4e^{-4x} \left(Ax^3 + Bx^2 \right) + e^{-4x} \left(3Ax^2 + 2Bx \right) =$$

$$= e^{-4x} \left(-4Ax^3 + x^2 \left(-4B + 3A \right) + 2Bx \right).$$

$$Y'' = -4e^{-4x} \left(-4Ax^3 + x^2 \left(-4B + 3A \right) + 2Bx \right) + e^{-4x} \left(12Ax^2 + 2x \left(-4B + 3A \right) + 2Bx \right) + 2Bx \right) = e^{-4x} \left(16Ax^3 + x^2 \left(16B - 24A \right) + x \left(-16B + 6A \right) + 2B \right).$$
Подставив эти значения в наше уравнение, получим
$$e^{-4x} \left(16Ax^3 + x^2 \left(16B - 24A \right) + x \left(-16B + 6A \right) + 2B \right) + 8e^{-4x} \left(-4Ax^3 + x^2 \left(-4B + 3A \right) + 2Bx \right) + 16e^{-4x} \left(Ax^3 + Bx^2 \right) = 2xe^{-4x}.$$

Таблица 3. Частное решение неоднородного уравнения

Tuomina or lacing	ос решение неоднородного уравнения		
Вид правой части	Вид частного решения		
неоднородного			
дифференциального			
уравнения			
$f(x) = e^{ax} \cdot P_n(x),$	$y = x^r \cdot e^{ax} \cdot Q_n(x)$, где		
$P_n(x)$ – многочлен степени	0, если а не является корнем		
n	характерист. уравнения		
	г – 1,если а равно одному корню		
	r = { 1, если а равно одному корню характерист. уравнения		
	2, если оба корня характерист.		
	уравнения равны а		
	$Q_n(x)$ - многочлен степени n с		
	неопределёнными		
	коэффициентами		
$\left(P_n(x) - ax \right)$	$y = x^r \cdot e^{ax} \cdot (S_N(x) \cos bx + Z_N(x) \sin bx)$ $\begin{cases} 0, \text{ если } a + \text{ bi не является корнем} \end{cases}$		
$+Q_{m}(x)\sin bx$	(0, если а + bi не является корнем		
$P_n(x)$ – многочлен степени			
n,	r =		
$Q_{m}(x)$ _ многочлен	характерист. уравнения		
степени	\square равно наибольшей из степеней \mathbf{n}		
	и 🗀		

Сократим на e^{-4x} и сгруппируем члены со степенями: x^3 , x^2 , x, x^0 $x^3 (16A - 32A + 16A) + <math>x^2 (16B - 24A - 32B + 24A + 16B) + +x(-16B + 6A + 16B) + 2B = 2x$,

или 6Ax + 2B = 2x.

Приравниваем коэффициенты многочленов, стоящих в левой и правой части равенства, при одинаковых степенях \mathbf{x} . Получаем систему уравнений для определения \mathbf{A}, \mathbf{B} .

$$\begin{cases} 6A = 2, \\ 2B = 0. \end{cases} \Rightarrow \begin{cases} A = \frac{1}{3}, \\ B = 0. \end{cases}$$

Итак, $Y = e^{-4x} \cdot \frac{1}{3}x^3$.

Общее решение неоднородного уравнения имеет вид

$$\begin{aligned} y &= e^{-4x} \left(c_1 + c_2 x \right) + e^{-4x} \cdot \frac{1}{3} x^3 \text{, отсюда} \\ y' &= -4 e^{-4x} \left(c_1 + c_2 x \right) + e^{-4x} \cdot c_2 - 4 e^{-4x} \cdot \frac{1}{3} x^3 + e^{-4x} \cdot x^2 \,. \end{aligned}$$

Подставляя в эти выражения начальные условия $x=0,\,y=1,\,y'=2$, найдём c_1,c_2 .

$$\begin{cases} 1 = c_1, \\ 2 = -4c_1 + c_2. \end{cases} \Rightarrow \begin{cases} c_1 = 1, \\ c_2 = 6. \end{cases}$$

Итак, искомое решение имеет вид

$$y = e^{-4x}(1+6x) + e^{-4x} \cdot \frac{1}{3}x^3$$
.

Пример. Найти частное решение дифференциального уравнения

$$y'' + 6y' + 13y = 4\sin 5x$$
,

удовлетворяющее начальным условиям y(0) = 0.235; y'(0) = 0.

Решение. Общее решение неоднородного уравнения можно записать в виде $\mathbf{y} = \mathbf{y_0} + \mathbf{Y}$, где $\mathbf{y_0}$ — общее решение однородного уравнения

$$y'' + 6y' + 13y = 0$$
,

которое определяется по табл. 2, а У — частное решение неоднородного уравнения, которое определяется по табл. 3.

Для определения y_0 составим характеристическое уравнение

$$k^2 + 6k + 13 = 0$$
.

Его корни
$$\mathbf{k}_{1,2} = \frac{-6 \pm \sqrt{36-52}}{2} = \frac{-6 \pm \sqrt{-16}}{2} = \frac{-6 \pm 4\mathbf{i}}{2} = -3 \pm 2\mathbf{i}$$
.

Согласно таблице 3 $\alpha = -3$, $\beta = 2$, то есть

$$y_0 = e^{-3x} (c_1 \cos 2x + c_2 \sin 2x).$$

Для определения Y используем табл. 3. Так как $f(x) = 4\sin 5x$, то a = 0, b = 5, $P_0(x) = 0$, $Q_0(x) = 4$, r = 0. Следовательно,

$$Y = A \cos 5x + B \sin 5x$$
.

Для определения A, B подставим Y в первоначальное уравнение

$$Y' = -5A \sin 5x + 5B \cos 5x$$
,
 $Y'' = -25A \cos 5x - 25B \sin 5x$.

Тогда уравнение примет вид

$$-25A\cos 5x - 25B\sin 5x + 6(-5A\sin 5x + 5B\cos 5x) +$$

+13(A\cos 5x + B\sin 5x) = 4\sin 5x.

Приравнивая коэффициенты при **cos5**х и **sin5**х в левой и правой частях этого уравнения, получим систему

$$\begin{cases} -12A + 30B = 0, \\ -30A - 12B = 4. \end{cases} A = \frac{30}{12}B = \frac{5}{2}B, \quad -30 \cdot \frac{5}{2}B - 12B = 4, \quad B = -0,115, \\ A = \frac{5}{2}(-0,115) = -0,046. \quad Y = -0,115\cos 5x - 0,046\sin 5x. \end{cases}$$

Общее решение нашего уравнения имеет вид

$$y = e^{-3x} (c_1 \cos 2x + c_2 \sin 2x) - 0.115 \cos 5x - 0.046 \sin 5x$$
.

Отсюда

$$y' = -3e^{-3x}(c_1\cos 2x + c_2\sin 2x) + e^{-3x}(-2c_1\sin 2x + 2c_2\cos 2x) + 0,575\sin 5x - 0,23\cos 5x.$$

Найдём из начальных условий y(0) = 0.235; y'(0) = 0 постоянные c_1, c_2 .

$$\begin{cases} 0,235 = c_1 - 0,115, \\ 0 = -3c_1 + 2c_2 - 0,23. \end{cases} \Rightarrow \begin{cases} c_1 = 0,35, \\ c_2 = 0,64. \end{cases}$$

Итак, искомое решение имеет вид

$$y = e^{-3x} (0.35\cos 2x + 0.64\sin 2x) - 0.115\cos 5x - 0.046\sin 5x$$
.

Контрольная работа №2

Интегралы.

1-30. Вычислить неопределённые интегралы.

1. a)
$$\int \frac{\mathrm{d}x}{\sqrt[3]{3x+1}}$$
,

2. a)
$$\int \frac{dx}{x \cdot \ln^2 x}$$
,

3. a)
$$\int \frac{x dx}{x^4 + 1}$$
,

4. a)
$$\int \frac{\mathrm{d}x}{4x^2+7}$$

5. a)
$$\int x \cdot \cos(x^2) dx$$
,

6. a)
$$\int \sqrt{\sin x} \cdot \cos x dx$$
,

7. a)
$$\int x^2 \cdot \sqrt{x^3 + 5} \cdot dx,$$

8. a)
$$\int \frac{\left(2\ln x + 3\right)^3}{x} dx,$$

9. a)
$$\int \frac{x dx}{4x^2 + 7}$$

10. a)
$$\int \frac{e^{2x} dx}{e^{4x} + 5}$$

11. a)
$$\int \frac{e^{\sqrt{2x+1}}dx}{\sqrt{2x+1}}$$
,

12. a)
$$\int x(x^2+1)^{\frac{3}{2}}dx$$
,

13. a)
$$\int \cos(\sin x) \cdot \cos x dx$$
,

14. a)
$$\int \frac{\sin x dx}{4 - \cos x},$$
15. a)
$$\int \frac{\sqrt{3 - \ln 2x} \cdot dx}{x},$$

b)
$$\int \arccos x \cdot dx$$
.

b)
$$\int \frac{\sqrt{x+1}}{x+5} \cdot dx$$
.

b)
$$\int \frac{\ln x}{\sqrt[3]{x}} \cdot dx$$
.

b)
$$\int \frac{1}{\sqrt{x-3}-1} \cdot dx$$

b)
$$\int \frac{1+x}{1+\sqrt{x}} \cdot dx$$
.

b)
$$\int \frac{1}{(x+12)\sqrt{x+3}} \cdot dx$$
.

b)
$$\int \frac{\sqrt{x-1}}{1+\sqrt{(x-1)^3}} \cdot dx.$$

b)
$$\int \arcsin x \cdot dx$$
.

b)
$$\int x \cdot \operatorname{arctg} x \cdot dx$$
.

b)
$$\int \frac{1-\sqrt{x}}{x+3\sqrt{x}} \cdot dx$$
.

b)
$$\int \frac{1-\sqrt{x+2}}{(x+2)-2\sqrt{x+2}} \cdot dx$$

b)
$$\int \frac{\sin^2 \sqrt{x}}{\sqrt{x}} \cdot dx$$

b)
$$\int \frac{1+\sqrt{x+4}}{x+5} \cdot dx$$

b)
$$\int (x+2) \ln x \cdot dx$$

b)
$$\int x^2 \arcsin x \cdot dx$$
.

16. a)
$$\int x \cdot e^{x^2 - 3} dx,$$

17. a)
$$\int \frac{2dx}{4x - x \ln x}$$
,

18. a)
$$\int \frac{dx}{1+\cos 6x}$$
,

19. a)
$$\int \frac{\sin 2x \cdot dx}{1 - \cos 2x},$$

20. a)
$$\int \frac{x^2 dx}{\sqrt{x^3 - 5}}$$
,

21. a)
$$\int \frac{4dx}{\sqrt{2-6x^2}}$$
,

22. a)
$$\int \frac{\cos x \cdot dx}{\sqrt[3]{\sin^2 x}}$$
,

23. a)
$$\int x \cdot e^{-x^2} dx$$
,

24. a)
$$\int \frac{\sin \sqrt{x} \cdot dx}{\sqrt{x}}$$
,

25. a)
$$\int \frac{x^2 dx}{\sqrt{x^6 - 1}}$$
,

26. a)
$$\int \frac{\cos x \cdot dx}{\sqrt[3]{3 + 5\sin x}},$$

27. a)
$$\int \frac{dx}{x \cdot \ln^3 x}$$
,

28. a)
$$\int \frac{\mathrm{dx}}{\left(\arccos x\right)^5 \cdot \sqrt{1-x^2}},$$

29. a)
$$\int \frac{dx}{\operatorname{arctg}^3 x \cdot \left(1 + x^2\right)},$$

30. a)
$$\int \frac{\sqrt{\arcsin^3 x} \cdot dx}{\sqrt{1-x^2}},$$

b)
$$\int \operatorname{arctg} \sqrt{\mathbf{x} \cdot \mathbf{dx}}$$
.

b)
$$\int x^2 \cdot e^{3x} \cdot dx$$
.

b)
$$\int \frac{x}{\sin^2 x} \cdot dx$$
.

b)
$$\int \frac{x \cdot \sin x}{\cos^2 x} \cdot dx$$
.

b)
$$\int \frac{4+x}{\sqrt{x+1}+7} \cdot dx$$
.

b)
$$\int \frac{\sqrt{x+2}}{x+11} \cdot dx$$
.

b)
$$\int \frac{1}{\sqrt{3+e^x}} \cdot dx$$
.

b)
$$\int \frac{\ln^2 x}{x^2} \cdot dx$$
.

b)
$$\int \frac{e^{3x}}{\sqrt{1-e^x}} \cdot dx$$
.

b)
$$\int x^2 \cdot e^{-2x} \cdot dx$$
.

b)
$$\int \ln\left(x+\sqrt{1+x^2}\right)\cdot dx$$
.

b)
$$\int x^2 \cdot \cos x \cdot dx$$
.

b)
$$\int \sqrt{x} \cdot \ln^2 x \cdot dx$$
.

b)
$$\int \frac{x^2}{\sqrt{x-1}} \cdot dx$$
.

b)
$$\int x^2 \cdot \sin 2x \cdot dx$$
.

31-60. Задачи на геометрические приложения определённого интеграла

- 31. Найти площади частей, на которые круг $\mathbf{x}^2 + \mathbf{y}^2 \le 8$ делится параболой $\mathbf{y} = \frac{1}{2}\mathbf{x}^2$.
- 32. Найти площадь фигуры, ограниченной линией $y = x(x-1)^2$ и осью абсцисс **O**x.
- 33. Найти длину дуги параболы $y = x^2$ от точки x = 0 до точки x = 1.
- 34. Найти объём тела, образованного вращением вокруг оси **Ох** фигуры, ограниченной линиями $y = \frac{1}{2}x^2$ и 2x + 2y 3 = 0.
- 35. Найти объём тела, образованного вращением вокруг оси **Ох** фигуры, ограниченной линиями y = 0 и $y = \sin^2 x$, $(0 \le x \le \pi)$.
- 36. Найти площадь фигуры, ограниченной параболами $\mathbf{x}^2 + 8\mathbf{y} = 8$ и $\mathbf{x}^2 24\mathbf{y} = 40$.
- 37. Найти площадь фигуры, ограниченной линией $y = \ln x$ и прямыми x = e, $x = e^2$, y = 0.
- 38. Найти длину дуги кривой $y = \frac{1}{3}(3-x)\sqrt{x}$ между точками её пересечения с осью **О**х.
- 39. Вычислить объём тела, образованного вращением вокруг оси **Ох** фигуры, ограниченной линиями $y = \sqrt{4x}$, y = 0, x = 1.
- 40. Найти длину дуги кривой $\mathbf{y} = \ln \mathbf{x}$ от точки $\mathbf{x} = \sqrt{3}$ до точки $\mathbf{x} = \sqrt{8}$.
- 41. Вычислить площадь криволинейной трапеции, ограниченной линией $y = x x^{\frac{3}{2}}$ и осью абсцисс **О**x .
- 42. Найти объём тела, образованного вращением вокруг оси **Ох** фигуры, ограниченной линиями $\mathbf{y} = \mathbf{x} \cdot \mathbf{e}^{\mathbf{x}}, \quad \mathbf{x} = \mathbf{1}, \quad \mathbf{y} = \mathbf{0}$.
- 43. Найти площади фигур, на которые парабола $y^2 = 6x$ делит круг $x^2 + y^2 \le 16$.

- 44. Вычислить площадь фигуры, заключённой между линией $y = \frac{1}{1+x^2}$ и параболой $y = 0.5x^2$.
- 45. Найти объём тела, образованного вращением вокруг оси **О**у фигуры, ограниченной линиями $y = 0.5(x 2)^2$ и y = 2.
- 46. Найти длину дуги кривой $\mathbf{x} = \frac{1}{6}\mathbf{t}^6$, $\mathbf{y} = \mathbf{4} \frac{1}{4}\mathbf{t}^4$ между точками её пересечения с осями координат.
- 47. Найти объём тела, образованного вращением вокруг оси **Ох** фигуры, ограниченной линиями $y = e^{2x} 1$, $y = e^{-x} + 1$, x = 0.
- 48. Найти длину дуги кривой $y = \ln(1 x^2)$ от точки x = 0 до точки x = 0.5.
- 49. Вычислить площадь фигуры, ограниченной линиями $y = \ln x$ и $y = \ln^2 x$.
- 50. Найти площадь фигуры, ограниченной линией $y = \arcsin x$ и прямыми x = 0, $y = \frac{\pi}{2}$.
- 51. Найти длину дуги кривой $x = e^t \cos t$, $y = e^t \sin t$ от t = 0 до точки t = 1.
- 52. Найти объём тела, образованного вращением параболического сегмента с основанием **2a** и высотой **h** вокруг высоты.
- 53. Вычислить площадь фигуры, ограниченной линиями $y^2 = x + 1$ и $y^2 = 9 x$.
- 54. Вычислить площадь фигуры, ограниченной линиями $y = \sin x$, $y = \cos x$, y = 0, x = 0, $x = \frac{\pi}{2}$.
- 55. Найти длину дуги астроиды $x = a \cdot \cos^3 t$, $y = a \cdot \sin^3 t$, $0 \le t \le \frac{\pi}{2}$.
- 56. Найти длину дуги полукубической параболы $y^2 = x^3$ от начала координат до точки M(4,8).
- 57. Фигура ограничена кривой $\mathbf{x} = \mathbf{a} \cdot \mathbf{cos} \, \mathbf{t}, \quad \mathbf{y} = \mathbf{a} \cdot \mathbf{sin} \, \mathbf{t}, \quad \mathbf{0} \le \mathbf{t} \le \frac{\pi}{2}$ и осями координат \mathbf{Ox}, \mathbf{Oy} . Найти объём тела вращения.

- 58. Вычислить площадь фигуры, ограниченной линиями $y = 2\sqrt{x}$, $y = \sqrt{x} + 3$ и осью Oy.
- 59. Вычислить площадь фигуры, ограниченной кривыми $y = e^x 1$, $y = e^{2x} 3$, x = 0.
- 60. найти площадь фигуры, ограниченной кривыми y = 1, y = 4, y = 2x, $y = \sqrt{x}$.

Задачи № 61-90. Задания: а) представить комплексное число в тригонометрической форме, б) представить комплексное число в показательной форме; в) выполнить указанные действия над комплексными числами, г) вычислить корень или решить уравнение.

61. a)
$$1+i$$
, 6) $3-3\sqrt{3}i$, B) $\frac{7-5i}{1-2i}+i(1-i)$, Γ) $\sqrt[4]{1-i}$;

62. a)
$$1-i$$
 6) $2-2i$, B) $\frac{7-2i}{2+i}+(i)^{11}$, Γ) $\sqrt[4]{1+\sqrt{3}i}$;

63. a)
$$-1+i$$
 б) $\frac{7}{2}+\frac{7}{2\sqrt{3}}i$, в) $\frac{5}{1+2i}+(i)^{18}$, г) $\sqrt{-1,2-1,2i}$;

64. a)
$$-1-i$$
, б) $-5+5i$, в) $\frac{1+i}{1-i}+(i)^4$, г) $\sqrt[3]{3i-\sqrt{3}}$;

65. a)
$$-2i$$
, 6) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$, B) $-\frac{12}{5}i + i(2+i)^2$, Γ) $\sqrt[4]{1 - \frac{1}{\sqrt{3}}i}$;

66. a)
$$-\frac{1}{2} + \frac{1}{2}i$$
, б) $1 + \sqrt{3}i$, в) $(i)^{23} - \frac{17 - 6i}{3 - 4i}$, $\Gamma) \sqrt{7 + 7i}$;

67. a)
$$-\sqrt{3} + i$$
, б) 4i в) $\frac{4}{1+\sqrt{3}i} + \frac{\sqrt{3}}{i}$, г) $\sqrt[3]{-\sqrt{2}-\sqrt{6}i}$;

68. a)
$$-\sqrt{2} - \sqrt{2}i$$
, 6) $-\frac{2\sqrt{3}}{3} + 2i$ B) $(3i + 2) \cdot (-i)^9 + \frac{i+1}{i-1}$, Γ) $\sqrt[5]{i-1}$;

69. a)
$$\sqrt{3} + i$$
, б) $-\sqrt{2} - \sqrt{6}i$, в) $(0,2-0,3i) \cdot (0,5+0,6i) + (i)^{26}$, г) $\sqrt[3]{\sqrt{3}-i}$;

70.a)
$$0.5 + 0.5\sqrt{3}i$$
, 6) $1-i$, B) $(3+\sqrt{3}i)\cdot(3-\sqrt{3}i)+(i)^{33}$, Γ) $\sqrt[4]{-1+\sqrt{3}i}$;

71. a)
$$-\sqrt{3} + \sqrt{3}i$$
 б) 2i, в) $\frac{1+i}{1-i} + \frac{1-i}{1+i}$, г) $\sqrt[3]{-2-2i}$;

72. a)
$$3\sqrt{3} - 3i$$
, б) $-\sqrt{3} + i$, в) $(i)^{37} + \frac{7 + 5i}{1 - 2i}$, Γ) $z^4 - 1 - \frac{1}{\sqrt{3}}i = 0$;

73.a)
$$0.5 - 0.5i$$
, 6) -2 B) $(i)^{25} - \frac{3 - 4i}{4 - 3i}$, Γ) $z^2 - 7 + 7i = 0$;

74. a)
$$4i$$
, 6) i , B) $\frac{32}{1+3\sqrt{3}i} - \frac{3\sqrt{7}}{2i}$, Γ) $z^6 - \sqrt{3} - i = 0$;

75. a)
$$-0.7 + 0.7i$$
, 6) $1+i$ B) $\frac{1-i^2}{(1+i)^2} + 3+i$, Γ) $z^4 + 1 + \sqrt{3}i = 0$;

76. a)
$$1 - \sqrt{3}i$$
, б) $-1 + i$, в) $(i)^{44} - \frac{1 - i}{i}$, Γ) $z^4 - \sqrt{2} + \sqrt{2}i = 0$;

77. a)
$$-2 + 2i$$
, б) $-1 - i$, в) $(-0.5 - 0.5\sqrt{3} i)^2 + 0.5\sqrt{3} (i)^{35}$,
 Γ) $z^3 - \sqrt{2} + \sqrt{6}i = 0$;

78. a) 3i, 6)
$$\sqrt{3} + i$$
 B) $\left(\frac{1+\sqrt{7}i}{2}\right)^4$, Γ) $z^5 + 1 + i = 0$;

79. a)
$$-1,2,6$$
 $-2i,B$ $\left(2-\sqrt{2}i\right)^2+\frac{1+i}{i},\Gamma$ $z^4-1+\sqrt{3}i=0$;

80. a)
$$\frac{\sqrt{3}}{2} - \frac{1}{2}i$$
, б) $3 - 3i$, в) $(i)^{17} + \frac{2i}{(3-i)}$, Γ) $z^2 + 2 - 2i = 0$;

81. a)
$$-\sqrt{2} - \sqrt{6}i$$
, б) $-3i$, в) $\frac{(2-i)}{3+i} \cdot (1+i^6) + (\sqrt{2} - \sqrt{2}i)^2$, г) $z^3 - \frac{i}{8} = 0$.

82. a)
$$\sqrt{3} - i$$
, б) $2 + 2i$, в) $\frac{(i)^{13} \cdot (i-1)}{2+i} + 1$, Γ) $z^3 - 8i = 0$;

83.a)
$$-\frac{2\sqrt{3}}{3} + 2i$$
, 6) $2 - 2\sqrt{3}i$, B) $(1 + 2i) \cdot (i)^{21} + \frac{5-i}{i}$, Γ) $z^3 - i = 0$;

84. a)
$$-5i$$
, 6) $3-3\sqrt{3}i$, B) $(i)^{23}-\frac{17-6i}{3-4i}$, Γ) $z^4-\sqrt{3}+i=0$;

85. a)
$$3-3\sqrt{3}i$$
, 6) $2-2i$, B) $-\frac{12}{5}i+i(2+i)^2$, Γ) $z^3-\sqrt{3}i-3=0$;

86. a)
$$1+\sqrt{3}i$$
, б) $\frac{7}{2}+\frac{7}{2\sqrt{3}}i$, в) $\frac{1+i}{1-i}+(i)^4$, г) $z^3-\sqrt{6}+\sqrt{2}i=0$;

87. a)
$$-2\sqrt{2}-2\sqrt{2}i$$
, б) $-5+5i$, в) $\frac{5}{1+2i}+(i)^{18}$, Γ) $z^3+1+\sqrt{3}i=0$;

88. a)
$$-\frac{1}{2} - \frac{1}{2}i$$
, б) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$, в) $\frac{7-2i}{2+i} + (i)^{11}$, г) $z^4 - \sqrt{3}i + 1 = 0$;

89. a)
$$-8i$$
, б) $-\frac{1}{2} + \frac{1}{2}i$, в) $\frac{7-5i}{1-2i} + i(1-i)$, г) $z^3 - \sqrt{2} - \sqrt{6}i = 0$;

90. a)
$$-\sqrt{2} + \sqrt{2}i$$
, б) $1 + \sqrt{3}i$, в) $(i)^{22} + \frac{7+5i}{1-2i}$, Γ) $z^3 + 3i - \sqrt{3} = 0$.

Обыкновенные дифференциальные уравнения

Задачи № 91-120. Найти общее решение дифференциального уравнения первого порядка

91.
$$y' + \frac{y}{x} - x = 0$$
.

$$92. \left(x^2 + y^2\right) dy = 2xy dx.$$

93.
$$y' + ay = e^{mx}$$

94.
$$ydy + (x - 2y)dx = 0$$
.

95.
$$xdy = (x + y)dx$$
.

96.
$$\mathbf{y} - \mathbf{x} \cdot \mathbf{y'} = \mathbf{y} \ln \frac{\mathbf{x}}{\mathbf{y}}$$
.

97.
$$(1-x^2)y'-xy=1$$
.

98.
$$\mathbf{y} - \mathbf{x} \cdot \mathbf{y'} = \mathbf{x} + \mathbf{y}\mathbf{y'}$$
.

99.
$$xdy - ydx = ydy$$
.

$$100. \frac{dx}{dy} - x + y = 0.$$

101.
$$(x-y)y-x^2y'=0$$
.

102.
$$xdy - 2ydx = ydy$$
.

103.
$$y' + 3y + x = 0$$
.

104.
$$(y^2 - 3x^2)dx + 2xydy = 0$$
.

105.
$$y' + 2y = e^{-x}$$
.

106.
$$y^2 + x^2 \cdot y' = xyy'$$
.

107.
$$y' - \frac{1+2x}{x^2}y = 1$$
.

$$108. \mathbf{x} \mathbf{y'} = \mathbf{y} - \mathbf{x} \mathbf{e}^{\frac{\mathbf{y}}{\mathbf{x}}} .$$

109.
$$y' + 2xy - x^3 = 0$$

110.
$$(y - x)dx = (x + y)dy$$
.

111.
$$y' - y = xe^x$$
.

112.
$$ydx + (2\sqrt{xy} - x)dy = 0$$
.

113.

$$(1+x^2)y'-2xy=(1+x^2)^2$$
.

114.
$$y' = tg \frac{y}{x} + \frac{y}{x}$$
.

115.
$$(x + 2y)ydx = x^2dy$$
.

116.
$$y' - x = y$$
.

117.
$$\mathbf{y'} \cdot \ln \mathbf{x} + \frac{\mathbf{y}}{\mathbf{x}} = \mathbf{x}$$
.

118.
$$y' \cdot \cos x - y \cdot \sin x = x$$
.

119.
$$y' \cdot arctgx + \frac{y}{1+x^2} = 2x$$
.

120.
$$2xy' - yy' = y$$
.

Задачи № 121-150. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям.

121.
$$y'' + 9y = \cos 3x$$
, $y(0) = 2$, $y'(0) = 3$.

122.
$$y'' - 6y' + 9y = 2e^{3x}$$
, $y(0) = 1$, $y'(0) = 0$.

123.
$$y'' - 2y' + y = xe^x$$
, $y(0) = 5$, $y'(0) = 3$.

124.
$$y'' + y' = x^2 - 5$$
, $y(0) = 0$, $y'(0) = 2$.

125.
$$y'' + 4y' + 29y = x^2 - x$$
, $y(0) = 5$, $y'(0) = 0$.

126.
$$y'' + 3y' + 2y = 3e^{-x}$$
, $y(0) = 1$, $y'(0) = 4$.

127.
$$y'' + 2y' = x^2 + 3x + 4$$
, $y(0) = -1$, $y'(0) = 4$.

128.
$$y'' - y' - 6y = -2e^{3x}$$
, $y(0) = -3$, $y'(0) = 1$.

129.
$$y'' + y' - 2y = (x - 2)e^x$$
, $y(0) = 3$, $y'(0) = 0$.

130.
$$y'' + y = 6\cos 2x - \sin 2x$$
, $y(\pi) = 1$, $y'(\pi) = 1$.

131.
$$y'' - 4y' + 13y = \sin 3x$$
, $y(0) = \frac{5}{7}$, $y'(0) = \frac{1}{7}$.

132.
$$2y'' + 5y' = 30x^2 - 4$$
, $y(0) = 4$, $y'(0) = \frac{5}{2}$.

133.
$$y'' - y' = e^{2x}$$
, $y(0) = -3$, $y'(0) = 1$.

134.
$$y'' + 2y' + 5y = x^2 - 3x$$
, $y(0) = 4$, $y'(0) = -2$.

135.
$$y'' - 3y' = -3e^{3x}$$
, $y(0) = -1$, $y'(0) = 6$.

136.
$$y'' + 4y' + 4y = 15e^{3x}$$
, $y(0) = 1$, $y'(0) = 3$.

137.
$$y'' + y' - 2y = 2e^x$$
, $y(0) = 4$, $y'(0) = 1$.

138.
$$y'' - 5y' + 6y = -3e^{-x}$$
, $y(0) = 4$, $y'(0) = 0$.

139.
$$4y'' + 4y' + y = x^2 + x - 1$$
, $y(0) = 5$, $y'(0) = 0.5$.

140.
$$y'' + 2y' + 2y = 2e^{2x}$$
, $y(\pi) = -3$, $y'(\pi) = 4$.

141.
$$y'' - 2y' - 3y = 8e^{3x}$$
, $y(0) = 1$, $y'(0) = -2$.

142.
$$y'' - 4y = 4x^2 + x - 8$$
, $y(0) = 3$, $y'(0) = 1$.

143.
$$y'' - y = 6e^x$$
, $y(0) = 1$, $y'(0) = -3$.

144.
$$y'' + 5y' + 6y = 10e^{2x}$$
, $y(0) = 5$, $y'(0) = -2$.

145.
$$y'' - 8y' + 7y = 6xe^x$$
, $y(0) = 1$, $y'(0) = 7$.

146.
$$y'' - 6y' + 13y = x^2 - x$$
, $y(0) = -2$, $y'(0) = 0$.

147.
$$y''-y=8e^{3x}$$
, $y(0)=3$, $y'(0)=-2$.

148.
$$y'' - 2y' = 6x^2 - 3$$
, $y(0) = 3$, $y'(0) = -4$.

149.
$$y'' + 4y = x^2 - x + 1$$
, $y(\frac{\pi}{2}) = 1$, $y'(\pi) = 4$.

150.
$$y'' + 6y' + 10y = 2e^{-3x}$$
, $y(0) = 4$, $y'(0) = -1$.

Список рекомендуемой литературы

Основная литература.

- 1. Лунгу К. Н., Макаров Е. В. Высшая математика. Руководство к решению задач. Ч. 1. 2-е изд., перераб. и доп. М.; ФИЗМАТЛИТ, 2010. 216 с.
- 2. Лунгу К. Н., Макаров Е. В. Высшая математика. Руководство к решению задач. Ч. 2. М.; ФИЗМАТЛИТ, 2007. 384 с.
- 3. Бугров Я. С., Никольский С. М. Дифференциальное и интегральное исчисление. Т. 2. 6-е изд., стереотип. М.: Дрофа, 2004. 509 с.
- 4. Малахов А. Н., Максюков Н. И., Никишкин В. А. ВЫСШАЯ МАТЕМАТИКА: Учебно-методический комплекс. М.: Изд. центр ЕАОИ. 2008. 315 с.

Дополнительная литература.

- 5. Индивидуальные задания по высшей математике: в 4 ч. Ч. 1. Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функций одной переменной: учеб. пособие для студентов техн. специальностей вузов / под общ. ред. А. П. Рябушко. Минск: Вышэйшая школа, 2007. 304 с.
- 6. Индивидуальные задания по высшей математике: в 4 ч. Ч. 2. Комплексные числа. Неопределенные и определенные интегралы. Функции нескольких переменных. Обыкновенные дифференциальные уравнения: учеб. пособие для студентов

- технич. специальностей вузов / под общ. ред. А. П. Рябушко. Минск: Вышэйшая школа, 2007. 396 с.
- 7. Индивидуальные задания по высшей математике: в 4 ч. Ч. 3. Ряды. Кратные и криволинейные интегралы. Элементы теории поля: учеб. пособие для студентов техн. специальностей вузов / под общ. ред. А. П. Рябушко. Минск: Вышэйшая школа, 2009. 367 с.
- 8. Кузнецов Л.А. Сборник заданий по высшей математике. Типовые расчеты: учеб. пособие. СПб: Лань, 2005. 240 с.
- 9. Шипачев В.И. Высшая математика: учебник для вузов. М.: Высшая школа, 2005. 479 с.
- 10. Данко П.Е. Высшая математика в упражнениях и задачах: в 2 ч. Ч.1: учеб. пособие для вузов / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова, С. П. Данко. М.: ОНИКС, 2006. 304 с.
- 11. Данко П.Е. Высшая математика в упражнениях и задачах: в 2 ч. Ч.2: учеб. пособие для вузов: в 2 ч. // П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова, С. П. Данко. М.: ОНИКС: Мир и образование, 2006.- 416 с.
- 12. Пискунов Н.С. Дифференциальное и интегральное исчисления: в 2 т. Т. 1. учеб. пособие для втузов. М.: Интеграл-Пресс, 2008. 416 с.
- 13. Пискунов Н.С. Дифференциальное и интегральное исчисления: в 2 т. Т. 2. учеб. пособие для студентов втузов. М.: Интеграл-Пресс, 2006. 544 с.

Составители Анатолий Иванович Бабин Екатерина Анатольевна Волкова Елена Валерьевна Прейс

МАТЕМАТИКА

Методические указания и контрольная работа № 2 для студентов 1 курса (2 семестр) специальности 130400.65 «Горное дело», специализаций 130401.65, 130403.65, 130404.65, 130405.65, 130406.65 заочной формы обучения

Печатается в авторской редакции

Подписано в печать 14.11.2012. Формат 60×84/16. Бумага офсетная. Отпечатано на ризографе. Уч-изд. л. 1,1. Тираж 110 экз. Заказ КузГТУ. 650000, Кемерово, ул. Весенняя, 28. Типография КузГТУ. 650000, Кемерово, ул. Д. Бедного, 4а.