


ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ АГРОИНЖЕНЕРНЫЙ УНИВЕРСИТЕТ

кафедра высшей математики

## Высшая математика

**Программа, методические указания** и контрольные задания

для студентов – заочников специальности «Экономика и управление АПК» Программа, методические указания и контрольные задания по курсу учебной дисциплины «Математика» федерального компонента цикла ЕН. Ф. 01 для студентов заочного отделения экономических специальностей сельскохозяйственных ВУЗов. Содержат контрольные задания, примеры решения типовых задач, вопросы и задачи для самостоятельной подготовки к экзамену.

Составители

К.Н.Кудрявцев - ст.преподаватель (ЧГАУ) А.Б.Самаров - к.ф.- м.н., доцент, (ЮУрГУ) С.А.Скрипка - ст. преподаватель (ЧГАУ)

Рецензенты

А.А.Копченов - к.т.н., доцент (ЧГАУ)

Е.А.Резников - к.ф.- м.н., доцент кафедры математиче-

ского анализа ЮурГУ

Ответственный за выпуск: С.А.Скрипка – зав. кафедрой высшей математики, ЧГАУ

Печатаются по решению методической комиссии факультета ЭАСХП.

Подписано к печати 11.04.05. Формат 60x84/16.

Уч.- изд.л. 6
Заказ
Тираж
200

РИО ЧГАУ

454080, Челябинск, пр. Ленина, 75

ООП ЧГАУ.

©Челябинский государственный агроинженерный университет,2005

## Высшая математика

# **Программа, методические указания** и контрольные задания

для студентов – заочников специальности «Экономика и управление АПК» В соответствии с учебным планом студенты-заочники специальности «Экономика и управление в АПК» выполняют по курсу высшей математики четыре контрольных работы.

При выполнении контрольной работы необходимо строго придерживаться следующих правил:

- 1. Студент обязан делать работу только своего варианта и отсылать ее на рецензирование в сроки, предусмотренные графиком.
- 2. Контрольные работы следует выполнять в ученической тетради пастой любого цвета, кроме красного, оставляя поля (3-4 см) для замечаний рецензента. Рекомендуется оставлять после выполненной работы несколько чистых страниц для работы над ошибками в соответствии с указаниями рецензента.
- 3. На обложке тетради студент обязан указать свою фамилию, имя, отчество, номер зачетной книжки, домашний адрес и дату отправки, а также номер работы, курс и специальность.
- 4. Перед решением задачи нужно полностью выписать ее условие. Если несколько задач имеют общую формулировку, переписать следует только условие задачи нужного варианта. Решение каждой задачи студент должен сопровождать подробными объяснениями и ссылками на соответствующие формулы, теоремы и правила.
- 5. После получения отрецензированной работы студенту необходимо исправить все ошибки. Переделанная работа высылается на повторное рецензирование. Работа над ошибками проводится в той же тетради, где работа была выполнена первоначально, на чистых листах.

Работы, выполненные без соблюдения этих правил, к проверке не принимаются и возвращаются без рецензирования для переработки. На зачет или экзамен студент должен явиться с зачтенными контрольными работами.

Каждому студенту предлагается индивидуальное задание. Перед каждой контрольной работой в методических указаниях помещена таблица. Номера задач контрольных работ определяются с помощью двух последних цифр номера зачетной книжки студента. В таблице по горизонтали указывается последняя цифра номера за-

четной книжки, а по вертикали – предпоследняя цифра номера зачетной книжки.

# Контрольная работа № 1

Для определения индивидуальных заданий к контрольной работе №1 используйте таблицу №1.

Таблица №1

|                                            |   | Последняя цифра номера зачетной книжки |             |                         |             |             |
|--------------------------------------------|---|----------------------------------------|-------------|-------------------------|-------------|-------------|
|                                            |   | 1                                      | 2           | 3                       | 4           | 5           |
|                                            | 1 | 1, 31, 61,                             | 2, 32, 62,  | 3, 33, 63,              | 4, 34, 64,  | 5, 35, 65,  |
|                                            |   | 91, 12, 151                            | 92, 122,    | 93, 123,                | 94, 124,    | 95, 125,    |
|                                            |   |                                        | 152         | 153                     | 154         | 155         |
|                                            | 2 | 11, 41, 71,                            | 12, 42, 72, | 13, 43, 73,             | 14, 44, 74, | 15, 45, 75, |
|                                            |   | 101, 131,                              | 102, 132,   | 103, 133,               | 104, 134,   | 105, 135,   |
| <b>Z</b>                                   |   | 161                                    | 162         | 163                     | 164         | 165         |
| KK                                         | 3 | 21, 51, 81,                            | 23, 53, 83, | 24, 54, 84,             | 25, 55, 85, |             |
| ÎH                                         |   | 111, 141,                              | 112, 142,   | 113, 143,               | 114, 144,   | 115, 145,   |
| <b>X</b>                                   |   | 171                                    | 172         | 173                     | 174         | 175         |
| Предпоследняя цифра номера зачетной книжки | 4 | 20, 41, 80,                            | 19, 40, 79, | 18, 39, 78, 17, 38, 77, |             | 16, 37, 76, |
| eTE                                        |   | 101, 131,                              | 100, 130,   | 99, 129,                | 98, 128,    | 97, 127,    |
| ач                                         |   | 161                                    | 162         | 163 164                 |             | 165         |
| <b>a</b> 3                                 | 5 | 10, 31, 70,                            | 9, 51, 69,  | 8, 52, 68, 7, 53, 67,   |             | 6, 54, 66,  |
| lep                                        |   | 91, 121,                               | 111, 141,   | 112, 142,               | 113, 143,   | 114, 144,   |
| 0 <u>W</u>                                 |   | 171                                    | 172         | 173                     | 174         | 175         |
| ан                                         | 6 | 30, 60, 90,                            | 29, 40, 89, | 28, 41, 88,             | 27, 42, 87, | 26, 43, 86, |
| ф                                          |   | 120, 150,                              | 100, 130,   | 101, 131,               | 102, 132,   | 103, 133,   |
| ПИ                                         |   | 151                                    | 152         | 153                     | 154         | 155         |
| ВН                                         | 7 | 2, 49, 62,                             | 3, 50, 63,  | 4, 51, 64,              | 5, 52, 65,  | 6, 53, 64,  |
| H H                                        |   | 109, 139,                              | 110, 140,   | 111, 141,               | 112, 142,   | 113, 143,   |
| ле                                         |   | 161                                    | 162         | 163                     | 164         | 165         |
| 100                                        | 8 | 12, 59, 72,                            | 13, 60, 73, | 14, 31, 74,             | 15, 32, 75, | 16, 33, 76, |
| еді                                        |   | 119, 149,                              | 120, 150,   | 91, 121,                | 92, 122,    | 93, 123,    |
| [[b                                        |   | 171                                    | 172         | 173                     | 174         | 175         |
|                                            | 9 | 22, 39, 82,                            | 23, 40, 83, | 24, 41, 84,             | 25, 42, 85, | 26, 43, 86, |
|                                            |   | 99, 129,                               | 100, 130,   | 101, 131,               | 102, 132,   | 103, 133,   |
|                                            |   | 161                                    | 159         | 158 157                 |             | 156         |
|                                            | 0 | 15, 49, 75,                            | 14, 50, 74, | 13, 51, 73,             | 12, 52, 72, | 11, 53, 71, |
|                                            |   | 109, 139,                              | 110, 140,   | 111, 141,               | 112, 142,   | 113, 143,   |
|                                            |   | 171                                    | 172         | 173                     | 174         | 175         |

Продолжение таблицы №1

|                                            |   | Последняя цифра номера зачетной книжки |                                |                             |             |             |
|--------------------------------------------|---|----------------------------------------|--------------------------------|-----------------------------|-------------|-------------|
|                                            |   | 6                                      | 7                              | 8                           | 9           | 0           |
|                                            | 1 | 6, 36, 66,                             | 7, 37, 67,                     | 8, 38, 68,                  | 9, 39, 69,  | 10, 40, 70, |
|                                            |   | 96, 126,                               | 97, 127,                       | 98, 128,                    | 99, 129,    | 100, 130,   |
|                                            |   | 156                                    | 157                            | 158                         | 159         | 160         |
|                                            | 2 | 16, 46, 76,                            | 17, 47, 77,                    | 18, 48, 78,                 | 19, 49, 79, | 20, 50, 80, |
|                                            |   | 106, 136,                              | 5, 136, 107, 137, 108, 138, 10 |                             | 109, 139,   | 110, 140,   |
| <b>Z</b>                                   |   | 166                                    | 167                            | 168                         | 169         | 170         |
| K K                                        | 3 | 26, 56, 86,                            |                                |                             | 29, 59, 89, | 30, 60, 90, |
| KHI                                        |   | 116, 146,                              | 117, 147,                      | 118, 148,                   | 119, 149,   | 120, 150,   |
| 3                                          |   | 176                                    | 177                            | 178                         | 179         | 180         |
| 10Ĭ                                        | 4 | 15, 36, 75,                            | 14, 35, 74,                    | 13, 34, 73, 12, 33, 72      |             | 11, 32, 71, |
| етн                                        |   | 96, 126,                               | 95, 125,                       | 94, 124,                    | 93, 123,    | 92, 122,    |
| Предпоследняя цифра номера зачетной книжки |   | 166                                    | 167                            | 168 169                     |             | 170         |
| <b>a</b> 3                                 | 5 | 5, 55, 65,                             | 4, 56, 64,                     | 3, 57, 63,                  | 2, 58, 62,  | 1, 59, 61,  |
| lep                                        |   | 115, 145,                              | 116, 146,                      | 117, 147,                   | 118, 148,   | 119, 149,   |
| 0 <u>W</u>                                 |   | 176                                    | 177                            | 178                         | 179         | 180         |
| ан                                         | 6 | 25, 44, 85,                            | 24, 45, 84,                    |                             |             | 21, 48, 81, |
| dф                                         |   | 104, 134,                              | 105, 135,                      | 5, 135, 106, 136, 107, 137, |             | 108, 138,   |
| пп                                         |   | 156                                    | 157                            | 158                         | 159         | 160         |
| ВЕ                                         | 7 | 7, 54, 67,                             | 8, 55, 68,                     | 9, 56, 69,                  | 10, 57, 70, | 11, 58, 71, |
| THY THE                                    |   | 114, 144,                              | 115, 145,                      | 116, 146,                   | 117, 147,   | 118, 148,   |
| ле                                         |   | 166                                    | 167                            | 168                         | 169         | 170         |
| 100                                        | 8 | 17, 34, 77,                            | 18, 35, 78,                    | 19, 36, 79,                 | 20, 37, 80, | 21, 38, 81, |
| еді                                        |   | 94, 124,                               | 95, 125,                       | 96, 124,                    | 97, 127,    | 98, 128,    |
| [Ip                                        |   | 176                                    | 177                            | 178                         | 179         | 180         |
|                                            | 9 | 27, 44, 87,                            | 28, 45, 88,                    | 29, 46, 89,                 | 30, 47, 90, | 1, 48, 61,  |
|                                            |   | 104, 134,                              | 105, 135,                      | 106, 136,                   | 107, 137,   | 108, 138,   |
|                                            |   | 155                                    | 154                            | 153                         | 152         | 151         |
|                                            | 0 | 10, 54, 70,                            | 9, 55, 69,                     | 8, 56, 68,                  | 7, 57, 67,  | 6, 58, 66,  |
|                                            |   | 114, 144,                              | 115, 145,                      | 116, 146,                   | 117, 147,   | 118, 148,   |
|                                            |   | 176                                    | 177                            | 178                         | 179         | 180         |

## Программа

- 1. Линии на плоскости и их уравнения. Прямая на плоскости. Виды уравнения прямой. Угол между прямыми.
- 2. Определители. Свойства определителей. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера.
- 3. Матрицы. Линейные операции над матрицами. Умножение матриц.
- 4. Обратная матрица. Нахождение обратной матрицы. Решение систем линейных алгебраических уравнений матричным методом.
- 5. Метод Гаусса решения систем линейных алгебраических уравнений.
- 6. Ранг матрицы. Теорема Кронекера Капелли. Исследование систем линейных алгебраических уравнений. Решение произвольных систем линейных алгебраических уравнений.

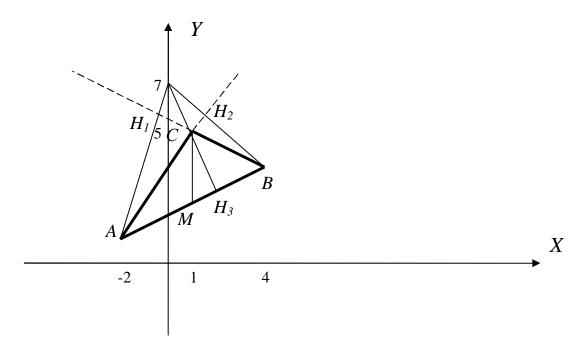
## Вопросы для самостоятельного изучения

- 1. Векторы. Основные понятия. Линейные операции над векторами.
- 2. Разложение вектора на компоненты. Координаты вектора. Линейные операции над векторами в координатной форме.
- 3. Скалярное произведение и его свойства. Скалярное произведение в координатной форме.
- 4. Длина вектора, угол между векторами. Направляющие косинусы.
- 5. Понятие о n мерном векторе. n мерное векторное пространство. Базис, размерность.
- 6. Плоскость в пространстве. Виды уравнений плоскости. Угол между двумя плоскостями, условия параллельности и перпендикулярности плоскостей.
- 7. Прямая в пространстве. Виды уравнения прямой. Угол между двумя прямыми, условия их параллельности и перпендикулярности.

8. Кривые второго порядка: окружность, эллипс, гипербола, парабола. Их канонические уравнения и свойства. Эксцентриситет, асимптоты.

## Вопросы для самопроверки

- 1. Как построить точку по заданным декартовым координатам? Какие значения имеют координаты точек в различных четвертях?
- 2. Чем отличаются друг от друга декартовы координаты двух точек, симметричных относительно оси абсцисс, оси ординат, начала координат?
- 3. Как найти расстояние между двумя точками? Какой вид примет формула расстояния между точками, если:
  - а) точки имеют одинаковые абсциссы, но различные ординаты;
  - б) точки имеют одинаковые ординаты, но различные абсциссы;
  - в) одна из точек является началом координат?
- 4. Как найти координаты точки, делящей отрезок в данном отношении через координаты его концов? Координаты середины отрезка?
- 5. Что называется уравнением линии на плоскости? Как проверить, проходит ли линия через точку?
- 6. Как найти точку пересечения двух линий, заданных своими уравнениями?
- 7. Чем отличается уравнение прямой линии в декартовой системе координат от уравнений других линий?
- 8. Как расположена прямая относительно осей координат, если в ее уравнении отсутствует свободный член? Одна из координат? Напишите уравнения осей координат.
- 9. Как вычислить угол между прямыми? Каковы условия параллельности и перпендикулярности двух прямых?
- 10. Как найти угловой коэффициент прямой по ее общему уравнении?
- 11. Как найти расстояние от точки до прямой?
- 12. Сформулируйте правила вычисления определителей второго и третьего порядков.


- 13. Что такое матрица? Что такое квадратная матрица? Что такое единичная матрица?
- 14. Как получить матрицу, транспонированную по отношению к данной матрице?
- 15. Что такое обратная матрица? Как ее найти? Существует ли обратная матрица по отношению к матрице размера  $4 \times 5$ ?
- 16. Что называется решением системы линейных алгебраических уравнений?
- 17. Чем отличается несовместная система уравнений от неопределенной?
- 18. Какие системы уравнений называются равносильными?
- 19. Что такое ранг матрицы?

#### Задача №1

Даны координаты вершин треугольника: A(-2;1), B(4;4), C(1;5). Найти длину стороны AC, уравнение медианы CM, координаты точки пересечения высот Z, внутренний угол A. Сделать чертеж.

#### Решение:

Выполним чертеж.



Расстояние между точками  $P_1$   $(x_1;y_1)$  и  $P_2$   $(x_2;y_2)$  можно вычислить с помощью формулы

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
.

Тогда

$$|AC| = \sqrt{(1+2)^2 + (5-1)^2} = \sqrt{3^2 + 4^2} = 5.$$

Найдем координаты середины M стороны AB как полусумму соответствующих координат точек A и B:

$$x_M = \frac{-2+4}{2} = 1$$
,  $y_M = \frac{1+4}{2} = \frac{5}{2}$ ;  $M\left(1; \frac{5}{2}\right)$ .

Медиана CM перпендикулярна оси абсцисс, так как абсциссы точек C и M совпадают. Поэтому уравнение медианы CM имеет вид:

$$x = 1$$
.

Запишем уравнение каждой стороны треугольника как уравнения прямой, проходящей через две точки.

Уравнение *АВ*:

$$\frac{x+2}{4+2} = \frac{y-1}{4-1}$$
 или  $y = \frac{1}{2}x+2$ .

Уравнение BC:

$$\frac{x-4}{1-4} = \frac{y-4}{5-4}$$
 или  $y = -\frac{1}{3}x + 5\frac{1}{3}$ .

Уравнение АС:

$$\frac{x+2}{1+2} = \frac{y-1}{5-1}$$
 или  $y = -\frac{4}{3}x + 3\frac{2}{3}$ .

Так как высота  $AH_1$  перпендикулярна стороне BC, то

$$k_{AH_1} = -\frac{1}{k_{BC}} = 3.$$

Уравнение высоты  $AH_1$ :

$$y-1=3\cdot(x+2)$$
, или  $y=3x+7$ .

Аналогично получим уравнение высоты  $BH_2$ :

$$k_{BH_2}=-rac{1}{k_{AC}}=-rac{3}{4}.$$
  $y-4=-rac{3}{4}\cdot \left(x-4
ight)$  или  $y=-rac{3}{4}x+7.$ 

Уравнение высоты  $CH_3$ :

$$k_{\mathit{CH}_3} = -rac{1}{k_{\mathit{AB}}} = -2 \,.$$
  $y-5=-2\cdot(x-1)$  или  $y=-2x+7 \,.$ 

Координаты точки пересечения высот Z являются решением системы, состоящей из уравнений двух любых высот, например,  $AH_1$  и  $BH_2$ :

$$\begin{cases} y = 3x + 7 \\ y = \frac{3}{4}x + 7 \end{cases}$$

Откуда x = 0, y = 7. Значит, точка Z(0;7).

Вычислить тангенс угла  $\varphi$ , отсчитанного против часовой стрелки от прямой, заданной уравнением  $y=k_1x+b_1$ , до прямой, заданной уравнением  $y=k_2x+b_2$ , позволяет формула:

$$tg\varphi = \frac{k_2 - k_1}{1 + k_1 \cdot k_2}.$$

В соответствии с этой формулой:

$$tgA = \frac{k_{AC} - k_{AB}}{1 + k_{AC} \cdot k_{AB}} = \frac{\frac{4}{3} - \frac{1}{2}}{1 + \frac{1}{2} \cdot \frac{4}{3}} = \frac{1}{2}.$$

По таблице находим угол  $A \approx 0,46$  радиан, что составляет приблизительно  $27^{\circ}$ .

## Задача №2

Решить систему уравнений, пользуясь формулами Крамера:

$$\begin{cases} x_1 + 2x_3 + x_4 = 8 \\ 3x_2 - x_3 = -10 \\ 2x_1 + x_4 = 8 \\ -2x_2 + 3x_4 = 18 \end{cases}$$

#### Решение:

Запишем и вычислим определитель системы:

$$|A| = \begin{vmatrix} 1 & 0 & 2 & 1 \\ 0 & 3 & -1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & -2 & 0 & 3 \end{vmatrix}.$$

По теореме Лапласа

$$|A| = a_{11} \cdot A_{11} + a_{21} \cdot A_{21} + a_{31} \cdot A_{31} + a_{41} \cdot A_{41}.$$

Мы разложим определитель |A| по первому столбцу, так как в нем два элемента  $a_{21}$  и  $a_{41}$  равны нулю.

Следовательно,

$$|A| = a_{11} \cdot A_{11} + a_{31} \cdot A_{31}.$$

Найдем теперь значения алгебраических дополнений  $A_{11}$  и  $A_{31}$ , пользуясь правилом треугольника.

$$A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 3 & -1 & 0 \\ 0 & 0 & 1 \\ -2 & 0 & 3 \end{vmatrix} = \begin{vmatrix} 3 & -1 & 0 \\ 0 & 0 & 1 \\ -2 & 0 & 3 \end{vmatrix} =$$

$$3 \cdot 0 \cdot 3 + (-1) \cdot 1 \cdot (-2) + 0 \cdot 0 \cdot 0 - 0 \cdot 0 \cdot (-2) - 0 \cdot 1 \cdot 3 - 0 \cdot (-1) \cdot 3 = 2$$

$$A_{31} = (-1)^{3+1} \cdot \begin{vmatrix} 0 & 2 & 1 \\ 3 & -1 & 0 \\ -2 & 0 & 3 \end{vmatrix} = 0 \cdot (-1) \cdot 3 + 2 \cdot 0 \cdot (-2) +$$

$$+ 3 \cdot 0 \cdot 1 - 1 \cdot (-1) \cdot (-2) - 0 \cdot 0 \cdot 0 - 3 \cdot 2 \cdot 3 = -20.$$

Итак,

$$|A| = a_{11} \cdot A_{11} + a_{31} \cdot A_{31} = 1 \cdot 2 + 2 \cdot (-20) = 2 - 40 = -38 \neq 0.$$

По теореме Крамера система линейных уравнений является определенной и ее единственное решение находится по формулам Крамера:

$$x_i = \frac{|A_i|}{|A|}$$
  $(i = 1,2,3,4),$ 

где  $|A_i|$  - определитель, получающийся из определителя |A| заменой столбца коэффициентов при  $x_i$  столбцом свободных членов.

Найдем теперь определители  $|A_1|$ ,  $|A_2|$ ,  $|A_3|$ ,  $|A_4|$ :

$$|A_{1}| = \begin{vmatrix} 8 & 0 & 2 & 1 \\ -10 & 3 & -1 & 0 \\ 8 & 0 & 0 & 1 \\ 18 & -2 & 0 & 3 \end{vmatrix} = a_{13} \cdot A_{13} + a_{23} \cdot A_{23} + a_{33} \cdot A_{33} + a_{43} \cdot A_{43} =$$

$$= 2 \cdot (-1)^{1+3} \cdot \begin{vmatrix} -10 & 3 & 0 \\ 8 & 0 & 1 \\ 18 & -2 & 3 \end{vmatrix} - (-1)^{2+3} \cdot \begin{vmatrix} 8 & 0 & 1 \\ 8 & 0 & 1 \\ 18 & -2 & 3 \end{vmatrix} =$$

$$= 2 \cdot [(-10) \cdot 0 \cdot 3 + 3 \cdot 1 \cdot 18 + 8 \cdot (-2) \cdot 0 - 0 \cdot 0 \cdot 18 - 1 \cdot (-2) \cdot (-10) -$$

$$-3 \cdot 8 \cdot 3] - 0 = -76.$$

Определитель  $\begin{vmatrix} 8 & 0 & 1 \\ 8 & 0 & 1 \\ 18 & -2 & 3 \end{vmatrix} = 0$ , так как в нем две равные строки.

$$\begin{split} |A_2| &= \begin{vmatrix} 1 & 8 & 2 & 1 \\ 0 & -10 & -1 & 0 \\ 2 & 8 & 0 & 1 \\ 0 & 18 & 0 & 3 \end{vmatrix} = a_{13} \cdot A_{13} + a_{23} \cdot A_{23} + a_{33} \cdot A_{33} + a_{43} \cdot A_{43} = \\ &= 2 \cdot (-1)^{1+3} \cdot \begin{vmatrix} 0 & -10 & 0 \\ 2 & 8 & 1 \\ 0 & 18 & 3 \end{vmatrix} - (-1)^{2+3} \cdot \begin{vmatrix} 1 & 8 & 1 \\ 2 & 8 & 1 \\ 0 & 18 & 3 \end{vmatrix} = \\ &= 2 \cdot \left[ 0 \cdot 8 \cdot 3 + (-10) \cdot 1 \cdot 0 + 2 \cdot 18 \cdot 0 - 0 \cdot 8 \cdot 0 - 1 \cdot 18 \cdot 0 - 2 \cdot (-10) \cdot 3 \right] + \\ &+ \left[ 1 \cdot 8 \cdot 3 + 8 \cdot 1 \cdot 0 + 2 \cdot 18 \cdot 1 - 1 \cdot 8 \cdot 0 - 1 \cdot 18 \cdot 1 - 8 \cdot 2 \cdot 3 \right] = \\ &= 2 \cdot \left[ 0 + 0 + 0 - 0 - 0 + 60 \right] + \left[ 24 + 0 + 36 - 0 - 18 - 48 \right] = 114 \,. \end{split}$$

$$\begin{vmatrix} A_3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 8 & 1 \\ 0 & 3 & -10 & 0 \\ 2 & 0 & 8 & 1 \\ 0 & -2 & 18 & 3 \end{vmatrix} = a_{11} \cdot A_{11} + a_{21} \cdot A_{21} + a_{31} \cdot A_{31} + a_{41} \cdot A_{41} =$$

$$= A_{11} + 0 \cdot A_{21} + 2 \cdot A_{31} + 0 \cdot A_{41} =$$

$$= (-1)^{1+1} \cdot \begin{vmatrix} 3 & -10 & 0 \\ 0 & 8 & 1 \\ -2 & 18 & 3 \end{vmatrix} - 2 \cdot (-1)^{3+1} \cdot \begin{vmatrix} 0 & 8 & 1 \\ 3 & -10 & 0 \\ -2 & 18 & 3 \end{vmatrix} = 
= [3 \cdot 8 \cdot 3 + (-10) \cdot 1 \cdot (-2) + 0 \cdot 18 \cdot 0 - 0 \cdot 8 \cdot (-2) - 1 \cdot 18 \cdot 3 - (-10) \cdot 0 \cdot 3] + 
+ 2 \cdot [0 \cdot (-10) \cdot 3 + 8 \cdot 0 \cdot (-2) + 3 \cdot 18 \cdot 1 - 1 \cdot (-10) \cdot (-2) - 0 \cdot 18 \cdot 0 - 
- 8 \cdot 3 \cdot 3] = [72 + 20 + 0 - 0 - 54 - 0] + 2 \cdot [0 + 0 + 54 - 20 - 0 - 72] = -38.$$

$$|A_4| = \begin{vmatrix} 1 & 0 & 2 & 8 \\ 0 & 3 & -1 & -10 \\ 2 & 0 & 0 & 8 \\ 0 & -2 & 0 & 18 \end{vmatrix} = a_{11} \cdot A_{11} + a_{21} \cdot A_{21} + a_{31} \cdot A_{31} + a_{41} \cdot A_{41} =$$

$$= (-1)^{1+1} \cdot \begin{vmatrix} 3 & -1 & -10 \\ 0 & 0 & 8 \\ -2 & 0 & 18 \end{vmatrix} + 2 \cdot (-1)^{3+1} \cdot \begin{vmatrix} 0 & 2 & 8 \\ 3 & -1 & -10 \\ -2 & 0 & 18 \end{vmatrix} =$$

$$= [3 \cdot 0 \cdot 18 + (-1) \cdot 8 \cdot (-2) + 0 \cdot 0 \cdot (-10) - (-10) \cdot 0 \cdot (-2) - 8 \cdot 0 \cdot 3 - (-1) \cdot 0 \cdot 18] + 2 \cdot [0 \cdot (-1) \cdot 18 + 2 \cdot (-10) \cdot (-2) + 8 \cdot 3 \cdot 0 - (-1) \cdot (-2) - (-10) \cdot 0 \cdot 0 - 2 \cdot 3 \cdot 18] =$$

$$[0 + 16 + 0 - 0 - 0 - 0] + 2 \cdot [0 + 40 + 0 - 16 - 0 - 108] = -152.$$

Итак, |A|=-38,  $|A_1|=-76$ ,  $|A_2|=114$ ,  $|A_3|=-38$ , |A|=-152. Следовательно, по формулам Крамера:

$$x_1 = \frac{-76}{-38} = 2$$
,  $x_2 = \frac{114}{-38} = -3$ ,  $x_3 = \frac{-38}{-38} = 1$ ,  $x_4 = \frac{-152}{-38} = 4$ .

Перед выписыванием ответа сделаем проверку, подставив найденное решение в каждое уравнение системы.

## Проверка:

$$\begin{cases} 2+2\cdot 1+4=8\\ 3\cdot (-3)-1=-10\\ 2\cdot 2+4=8\\ -2\cdot (-3)+3\cdot 4=18 \end{cases}$$

Итак, мы видим, что после подстановки решения в систему каждое уравнение обратилось в числовое тождество.

#### Ответ:

$$x_1 = 2$$
,  $x_2 = -3$ ,  $x_3 = 1$ ,  $x_4 = 4$ .

#### Задача №3

Найти матрицу, обратную матрице

$$A = \begin{pmatrix} 2 & -4 & 0 \\ -1 & 3 & -2 \\ 1 & -1 & -3 \end{pmatrix}.$$

#### Решение:

Для нахождения матрицы  $A^{-1}$ , обратной матрице A, прежде всего, нужно вычислить определитель  $\det A$  (или |A|) матрицы A.

Если

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{21} & a_{33} \end{pmatrix},$$

то по теореме Лапласа  $|A|=a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}$ , где  $A_{11}$ ,  $A_{12}$ ,  $A_{13}$  - алгебраические дополнения элементов  $a_{11}$ ,  $a_{12}$ ,  $a_{13}$ . То есть

$$A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 3 & -2 \\ -1 & -3 \end{vmatrix} = -9 - 2 = -11;$$

$$A_{12} = (-1)^{1+2} \cdot \begin{vmatrix} -1 & -2 \\ 1 & -3 \end{vmatrix} = -(3+2) = -5;$$

$$A_{13} = (-1)^{1+3} \cdot \begin{vmatrix} -1 & 3 \\ 1 & -1 \end{vmatrix} = 1 - 3 = -2.$$

Следовательно,

$$|A| = a_{11} \cdot A_{11} + a_{12} \cdot A_{12} + a_{13} \cdot A_{13} = 2 \cdot (-11) + (-4) \cdot (-5) + 0 \cdot (-2) =$$
  
=  $-22 + 20 + 0 = -2$ .

Так как определитель |A| не равен нулю, то для матрицы A существует обратная матрица

$$A^{-1} = \frac{1}{|A|} \cdot \overline{A} ,$$

где  $\overline{A}$  - матрица, присоединенная к матрице A, т.е. матрица, состоящая из алгебраических дополнений к элементам матрицы A.

$$\overline{A} = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}.$$

Найдем алгебраические дополнения:

$$A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 3 & -2 \\ -1 & -3 \end{vmatrix} = -11; \quad A_{21} = (-1)^{2+1} \cdot \begin{vmatrix} -4 & 0 \\ -1 & -3 \end{vmatrix} = -12;$$

$$A_{31} = (-1)^{3+1} \cdot \begin{vmatrix} -4 & 0 \\ 3 & -2 \end{vmatrix} = 8; \quad A_{12} = (-1)^{1+2} \cdot \begin{vmatrix} -1 & -2 \\ 1 & -3 \end{vmatrix} = -5;$$

$$A_{22} = (-1)^{2+2} \cdot \begin{vmatrix} 2 & 0 \\ 1 & -3 \end{vmatrix} = -6; \quad A_{32} = (-1)^{3+2} \cdot \begin{vmatrix} 2 & 0 \\ -1 & -2 \end{vmatrix} = 4;$$

$$A_{13} = (-1)^{1+3} \cdot \begin{vmatrix} -1 & 3 \\ 1 & -1 \end{vmatrix} = -2; \quad A_{23} = (-1)^{2+3} \cdot \begin{vmatrix} 2 & -4 \\ 1 & -1 \end{vmatrix} = -2;$$

$$A_{33} = (-1)^{3+3} \cdot \begin{vmatrix} 2 & -4 \\ -1 & 3 \end{vmatrix} = 2.$$

Таким образом присоединенная матрица:

$$\overline{A} = \begin{pmatrix} -11 & -12 & 8 \\ -5 & -6 & 4 \\ -2 & -2 & 2 \end{pmatrix}.$$

Тогда обратная матрица:

$$A^{-1} = \frac{1}{|A|} \cdot \overline{A} = -\frac{1}{2} \cdot \begin{pmatrix} -11 & -12 & 8 \\ -5 & -6 & 4 \\ -2 & -2 & 2 \end{pmatrix} = \begin{pmatrix} \frac{11}{2} & 6 & -4 \\ \frac{5}{2} & 3 & -2 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 5,5 & 6 & -4 \\ 2,5 & 3 & -2 \\ 1 & 1 & -1 \end{pmatrix}.$$

## Проверка:

$$A \cdot A^{-1} = \begin{pmatrix} 2 & -4 & 0 \\ -1 & 3 & -2 \\ 1 & -1 & -3 \end{pmatrix} \cdot \begin{pmatrix} 5,5 & 6 & -4 \\ 2,5 & 3 & -2 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E$$

#### Задача №4

Записать систему уравнений

$$\begin{cases}
2x_1 + x_2 + x_3 = 7 \\
4x_1 - x_2 + 3x_3 = 1 \\
8x_1 - 3x_2 + 6x_3 = -2
\end{cases} \tag{1}$$

в матричной форме и решить ее с помощью обратной матрицы.

#### Решение:

Пусть A - матрица коэффициентов при неизвестных; X - вектор-столбец неизвестных  $x_1, x_2, x_3; H$  - вектор-столбец свободных членов:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -1 & 3 \\ 8 & -3 & 6 \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad H = \begin{pmatrix} 7 \\ 1 \\ -2 \end{pmatrix}.$$

Левую часть системы (1) можно записать в виде произведения матриц AX, а правую – в виде вектор-столбца H. Следовательно, систему (1) можно записать в виде матричного уравнения

$$AX = H.$$
 (2)

Если определитель матрицы A отличен от нуля, то матрица A имеет обратную матрицу  $A^{-1}$ . Умножив обе части равенства (2) слева на матрицу  $A^{-1}$ , получим

$$A^{-1}AX = A^{-1}H.$$

Так как  $A^{-1}A = E$ , где E - единичная матрица, а EX = X, то  $X = A^{-1}H$ . (3)

Формулу (3) называют матричной записью решения системы линейных уравнений. Чтобы воспользоваться формулой (3), необходимо сначала найти обратную матрицу  $A^{-1}$ :

$$\det A = \begin{vmatrix} 2 & 1 & 1 \\ 4 & -1 & 3 \\ 8 & -3 & 6 \end{vmatrix} = 2; \qquad A^{-1} = \frac{1}{2} \cdot \begin{pmatrix} 3 & -9 & 4 \\ 0 & 4 & -20 \\ -4 & 14 & -6 \end{pmatrix}.$$

Заменив (3) соответствующими матрицами, имеем

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1,5 & -4,5 & 2 \\ 0 & 2 & -1 \\ -2 & 7 & -3 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 10,5-4,5-4 \\ 0+2+2 \\ -14+7+6 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}.$$

Откуда  $x_1 = 2$ ,  $x_2 = 4$ ,  $x_3 = -1$ .

Сделаем проверку, подставив найденное решение в каждое уравнение системы.

## Проверка:

$$\begin{cases} 2 \cdot 2 + 4 + (-1) = 7 \\ 4 \cdot 2 - 4 + 3 \cdot (-1) = 1 \\ 8 \cdot 2 - 3 \cdot 4 + 6 \cdot (-1) = -2 \end{cases}$$

Мы видим, что после подстановки решения в систему каждое уравнение обратилось в числовое тождество.

#### Ответ:

$$x_1 = 2$$
,  $x_2 = 4$ ,  $x_3 = -1$ .

## Задача №5

Решить систему линейных уравнений:

$$\begin{pmatrix}
x_1 & - & 2x_2 & + & 2x_3 & = & 2 \\
5x_1 & - & 8x_2 & + & 2x_3 & = & -12 \\
3x_1 & + & x_2 & + & 3x_3 & = & 4
\end{pmatrix}$$

методом Гаусса.

#### Решение:

Исключим из последних двух уравнений  $x_1$ . Для этого умножим первое уравнение на -5 и результаты прибавим ко второму уравнению, затем обе части первого уравнения умножим на -3 и результаты прибавим соответственно к третьему уравнению. В результате получим систему, эквивалентную данной:

$$\begin{pmatrix}
x_1 & -2x_2 & +2x_3 & =2 \\
2x_2 & -8x_3 & =-22 \\
7x_2 & -3x_3 & =-2
\end{pmatrix}$$
(1)

Разделив обе части второго уравнения системы (1) на 2, получим систему

$$\begin{pmatrix} x_1 & - & 2x_2 & + & 2x_3 & = & 2 \\ & & x_2 & - & 4x_3 & = & -11 & (2) \\ & & 7x_2 & - & 3x_3 & = & -2 \end{pmatrix}$$
 Теперь исключим из третьего уравнения системы (2) переменную

Теперь исключим из третьего уравнения системы (2) переменную  $x_2$ . Для этого обе части второго уравнения этой системы умножим на -7 и результаты прибавим к третьему уравнению. В результате получим систему:

$$\begin{pmatrix}
x_1 & - & 2x_2 & + & 2x_3 & = & 2 \\
& & x_2 & - & 4x_3 & = & -11 \\
& & & 25x_3 & = & 75
\end{pmatrix} (3)$$

Откуда 
$$x_3 = 3$$
,  $x_2 = 1$ ,  $x_1 = -2$ .

Приведение данной системы к ступенчатому виду (3) практически более удобно, если использовать преобразования расширенной матрицы данной системы.

Пусть A - матрица, составленная из коэффициентов при неизвестных. Она называется **матрицей системы**. Если к матрице A присоединить столбец свободных членов, то полученная матрица B называется **расширенной матрицей системы**.

Для удобства столбец свободных членов расширенной матрицей системы отделим вертикальной чертой. Расширенная матрица данной системы имеет вид:

$$\begin{pmatrix} 1 & -2 & 2 & 2 \\ 5 & -8 & 2 & -12 \\ 3 & 1 & 3 & 4 \end{pmatrix}.$$

Прибавим ко второй строке первую, умноженную на -5, а к третьей строке прибавим первую, умноженную на -3. Получим эквивалентную исходной матрицу

$$\begin{pmatrix}
1 & -2 & 2 & 2 \\
0 & 2 & -8 & -22 \\
0 & 7 & -3 & -2
\end{pmatrix}.$$

Разделив элементы второй строки на 2, получим

$$\begin{pmatrix} 1 & -2 & 2 & 2 \\ 0 & 1 & -4 & -11 \\ 0 & 7 & -3 & -2 \end{pmatrix}.$$

Прибавив к третьей строке вторую, умноженную на -7, получим матрицу

$$\begin{pmatrix}
1 & -2 & 2 & 2 \\
0 & 1 & -4 & -11 \\
0 & 0 & 25 & 75
\end{pmatrix},$$

которая соответствует виду (3) данной системы.

## Задача №6

Исследовать данную систему уравнений

$$\begin{cases} x_1 + x_2 + x_3 + 2x_4 = 6 \\ 3x_1 - 5x_2 - 2x_3 + 7x_4 = 4 \\ 5x_1 - 2x_2 + 7x_3 + 30x_4 = 5 \end{cases}$$

на совместность и решить ее, если она совместна.

#### Решение:

При исследовании системы линейных уравнений используем теорему Кронекера-Капелли: для того чтобы система линейных

уравнений была совместна, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу расширенной матрицы. При этом если ранг матрицы A равен рангу матрицы B и равен числу неизвестных, то система имеет единственное решение. Если же ранг матрицы A равен рангу матрицы B, но меньше числа неизвестных, то система имеет бесконечное число решений. Если ранг матрицы A меньше ранга матрицы B, то система несовместна и решения не существует.

Составим расширенную матрицу системы

$$B = \begin{pmatrix} 1 & 1 & 1 & 2 & | & 6 \\ 3 & -5 & -2 & 7 & | & 4 \\ 5 & -2 & 7 & 30 & | & 5 \end{pmatrix}.$$

Чтобы определить ранг матрицы, преобразуем ее к ступенчатому виду. Матрицы, получаемые после преобразований, являются эквивалентными. Будем соединять их знаком ≈.

Прибавим сначала ко второй строке первую, умноженную на -3, а затем к третьей - первую, умноженную на -5:

$$\begin{pmatrix} 1 & 1 & 1 & 2 & | & 6 \\ 3 & -5 & -2 & 7 & | & 4 \\ 5 & -2 & 7 & 30 & | & 5 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 2 & | & 6 \\ 0 & -8 & -5 & 1 & | & -14 \\ 5 & -2 & 7 & 30 & | & 5 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 2 & | & 6 \\ 0 & -8 & -5 & 1 & | & -14 \\ 0 & -7 & 2 & 20 & | & -25 \end{pmatrix}.$$

Прибавим ко второй строке третью, умноженную на -1, а затем умножим вторую строку на -1:

$$\begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 0 & -8 & -5 & 1 & -14 \\ 0 & -7 & 2 & 20 & -25 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 0 & -1 & -7 & -19 & 11 \\ 0 & -7 & 2 & 20 & -25 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 0 & -7 & 2 & 20 & -25 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 0 & 1 & 7 & 19 & -11 \\ 0 & -7 & 2 & 20 & -25 \end{pmatrix}.$$

Прибавим к третьей строке вторую, умноженную на 7, а затем поделим третью строку на 51:

$$\begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 0 & 1 & 7 & 19 & -11 \\ 0 & -7 & 2 & 20 & -25 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 0 & 1 & 7 & 19 & -11 \\ 0 & 0 & 51 & 153 & -102 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 0 & 1 & 7 & 19 & -11 \\ 0 & 0 & 1 & 3 & -2 \end{pmatrix}.$$

Ранг матрицы равен количеству «ступенек» в матрице. Ранг расширенной матрицы равен рангу матрицы системы и равен 3, следовательно, система совместна и имеет решение. А так как ранг матрицы меньше чем количество неизвестных в системе, то система имеет бесконечно много решений. Чтобы найти их, прибавим ко второй строке третью, умноженную на -7, а затем к первой строке прибавим третью строку, умноженную на -1:

$$\begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 0 & 1 & 7 & 19 & -11 \\ 0 & 0 & 1 & 3 & -2 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 2 & 6 \\ 0 & 1 & 0 & -2 & 3 \\ 0 & 0 & 1 & 3 & -2 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 0 & -1 & 8 \\ 0 & 1 & 0 & -2 & 3 \\ 0 & 0 & 1 & 3 & -2 \end{pmatrix}.$$

Прибавив к первой строке вторую, умноженную на -1, получим матрицу:

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 5 \\
0 & 1 & 0 & -2 & 3 \\
0 & 0 & 1 & 3 & -2
\end{pmatrix}.$$

После проведенных преобразований расширенной матрицы система уравнений принимает вид:

$$\begin{cases} x_1 & + x_4 = 5 \\ x_2 & -2x_4 = 3. \\ x_3 + 3x_4 = -2 \end{cases}$$

Система имеет вид трапеции (но не треугольника), а значит является неопределенной. Выбираем одно из неизвестных в качестве

свободного. Пусть это будет  $x_4$ . Полагаем  $x_4=c$ , тогда  $x_3=-2-3c$ ,  $x_2=3+2c$ ,  $x_1=5-c$ .

Итак, решение системы имеет вид:

$$(5-c; 3+2c; -2-3c; c), c \in R,$$

т.е. c - любое действительное число.

## Задачи контрольной работы №1

#### Задачи №1-30:

Даны координаты вершин треугольника ABC. Найти длину стороны AC, уравнение медианы CM, координаты точки пересечения высот Z, внутренний угол A. Сделать чертеж. Координаты вершин треугольника для соответствующих номеров задач следующие:

A(0;0). B(6;3)C(3;4)1. B(7;2)C(4;3)A(1;-1)2. B(8;1). A(2;-2). **3.** C(5;2)A(1;0). B(7;3)4. C(4;4)**5.** A(2;-1). B(8;2)C(5;3)B(9;1). A(3;-2). **6.** C(6;2)B(7;4)7. A(1:1)C(4;5)B(8;3)8. A(2;0). C(5;4)9. B(9;2),A(3;-1), C(6;4)**10.** A(4;-2)B(10,1), C(7;2)B(6;5), 11. A(0;2). C(3;6)A(-1;3). B(5;6)C(2;7)12. 13. A(-2;4)B(4;7)C(1;8)A(-3;5)B(3;8)14. C(0;9)**15.** B(6;4)A(0:1). C(3:5)B(5;5), **16.** A(-1;2)C(2;6)B(4;6), **17.** A(-2;3)**18.** A(-3;4)B(3;7), C(0;8)B(5;3). C(2;4)**19.** A(-1;0). **20.** A(-2;2)B(4;5)C(1;6)B(9;0),C(6;1)21. A(4;-4), B(10;-1), C(7;0)22. B(2;8). 23.

24. 
$$A(-5;6)$$
,  $B(1;9)$ ,  $C(-2;10)$   
25.  $A(5;-3)$ ,  $B(1;0)$ ,  $C(8;3)$   
26.  $A(-4;6)$ ,  $B(2;9)$ ,  $C(-1;10)$   
27.  $A(2;2)$ ,  $B(8;5)$ ,  $C(5;6)$   
28.  $A(3;1)$ ,  $B(9;4)$ ,  $C(6;5)$   
29.  $A(1;3)$ ,  $B(7;6)$ ,  $C(4;7)$   
30.  $A(4;-1)$ ,  $B(10;2)$ ,  $C(7;3)$ .

#### Задачи №31-60:

Пользуясь формулами Крамера, решить систему уравнений:

$$\begin{cases} 2x_1 + 3x_2 & = b_1 \\ - x_2 + 4x_3 + 4x_4 & = b_2 \\ 5x_1 + 6x_3 - 2x_4 & = b_3 \\ 12x_2 + ax_4 & = b_4 \end{cases}$$

Значения параметров даны в таблице:

| № задачи | а  | $b_{\scriptscriptstyle 1}$ | $b_2$ | $b_3$ | $b_4$ |
|----------|----|----------------------------|-------|-------|-------|
| 31.      | 5  | 0                          | 10    | -29   | 44    |
| 32.      | 11 | 1                          | 5     | 40    | -45   |
| 33.      | 6  | -1                         | 7     | 34    | -42   |
| 34.      | 3  | 10                         | -8    | -27   | 54    |
| 35.      | 9  | -9                         | 25    | -11   | 24    |
| 36.      | 4  | -5                         | 15    | -4    | -20   |
| 37.      | 2  | 5                          | -3    | 38    | -18   |
| 38.      | 7  | 4                          | 2     | -31   | 52    |
| 39.      | 1  | -9                         | 25    | 5     | -10   |
| 40.      | 10 | 16                         | -20   | -6    | 38    |
| 41.      | 12 | 14                         | -18   | 20    | -12   |
| 42.      | 13 | -11                        | 27    | -1    | 16    |
| 43.      | 20 | 6                          | 0     | -1    | 28    |
| 44.      | -1 | 1                          | 5     | -16   | -16   |
| 45.      | 23 | 16                         | -20   | 10    | -21   |

|            |                  |                            |         | Продо | лжение таблицы |
|------------|------------------|----------------------------|---------|-------|----------------|
| № задачи   | $\boldsymbol{a}$ | $b_{\scriptscriptstyle 1}$ | $b_{2}$ | $b_3$ | $b_{_4}$       |
| 46.        | 17               | 4                          | 2       | 25    | -27            |
| 47.        | 25               | 0                          | 10      | 11    | -1             |
| 48.        | -2               | 5                          | -3      | -2    | -16            |
| 49.        | 19               | -1                         | 7       | 10    | 2              |
| 50.        | 15               | 10                         | -8      | 10    | 2              |
| <b>51.</b> | 1                | 3                          | 19      | 13    | 3              |
| <b>52.</b> | -6               | 8                          | 26      | 6     | 15             |
| 53.        | -7               | 13                         | 33      | 15    | 0              |
| 54.        | -8               | 5                          | 1       | 24    | 1              |
| 55.        | 1                | 4                          | 2       | -44   | -4             |
| 56.        | 0                | -5                         | -1      | -31   | 28             |
| <b>57.</b> | 6                | 8                          | -6      | 44    | -36            |
| 58.        | -7               | 5                          | 25      | 21    | 0              |
| <b>59.</b> | -8               | 8                          | 10      | 4     | -1             |
| 60.        | 3                | 6                          | 4       | -1    | 0              |

## Задачи №61-90:

Дана невырожденная матрица A. Требуется:

- а) найти обратную матрицу  $A^{-1}$ ;
- б) пользуясь правилом умножения матриц, показать, что  $A \cdot A^{-1} = E$ , где E - единичная матрица.

61. 
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & -3 & -1 \\ -2 & 4 & 0 \end{pmatrix}$$
 62.  $A = \begin{pmatrix} 4 & 2 & -1 \\ 0 & 1 & -3 \\ 5 & 2 & 0 \end{pmatrix}$  63.

61. 
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & -3 & -1 \\ -2 & 4 & 0 \end{pmatrix}$$
62. 
$$A = \begin{pmatrix} 4 & 2 & -1 \\ 0 & 1 & -3 \\ 5 & 2 & 0 \end{pmatrix}$$
63. 
$$A = \begin{pmatrix} 0 & -1 & -2 \\ 2 & 3 & 1 \\ -2 & 0 & 4 \end{pmatrix}$$
64. 
$$A = \begin{pmatrix} 3 & 2 & -2 \\ 3 & 0 & 4 \\ 2 & 1 & 0 \end{pmatrix}$$
65. 
$$A = \begin{pmatrix} 2 & 0 & 1 \\ -2 & 4 & 3 \\ -3 & 1 & 0 \end{pmatrix}$$
66. 
$$A = \begin{pmatrix} 3 & 4 & 0 \\ -2 & 1 & 2 \\ 1 & 0 & -1 \end{pmatrix}$$

67. 
$$A = \begin{pmatrix} 3 & 2 & -3 \\ -2 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 0 & 3 \\ 2 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & 2 & -3 \\ -2 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 0 & 3 \\ 2 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 8 & 6 & -1 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$$

70. 
$$A = \begin{pmatrix} 1 & 3 & 0 \\ -1 & 4 & 2 \\ -2 & 0 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 3 & 0 \\ -1 & 4 & 2 \\ -2 & 0 & 1 \end{pmatrix} \qquad A = \begin{pmatrix} 6 & 2 & 5 \\ 1 & 1 & -2 \\ 1 & -1 & 7 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & 0 & 7 \\ 1 & -3 & 1 \\ 3 & -4 & 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 0 & 7 \\ 1 & -3 & 1 \\ 3 & -4 & 8 \end{pmatrix}$$

73. 
$$A = \begin{pmatrix} 5 & 1 & 2 \\ -4 & -3 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & 4 & 1 \\ 4 & -1 & -3 \\ 4 & 4 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & 1 & 2 \\ -4 & -3 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & 4 & 1 \\ 4 & -1 & -3 \\ 4 & 4 & 2 \end{pmatrix}$$

$$75.$$

$$A = \begin{pmatrix} 4 & -5 & 4 \\ 2 & -4 & 1 \\ -2 & 6 & 1 \end{pmatrix}$$

76. 
$$A = \begin{pmatrix} 2 & -1 & 3 \\ 3 & -2 & 5 \\ 4 & 2 & 6 \end{pmatrix}$$

77. 
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 2 & 3 \\ 8 & 1 & 2 \end{pmatrix}$$

78. 
$$A = \begin{pmatrix} -3 & -1 & 2 \\ -2 & 2 & 6 \\ -1 & 1 & 4 \end{pmatrix}$$

79. 
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & 4 \\ 2 & 2 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 6 & 4 \\ 3 & 2 & 7 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 3 & -2 & 5 \\ 4 & 2 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 2 & 3 \\ 8 & 1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} -3 & -1 & 2 \\ -2 & 2 & 6 \\ -1 & 1 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & 4 \\ 2 & 2 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 6 & 4 \\ 3 & 2 & 7 \\ 1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & 11 & -2 \\ 2 & 3 & 3 \\ -5 & -1 & 2 \end{pmatrix}$$

82. 
$$A = \begin{pmatrix} 8 & 3 & 2 \\ 1 & 6 & 1 \\ -5 & -1 & 2 \end{pmatrix}$$

83. 
$$A = \begin{pmatrix} 2 & -3 & 1 \\ 3 & -3 & 1 \\ 2 & -1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 8 & 3 & 2 \\ 1 & 6 & 1 \\ -5 & -1 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & -3 & 1 \\ 3 & -3 & 1 \\ 2 & -1 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & -3 & 1 \\ 3 & -6 & 2 \\ 1 & -1 & 2 \end{pmatrix}$$

85. 
$$A = \begin{pmatrix} 4 & 6 & 0 \\ 3 & 11 & -3 \\ -1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \\ 0 & -1 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & 6 & 0 \\ 3 & 11 & -3 \\ -1 & 1 & 1 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \\ 0 & -1 & 5 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & -2 & 0 \\ -1 & 3 & 2 \\ 3 & 2 & 5 \end{pmatrix}$$

88. 
$$A = \begin{pmatrix} 2 & 3 & 4 \\ 5 & -2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 14 & 10 & 3 \\ -3 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 3 & 4 \\ 5 & -2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 14 & 10 & 3 \\ -3 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 3 & 1 & -3 \end{pmatrix}$$

#### Задачи №91-120:

Записать систему уравнений в матричной форме и решить ее с помощью обратной матрицы:

91. 
$$\begin{cases} 4x_1 & + 5x_3 = 8 \\ 2x_1 + x_2 + 2x_3 = 3 \\ x_1 + 3x_2 & = -1 \end{cases}$$
92. 
$$\begin{cases} 2x_1 - 2x_2 - 3x_3 = 3 \\ x_1 + x_2 + 2x_3 = -1 \\ 2x_1 - x_2 - x_3 = 2 \end{cases}$$
93. 
$$\begin{cases} 2x_1 - x_2 - 4x_3 = 3 \\ x_1 - 3x_2 & = 4 \\ 2x_2 - 2x_3 = -2 \end{cases}$$
94. 
$$\begin{cases} 3x_1 + 3x_2 + 2x_3 = 1 \\ 2x_1 & + x_3 = -1 \\ x_1 - 2x_2 & = -2 \end{cases}$$
95. 
$$\begin{cases} 2x_1 + 4x_2 + x_3 = 5 \\ x_1 - 4x_2 & = 2 \\ 3x_1 + 2x_2 + x_3 = 7 \end{cases}$$
96. 
$$\begin{cases} x_1 + x_2 - 3x_3 = 3 \\ x_1 & -2x_3 = 1 \\ 2x_1 - 2x_2 - 3x_3 = -2 \end{cases}$$
97. 
$$\begin{cases} 2x_1 - 2x_2 - 3x_3 = 1 \\ x_1 + 3x_2 & = 2 \\ 4x_2 + x_3 = 1 \end{cases}$$

98. 
$$\begin{cases} 2x_1 - x_2 + x_3 = 0 \\ x_1 + x_3 = -1 \\ 3x_2 + x_3 = -2 \end{cases}$$
99. 
$$\begin{cases} 2x_1 + x_3 = -2 \\ 4x_1 + 3x_2 + 4x_3 = 1 \\ x_1 - x_2 = -3 \end{cases}$$
100. 
$$\begin{cases} x_1 + x_2 - x_3 = 36 \\ x_1 - x_2 + x_3 = 13 \\ -x_1 + x_2 + x_3 = 7 \end{cases}$$
101. 
$$\begin{cases} 2x_1 + 3x_2 - 5x_3 = 0 \\ x_1 + 2x_2 + x_3 = 4 \\ 2x_1 + 7x_2 - x_3 = 8 \end{cases}$$
102. 
$$\begin{cases} 2x_1 - x_2 - 2x_3 = 3 \\ x_1 + 2x_2 + x_3 = -2 \end{cases}$$
103. 
$$\begin{cases} x_1 + 2x_2 + 3x_3 = -2 \\ 2x_1 + x_2 - 4x_3 = -2 \\ 3x_1 + 3x_2 + 2x_3 = -1 \end{cases}$$
104. 
$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ 2x_1 + x_2 - x_3 = 0 \end{cases}$$
105. 
$$\begin{cases} 2x_1 - x_2 - 2x_3 = 0 \\ 2x_1 + x_2 - x_3 = -3 \end{cases}$$
106. 
$$\begin{cases} 2x_1 - x_2 - 2x_3 = 0 \\ 2x_1 + x_2 - x_3 = -3 \end{cases}$$
107. 
$$\begin{cases} 2x_1 - x_2 - 2x_3 = 0 \\ 2x_1 - x_2 - 2x_3 = 0 \end{cases}$$
208. 
$$\begin{cases} 2x_1 - x_2 - 2x_3 = 0 \\ 2x_1 - x_2 - 2x_3 = 0 \end{cases}$$
209. 
$$\begin{cases} 2x_1 - x_2 - 2x_3 = 0 \\ 2x_1 - x_3 = 1 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
201. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
202. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
203. 
$$\begin{cases} 2x_1 - x_2 - 2x_3 = 0 \end{cases}$$
204. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
205. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
206. 
$$\begin{cases} 2x_1 - x_2 - 2x_3 = 0 \end{cases}$$
207. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
208. 
$$\begin{cases} 2x_1 - x_2 - 2x_3 = 0 \end{cases}$$
209. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
201. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
202. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
203. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
204. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
205. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
206. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
207. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
208. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
209. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
209. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
201. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
202. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
203. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
204. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
205. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
206. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
207. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
208. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
209. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3 = -3 \end{cases}$$
200. 
$$\begin{cases} 2x_1 - x_2 - x_3$$

106. 
$$\begin{cases} x_1 + 2x_2 + x_3 = 4 \\ 3x_1 - 5x_2 + 3x_3 = 1 \\ 2x_1 + 7x_2 - x_3 = 8 \end{cases}$$
107. 
$$\begin{cases} 2x_1 - 3x_2 + x_3 = -1 \\ x_1 + x_2 + x_3 = 6 \\ 3x_1 + x_2 - 2x_3 = -1 \end{cases}$$
108. 
$$\begin{cases} x_1 + x_2 + 2x_3 = -1 \\ 2x_1 - x_2 + 2x_3 = -1 \\ 4x_1 + x_2 + 4x_3 = -2 \end{cases}$$
109. 
$$\begin{cases} 2x_1 - x_2 + 2x_3 = -1 \\ 4x_1 + x_2 + 4x_3 = -2 \end{cases}$$
110. 
$$\begin{cases} x_1 + x_2 + x_3 = 3 \\ x_1 + 3x_2 - 2x_3 = -7 \\ 3x_2 + 5x_3 = 4 \end{cases}$$
111. 
$$\begin{cases} x_1 + x_2 + x_3 = 3 \\ 2x_1 - 3x_2 = -1 \\ x_1 + 2x_2 - x_3 = 2 \end{cases}$$
111. 
$$\begin{cases} x_1 + 2x_2 + x_3 = 4 \\ 3x_1 - 5x_2 + 3x_3 = 12 \\ 2x_1 + 7x_2 - x_3 = 2 \end{cases}$$
112. 
$$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ 2x_1 - 3x_3 = 13 \\ 6x_1 - 5x_3 = 35 \end{cases}$$
113. 
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 4 \\ 2x_1 + x_2 - 4x_3 = 3 \\ 3x_1 + 3x_2 + 2x_3 = 2 \end{cases}$$

114. 
$$\begin{cases} x_2 - x_3 = 1 \\ 3x_1 - x_3 = 1 \end{cases}$$

$$x_1 - 2x_2 - 2x_3 = -9$$
115. 
$$\begin{cases} x_1 + 2x_2 + x_3 = 5 \\ 2x_1 + x_2 - 4x_3 = 1 \\ 4x_1 - x_2 = 7 \end{cases}$$
116. 
$$\begin{cases} x_1 - x_2 + 2x_3 = 3 \\ x_1 - x_3 = -4 \\ 2x_1 + x_2 - x_3 = -3 \end{cases}$$
117. 
$$\begin{cases} x_1 + 4x_2 - x_3 = 7 \\ 2x_1 - x_2 - 3x_3 = 5 \\ x_1 + x_2 = 4 \end{cases}$$
118. 
$$\begin{cases} x_1 + 2x_2 = -2 \\ 2x_1 - 5x_2 - 4x_3 = -8 \\ 3x_1 + 6x_2 + 7x_3 = 1 \end{cases}$$
119. 
$$\begin{cases} x_1 + x_3 = 5 \\ -5x_2 - 2x_3 = 8 \\ 2x_1 + 3x_2 - 5x_3 = -3 \end{cases}$$
120. 
$$\begin{cases} 2x_1 + x_2 = 3 \\ 4x_2 + x_3 = 2 \\ x_1 - x_2 + 3x_3 = -6 \end{cases}$$

## Задачи №121-150:

Пользуясь методом Гаусса, найти решение системы линейных уравнений:

121. 
$$\begin{cases} x_1 + 2x_2 + x_3 = 3 \\ x_1 + x_2 - 2x_3 = -3 \end{cases}$$

$$2x_1 - 3x_2 - x_3 = 0$$
122. 
$$\begin{cases} x_1 + x_2 - 2x_3 = -1 \\ x_1 + 2x_2 + 3x_3 = 0 \end{cases}$$

$$4x_1 + 5x_2 - 2x_3 = -3$$
123. 
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 - 3x_2 - x_3 = -4 \\ 3x_1 + x_2 + 2x_3 = 1 \end{cases}$$
124. 
$$\begin{cases} x_1 - 2x_2 + x_3 = 1 \\ 2x_1 + 3x_2 - x_3 = 8 \end{cases}$$

$$x_1 - x_2 + 2x_3 = -1$$
125. 
$$\begin{cases} x_1 - 2x_2 + x_3 = 6 \\ 2x_1 + 2x_2 - 3x_3 = 0 \end{cases}$$

$$2x_1 + x_2 + 2x_3 = 0$$

$$2x_1 + x_2 + 2x_3 = 0$$

$$3x_1 - x_2 + 3x_3 = -1$$

$$\begin{cases} x_1 + 2x_2 + 5x_3 = -1 \\ x_1 + x_2 + 2x_3 = 0 \end{cases}$$
310. 
$$\begin{cases} x_1 + x_2 + 2x_3 = 0 \\ 3x_1 - x_2 - 3x_3 = 1 \end{cases}$$
127. 
$$\begin{cases} x_1 + x_2 + 3x_3 = -2 \\ 2x_1 - 3x_2 - x_3 = 3 \end{cases}$$
3112. 
$$\begin{cases} x_1 + 4x_2 - 3x_3 = -7 \\ x_1 - 3x_2 + 2x_3 = 0 \end{cases}$$
212. 
$$\begin{cases} x_1 + 4x_2 - 3x_3 = -7 \\ x_1 - 3x_2 + 2x_3 = 0 \end{cases}$$
213. 
$$\begin{cases} x_1 + 4x_2 - 3x_3 = -7 \\ x_1 - 3x_2 + 2x_3 = 0 \end{cases}$$
214. 
$$\begin{cases} x_1 + 4x_2 - 3x_3 = -7 \\ x_1 - 3x_2 + 2x_3 = 0 \end{cases}$$
215. 
$$\begin{cases} x_1 + 4x_2 - 3x_3 = -7 \\ x_1 - 3x_2 + 2x_3 = 0 \end{cases}$$
216. 
$$\begin{cases} x_1 + 4x_2 - 3x_3 = -7 \\ x_1 - 3x_2 + 2x_3 = 0 \end{cases}$$
217. 
$$\begin{cases} x_1 + 4x_2 - 3x_3 = -7 \\ x_1 - 3x_2 + 2x_3 = 0 \end{cases}$$
218. 
$$\begin{cases} x_1 + 4x_2 - 3x_3 = -7 \\ x_1 - 3x_2 + 2x_3 = 0 \end{cases}$$
219. 
$$\begin{cases} x_1 + 4x_2 - 3x_3 = -7 \\ x_1 - 3x_2 - x_3 = -7 \end{cases}$$

129. 
$$\begin{cases} x_1 + 2x_2 + x_3 = 1\\ 2x_1 - 3x_2 - 2x_3 = -3\\ 2x_1 + x_2 + x_3 = 2 \end{cases}$$
130. 
$$\begin{cases} x_1 + 2x_2 - x_3 = -7\\ 2x_1 - x_2 + 3x_3 = 4\\ 3x_1 - 3x_2 - 2x_3 = -7 \end{cases}$$
131. 
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 3\\ x_1 + 2x_2 - 2x_3 = 4\\ 3x_1 - 5x_2 + 6x_3 = 0 \end{cases}$$
132. 
$$\begin{cases} x_1 + 2x_2 - 4x_3 = 0\\ 3x_1 + x_2 - 3x_3 = -1\\ 2x_1 - x_2 + 5x_3 = 3 \end{cases}$$
133. 
$$\begin{cases} 2x_1 - 3x_2 - 5x_3 = 1\\ 3x_1 + x_2 - 2x_3 = -4\\ x_1 - 2x_2 + x_3 = 5 \end{cases}$$
134. 
$$\begin{cases} x_1 - 3x_2 + x_3 = 2\\ 2x_1 + x_2 + 3x_3 = 3\\ 2x_1 - x_2 - 2x_3 = 8 \end{cases}$$
135. 
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 2\\ x_1 - x_2 + 3x_3 = -4\\ 3x_1 + 5x_2 + x_3 = 4 \end{cases}$$
136. 
$$\begin{cases} 5x_1 - 2x_2 + x_3 = -1\\ 2x_1 + x_2 + 2x_3 = 6\\ x_1 - 3x_2 - x_3 = -5 \end{cases}$$

137. 
$$\begin{cases} 2x_1 - x_2 + 3x_3 = 1 \\ x_1 + 2x_2 + x_3 = 8 \\ 4x_1 - 3x_2 - 2x_3 = -1 \end{cases}$$
138. 
$$\begin{cases} 2x_1 - x_2 + 3x_3 = 3 \\ x_1 + 2x_2 + x_3 = 2 \\ x_1 - 3x_2 + 4x_3 = -1 \end{cases}$$
139. 
$$\begin{cases} 2x_1 - 3x_2 + 3x_3 = 0 \\ x_1 + x_2 - 3x_3 = -7 \\ x_1 - 2x_2 + 3x_3 = 3 \end{cases}$$
140. 
$$\begin{cases} x_1 + x_2 - 2x_3 = 1 \\ 2x_1 + 3x_2 + x_3 = 0 \\ x_1 - 2x_2 - x_3 = 7 \end{cases}$$
141. 
$$\begin{cases} 2x_1 + x_2 + x_3 = -7 \\ 2x_1 - x_2 - 3x_3 = 5 \\ x_1 - 3x_2 - x_3 = 1 \end{cases}$$
142. 
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 - x_3 = 6 \end{cases}$$
143. 
$$\begin{cases} x_1 - 4x_2 + x_3 = 0 \\ 2x_1 + 3x_2 - x_3 = 2 \\ x_1 - x_2 - 2x_3 = 6 \end{cases}$$
144. 
$$\begin{cases} 3x_1 - 4x_2 + x_3 = 0 \\ 2x_1 + x_2 - 2x_3 = 7 \end{cases}$$
144. 
$$\begin{cases} 3x_1 + 2x_2 - x_3 = 3 \\ x_1 - x_2 + 2x_3 = -4 \\ 2x_1 + 2x_2 + x_3 = 4 \end{cases}$$

145. 
$$\begin{cases} 3x_1 + x_2 - 2x_3 = 1 \\ x_1 - 2x_2 + 3x_3 = 5 \end{cases}$$

$$2x_1 + 3x_2 - x_3 = -4$$
146. 
$$\begin{cases} 3x_1 - 2x_2 + 2x_3 = 3 \\ 2x_1 + x_2 - x_3 = -5 \end{cases}$$

$$5x_1 - x_2 + 3x_3 = 4$$
147. 
$$\begin{cases} 3x_1 + x_2 + 2x_3 = -4 \\ x_1 - 2x_2 - x_3 = -1 \end{cases}$$

$$2x_1 + 3x_2 + 2x_3 = 0$$
148. 
$$\begin{cases} 4x_1 + 3x_2 - 2x_3 = -1 \\ 3x_1 + x_2 + x_3 = 3 \end{cases}$$

$$x_1 - 2x_2 - 3x_3 = 8$$
149. 
$$\begin{cases} 3x_1 + 3x_2 + 2x_3 = -1 \\ 2x_1 + x_2 - x_3 = 3 \end{cases}$$

$$x_1 - 2x_2 - 3x_3 = 4$$
150. 
$$\begin{cases} 2x_1 + x_2 + 3x_3 = 5 \\ x_1 - 2x_2 + x_3 = 4 \end{cases}$$

$$3x_1 + 4x_2 + x_3 = -2$$

## Задачи №151-180:

Исследовать данную систему уравнений на совместность и решить ее, если она совместна:

151. 
$$\begin{cases} 5x_1 - 4x_2 + x_3 = 0 \\ 2x_2 - x_4 = 4 \\ 3x_1 - x_3 - 2x_4 = 0 \end{cases}$$

152. 
$$\begin{cases} 5x_1 + 3x_2 + x_3 = 0 \\ x_1 + 2x_3 = 0 \end{cases}$$

$$x_2 - x_3 = 2$$
153. 
$$\begin{cases} 2x_1 - 3x_2 + x_3 = -4 \\ 5x_1 + x_2 - 4x_3 = 7 \\ x_1 + 7x_2 - 6x_3 = 0 \end{cases}$$
154. 
$$\begin{cases} 5x_1 + 3x_2 + x_3 = 0 \\ 3x_1 + 2x_2 + x_3 = 2 \end{cases}$$

$$\begin{cases} 5x_1 - 2x_2 + x_3 = 2 \\ 2x_1 + x_2 = 8 \\ 8x_1 - 5x_2 + 2x_3 = -4 \end{cases}$$
156. 
$$\begin{cases} 2x_1 + x_2 + 3x_3 = 0 \\ x_1 - 2x_2 - 2x_3 = 7 \\ 4x_1 - 3x_2 - x_3 = 5 \end{cases}$$
157. 
$$\begin{cases} x_1 - 2x_2 + x_3 = 5 \\ 2x_1 + x_2 + 3x_3 = 0 \end{cases}$$

$$\begin{cases} 3x_1 - x_2 - 2x_3 = 1 \\ 2x_1 + 3x_2 + 4x_3 = 1 \end{cases}$$

$$\begin{cases} 3x_1 - x_2 - 2x_3 = 1 \\ 2x_1 + x_3 = 5 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 = 0 \\ 3x_1 - x_2 - 2x_3 = 1 \end{cases}$$
159. 
$$\begin{cases} 2x_1 + x_2 - x_3 = 0 \\ 3x_1 - x_2 - 2x_3 = 1 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 = 0 \\ 3x_1 - x_2 - 2x_3 = 1 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 = 0 \\ 3x_1 - x_2 - 2x_3 = 1 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 = 0 \\ 3x_1 - x_2 - 2x_3 = 1 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 = 0 \\ 3x_1 - x_2 - 2x_3 = 1 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 = 0 \\ 3x_1 - x_2 - 2x_3 = 1 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 = 0 \\ 3x_1 - x_2 - 2x_3 = 1 \end{cases}$$

160. 
$$\begin{cases} 3x_1 - 2x_2 + x_3 = 1 \\ x_1 + x_2 - 2x_3 = 7 \\ 5x_1 - 3x_3 = 2 \end{cases}$$
161. 
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 = 10 \\ x_1 - 2x_2 + 3x_4 = -1 \\ 3x_1 + x_2 + x_3 - 3x_4 = 0 \end{cases}$$
162. 
$$\begin{cases} x_1 + x_2 + 5x_3 - 3x_4 = 0 \\ 2x_1 - x_2 + 7x_3 + 3x_4 = 0 \\ x_1 + 2x_2 + 6x_3 - 6x_4 = 2 \end{cases}$$
163. 
$$\begin{cases} x_1 - 2x_2 - 2x_3 + 3x_4 = 3 \\ -2x_1 + 5x_2 + 3x_3 - x_4 = 4 \\ -4x_1 + 11x_2 + 5x_3 + 3x_4 = 18 \end{cases}$$
164. 
$$\begin{cases} x_1 + x_2 - 8x_3 = 28 \\ 2x_1 - 3x_2 - x_3 + 5x_4 = -24 \\ -3x_1 + x_2 - 12x_3 + 4x_4 = 20 \end{cases}$$
165. 
$$\begin{cases} x_1 + x_2 - x_3 - x_4 = -1 \\ -2x_1 + 3x_2 - 8x_3 + 22x_4 = -13 \\ 3x_1 + 2x_2 - x_3 - 7x_4 = 0 \end{cases}$$
166. 
$$\begin{cases} x_1 + x_2 + 6x_3 + 5x_4 = 13 \\ -2x_1 + x_2 - 9x_3 = -2 \end{cases}$$
167. 
$$\begin{cases} x_1 - x_2 + x_3 + 7x_4 = 3 \\ 3x_1 - 2x_2 + x_3 + 18x_4 = 7 \\ 2x_1 + 3x_2 - 8x_3 - x_4 = -4 \end{cases}$$

168. 
$$\begin{cases} x_1 + x_2 + x_3 + 2x_4 = 2 \\ 3x_1 + 2x_2 - 3x_3 - 22x_4 = 6 \\ 2x_1 + 2x_2 + 8x_4 = 16 \end{cases}$$
169. 
$$\begin{cases} x_1 - 2x_2 + 3x_3 + 5x_4 = -5 \\ -4x_1 + x_2 + 2x_3 - 13x_4 = 13 \\ 3x_1 + x_2 - 5x_3 + 8x_4 = -8 \end{cases}$$
170. 
$$\begin{cases} x_1 + 2x_2 - 7x_3 - 7x_4 = -4 \\ 2x_1 - x_2 - 4x_3 + 4x_4 = 7 \\ -3x_1 + 2x_2 + 5x_3 + 12x_4 = -12 \end{cases}$$
171. 
$$\begin{cases} x_1 + 2x_2 - 5x_3 - 7x_4 = 5 \\ 2x_1 - x_2 + x_3 + 6x_4 = 0 \\ 3x_1 - 2x_2 + x_3 + 11x_4 = -1 \end{cases}$$
172. 
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 = 10 \\ x_1 + 2x_3 - 3x_4 = -1 \\ 2x_1 - x_2 + x_3 + 5x_4 = -1 \end{cases}$$
173. 
$$\begin{cases} x_1 + x_2 + x_3 + 5x_4 = 1 \\ 4x_1 - x_2 + x_3 + 5x_4 = 1 \\ 4x_1 - 4x_3 + 8x_4 = 8 \end{cases}$$
174. 
$$\begin{cases} x_1 + x_2 + 8x_3 + 8x_4 = 7 \\ 2x_1 + x_2 + 10x_3 + 3x_4 = 10 \\ -3x_1 - 6x_3 + 15x_4 = -9 \end{cases}$$
175. 
$$\begin{cases} 2x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + 6x_4 = -1 \end{cases}$$
175. 
$$\begin{cases} 2x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + 6x_4 = -7 \\ x_1 + x_2 - 3x_3 + 6x_4 = -7 \end{cases}$$

176. 
$$\begin{cases} x_1 + x_2 + x_3 - 3x_4 = 2 \\ x_1 + 3x_2 - 5x_3 - 21x_4 = -12 \\ 3x_1 - 4x_2 + 2x_3 + 10x_4 = -11 \end{cases}$$
177. 
$$\begin{cases} -x_1 - x_2 + 4x_3 + 6x_4 = -8 \\ -2x_1 + x_2 - x_3 - 3x_4 = -1 \\ 3x_1 - 2x_2 + 3x_3 + 7x_4 = -1 \end{cases}$$
178. 
$$\begin{cases} -x_1 + x_2 + x_3 + 2x_4 = -2 \\ 3x_1 + 4x_2 + x_3 + 2x_4 = -2 \\ 3x_1 + 2x_2 - x_3 - 3x_4 = 9 \end{cases}$$
179. 
$$\begin{cases} 5x_1 + x_2 + 3x_3 - 2x_4 = -5 \\ -13x_1 - 4x_2 + 2x_3 + x_4 = 13 \\ 8x_1 + 3x_2 - 5x_3 + x_4 = -8 \end{cases}$$
180. 
$$\begin{cases} x_1 + 2x_2 + 7x_3 - 3x_4 = -2 \\ 2x_1 - x_2 - 16x_3 + 4x_4 = 26 \\ -3x_1 + 2x_2 + 27x_3 - 7x_4 = -42 \end{cases}$$

## Контрольная работа № 2

Для определения индивидуальных заданий к контрольной работе №2 используйте таблицу №2.

Таблица №2

|                                            |   | Последняя цифра номера зачетной книжки |             |             |             |             |
|--------------------------------------------|---|----------------------------------------|-------------|-------------|-------------|-------------|
|                                            |   | 1 2 3 4                                |             |             |             |             |
|                                            | 1 | 1, 31, 61,                             | 2, 32, 62,  | 3, 33, 63,  | 4, 34, 64,  | 5, 35, 65,  |
|                                            |   | 91, 12, 151,                           | 92, 122,    | 93, 123,    | 94, 124,    | 95, 125,    |
|                                            |   | 181                                    | 152, 182    | 153, 183    | 154, 184    | 155, 185    |
|                                            | 2 | 11, 41, 71,                            | 12, 42, 72, | 13, 43, 73, | 14, 44, 74, | 15, 45, 75, |
|                                            |   | 101, 131,                              | 102, 132,   | 103, 133,   | 104, 134,   | 105, 135,   |
| <b>Z</b>                                   |   | 161, 191                               | 162, 192    | 163, 193    | 164, 194    | 165, 195    |
| K K                                        | 3 | 21, 51, 81,                            | 22, 52, 82, | 23, 53, 83, | 24, 54, 84, | 25, 55, 85, |
| (HE                                        |   | 111, 141,                              | 112, 142,   | 113, 143,   | 114, 144,   | 115, 145,   |
| <b>X</b>                                   |   | 171, 201                               | 172, 202    | 173, 203    | 174, 204    | 175, 205    |
| 10 Ĭ                                       | 4 | 20, 41, 71,                            | 19, 40, 70, | 18, 39, 69, | 17, 38, 68, | 16, 37, 67, |
| eTF                                        |   | 101, 140,                              | 102, 139,   | 103, 138,   | 104, 137,   | 105, 136,   |
| ач                                         |   | 161, 191                               | 160, 190    | 159, 189    | 158, 188    | 157, 187    |
| <b>a</b> 3                                 | 5 | 10, 31, 61,                            | 9, 51, 81,  | 8, 52, 82,  | 7, 53, 83,  | 6, 54, 84,  |
| lep                                        |   | 111, 130,                              | 112, 129,   | 113, 128,   | 114, 127,   | 115, 126,   |
| 0 <u>W</u>                                 |   | 151, 181                               | 171, 201    | 172, 202    | 173, 203    | 174, 204    |
| Предпоследняя цифра номера зачетной книжки | 6 | 30, 60, 90,                            | 29, 40, 70, | 28, 41, 71, | 27, 42, 72, | 26, 43, 73, |
|                                            |   | 91, 150,                               | 92, 149,    | 93, 148,    | 94, 147,    | 95, 146,    |
| Щи                                         |   | 180, 210                               | 160, 190    | 161, 191    | 162, 192    | 163, 193    |
| <b>  61</b>                                | 7 | 2, 49, 79,                             | 3, 50, 80,  | 4, 51, 81,  | 5, 52, 82,  | 6, 53, 83,  |
| TH)                                        |   | 101, 122,                              | 102, 123,   | 103, 124,   | 104, 125,   | 105, 126,   |
| ле                                         |   | 169, 199                               | 170, 200    | 171, 201    | 172, 202    | 173, 203    |
| 201                                        | 8 | 12, 59, 89,                            | 13, 60, 90, | 14, 31, 61, | 15, 32, 62, | 16, 33, 63, |
| еш                                         |   | 111, 132,                              | 112, 133,   | 113, 134,   | 114, 135,   | 115, 136,   |
| [Ip                                        |   | 179, 209                               | 180, 210    | 151, 181    | 152, 182    | 153, 183    |
|                                            | 9 | 22, 39, 69,                            | 23, 40, 70, | 24, 41, 71, | 25, 42, 72, | 26, 43, 73, |
|                                            |   | 100, 142,                              | 99, 143,    | 98, 144,    | 97, 145,    | 96, 146,    |
|                                            |   | 152, 189                               | 160, 190    | 161, 191    | 162, 192    | 163, 193    |
|                                            | 0 | 15, 49, 79,                            | 14, 50, 80, | 13, 51, 81, | 12, 52, 82, | 11, 53, 83, |
|                                            |   | 111, 135,                              | 112, 136,   | 113, 137,   | 114, 138,   | 115, 139,   |
|                                            |   | 169, 199                               | 170, 200    | 171, 201    | 172, 202    | 173, 203    |

Продолжение таблицы №2

|                                            |   | Последняя цифра номера зачетной книжки |             |             |             |             |
|--------------------------------------------|---|----------------------------------------|-------------|-------------|-------------|-------------|
|                                            |   | 6 7 8                                  |             |             |             | 0           |
|                                            | 1 | 6, 36, 66,                             | 7, 37, 67,  | 8, 38, 68,  | 9, 39, 69,  | 10, 40, 70, |
|                                            |   | 96, 126,                               | 97, 127,    | 98, 128,    | 99, 129,    | 100, 130,   |
|                                            |   | 156, 186                               | 157, 187    | 158, 188    | 159, 189    | 160, 190    |
|                                            | 2 | 16, 46, 76,                            | 17, 47, 77, | 18, 48, 78, | 19, 49, 79, | 20, 50, 80, |
|                                            |   | 106, 136,                              | 107, 137,   | 108, 138,   | 109, 139,   | 110, 140,   |
| <b>Z</b>                                   |   | 166, 196                               | 167, 197    | 168, 198    | 169, 199    | 170, 200    |
| K K                                        | 3 | 26, 56, 86,                            | 27, 57, 87, | 28, 58, 88, | 29, 59, 89, | 30, 60, 90, |
| Î Î                                        |   | 116, 146,                              | 117, 147,   | 118, 148,   | 119, 149,   | 120, 150,   |
| <b>X</b>                                   |   | 176, 206                               | 177, 207    | 178, 208    | 179, 209    | 180, 210    |
| 10 Ĭ                                       | 4 | 15, 36, 66,                            | 14, 35, 65, | 13, 34, 64, | 12, 33, 63, | 11, 32, 62, |
| eTE                                        |   | 106, 135,                              | 107, 134,   | 108, 133,   | 109, 132,   | 110, 131,   |
| a4(                                        |   | 156, 186                               | 155, 185    | 154, 184    | 153, 183    | 152, 182    |
| <b>8</b> 3                                 | 5 | 5, 55, 85,                             | 4, 56, 86,  | 3, 57, 87,  | 2, 58, 88,  | 1, 59, 89,  |
| lep                                        |   | 116, 125,                              | 117, 124,   | 118, 123,   | 119, 122,   | 120, 121,   |
| а ном                                      |   | 175, 205                               | 176, 206    | 177, 207    | 178, 208    | 179, 209    |
|                                            | 6 | 25, 44, 74,                            | 24, 45, 75, | 23, 46, 76, | 22, 47, 77, | 21, 48, 78, |
| ф                                          |   | 96, 145,                               | 97, 144,    | 98, 143,    | 99, 142,    | 100, 141,   |
| Предпоследняя цифра номера зачетной книжки |   | 164, 194                               | 165, 195    | 166, 196    | 167, 197    | 168, 198    |
|                                            | 7 | 7, 54, 84,                             | 8, 55, 85,  | 9, 56, 86,  | 10, 57, 87, | 11, 58, 88, |
|                                            |   | 106, 127,                              | 107, 128,   | 108, 129,   | 109, 130,   | 110, 131,   |
| ле,                                        |   | 174, 204                               | 175, 205    | 176, 206    | 177, 207    | 178, 208    |
| 100                                        | 8 | 17, 34, 64,                            | 18, 35, 65, | 19, 36, 66, | 20, 37, 67, | 21, 38, 68, |
| еді                                        |   | 116, 137,                              | 117, 138,   | 118, 139,   | 119, 140,   | 120, 141,   |
| Пр                                         |   | 154, 184                               | 155, 185    | 156, 186    | 157, 187    | 158, 188    |
|                                            | 9 | 27, 44, 74,                            | 28, 45, 75, | 29, 46, 76, | 30, 47, 77, | 1, 48, 78,  |
|                                            |   | 95, 147,                               | 94, 148,    | 93, 149,    | 92, 150,    | 91, 121,    |
|                                            |   | 164, 194                               | 165, 195    | 166, 196    | 167, 197    | 168, 198    |
|                                            | 0 | 10, 54, 84,                            | 9, 55, 85,  | 8, 56, 86,  | 7, 57, 87,  | 6, 58, 88,  |
|                                            |   | 116, 140,                              | 117, 129,   | 118, 128,   | 119, 127,   | 120, 126,   |
|                                            |   | 174, 204                               | 175, 205    | 176, 206    | 177, 207    | 178, 208    |

## Программа

#### I. Введение в математический анализ

- 1. Понятие функции. Основные элементарные функции и их графики.
- 2. Предел числовой последовательности. Предел функции в точке. Замечательные пределы. Понятие о непрерывной функции. Непрерывность элементарных функций.
- 3. Бесконечно малые функции и их свойства. Бесконечно большие функции. Связь между бесконечно большими и бесконечно малыми функциями.

# II. Дифференциальное исчисление функций одной переменной

- 4. Производная функции в точке, ее геометрический и механический смысл.
- 5. Производная «сложной» функции. Производная обратной функции.
- 6. Производные высших порядков.
- 7. Дифференциал и его геометрический смысл. Приложения дифференциала в приближенных вычислениях.
- 8. Теоремы Ролля и Лагранжа. Правило Лопиталя.
- 9. Формула Тейлора.

## III. Исследование функций с помощью производных

- 10. Условия возрастания и убывания функции.
- 11. Точки экстремума. Необходимое условие экстремума дифференцируемой функции. Достаточные условия экстремума. Отыскание наибольшего и наименьшего значений дифференцируемой функции на отрезке.
- 12. Направление выпуклости графика функции. Точки перегиба.
- 13. Общая схема исследования функции и построения ее графика.

## IV. Интегральное исчисление

- 14. Первообразная функции. Неопределенный интеграл и его свойства. Таблица основных формул интегрирования.
- 15. Замена переменных и интегрирование по частям в неопределенном интеграле.
- 16. Интегрирование простейших рациональных, иррациональных и тригонометрических функций. Применение таблицы интегралов.
- 17. Определенный интеграл и его свойства. Вычисление определенных интегралов методом интегрирования по частям и заменой переменных.
- 18. Несобственные интегралы.
- 19. Геометрический смысл определенного интеграла. Вычисление площадей плоских фигур.
- 20. Приближенное вычисление определенных интегралов.

## Вопросы для самостоятельного изучения

- 1. Функции многих переменных. Определение. Геометрическая иллюстрация. Предел. Непрерывность. Линии уровня.
- 2. Частные производные. Частные производные высших порядков. Теорема о равенстве смешанных производных.
- 3. Экстремум функции нескольких переменных. Необходимое и достаточное условия экстремума.

## Вопросы для самопроверки

- 1. Что называется функцией? Каковы способы ее задания?
- 2. Что называется областью определения функции? Приведите пример функции, областью определения которой являются все действительные числа, за исключением чисел 2 и 5; все положительные числа, за исключением тех же 2 и 5.
- 3. Что называется графиком функции? Как пользуясь графиком функции y = f(x), построить график функции y = Af(cx + a) + B?

- 4. Как определить предел переменной величины и предел функции при стремлении аргумента к конечному значению и к бесконечности?
- 5. Какие функции называются неявными, обратными, элементарными? Приведите примеры.
- 6. Как связаны понятия: «предел функции в точке» и «предел функции в точке слева и справа»?
- 7. Что такое бесконечно малая величина? Сформулируйте основные теоремы о бесконечно малых величинах.
- 8. Что такое бесконечно большая величина и как она связана с бесконечно малой?
- 9. Сформулируйте основные теоремы о пределах.
- 10. Напишите первый и второй замечательные пределы. Какие теоремы о пределах используются при их доказательстве?
- 11. Дайте определение непрерывности функции в точке и на отрезке. В чем состоит различие утверждений «функция непрерывна в точке» и «функция имеет конечный предел в точке»?
- 12. Сформулируйте основные теоремы о непрерывных функциях.
- 13. Какие типы точек разрывов функции существуют? Приведите примеры.
- 14. Что называется производной? Найдите производную функции  $y = \frac{x}{x-1}$ , пользуясь определением.
- 15. Что называется касательной к кривой? Каков геометрический смысл производной? Как составить уравнение касательной?
- 16. Каков механический смысл производной?
- 17. Может ли функция иметь производную в точке разрыва?
- 18. Будет ли функция непрерывна в точке, если она в ней дифференцируема?
- 19. Перечислите правила дифференцирования, формулы дифференцирования основных элементарных функций.
- 20. Что называется дифференциалом функции? Что такое дифференциал независимой переменной величины?
- 21. Каков геометрический смысл дифференциала? Для каких функций дифференциал и приращение равны?
- 22. Сформулируйте теоремы Лагранжа и Ролля.

- 23. Сформулируйте правило Лопиталя.
- 24. Дайте определение возрастания (убывания) функции. В чем состоит необходимый и достаточный признак возрастания (убывания) функции?
- 25. Дайте определение максимума (минимума) функции. В чем состоит необходимый признак экстремума? Приведите пример, показывающий, что это признак не является достаточным.
- 26. Сформулируйте оба достаточных признака экстремума.
- 27. Как установить выпуклость (вогнутость) кривой?
- 28. Что называется точкой перегиба? Как ее найти?
- 29. Кратко изложите схему построения графика функции.
- 30. Дайте определение непрерывной функции нескольких (двух) переменных.
- 31. Дайте определение частных производных и полного дифференциала. Как они связаны?
- 32. Что называется градиентом функции нескольких переменных?
- 33. Дайте определение экстремума функции нескольких переменных и приведите необходимые условия экстремума.
- 34. Как определяются частные производные высших порядков и при каком условии равны смешанные производные?
- 35. Сформулируйте достаточный признак экстремума функции двух переменных.
- 36. Какая функция называется первообразной данной функции?
- 37. Что называется неопределенным интегралом от данной функции?
- 38. Запишите таблицу основных интегралов.
- 39. Как проводится замена переменной в неопределенном интеграле?
- 40. Назовите основные свойства неопределенного интеграла.
- 41. Что называется определенным интегралом от данной функции? Каков его геометрический смысл?
- 42. Как связаны между собой понятия определенного интеграла и неопределенного интеграла?
- 43. Сформулируйте теорему о производной определенного интеграла с переменным верхним пределом.

- 44. Перечислите основные свойства определенного интеграла.
- 45. Дайте определение несобственных интегралов (с бесконечным пределом интегрирования и от разрывной функции).
- 46. Как вычисляется площадь плоской фигуры с помощью определенного интеграла?

#### Задача №1

Найти пределы (не применяя правило Лопиталя):

1) 
$$\lim_{x \to 3} \frac{x^2 - 7x + 12}{2x^2 - 3x - 9}$$
, 3)  $\lim_{x \to 0} (tg19x \cdot ctg5x)$ ,

2) 
$$\lim_{x\to 2} \frac{\sqrt{10-x}-\sqrt{x+6}}{x-2}$$
, 4)  $\lim_{x\to \infty} \left(\frac{x+2}{x+1}\right)^{\frac{x}{3}-1}$ .

#### Решение:

1) Функция, предел которой при  $x \to 3$  требуется найти, представляет собой частное двух функций. Теорему о пределе частного применить нельзя, так как предел знаменателя равен нулю. Предел числителя при  $x \to 3$  также равен нулю, имеет место неопределенность вида  $\frac{0}{0}$ . Эту неопределенность можно раскрыть, разложив на множители квадратные трехчлены в числителе и знаменателе:

$$\lim_{x \to 3} \frac{x^2 - 7x + 12}{2x^2 - 3x - 9} = \left[\frac{0}{0}\right] = \lim_{x \to 3} \frac{(x - 3) \cdot (x - 4)}{2 \cdot (x - 3) \cdot \left(x + \frac{2}{3}\right)} = \lim_{x \to 3} \frac{x - 4}{2x + 3} = -\frac{1}{9}.$$

2) Для того, чтобы раскрыть неопределенность вида  $\frac{0}{0}$ , домножим числитель и знаменатель на сопряженный к знаменателю множитель:

$$\lim_{x \to 2} \frac{\sqrt{10 - x} - \sqrt{x + 6}}{x - 2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x \to 2} \frac{\left(\sqrt{10 - x} - \sqrt{x + 6}\right) \cdot \left(\sqrt{10 - x} + \sqrt{x + 6}\right)}{\left(x - 2\right) \cdot \left(\sqrt{10 - x} + \sqrt{x + 6}\right)} = \lim_{x \to 2} \frac{\left(10 - x\right) - \left(x + 6\right)}{\left(x - 2\right) \cdot \left(\sqrt{10 - x} + \sqrt{x + 6}\right)} = \lim_{x \to 2} \frac{4 - 2x}{\left(x - 2\right) \cdot \left(\sqrt{10 - x} + \sqrt{x + 6}\right)} = \lim_{x \to 2} \frac{-2 \cdot \left(x - 2\right)}{\left(x - 2\right) \cdot \left(\sqrt{10 - x} + \sqrt{x + 6}\right)} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{10 - x} + \sqrt{x + 6}} = \lim_{x \to 2} \frac{-2}{\sqrt{x + 6}} = \lim_{x \to 2} \frac{$$

3) Для вычисления предела воспользуемся первым «замечательным» пределом  $\lim_{x\to 0} \frac{\sin x}{x} = 1$ :

$$\lim_{x \to 0} (tg19x \cdot ctg5x) = \lim_{x \to 0} \frac{tg19x}{tg5x} = \left[\frac{0}{0}\right] =$$

$$= \lim_{x \to 0} \frac{\frac{\sin 19x}{\cos 19x}}{\frac{\sin 5x}{\cos 5x}} = \lim_{x \to 0} \left(\frac{\sin 19x}{\sin 5x} \cdot \frac{\cos 5x}{\cos 19x}\right) =$$

$$= \lim_{x \to 0} \left(\frac{\sin 19x}{19x} \cdot \frac{5x}{\sin 5x} \cdot \frac{19}{5} \cdot \frac{\cos 5x}{\cos 19x}\right) =$$

$$= 1 \cdot 1 \cdot \frac{19}{5} \cdot \frac{\cos 0}{\cos 0} = \frac{19}{5}.$$

3) В данном пределе для раскрытия неопределенности вида  $1^{\infty}$ , можно использовать второй «замечательный» предел:

$$\lim_{x\to\infty} \left(\frac{x+2}{x+1}\right)^{\frac{x}{3}-1} = \left[1^{\infty}\right].$$

По формуле  $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$ , где  $e\approx 2.7$ 

$$\lim_{x \to \infty} \left( \frac{x+2}{x+1} \right)^{\frac{x}{3}-1} = \lim_{x \to \infty} \left( 1 + \frac{1}{x+1} \right)^{(x+1) \cdot \frac{1}{x+1} \cdot \left( \frac{x}{3} - 1 \right)} =$$

$$= e^{\lim_{x \to \infty} \left( \frac{1}{x+1} \cdot \left( \frac{x}{3} - 1 \right) \right)} = e^{\lim_{x \to \infty} \left( \frac{1}{x+1} \cdot \frac{x-3}{3} \right)} = e^{\lim_{x \to \infty} \frac{x-3}{3x+3}} = e^{\lim_{x \to \infty} \frac{1 - \frac{3}{x}}{3 + \frac{3}{x}}} = e^{\frac{1-0}{3+0}} = e^{\frac{1}{3}} = \sqrt{e}.$$

#### Задача №2

Найти производную функции:

$$y = x \cdot 3^{\cos x} + \ln[\cos(5x + 3)] + 100.$$

#### Решение:

Функция представляет собой сумму трех слагаемых. Ее производная равна сумме производных слагаемых:

 $y' = \left(x \cdot 3^{\cos x}\right)' + \left(\ln\left[\cos(5x+3)\right]\right)' + 100'$ . Используем формулы  $(u \cdot v)' = u' \cdot v + u \cdot v'$ ,  $(a^x)' = a^x \cdot \ln a$ , C' = 0, где C = const,  $(\ln x)' = \frac{1}{x}$ , и  $(\cos x)' = -\sin x$ , а также формулу дифференцирования сложной функции.

$$y' = x' \cdot 3^{\cos x} + x \cdot \left(3^{\cos x}\right)' + \frac{\left(\cos(5x+3)\right)'}{\cos(5x+3)} + 0 =$$

$$= 3^{\cos x} + x \cdot 3^{\cos x} \cdot \left(\cos x\right)' \cdot \ln 3 + \frac{-\sin(5x+3) \cdot \left(5x+3\right)'}{\cos(5x+3)} =$$

$$= 3^{\cos x} + x \cdot 3^{\cos x} \cdot \left(-\sin x\right) \cdot \ln 3 + \frac{-5\sin(5x+3)}{\cos(5x+3)} =$$

$$= 3^{\cos x} - x \cdot \sin x \cdot 3^{\cos x} \cdot \ln 3 - 5tg(5x+3).$$

#### Задача №3

Вычислить приближенное значение функции  $f(x) = \lg x$  в точке  $x_1 = 10,5$ , заменив приращение функции в точке  $x_0 = 10$  ее дифференциалом.

#### Решение:

Если приращение аргумента  $\Delta x = x_1 - x_0$  достаточно мало по абсолютной величине, то приращение функции  $\Delta f = f(x_1) - f(x_0)$  приближенно равно дифференциалу функции df.

Поэтому справедлива формула:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$$
.

Для вычисления приближенного значения функции  $y = \lg x$  в точке  $x_1 = 10.5$ , вычислим производную этой функции в точке  $x_0 = 10$ :

$$f'(x) = (\lg x)' = \frac{1}{x} \cdot \frac{1}{\ln 10}.$$
$$f'(x_0) = f'(10) = \frac{1}{10} \cdot \frac{1}{\ln 10} \approx 0,0434.$$

(воспользовались таблицей логарифмов)

Подставив в формулу, получим:

$$\lg 10.5 \approx \lg 10 + 0.0434 \cdot 0.5 \approx 1.0217$$
.

Сравнение полученного результата с табличным значением 1,212 говорит о хорошей точности.

#### Задача №4

Исследовать функцию  $y = \frac{1}{4}x^4 - 2x^2$  и построить ее график.

#### Решение:

Исследуемая функция представляет собой многочлен, ее область определения – множество всех действительных чисел.

Функция является непрерывной.

$$\lim_{x\to\pm\infty}\left(\frac{1}{4}x^4-2x^2\right)=\lim_{x\to\pm\infty}\left(x^4\cdot\left(\frac{1}{4}-\frac{2}{x^2}\right)\right)=+\infty.$$

Функция  $y = \frac{1}{4}x^4 - 2x^2$  четная, так как для любого x из области определения функции выполняется равенство

$$f(-x) = \frac{1}{4}(-x)^4 - 2(-x)^2 = \frac{1}{4}x^4 - 2x^2 = f(x).$$

Это означает, что график функции симметричен относительно оси ординат.

Для нахождения точек пересечения графика функции с осями координат решим системы уравнений, в которых одно уравнение — уравнение данной линии, а другое — уравнение соответствующей координатной оси.

Решая систему уравнений

$$\begin{cases} y = \frac{1}{4}x^4 - 2x^2, \\ y = 0 \end{cases}$$

находим три точки пересечения графика функции с осью абсцисс:

$$x_1 = -2\sqrt{2} \approx -2.83$$
;  $x_2 = 2\sqrt{2} \approx 2.83$ ;  $x_3 = 0$ .

Решая систему уравнений

$$\begin{cases} y = \frac{1}{4}x^4 - 2x^2 \\ x = 0 \end{cases},$$

находим точку пересечения графика функции с осью ординат:

$$y = 0$$
.

Таким образом, график заданной функции пересекается с осями координат в точках  $A(-2\sqrt{2};0)$ ,  $B(2\sqrt{2};0)$  и O(0;0).

Полученные в результате данные будем отмечать на графике. Построим найденные точки.

Производная данной функции равна:

$$y' = x^3 - 4x = x \cdot (x^2 - 4).$$

Из уравнения  $x \cdot (x^2 - 4) = 0$  находим критические точки:  $x_1 = 0$ ,  $x_2 = -2$ ,  $x_3 = 2$ . Они разбивают ось абсцисс на четыре интервала  $(-\infty;-2)$ , (-2;0), (0;2),  $(2;+\infty)$  знакопостоянства производной. Для определения знака производной в каждом интервале, определяем ее знак в произвольной точке этого интервала. Так как

$$f(-4) = -4 \cdot (16 - 4) < 0,$$
  

$$f(-1) = -1 \cdot (1 - 4) > 0,$$
  

$$f(1) = 1 \cdot (1 - 4) < 0,$$
  

$$f(3) = 3 \cdot (9 - 4) > 0,$$

то функция убывает на интервалах  $(-\infty;-2)$  и (0;2), возрастает на интервалах (-2;0) и  $(2;+\infty)$ .

Производная данной функции равна нулю в точке x=0 и меняет знак с плюса на минус при переходе через это значение. Поэтому при x=0 функция имеет максимум. Производная функции равна нулю при x=-2 и x=2. При этом она меняет знак с минуса на плюс при переходе через эти точки. Поэтому при x=-2 и x=2 функция имеет минимумы.

Определим ординаты точек экстремумов:

$$f(-2) = f(2) = \frac{1}{4} \cdot 2^4 - 2 \cdot 2^2 = -4, \quad f(0) = 0.$$

Отметим на графике точку максимума (0;0) и точки минимумов (-2;-4) и (2;-4).

Для исследования функции на выпуклость и вогнутость, а также определения точек перегиба найдем производную второго порядка заданной функции:

$$y'' = 3x^2 - 4$$
.

Она обращается в нуль в двух точках:

$$x_1 = -\frac{2}{\sqrt{3}} \approx -1,15$$
 и  $x_2 = \frac{2}{\sqrt{3}} \approx 1,15$ .

Эти точки разбивают числовую ось на три интервала знакопостоянства второй производной:

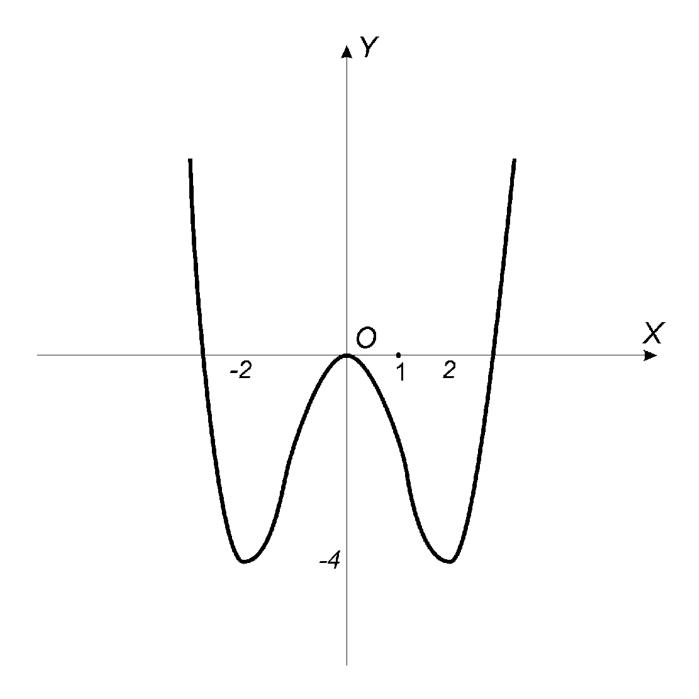
$$\left(-\infty;-\frac{2}{\sqrt{3}}\right), \left(-\frac{2}{\sqrt{3}};\frac{2}{\sqrt{3}}\right), \left(\frac{2}{\sqrt{3}};+\infty\right).$$

Для определения знака второй производной в каждом из этих интервалов определяем ее знак в какой-нибудь точке каждого интервала:

$$f''(-2) > 0$$
,  $f''(0) < 0$ ,  $f''(2) > 0$ ,

поэтому кривая вогнута на интервалах  $\left(-\infty; -\frac{2}{\sqrt{3}}\right)$  и  $\left(\frac{2}{\sqrt{3}}; +\infty\right)$ , а

выпукла на интервале 
$$\left(-\frac{2}{\sqrt{3}};\frac{2}{\sqrt{3}}\right)$$
.


Вторая производная функции равна нулю в точках  $x_1$  и  $x_2$ , и меняет знак при переходе через эти точки, значит,  $x_1$  и  $x_2$  являются точками перегиба.

Вычислим ординаты точек перегиба:

$$f\left(-\frac{2}{\sqrt{3}}\right) = f\left(\frac{2}{\sqrt{3}}\right) = \frac{1}{4} \cdot \left(\frac{2}{\sqrt{3}}\right)^4 - 2 \cdot \left(\frac{2}{\sqrt{3}}\right)^2 = -\frac{20}{9} \approx -2,22.$$

Отметим их на графике.

Учитывая результаты исследования, соединим плавной кривой полученные точки.



Задача №5

Найти все частные производные второго порядка функции двух переменных  $z = \ln(x^3 + 3y^2)$ .

## Решение:

При вычислении частной производной по «x», «y» считаем постоянной. Аналогично, при нахождении частной производной по «y», считаем постоянной «x».

Сначала вычислим частные производные первого порядка:

$$z'_{x} = \frac{\partial z}{\partial x} = \frac{\partial}{\partial x} \left( \ln(x^{3} + 3y^{2}) \right) = \frac{1}{x^{3} + 3y^{2}} \cdot 3x^{2} = \frac{3x^{2}}{x^{3} + 3y^{2}}.$$

$$z'_{y} = \frac{\partial z}{\partial y} = \frac{\partial}{\partial y} \left( \ln(x^{3} + 3y^{2}) \right) = \frac{1}{x^{3} + 3y^{2}} \cdot 6y = \frac{6y}{x^{3} + 3y^{2}}.$$

Затем найдем частные производные второго порядка:

$$z''_{xx} = \frac{\partial^2 z}{\partial x^2} = \frac{\partial (z'_x)}{\partial x} = \frac{\partial}{\partial x} \left( \frac{3x^2}{x^3 + 3y^2} \right) = \frac{6x \cdot (x^3 + 3y^2) - 3x^2 \cdot 3x^2}{(x^3 + 3y^2)^2} =$$

$$= \frac{18xy^2 - 3x^4}{(x^3 + 3y^2)^2}.$$

$$z''_{xy} = \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial (z'_x)}{\partial y} = \frac{\partial}{\partial y} \left( \frac{3x^2}{x^3 + 3y^2} \right) = \frac{-3x^2 \cdot 6y}{(x^3 + 3y^2)^2} = -\frac{18x^2y}{(x^3 + 3y^2)^2}.$$

$$z''_{yx} = \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial (z'_y)}{\partial x} = \frac{\partial}{\partial y} \left( \frac{6y}{x^3 + 3y^2} \right) = -\frac{6y \cdot 3x^2}{(x^3 + 3y^2)^2} = -\frac{18x^2y}{(x^3 + 3y^2)^2}.$$

$$z''_{yy} = \frac{\partial^2 z}{\partial y^2} = \frac{\partial (z'_y)}{\partial y} = \frac{\partial}{\partial y} \left( \frac{6y}{x^3 + 3y^2} \right) = \frac{6 \cdot (x^3 + 3y^2) - 6y \cdot 6y}{(x^3 + 3y^2)^2} =$$

$$= \frac{6x^3 - 18y^2}{(x^3 + 3y^2)^2}.$$

Смешанные производные  $z''_{xy}$  и  $z''_{yx}$  равны.

## Задача №6

Найти неопределенные интегралы:

a) 
$$\int \frac{5\sqrt{x} + 3x - x^3}{x^2} dx$$
; 6) 
$$\int x^3 \sqrt{x^4 - 5} dx$$
;  
B) 
$$\int \sin 5x \cos 3x dx$$
; r) 
$$\int (2x - 1) \ln x dx$$
.

#### Решение:

а) Чтобы вычислить интеграл, необходимо разбить его на три интеграла, разделив каждое слагаемое на  $x^2$ .

$$\int \frac{5\sqrt{x} + 3x - x^3}{x^2} dx = \int \left(\frac{5\sqrt{x}}{x^2} + \frac{3x}{x^2} - \frac{x^3}{x^2}\right) dx = \int \left(5x^{-\frac{3}{2}} + \frac{3}{x} - x\right) dx =$$

$$= \int 5x^{-\frac{3}{2}} dx + \int \frac{3}{x} dx - \int x dx = 5 \cdot \frac{x^{-\frac{3}{2}+1}}{-\frac{3}{2}+1} + 3\ln|x| - \frac{x^2}{2} + C =$$

$$= -\frac{10}{\sqrt{x}} + 3\ln|x| - \frac{x^2}{2} + C.$$

б) Можно использовать замену переменной  $u = x^4 - 5$ . Тогда  $du = d(x^4 - 5) = (x^4 - 5)' dx = 4x^3 dx$ . Отсюда  $x^3 dx = \frac{du}{4}$ .

Подставляя новую переменную, получим:

$$\int x^3 \sqrt{x^4 - 5} dx = \int (x^4 - 5)^{\frac{1}{2}} \cdot x^3 dx = \int u^{\frac{1}{2}} \cdot \frac{du}{4} =$$

$$= \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \cdot \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{1}{6} u^{\frac{3}{2}} + C = \frac{1}{6} \sqrt{(x^4 - 5)^3} + C.$$

в) Для нахождения интеграла воспользуемся формулой  $\sin mx \cdot \cos nx = \frac{1}{2} (\sin(m+n)x + \sin(m-n)x).$ 

Следовательно,  $\sin 5x \cdot \cos 3x = \frac{1}{2} (\sin 8x + \sin 2x)$ .

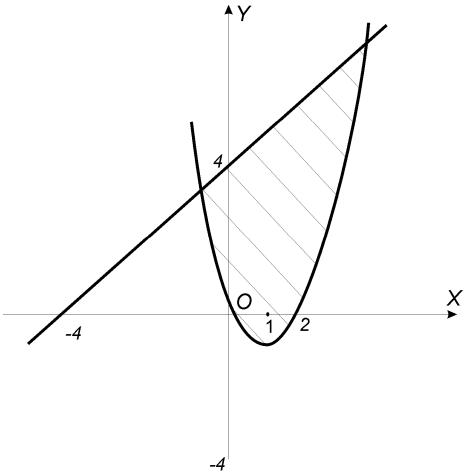
Значит,

$$\int \sin 5x \cos 3x dx = \int \frac{1}{2} (\sin 8x + \sin 2x) dx = \frac{1}{2} \int \sin 8x dx + \frac{1}{2} \int \sin 2x dx = \frac{1}{2} \cdot \frac{-\cos 8x}{8} + \frac{1}{2} \cdot \frac{-\cos 2x}{2} + C = \frac{1}{16} \cos 8x - \frac{1}{4} \cos 2x + C.$$

г) Применив метод интегрирования по частям, получим:

$$\int (2x-1)\ln x dx = \left| \int u dv = u \cdot v - \int v du \right| =$$

$$= \begin{vmatrix} u = \ln x & du = (\ln x)' dx = \frac{1}{x} dx \\ dv = (2x-1)dx & v = \int (2x-1)dx = x^2 - x \end{vmatrix} =$$


$$= (x^{2} - x) \cdot \ln x - \int (x^{2} - x) \cdot \frac{1}{x} dx = (x^{2} - x) \cdot \ln x - \int (x - 1) dx =$$
$$= (x^{2} - x) \cdot \ln x - \frac{(x - 1)^{2}}{2} + C.$$

#### Задача №7

Вычислить площадь фигуры, ограниченной линиями  $y = x^2 - 2x$  и y = x + 4.

#### Решение:

Построим область, ограниченную этими линиями: параболой и прямой.



Найдем точки пересечения прямой и параболы, для чего решим систему:

$$\begin{cases} y = x^2 - 2x \\ y = x + 4 \end{cases} \Rightarrow$$

$$\Rightarrow x^2 - 2x = x + 4 \Rightarrow x^2 - 3x - 4 = 0 \Rightarrow$$
$$x_1 = -1, \quad x_2 = 4.$$

Площадь фигуры, ограниченной двумя кривыми, вычисляется по формуле:

$$S = \int_{a}^{b} (f_{1}(x) - f_{2}(x)) dx,$$

где  $y_1 = f(x_1)$  - функция, график которой находится сверху, а  $y_2 = f(x_2)$  - функция, график которой находится снизу.

В нашем случае пределы интегрирования равны:

$$a = x_1 = -1$$
,  $b = x_2 = 4$ .

Таким образом,

$$S = \int_{-1}^{4} ((x+4) - (x^2 - 2x)) dx =$$

$$= \int_{-1}^{4} (4 + 3x - x^2) dx = \left( 4x + \frac{3x^2}{2} - \frac{x^3}{3} \right) \Big|_{-1}^{4} =$$

$$= 16 + 24 - \frac{64}{3} + 4 - \frac{3}{2} - \frac{1}{3} = 20 \frac{5}{6} \text{ eg}^2.$$

## Задачи контрольной работы №2

#### Задачи №1-30:

Найти пределы (не применяя правило Лопиталя):

1. 
$$a) \lim_{x \to 4} \frac{3x^2 - 14x + 8}{2x^2 - 7x - 4}, \qquad \delta) \lim_{x \to 0} (tg2x \cdot ctg3x),$$

e) 
$$\lim_{x\to -2} \frac{\sqrt{x+7} - \sqrt{3-x}}{x+2}$$
,  $\epsilon$ )  $\lim_{x\to \infty} \left(\frac{x-4}{x+2}\right)^{\frac{x}{3}+1}$ .

2. 
$$a) \lim_{x \to -3} \frac{2x^2 + 5x - 3}{x^2 + 5x + 6}, \qquad \delta) \lim_{x \to 0} \frac{ctg3x}{ctg5x},$$

$$e) \lim_{x \to 5} \frac{\sqrt{x-1} - \sqrt{9-x}}{x-5}, \quad \varepsilon) \lim_{x \to \infty} \left(\frac{x-6}{x+4}\right)^{7x+4}.$$

3. 
$$a) \lim_{x \to -4} \frac{7x^2 + 26x - 8}{2x^2 + x - 28}, \quad \delta) \lim_{x \to 0} (tg3x \cdot ctg5x),$$

$$e) \lim_{x \to 2} \frac{\sqrt{x+4} - \sqrt{8-x}}{x-2}, \quad e) \lim_{x \to \infty} \left(1 - \frac{3}{2x}\right)^{5x-3}.$$

4. 
$$a \lim_{x \to 1} \frac{3x^2 + 5x - 8}{2x^2 + 3x - 5}, \qquad \delta \lim_{x \to 0} \frac{\sin 3x}{tg 2x},$$

$$e) \lim_{x \to 3} \frac{\sqrt{x-2} - \sqrt{4-x}}{x-3}, \quad \varepsilon) \lim_{x \to \infty} \left(\frac{x+8}{x-2}\right)^{2x+1}.$$

5. 
$$a \lim_{x \to 3} \frac{2x^2 - 5x - 3}{3x^2 - 4x - 15}, \qquad \delta \lim_{x \to 0} \frac{\sin 5x}{tg 3x},$$

$$e) \lim_{x \to 4} \frac{\sqrt{x-1} - \sqrt{7-x}}{x-4}, \quad \varepsilon) \lim_{x \to \infty} \left(\frac{3x-2}{3x+2}\right)^{4x-1}.$$

6. 
$$a \lim_{x \to -5} \frac{2x^2 + 15x + 25}{x^2 + 15x + 50}, \quad \delta \lim_{x \to 0} \frac{tg5x}{tg4x},$$

$$(e) \lim_{x \to 4} \frac{x - 4}{\sqrt{x - 2} - \sqrt{6 - x}}, \quad (e) \lim_{x \to 0} (1 - 4x)^{\frac{1 - x}{x}}.$$

7. 
$$a \lim_{x \to 2} \frac{4x^2 - 7x - 2}{2x^2 - x - 6}, \qquad 6 \lim_{x \to 0} \frac{tg2x}{\sin 5x},$$

$$e \lim_{x \to 4} \frac{\sqrt{x - 1} - \sqrt{7 - x}}{x - 4}, \quad e \lim_{x \to \infty} \left(\frac{x}{3 + x}\right)^{2x}.$$

8. 
$$a \lim_{x \to -2} \frac{3x^2 + 11x + 10}{2x^2 + 5x + 2}, \quad \delta \lim_{x \to 0} (tg5x \cdot ctg7x),$$

$$(s) \lim_{x \to 2} \frac{x-2}{\sqrt{x+3} - \sqrt{7-x}}, \quad (c) \lim_{x \to \infty} \left(\frac{2x+5}{2x+6}\right)^{x-1}.$$

9. 
$$a \lim_{x \to 5} \frac{4x^2 - 25x + 25}{2x^2 - 15x + 25}, \quad \delta \lim_{x \to 0} (\sin 6x \cdot ctg \, 21x),$$

$$e \lim_{x \to -1} \frac{x+1}{\sqrt{x+5} - \sqrt{3-x}}, \quad e \lim_{x \to 0} (1-3x)^{\frac{2-x}{x}}.$$

10. 
$$a \lim_{x \to -1} \frac{6x^2 + 13x + 7}{3x^2 + 8x + 5}, \qquad 6 \lim_{x \to 0} (\sin 6x \cdot ctg 8x),$$

$$e) \lim_{x \to 6} \frac{\sqrt{x-3} - \sqrt{9-x}}{x-6}, \quad e) \lim_{x \to 0} (1+8x)^{\frac{5-x}{x}}.$$

11. 
$$a \lim_{x \to 3} \frac{3x^2 - 10x + 3}{5x^2 - 16x + 3}$$
,  $\delta \lim_{x \to 0} (tgx \cdot ctg7x)$ ,

$$e) \lim_{x \to 1} \frac{\sqrt{5 - x^2 - 2}}{1 - x}, \qquad e) \lim_{x \to \infty} \left(\frac{x + 3}{x + 1}\right)^{2x + 4}.$$

12. 
$$a \lim_{x \to 5} \frac{3x^2 - 16x + 5}{5x^2 - 26x + 5}, \quad \delta \lim_{x \to 0} \frac{ctg5x}{ctg4x},$$

$$e) \lim_{x \to 2} \frac{\sqrt{x^2 + 21} - 5}{x - 2}, \quad e) \lim_{x \to \infty} \left(\frac{x + 4}{x + 2}\right)^{3x + 1}.$$

13. 
$$a \lim_{x \to 4} \frac{2x^2 - 9x + 4}{3x^2 - 13x + 4}, \quad \delta \lim_{x \to 0} \frac{\sin 9x}{tg 2x},$$

$$e)\lim_{x\to 3}\frac{\sqrt{10-x^2}-1}{3-x}, \quad \varepsilon)\lim_{x\to \infty}\left(\frac{x+2}{x+1}\right)^{4x+3}.$$

14. 
$$a \lim_{x \to 2} \frac{2x^2 - 3x - 2}{3x^2 - 7x + 2}$$
,  $\delta \lim_{x \to 0} (tg 5x \cdot ctg 2x)$ ,

$$e)\lim_{x\to 3}\frac{\sqrt{x+6}-3}{x-3}, \qquad e\lim_{x\to \infty}\left(\frac{x+5}{x+4}\right)^{5x+2}.$$

15. 
$$a \lim_{x \to -2} \frac{3x^2 + 5x - 2}{2x^2 + 3x - 2}$$
,  $\delta \lim_{x \to 0} \frac{tg \, 2x}{tg \, 7x}$ ,

$$e \lim_{x \to 2} \frac{\sqrt{x^2 + 5} - 3}{x - 2}, \quad e \lim_{x \to \infty} \left(\frac{x + 6}{x + 4}\right)^{\frac{x}{2} + 1}.$$

16. 
$$a) \lim_{x \to -3} \frac{5x^2 + 14x - 3}{3x^2 + 8x - 3}, \quad \delta) \lim_{x \to 0} \frac{tg3x}{\sin 2x},$$

$$e) \lim_{x \to 4} \frac{\sqrt{x^2 + 20 - 6}}{x - 4}, \quad z) \lim_{x \to \infty} \left(\frac{x + 9}{x + 8}\right)^{3x + 2}.$$

17. 
$$a \lim_{x \to -4} \frac{4x^2 + 15x - 4}{2x^2 + 7x - 4}, \quad \delta \lim_{x \to 0} (\sin 4x \cdot ctg 9x),$$

$$e) \lim_{x \to -2} \frac{\sqrt{6+x}-2}{x+2}, \qquad e) \lim_{x \to \infty} \left(\frac{x+10}{x+6}\right)^{2x-1}.$$

18. 
$$a) \lim_{x \to -5} \frac{5x^2 + 24x - 5}{2x^2 + 9x - 5}, \quad \delta) \lim_{x \to 0} \frac{tg16x}{\sin 3x},$$

$$e) \lim_{x \to 5} \frac{\sqrt{29 - x^2} - 2}{5 - x}, \quad e) \lim_{x \to \infty} \left(\frac{x + 11}{x + 6}\right)^{5x + 2}.$$

19. 
$$a)\lim_{x\to 6} \frac{6x^2 - 37x + 6}{2x^2 - 13x + 6}, \quad \delta)\lim_{x\to 0} \frac{tg12x}{\sin 5x},$$
  
 $a)\lim_{x\to 7} \frac{\sqrt{x^2 - 13} - 6}{x - 7}, \quad \epsilon)\lim_{x\to \infty} \left(\frac{x + 12}{x + 10}\right)^{6x + 1}.$ 

$$e\lim_{x\to 7} \frac{\sqrt{x^2 - 13 - 6}}{x - 7}, \quad e\lim_{x\to \infty} \left(\frac{x + 12}{x + 10}\right)^{6x + 1}$$

20. 
$$a \lim_{x \to -6} \frac{2x^2 + 11x - 6}{3x^2 + 17x - 6}, \quad \delta \lim_{x \to 0} \frac{\sin 8x}{tg14x},$$

$$e \lim_{x \to -3} \frac{\sqrt{7+x^2}-4}{x+3}, \quad e \lim_{x \to \infty} \left(\frac{x+13}{x+12}\right)^{8x+2}.$$

21. 
$$a \lim_{x \to -1} \frac{2x^2 + x - 1}{x^2 - 3x - 4}, \quad \delta \lim_{x \to 0} \frac{tg 2x}{\sin 3x},$$

$$\varepsilon \Big) \lim_{x \to -3} \frac{\sqrt{1-x}-2}{4-\sqrt{1-5x}}, \quad \varepsilon \Big) \lim_{x \to \infty} \left(\frac{2x-3}{2x+5}\right)^{x-1}.$$

22. 
$$a)\lim_{x\to 1}\frac{x^2-3x+2}{4-x-3x^2}$$
,  $\delta)\lim_{x\to 0}\frac{\sin 4x}{2x\cdot\cos 3x}$ ,

$$(3x + 2) \lim_{x \to 5} \frac{x^2 - 25}{\sqrt{2x - 1} - 3}, \quad (2) \lim_{x \to \infty} \left(\frac{3x + 2}{3x - 4}\right)^{2 - x}.$$

23. 
$$a) \lim_{x \to -2} \frac{2x^2 - x - 10}{x^2 + 3x + 2}, \quad \delta) \lim_{x \to 0} \frac{x \cdot tg \, 3x}{\sin^2 2x},$$

e) 
$$\lim_{x\to 2} \frac{x^2 - x - 2}{\sqrt{4x + 1} - 3}$$
,  $\epsilon$ )  $\lim_{x\to \infty} \left(\frac{4x + 3}{4x - 1}\right)^{2x - 3}$ .

24. 
$$a)\lim_{x\to 2}\frac{x^2-3x+2}{14-x-3x^2}$$
,  $\delta)\lim_{x\to 0}\frac{\sin 5x\cdot tg 3x}{x^2}$ ,

$$\varepsilon \lim_{x\to 1} \frac{\sqrt{x+3}-2}{\sqrt{x}-1}, \qquad \varepsilon \lim_{x\to \infty} \left(\frac{2x+5}{2x-1}\right)^{3-x}.$$

25. 
$$a \lim_{x \to -2} \frac{x^2 + 5x + 4}{2x^2 - 3x + 5}, \quad \delta \lim_{x \to 0} \frac{\sin 6x}{tg \, 2x},$$

$$\varepsilon \lim_{x \to -1} \frac{x+1}{\sqrt{3x+7}-2}, \quad \varepsilon \lim_{x \to \infty} \left(\frac{5x-1}{5x+4}\right)^{2x+1}.$$

**26.** 
$$a) \lim_{x \to -1} \frac{4x^2 - 5x + 1}{2x^2 - 3x + 5}, \quad \delta) \lim_{x \to 0} \frac{3x \cdot \cos 5x}{\sin 3x},$$

$$e \lim_{x \to 4} \frac{\sqrt{x-2}}{x^2 - 6x + 8}, \quad e \lim_{x \to \infty} \left(\frac{2x-7}{2x-3}\right)^{4x+1}.$$

27. 
$$a) \lim_{x \to -2} \frac{x^2 + 5x + 6}{3x^2 - x - 14}, \quad \delta) \lim_{x \to 0} \frac{2x \cdot tg \, 4x}{\sin^2 \, 6x},$$

$$(3x-1) \lim_{x\to -2} \frac{x^2-4}{\sqrt{1-4x}-3}, \quad (2) \lim_{x\to \infty} \left(\frac{3x-1}{3x-4}\right)^{2x}.$$

**28.** 
$$a \lim_{x \to 2} \frac{2x^2 - 7x + 6}{6 - x - x^2}, \quad \delta \lim_{x \to 0} \frac{\sin 2x \cdot tg \, 4x}{x^2},$$

$$e) \lim_{x \to -2} \frac{x^2 - 4}{\sqrt{1 - 4x} - 3}, \quad \varepsilon) \lim_{x \to \infty} \left(\frac{5x - 2}{5x + 3}\right)^{3 - 2x}.$$

29. 
$$a)\lim_{x\to -1}\frac{x^2-6x-7}{3x^2+x-2}$$
,  $\delta)\lim_{x\to 0}\frac{\sin 8x}{tg5x}$ ,

$$\varepsilon \lim_{x\to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1}, \qquad \varepsilon \lim_{x\to \infty} \left(\frac{x-2}{x+3}\right)^{4-x}.$$

30. 
$$a \lim_{x \to 1} \frac{3x^2 + x - 4}{4x - x^2 - 3}$$
,  $\delta \lim_{x \to 0} \frac{4x \cdot \cos 7x}{\sin 2x}$ ,

$$e) \lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}, \quad e) \lim_{x \to \infty} \left(\frac{5x-1}{5x+4}\right)^{2x+1}.$$

#### Задачи №31-60:

Найти производные данных функций:

31. 
$$a) y = 2^x \cdot \sin^2 x$$
,  $6) y = \frac{1}{2} \left( x \cdot \sqrt{25 - x^2} + 25 \arcsin \frac{x}{5} \right)$ ,

(e) 
$$y = \left(5x^6 - \frac{3}{x^2 \cdot \sqrt{2}} + 8\right)^{12}$$
,  $z$ )  $y = \frac{3 + 6x^{\frac{1}{3}}}{e^x}$ .

**32.** a) 
$$y = tg(x^3 + 2x^2 + 4) - 14$$
, b)  $y = 3^x \cdot \cos^2 x$ ,

(a) 
$$y = \left(3x^8 - \frac{3}{4x \cdot \sqrt[3]{x}} + 9\right)^{11}$$
, (b)  $y = \frac{\ln x}{10^x}$ .

$$(e) y = \left(7x^5 - \frac{4}{5x \cdot \sqrt[4]{x}} - 20\right)^{12}, \quad (e) y = \frac{x^8}{8^x}.$$

$$(e) y = \left(4x^9 - \frac{2}{7x^3 \cdot \sqrt{x}} + 15\right)^{10}, \quad (e) y = \frac{x^7}{arctgx}.$$

$$(e) y = \left(6x^{10} - \frac{3}{5x \cdot \sqrt[3]{x^2}} + 11\right)^{13}, \quad (e) y = \frac{\ln x}{ctgx}.$$

$$e) y = \left(8x^{\frac{1}{8}} - \frac{2}{7x^2 \cdot \sqrt{x^3}} - 19\right)^8, \quad \epsilon) y = \frac{(x+1)^3}{5^x}.$$

37. 
$$a) y = \frac{x}{2} \cdot (\cos \ln x + \sin \ln x) - \pi$$
,  $\delta) y = x^{15} \cdot arctg \sqrt{x}$ ,

(a) 
$$y = \left(10x^{\frac{1}{5}} - \frac{5}{6x \cdot \sqrt[5]{x}} - 18\right)^{11}, \quad z) y = \frac{(x+1)^4}{2^x}.$$

**38.** a) 
$$y = x \cdot [(1 - \ln x)^4 - 1] + e^2$$
,  $(x) = x^6 \cdot arctg \sqrt{x}$ ,

(e) 
$$y = \left(9x^{\frac{1}{9}} - \frac{5}{8x \cdot \sqrt[5]{x}} - 17\right)^{14}, \quad z) y = \frac{6^x}{\arccos x}.$$

**39.** a) 
$$y = 1 + 2\cos^3(1 + \arcsin x)$$
,  $\delta$ )  $y = \sin 2x \cdot \ln x$ ,

$$e) y = \left(20x^{\frac{1}{4}} - \frac{5}{7x \cdot \sqrt[5]{x^2}} - 14\right)^{17}, \quad z) y = \frac{\sqrt{x}}{6^x}.$$

$$e) y = \left(12x^{\frac{1}{6}} - \frac{2}{9x^2 \cdot \sqrt{x^5}} + 13\right)^{16}, \quad \varepsilon) y = \frac{\ln 2x}{3^x}.$$

**41.** 
$$a) y = \pi \ln(x - \sin x) + 7,$$
  $6) y = e^{\sqrt{x}} \cdot \arcsin e^{x},$ 

$$e) y = \left(14x^{\frac{1}{7}} - \frac{4}{x^2 \cdot \sqrt[4]{x}} - 18\right)^{18}, \quad e) y = \frac{\ln x}{tg \, 3x}.$$

**42.** 
$$a) y = \frac{2}{3} \sqrt{x^3} \left( \ln x - \frac{2}{3} \right) + \sqrt{6}, \qquad 6) y = x^2 \cdot e^{-\sin x},$$

$$(8) y = \left(16x^{\frac{1}{8}} - \frac{5}{9x \cdot \sqrt[5]{x^4}} + 20\right)^{20}, \quad (2) y = \frac{7^x}{\arccos x}.$$

**43.** 
$$a) y = \cos 3x \cdot e^{\sin x}, \qquad \delta) y = \frac{\arcsin 3x}{1 - 8x^2},$$

$$(8) y = (3x^3 - 2\sqrt[3]{x^2} - 1)^2, \quad (2) y = \cos \ln 5x.$$

**44.** a) 
$$y = x \cdot tgx + \ln \cos x + e^5$$
,  $\delta$ )  $y = x^3 \cdot e^{\cos x}$ ,

$$(e) y = \left(x^{\pi} - \frac{3}{8}x \cdot \sqrt[3]{x^5} + 22\right)^{19}, \quad (e) y = \frac{8^x}{arctgx}.$$

**45.** a) 
$$y = x \cdot \arcsin x + \sqrt{1 - x^2} + e^3$$
,  $\delta$ )  $y = 3^{4x-1} \cdot \sin(2x+1)$ ,

(a) 
$$y = \left(18x^{\frac{1}{9}} - \frac{3}{7}x \cdot \sqrt[3]{x^4} + 25\right)^{24}, \quad z) y = \frac{\ln x}{arcctgx}.$$

**46.** a) 
$$y = 4 \arccos(\pi + \sin^2 x) - 1$$
, b)  $y = 2^{1-5x} \cdot \cos(3x - 1)$ ,

(e) 
$$y = \left(e^{x^2} - e^{2+} \frac{7}{8} x \cdot \sqrt[7]{x}\right)^{28}, \quad z) y = \frac{tg \, 2x}{\ln x}.$$

**47.** a) 
$$y = \frac{1}{3} arctg^3 (4 - 2x - \sin x) + 6$$
, b)  $y = 5^{2x-1} \cdot tg(1 + 4x)$ ,

$$(\varepsilon) y = \left(\pi^2 + x^e - \frac{2}{13}x^5 \cdot \sqrt{x^3}\right)^{26}, \quad \varepsilon) y = \frac{\arcsin x}{\ln 3x}.$$

**48.** a) 
$$y = \frac{1+x^2}{2} \cdot arctgx - \frac{x}{2} + \sqrt{8}$$
, b)  $y = 10^{3-2x} \cdot ctg(2-3x)$ ,

$$(e) y = \left(x^{\pi} + e^{\pi} - \frac{7}{9}x \cdot \sqrt[7]{x^{2}}\right)^{27}, \quad (e) y = \frac{\sin 3x}{\ln^{2} x}.$$

$$e) y = \left(\sqrt{21} - \pi^{x} - \frac{3}{7}x^{2} \cdot \sqrt[3]{x} + 25\right)^{23}, \quad \varepsilon) y = \frac{\cos 5x}{e^{2x}}.$$

$$\varepsilon y = \left(4\pi^2 + \pi^{-x} - \frac{2}{9}x^3 \cdot \sqrt{x^3}\right)^{30}, \quad \varepsilon y = \frac{21x + 7}{7^x}.$$

**51.** a) 
$$y = \frac{1}{2} \left( x\sqrt{4 - x^2} + 4 \arcsin \frac{x}{4} \right)$$
,  $\delta y = (8 - 9x)^5 \cdot \ln(3x + 4)$ ,

$$e) y = \left(\sqrt{\pi} + tg(2x+1) + \frac{2}{11}x^2 \cdot \sqrt{x^7}\right)^{29}, \quad \varepsilon) y = \frac{\sqrt{5x}}{6^x}.$$

$$e) y = (3x - 4\sqrt[3]{x} + 2)^4, \quad \varepsilon) y = \ln arctg 2x.$$

**53.** 
$$a) y = 2^{8x} \cdot tg \, 3x,$$
  $6) y = \frac{\sin 2x}{\cos 5x},$ 

$$e) y = \left(4x^2 - \frac{3}{\sqrt{x}} + 4\right)^3, \quad \varepsilon) y = \arcsin \ln 4x.$$

**54.** 
$$a) y = e^{ctgx} \cdot \sin 4x, \qquad \delta) y = \frac{\sqrt{1 - 4x^2}}{2^x + tgx},$$

$$\beta y = (x^5 - \sqrt[3]{x} + 1)^5, \quad \beta y = \sin \ln 5x.$$

**55.** 
$$a) y = 3^{tgx} \cdot \arcsin(x^2), \quad 6) y = \frac{\cos 3x}{\sqrt{3x^2 + 4}},$$

$$(6) y = \left(6x^2 - \frac{2}{x^4} + 5\right)^2, \quad (2) y = \ln \sin 6x.$$

**56.** 
$$a) y = e^{ctgx} \cdot \cos 6x$$
,  $b) y = \frac{arctg7x}{2 - 9x^2}$ ,

$$(e) y = (x^3 - 4\sqrt[4]{x^3} + 2)^3, \quad (e) y = \sin \ln 2x.$$

57. a) 
$$y = 4^{\cos x} \cdot \operatorname{arctg} 2x$$
, b)  $y = \frac{x^3 + e^x}{\sqrt{4 - 9x^5}}$ , c)  $y = (x^2 - 2 \cdot \sqrt[5]{x} + 4)^4$ , c)  $y = \ln \cos 5x$ .

58. a)  $y = e^{x^3} \cdot \operatorname{tg} 7x$ , b)  $y = \frac{\cos 6x}{\sin 3x}$ , c)  $y = \left(3x^5 - \frac{5}{x^3} - 2\right)^5$ , c)  $y = \arcsin \ln 2x$ .

59. a)  $y = 2^{\sin x} \cdot \arcsin 2x$ , b)  $y = \frac{\sqrt{3 - 5x^3}}{e^x - \operatorname{ctg} x}$ , c)  $y = (x^4 + 2 \cdot \sqrt[3]{x} + 1)^2$ , c)  $y = \ln \cos 7x$ .

60. a)  $y = e^{\operatorname{tg} x} \cdot \ln 2x$ , b)  $y = \frac{\operatorname{arcsin} 7x}{x^4 + e^x}$ , c)  $y = \left(x^2 - \frac{1}{x^3} + 5 \cdot \sqrt{x}\right)^4$ , c)  $y = \cos \sqrt{x^2 + 3}$ .

#### Задачи №61-90:

Вычислить приближенное значение функции y = f(x) в точке  $x_1$ , заменив приращение функции в точке  $x_0$  ее дифференциалом:

61. 
$$f(x) = \sqrt[3]{x}$$
,  $x_1 = 502$ ,  $x_0 = 512$ ;  
62.  $f(x) = \sqrt{4+3x}$ ,  $x_1 = 0.05$ ,  $x_0 = 0$ ;  
63.  $f(x) = \sqrt{x+8}$ ,  $x_1 = 1.2$ ,  $x_0 = 1$ ;  
64.  $f(x) = \sqrt{3x+1}$ ,  $x_1 = 1.04$ ,  $x_0 = 1$ ;  
65.  $f(x) = \sqrt{x-\frac{1}{4}}$ ,  $x_1 = 0.49$ ,  $x_0 = 0.5$ ;  
66.  $f(x) = \ln x$ ,  $x_1 = 1.2$ ,  $x_0 = 1$ ;  
67.  $f(x) = e^{x-1}$ ,  $x_1 = 1.1$ ,  $x_0 = 1$ ;  
68.  $f(x) = \sqrt[4]{x}$ ,  $x_1 = 17$ ,  $x_0 = 16$ ;  
69.  $f(x) = \sqrt[10]{x}$ ,  $x_1 = 1025$ ,  $x_0 = 1024$ ;  
70.  $f(x) = \sqrt[5]{x}$ ,  $x_1 = 242$ ,  $x_0 = 243$ ;  
71.  $f(x) = \sqrt{9+2x}$ ,  $x_1 = 0.06$ ,  $x_0 = 0$ ;

72. 
$$f(x) = \sqrt[3]{x}$$
,  $x_1 = 346$ ,  $x_0 = 343$ ;

73.  $f(x) = \sqrt{15 + x}$ ,  $x_1 = 1,8$ ,  $x_0 = 1$ ;

74.  $f(x) = arctgx$ ,  $x_1 = 1,02$ ,  $x_0 = 1$ ;

75.  $f(x) = arcctgx$ ,  $x_1 = 1,02$ ,  $x_0 = 1$ ;

76.  $f(x) = arccos x$ ,  $x_1 = 0,1$ ,  $x_0 = 0$ ;

77.  $f(x) = arccos x$ ,  $x_1 = 0,1$ ,  $x_0 = 0$ ;

78.  $f(x) = \sqrt[5]{\frac{2-x}{2+x}}$ ,  $x_1 = 0,15$ ,  $x_0 = 0$ ;

79.  $f(x) = \sqrt[3]{\frac{2+x}{2-x}}$ ,  $x_1 = 0,15$ ,  $x_0 = 0$ ;

80.  $f(x) = \sqrt[3]{\frac{2+x}{2-x}}$ ,  $x_1 = 0,15$ ,  $x_0 = 0$ ;

81.  $f(x) = \sqrt[3]{3x^2 + 8x - 16}$ ,  $x_1 = 3,94$ ,  $x_0 = 4$ ;

82.  $f(x) = \sqrt{5x^2 + 4x - 1}$ ,  $x_1 = 5,08$ ,  $x_0 = 5$ ;

83.  $f(x) = \cos x$ ,  $x_1 = 63^\circ$ ,  $x_0 = 60^\circ$ ;

84.  $f(x) = tgx$ ,  $x_1 = 46^\circ$ ,  $x_0 = 45^\circ$ ;

85.  $f(x) = \sqrt[4]{8x^2 + 6x - 9}$ ,  $x_1 = 2,88$ ,  $x_0 = 3$ ;

86.  $f(x) = arctgx$ ,  $x_1 = 0,97$ ,  $x_0 = 1$ ;

87.  $f(x) = arcsin x$ ,  $x_1 = 0,4983$ ,  $x_0 = 0,5$ ;

88.  $f(x) = \sqrt{x^2 - 3}$ ,  $x_1 = 2,037$ ,  $x_0 = 2$ ;

89.  $f(x) = \cos x$ ,  $x_1 = 58^\circ$ ,  $x_0 = 60^\circ$ ;

90.  $f(x) = \sqrt[5]{x^2 - 2x + 8}$ ,  $x_1 = 5,84$ ,  $x_0 = 6$ .

## Задачи №91-120:

Исследовать функцию y = f(x) и построить ее график:

91. 
$$y = \frac{1}{3}x^3 + x^2$$
; 92.  $y = \frac{1}{3}x^3 - x^2$ ; 93.  $y = \frac{1}{3}x^3 - 2x^2$ ;  $y = \frac{1}{3}x^3 - 2x^2$ ;

95. 
$$y = \frac{1}{3}x^3 + 3x^2$$
; 96.  $y = \frac{1}{3}x^3 - 3x^2$ ;  
97.  $y = -\frac{1}{3}x^3 + x^2$ ; 98.  $y = -\frac{1}{3}x^3 - x^2$ ;  
99.  $y = -\frac{1}{3}x^3 + 2x^2$ ; 100.  $y = -\frac{1}{3}x^3 - 2x^2$ ;  
101.  $y = -\frac{1}{3}x^3 + 3x^2$ ; 102.  $y = -\frac{1}{3}x^3 - 3x^2$ ;  
103.  $y = \frac{1}{9}x^3 + x^2$ ; 104.  $y = -\frac{1}{9}x^3 + x^2$ ;  
105.  $y = -\frac{1}{9}x^3 + -x^2$ ; 106.  $y = \frac{1}{9}x^3 - x^2$ ;  
107.  $y = \frac{1}{4}x^4 + x^3$ ; 108.  $y = -\frac{1}{4}x^4 + x^3$ ;  
109.  $y = \frac{1}{4}x^4 - x^3$ ; 110.  $y = x^3 - 6x^2 + 9x + 1$ ;  
111.  $y = 2x^3 - 9x^2 + 12x - 5$ ; 112.  $y = x^3 - 6x^2 + 9x + 1$ ;  
113.  $y = x^3 - 3x^2 - 9x + 10$ ; 114.  $y = x^3 + 3x^2 - 9x + 10$ ;  
115.  $y = x^3 + 6x^2 + 9x + 2$ ; 116.  $y = 2x^3 - 3x^2 - 12x + 5$ ;  
117.  $y = 2x^3 - 15x^2 + 36x - 32$ ; 120.  $y = 2x^3 - 3x^2 - 36x + 20$ .

## Задачи №121-150:

Найти частные производные I и II порядков:

121. 
$$z = \sin(ax - by);$$
 122.  $z = \cos(ax + by);$  123.  $z = \frac{x^2}{y^2};$  124.  $z = \ln(x - 2y);$  125.  $z = \ln(y + 3x);$  126.  $z = \frac{x^3}{2y^2};$  127.  $z = e^{ax - by};$  128.  $z = e^{\frac{x}{y^2}};$  129.  $z = x \cdot \ln(2 + y);$  130.  $z = ae^{xy};$ 

131. 
$$z = 3 + 3xy^{5}$$
; 132.  $z = \frac{x^{2}}{1 + 2y}$ ;  
133.  $z = \ln(x^{2} - 3y)$ ; 134.  $z = e^{\frac{x}{y}}$ ;  
135.  $z = e^{\frac{x^{2}}{y}}$ ; 136.  $z = e^{x^{2}y}$ ;  
137.  $z = \ln(x + y^{2})$ ; 138.  $z = a^{ax + by}$ ;  
139.  $z = a^{ax - by}$ ; 140.  $z = \ln(x^{2} + y^{3})$ ;  
141.  $z = \ln(5x - y^{2})$ ; 142.  $z = \frac{x}{y^{2}}$ ;  
143.  $z = y \cdot \ln(x - 3)$ ; 144.  $z = e^{xy^{2}}$ ;  
145.  $z = a^{5x - y^{2}}$ ; 146.  $z = e^{xy^{2}}$ ;  
147.  $z = 7e^{x^{2} + y}$ ; 148.  $z = 8x^{2}y + 9y^{2}$ ;  
149.  $z = \ln(6x + 8y)$ ; 150.  $z = \sin(x^{2} + y)$ .

#### Задачи №151-180:

Найти неопределенные интегралы:

**151.** a) 
$$\int \left(x^3 + \frac{4}{x^2} + \frac{0.5}{\sqrt{x}}\right) dx$$
, b)  $\int \sin 5x \cdot \cos 2x dx$ ,  
b)  $\int \frac{x dx}{(x^2 - 1)^{-1}}$ , c)  $\int x \cdot \ln(x + 1) dx$ .  
**152.** a)  $\int \left(\sqrt{2}x + \frac{1}{2\sqrt{x}} + \frac{3}{x^{-2}} - \frac{1}{x} + 2\right) dx$ , b)  $\int \cos 3x \cdot \cos x dx$ ,  
b)  $\int \frac{x dx}{\sqrt{1 - x^2}}$ , c)  $\int x \cdot e^{-x} dx$ .  
**153.** a)  $\int \frac{x^3 - 4x^2 + 2x - 1}{\sqrt{x}} dx$ , b)  $\int \sin 5x \cdot \sin 3x dx$ ,  
c)  $\int (x^3 - 1)^{\frac{1}{3}} \cdot x^2 dx$ , c)  $\int x \cdot \sin x dx$ .

- 154. a)  $\int \frac{x^3 1}{x 1} dx$ , b)  $\int \cos 7x \cdot \cos 3x dx$ ,
  - 6)  $\int x \cdot \sqrt{1-x^2} dx$ ,  $\varepsilon$ )  $\int x \cdot \cos x dx$ .
- 155. a)  $\int \frac{3 \cdot (x-1)^3}{x^2} dx$ , b)  $\int \sin 2x \cdot \sin x dx$ ,
  - $6) \int \frac{2xdx}{x^2+3}, \qquad e) \int x \cdot \cos 3x dx.$
- 156. a)  $\int \frac{\sqrt[3]{x^2} \sqrt[4]{x}}{\sqrt{x}} dx$ , b)  $\int \sin 4x \cdot \cos 2x dx$ ,
  - $\delta) \int \frac{4xdx}{\sqrt[3]{8-x^2}}, \qquad \varepsilon) \int x \cdot \sin 3x dx.$
- 157. a)  $\int \frac{x^2 2\sqrt{2}x + 2}{x \sqrt{2}} dx$ , b)  $\int \sin 6x \cdot \sin 3x dx$ ,
  - $\delta) \int x \cdot \sqrt{2 x^2} \, dx, \qquad \varepsilon) \int \frac{\ln x}{\sqrt{x}} \, dx.$
- 158. a)  $\int \frac{x^3 + 2x 1}{1 x} dx$ , b)  $\int \cos 3x \cdot \cos 2x dx$ ,
  - $\delta) \int \frac{xdx}{5+3x^2}, \qquad \varepsilon) \int (2+3x) \cdot e^{\frac{x}{3}} dx.$
- **159.** a)  $\int \frac{2+x^2-2x^3}{1-x} dx$ , e)  $\int \sin 5x \cdot \cos x dx$ ,
  - $\delta) \int \frac{x^2 dx}{x^3 + 3}, \qquad \varepsilon) \int \sqrt[4]{x} \cdot \ln x dx.$
- 160. a)  $\int \frac{x^2 2\sqrt{x} + 2}{x^3} dx$ , e)  $\int \cos 5x \cdot \cos x dx$ ,
  - 6)  $\int 2x^2 \cdot \sqrt{x^3 + 1} dx$ ,  $\varepsilon$ )  $\int x \cdot \cos 5 dx$ .
- 161. a)  $\int \frac{(x+1)^2}{\sqrt{x}} dx$ , b)  $\int \sin 3x \cdot \sin 2x dx$ ,
  - $6) \int x^2 \cdot \sqrt[5]{x^3 + 2} dx, \quad e) \int x \cdot e^{-2x} dx.$
- 162. a)  $\int \frac{(x+2)^2}{\sqrt[3]{x}} dx$ , b)  $\int \sin 4x \cdot \cos 3x dx$ ,
  - $6) \int \frac{1+x}{\sqrt{1-x^2}} dx, \quad \varepsilon) \int x \cdot e^{3x} dx.$

- 163. a)  $\int \frac{(x+1)^3}{x} dx$ , b)  $\int \cos 5x \cdot \sin 2x dx$ ,
  - $\delta$ )  $\int \frac{dx}{2-3x}$ ,  $\varepsilon$ )  $\int x \cdot \sin 2x dx$ .
- **164.** a)  $\int \frac{2x^4 3x^3 + 2x 1}{x^2} dx$ , b)  $\int \cos 8x \cdot \cos x dx$ ,
  - $\delta) \int \frac{5x^3 dx}{1 x^4}, \qquad \varepsilon) \int x \cdot \ln x dx.$
- **165.** a)  $\int \frac{x^4 3x + 1}{x 1} dx$ , e)  $\int \sin 7x \cdot \sin 2x dx$ ,
  - $\delta) \int \frac{2x^2 dx}{3x^3 + 1}, \qquad \epsilon) \int x \cdot \ln 3x dx.$
- 166. a)  $\int \frac{x^3}{x-1} dx$ , e)  $\int \sin 2x \cdot \cos x dx$ ,
  - $6) \int \frac{3x^2 dx}{\sqrt[3]{x^3 + 2}}, \quad \epsilon) \int x^2 \cdot \ln x dx.$
- **167.** a)  $\int \frac{x^2 4x + 1}{x 1} dx$ , e)  $\int \cos 8x \cdot \cos 5x dx$ ,
  - $\delta) \int \sqrt{x^3 + 3} \cdot x^2 dx, \quad \varepsilon) \int x^3 \cdot \ln x dx.$
- 168. a)  $\int \frac{x^3 3x + 1}{x + 2} dx$ ,  $\varepsilon$ )  $\int \sin 7x \cdot \sin 5x dx$ ,
  - $\delta \int \frac{x^2 dx}{x^3 + 3}, \qquad \varepsilon \int x \cdot \sin 9x dx.$
- **169.** a)  $\int \frac{x^8 4x^7}{x^7 6x^6} dx$ , e)  $\int \sin 6x \cdot \cos 2x dx$ ,
  - $\delta) \int \frac{x^2 dx}{\sqrt{2x^3 + 1}}, \quad \epsilon) \int x \cdot \ln(x 1) dx.$
- 170. a)  $\int \left(\frac{1-x}{x}\right)^2 dx$ , b)  $\int \cos 5x \cdot \cos 3x dx$ ,
  - 6)  $\int \sqrt[3]{x^3-1} \cdot x^2 dx$ ,  $\varepsilon$ )  $\int x \cdot \cos 6x dx$ .
- **171.** a)  $\int \left(4x^2 \frac{1}{2\sqrt{x}} + \frac{4}{x^{-3}} + \frac{1}{5x} + 1\right) dx$ , e)  $\int \sin 7x \cdot \cos 2x dx$ ,
  - $\delta) \int \frac{x^3 dx}{\sqrt{x^4 5}}, \qquad \varepsilon) \int \frac{\ln x}{x} dx.$

- 172. a)  $\int \frac{\sqrt[4]{x} 6\sqrt{x}}{\sqrt[3]{x}} dx$ , e)  $\int \cos 5x \cdot \cos 9x dx$ ,
  - 6)  $\int 5x \cdot \sqrt[3]{x^2 6} dx$ ,  $\varepsilon$ )  $\int x \cdot \sin 7x dx$ .
- 173. a)  $\int \frac{x^4 1}{x + 1} dx$ , b)  $\int \sin 2x \cdot \cos x dx$ ,
  - $\delta ) \int_{-\infty}^{\infty} x^3 \cdot \sqrt{x^4 + 9} dx, \quad \varepsilon ) \int_{-\infty}^{\infty} (x+1) \cdot \sin 2x dx.$
- 174. a)  $\int \frac{\sqrt{x} + 3x + 1}{\sqrt[3]{x}} dx$ , b)  $\int \cos 5x \cdot \cos 11x dx$ ,
  - $\delta) \int \frac{xdx}{\sqrt[3]{x^2 5}}, \qquad \varepsilon) \int (2 x) \cdot \cos x dx.$
- 175. a)  $\int \frac{\sqrt[3]{x} x^2 + 5}{x^{-2}} dx$ , e)  $\int \sin 3x \cdot \cos 7x dx$ ,
  - $\delta) \int \frac{2x^3 + x 1}{x 1} dx, \quad \epsilon) \int x \cdot \cos(2 + x) dx.$
- 176. a)  $\int \frac{(x-3)^3}{3x^2} dx$ , b)  $\int \sin x \cdot \cos 13x dx$ ,
  - 6)  $\int x^4 \cdot \sqrt[3]{x^5 7} dx$ ,  $\varepsilon$ )  $\int x \cdot \cos(7x + 1) dx$ .
- 177. a)  $\int \frac{(x+2)^2}{4\sqrt{x}} dx$ , e)  $\int \sin 13x \cdot \cos x dx$ ,
  - $\delta) \int \frac{x^2 dx}{\sqrt[3]{x^3 7}}, \qquad \varepsilon) \int (x+2) \cdot \ln x dx.$
- 178. a)  $\int \frac{(x+2)^3}{x-1} dx$ ,  $\epsilon$ )  $\int \sin 2x \cdot \cos 8x dx$ ,
  - $\delta) \int \frac{4xdx}{\sqrt[4]{x^2 5}}, \quad \varepsilon) \int (2x + 3) \cdot \cos 6x dx.$
- 179. a)  $\int \frac{(x+3)^2}{\sqrt[3]{x}} dx$ , e)  $\int \cos 7x \cdot \cos 13x dx$ ,
  - $6) \int \frac{5x^3dx}{6x^4+7}, \qquad \varepsilon) \int (3x+2) \cdot \sin 7x dx.$
- 180. a)  $\int \frac{(2-x)^2}{\sqrt{x}} dx$ , e)  $\int \sin 3x \cdot \cos 13x dx$ ,
  - $\delta) \int \frac{5dx}{3-7x}, \qquad \varepsilon) \int 1-(x)\cdot \ln x dx.$

## Задачи №181-210:

Вычислить площадь фигуры, ограниченной линиями  $y = ax^2 + bx$  и y = cx + d. Значения параметров a, b, c, d даны в таблице.

| <i>№</i> | a  | $\boldsymbol{b}$ | c  | d  |
|----------|----|------------------|----|----|
| 181.     | -1 | 2                | 1  | -2 |
| 182.     | 1  | 2                | -1 | 4  |
| 183.     | -1 | -3               | -2 | -6 |
| 184.     | 1  | -1               | 1  | 0  |
| 185.     | -1 | 4                | -1 | 4  |
| 186.     | 1  | 3                | 2  | 6  |
| 187.     | -1 | -5               | -4 | -2 |
| 188.     | 1  | -3               | 1  | -3 |
| 189.     | -1 | 6                | 1  | 4  |
| 190.     | 1  | -2               | 3  | -5 |
| 191.     | -1 | -4               | 2  | 5  |
| 192.     | 1  | 5                | 1  | -3 |
| 193.     | -1 | 3                | -4 | 12 |
| 194.     | 1  | 3                | 8  | -6 |
| 195.     | -1 | -1               | -6 | -6 |

| Ŋ₫   | a  | b  | c  | d   |
|------|----|----|----|-----|
| 196. | 1  | 2  | 3  | 6   |
| 197. | -1 | 2  | 3  | -2  |
| 198. | 1  | 3  | 2  | 2   |
| 199. | -1 | 1  | 2  | -2  |
| 200. | 1  | -3 | 2  | 6   |
| 201. | 2  | 0  | -2 | 4   |
| 202. | 1  | 0  | -1 | 0   |
| 203. | 1  | 1  | 0  | 2   |
| 204. | 1  | 4  | 0  | 12  |
| 205. | 1  | 0  | 4  | 12  |
| 206. | 1  | 6  | 0  | 16  |
| 207. | -1 | 0  | 6  | -16 |
| 208. | -1 | 0  | -9 | -36 |
| 209. | 1  | -9 | 0  | 36  |
| 210. | 1  | 0  | -2 | 8   |

# Контрольная работа № 3

Для определения индивидуальных заданий к контрольной работе №3 используйте таблицу №3.

Таблица №3

|                                     |   |     | По  | следня | я циф | ра ном | пера за | четної | й книж | кки |     |
|-------------------------------------|---|-----|-----|--------|-------|--------|---------|--------|--------|-----|-----|
|                                     |   | 1   | 2   | 3      | 4     | 5      | 6       | 7      | 8      | 9   | 0   |
|                                     | 1 | 1,  | 2,  | 3,     | 4,    | 5,     | 6,      | 7,     | 8,     | 9,  | 10, |
|                                     |   | 31, | 32, | 33,    | 34,   | 35,    | 36,     | 37,    | 38,    | 39, | 40, |
|                                     |   | 61  | 62  | 63     | 64    | 65     | 66      | 67     | 68     | 69  | 70  |
|                                     | 2 | 11, | 12, | 13,    | 14,   | 15,    | 16,     | 17,    | 18,    | 19, | 20, |
|                                     |   | 41, | 42, | 43,    | 44,   | 45,    | 46,     | 47,    | 48,    | 49, | 50, |
| <b>Z</b>                            |   | 71  | 72  | 73     | 74    | 75     | 76      | 77     | 78     | 79  | 80  |
| КНИЖКИ                              | 3 | 21, | 22, | 23,    | 24,   | 25,    | 26,     | 27,    | 28,    | 29, | 30, |
|                                     |   | 51, | 52, | 53,    | 54,   | 55,    | 56,     | 57,    | 58,    | 59, | 60, |
|                                     |   | 81  | 82  | 83     | 84    | 85     | 86      | 87     | 88     | 89  | 90  |
| 10 Ĭ                                | 4 | 20, | 19, | 18,    | 17,   | 16,    | 15,     | 14,    | 13,    | 12, | 11, |
| eTF                                 |   | 41, | 40, | 39,    | 38,   | 37,    | 36,     | 35,    | 34,    | 33, | 32, |
| Предпоследняя цифра номера зачетной |   | 80  | 79  | 78     | 77    | 76     | 75      | 74     | 73     | 72  | 71  |
| <b>a</b> 3                          | 5 | 10, | 9,  | 8,     | 7,    | 6,     | 5,      | 4,     | 3,     | 2,  | 1,  |
| lep                                 |   | 31, | 51, | 52,    | 53,   | 54,    | 55,     | 56,    | 57,    | 58, | 59, |
| IOM                                 |   | 70  | 69  | 68     | 67    | 66     | 65      | 64     | 63     | 62  | 61  |
| a E                                 | 6 | 30, | 29, | 28,    | 27,   | 26,    | 25,     | 24,    | 23,    | 22, | 21, |
| ф                                   |   | 60, | 40, | 41,    | 42,   | 43,    | 44,     | 45,    | 46,    | 47, | 48, |
| ЩИ                                  |   | 90  | 89  | 88     | 87    | 86     | 85      | 84     | 83     | 82  | 81  |
| ВН                                  | 7 | 2,  | 3,  | 4,     | 5,    | 6,     | 7,      | 8,     | 9,     | 10, | 11, |
| H H                                 |   | 49, | 50, | 51,    | 52,   | 53,    | 54,     | 55,    | 56,    | 57, | 58, |
| ле                                  |   | 62  | 63  | 64     | 65    | 66     | 67      | 68     | 69     | 70  | 71  |
| 100                                 | 8 | 12, | 13, | 14,    | 15,   | 16,    | 17,     | 18,    | 19,    | 20, | 21, |
| еді                                 |   | 59, | 60, | 31,    | 32,   | 33,    | 34,     | 35,    | 36,    | 37, | 38, |
| [Ip                                 |   | 72  | 73  | 74     | 75    | 76     | 77      | 78     | 79     | 80  | 81  |
|                                     | 9 | 22, | 23, | 24,    | 25,   | 26,    | 27,     | 28,    | 29,    | 30, | 1,  |
|                                     |   | 39, | 40, | 41,    | 42,   | 43,    | 44,     | 45,    | 46,    | 47, | 48, |
|                                     |   | 82  | 83  | 84     | 85    | 86     | 87      | 88     | 89     | 90  | 61  |
|                                     | 0 | 15, | 14, | 13,    | 12,   | 11,    | 10,     | 9,     | 8,     | 7,  | 6,  |
|                                     |   | 49, | 50, | 51,    | 52,   | 53,    | 54,     | 55,    | 56,    | 57, | 58, |
|                                     |   | 75  | 74  | 73     | 72    | 71     | 70      | 69     | 68     | 67  | 66  |

# Программа

### І. Дифференциальные уравнения

- 1. Понятие дифференциального уравнения. Дифференциальные уравнения первого порядка. Поле направлений. Интегральные кривые. Задача Коши.
- 2. Дифференциальные уравнения первого порядка с разделяющимися переменными. Однородные и линейные дифференциальные уравнения первого порядка.
- 3. Дифференциальные уравнения второго порядка. Общее и частное решения дифференциального уравнения второго порядка. Задача Коши.
- 4. Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- 5. Характеристическое уравнение. Общее решение линейного дифференциального однородного уравнения второго порядка с постоянными коэффициентами в зависимости от знака дискриминанта характеристического уравнения.
- 6. Линейные неоднородные дифференциальные уравнения второго порядка со специальной правой частью.

### **II.** Линейное программирование

- 7. Примеры экономических задач, решаемых методами линейного программирования.
- 8. Перечень основных методов математического программирования.
- 9. Постановка и различные формы записи задач линейного программирования. Стандартная и каноническая формы представления задач линейного программирования.
- 10. Геометрическая интерпретация задач линейного программирования.
- 11. Основные свойства задач линейного программирования: выпуклость множества допустимых решений, существование базисных решений. Оптимальное решение.
- 12. Двойственная задача линейного программирования.

### Вопросы для самопроверки

- 1. Дайте определение дифференциального уравнения. Что такое порядок, решение дифференциального уравнения, общее решение, частное решение и интегральные кривые?
- 2. Дайте геометрическое истолкование общего и частного решения.
- 3. Дифференциальное уравнение первого порядка. Геометрический смысл дифференциального уравнения первого порядка.
- 4. Изложите методы решения уравнений с разделяющимися переменными, линейных и однородных уравнений.
- 5. Дифференциальные уравнения второго порядка. Общее и частное решения. Начальные условия.
- 6. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- 7. Характеристическое уравнение.
- 8. Запишите общее решение уравнения в зависимости от корней характеристического уравнения.
- 9. Общее решение линейного неоднородного дифференциального уравнения со специальной правой частью.
- 10. Дайте определение выпуклой плоской фигуры.
- 11. Какая фигура является областью решений линейного неравенства?
- 12. Какая фигура является областью решений системы линейных неравенств?
- 13. Запишите каноническую форму задачи линейного программирования.
- 14. Запишите стандартную форму задачи линейного программирования.
- 15. Дайте определение плана, базисного плана, оптимального плана задачи линейного программирования.
- 16. Запишите двойственную задачу линейного программирования.
- 17. Может ли задача линейного программирования иметь решение в случае, когда область решений системы ограничений неограниченна?
- 18. Может ли задача линейного программирования иметь более одного оптимального плана? Приведите пример.

#### Задача №1

Найти общее решение дифференциального уравнения первого порядка  $x^2 - 4yy' = 0$  и написать уравнение интегральной кривой, проходящей через точку M (1;2).

#### Решение:

Данное уравнение является уравнением с разделяющимися переменными. Заменим y' на  $\frac{dy}{dx}$  и разделим переменные

$$x^2 - 4y \frac{dy}{dx} = 0$$
или
$$x^2 dx = 4y dy.$$

Проинтегрировав обе части равенства, получим

$$\int x^2 dx = 4 \int y dy$$
или 
$$\frac{x^3}{3} = 2y^2 + C.$$

Это общий интеграл дифференциального уравнения.

Чтобы найти частное решение, подставим вместо x и y начальные условия

$$\frac{1^3}{3} = 2 \cdot 2^2 + C \quad \Rightarrow \quad C = -\frac{23}{3}.$$

Значит, частное решение получится, если вместо константы C в общем интеграле подставить  $-\frac{23}{3}$ .

$$\frac{x^3}{3} = 2y^2 - \frac{23}{3}$$
 - частный интеграл.

### Задача №2

Найти частное решение линейного однородного уравнения второго порядка с постоянными коэффициентами

$$y'' - 9y' + 20y = 0,$$

удовлетворяющего заданным начальным условиям:

$$y(0) = -1, y'(0) = 2.$$

#### Решение:

Сначала найдем общее решение данного уравнения, для чего воспользуемся характеристическим уравнением. Для этого y'' заменим на  $\lambda^2$ , y' на  $\lambda$  и y на 1. В результате чего получим:

$$\lambda^2 - 9\lambda + 20 = 0.$$

Найдем корни характеристического уравнения:  $\lambda_1=4$  ,  $\lambda_2=5$  .

Так как корни характеристического уравнения действительны и не равны, то общее решение имеет вид:  $y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$ , где  $C_1$  и  $C_2$  произвольные постоянные.

Итак,  $y = C_1 e^{4x} + C_2 e^{5x}$  - общее решение однородного уравнения.

Чтобы найти частное решение, в систему

$$\begin{cases} y = C_1 e^{4x} + C_2 e^{5x} \\ y' = 4C_1 e^{4x} + 5C_2 e^{5x} \end{cases}$$

подставим вместо x, y, y' начальные условия:

$$x_0 = 0$$
,  $y_0 = -1$ ,  $y'_0 = 2$ .

Тогда получим

$$\begin{cases} -1 = C_1 + C_2 \\ 2 = 4C_1 + 5C_2 \end{cases}.$$

Из этой системы найдем значения  $C_1$  и  $C_2$ , и подставим их в общее решение вместо констант  $C_1$  и  $C_2$  соответственно.

$$\begin{cases} C_1 = -1 - C_2 \\ 2 = 4 \cdot (-1 - C_2) + 5C_2 \end{cases}.$$

Отсюда

$$2 = -4 - 4C_2 + 5C_2 \implies C_2 = 6, C_1 = -7.$$

Значит, частное решение данного уравнения:

$$v = -7e^{4x} + 6e^{5x}.$$

#### Задача №3

На изготовление двух видов продукции  $P_1$  и  $P_2$  требуется три вида сырья  $S_1$ ,  $S_2$  и  $S_3$ . Запасы каждого вида сырья ограничены и составляют соответственно  $b_1$ ,  $b_2$  и  $b_3$  условных единиц. При заданной технологии количество сырья, необходимое для изготовления единицы каждого из видов продукции, известно и задано в таблице:

| Crimica | Прод     | укция    | 20110011 01101 9 |  |  |
|---------|----------|----------|------------------|--|--|
| Сырье   | $P_{1}$  | $P_{2}$  | Запасы сырья     |  |  |
| $S_1$   | $A_{11}$ | $A_{12}$ | $b_{_{1}}$       |  |  |
| $S_2$   | $A_{21}$ | $A_{22}$ | $b_2$            |  |  |
| $S_3$   | $A_{31}$ | $A_{32}$ | $b_3$            |  |  |
| Прибыль | $C_1$    | $C_2$    |                  |  |  |

Здесь  $A_{ij}$  ( $i=1,2,3;\ j=1,2$ ) означает количество единиц сырья вида  $S_i$ , необходимое для изготовления единицы продукции вида  $P_j$ . В последней строке таблицы указаны значения прибыли, выраженной в условных денежных единицах и получаемой предприятием от реализации единицы каждого вида продукции.

Требуется составить такой план выпуска продукции видов  $P_1$  и  $P_2$ , при котором прибыль от реализации всей продукции была бы максимальной.

### Рассмотрим конкретный пример:

| Crymro  | Прод  | укция   | 2040011 01401 0 |  |  |
|---------|-------|---------|-----------------|--|--|
| Сырье   | $P_1$ | $P_{2}$ | Запасы сырья    |  |  |
| $S_1$   | 3     | 5       | 47              |  |  |
| $S_2$   | 1     | 4       | 32              |  |  |
| $S_3$   | 2     | 1       | 22              |  |  |
| Прибыль | 4     | 3       |                 |  |  |

### Решение:

Обозначим через  $x_1$  и  $x_2$  количество единиц продукции видов  $P_1$  и  $P_2$ , планируемое к выпуску. На изготовление  $x_1$  единиц продукции вида  $P_1$  должно расходоваться  $3x_1$  единиц сырья вида  $S_1$ , так как на изготовление единицы продукции вида  $P_1$  расходуется  $A_{11}=3$  единицы сырья вида  $S_1$ . Аналогично на изготовление  $x_2$  единиц продукции вида  $P_2$  должно расходоваться  $5x_2$  единиц сырья вида  $S_1$ , так как  $A_{12}=5$ . Следовательно, на изготовление  $x_1$  единиц продукции вида  $P_1$  и  $x_2$  единиц продукции вида  $P_2$  должно расходоваться  $3x_1+5x_2$  единиц сырья вида  $S_1$ , запасы которого равны  $b_1=47$ . Поэтому должно выполняться следующее неравенство:

$$3x_1 + 5x_2 \le 47$$
.

Для остальных видов сырья  $S_2$  и  $S_3$  должны выполняться неравенства:

$$x_1 + 4x_2 \le 32$$
 и  $2x_1 + x_2 \le 22$ .

Очевидно также, что величины  $x_1$  и  $x_2$  должны быть неотрицательны, то есть должны выполняться неравенства  $x_1 \ge 0$  и  $x_2 \ge 0$ .

Объединим полученные неравенства в систему:

$$\begin{cases} 3x_1 + 5x_2 \le 47 \\ x_1 + 4x_2 \le 32 \\ 2x_1 + x_2 \le 22. \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

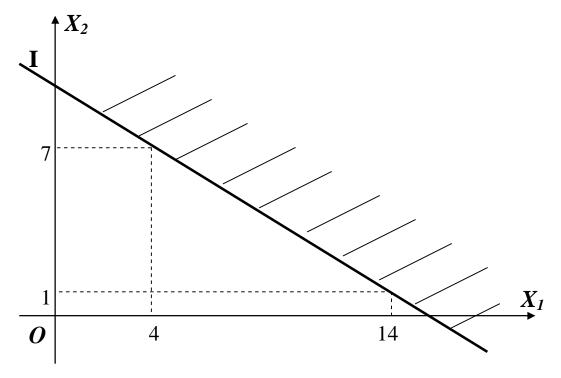
Заданная система называется системой ограничений задачи. Любое решение  $(x_1; x_2)$  системы ограничений называется планом выпуска или планом задачи.

Прибыль от реализации  $x_1$  единиц продукции вида  $P_1$  равна  $4x_1$ , так как  $C_1=4$ , а прибыль от реализации  $x_2$  единиц продукции вида  $P_2$  равна  $3x_2$ , так как  $C_2=3$ . Следовательно, суммарная прибыль предприятия от реализации продукции, выпущенной согласно плану  $(x_1;x_2)$ , равна  $F(x_1;x_2)=4x_1+3x_2$  условных денежных единиц.

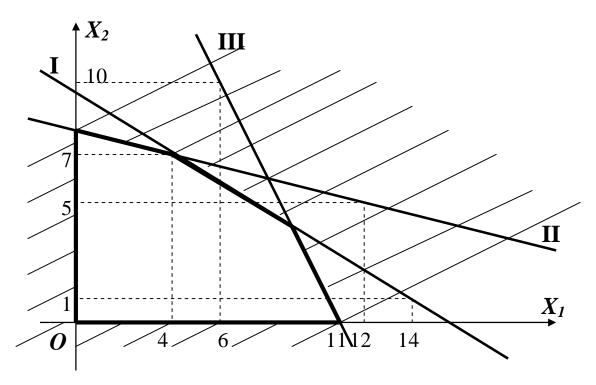
По условию задачи требуется найти такой план  $(x_1; x_2)$ , при котором прибыль  $F(x_1; x_2) = 4x_1 + 3x_2$  была бы максимальной, что записывается так:

$$F(x_1; x_2) = 4x_1 + 3x_2 \rightarrow \max.$$

Линейная функция двух переменных  $F(x_1;x_2)$  называется целевой функцией задачи. Таким образом, математическая модель нашей задачи является задачей линейного программирования:

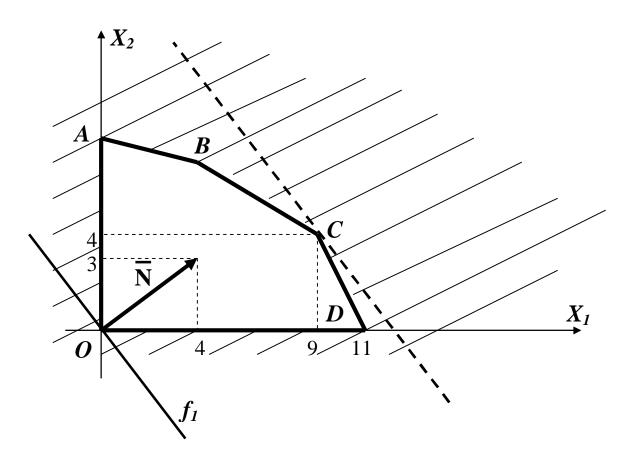

$$F(x_1; x_2) = 4x_1 + 3x_2 \to \max$$

$$\begin{cases} 3x_1 + 5x_2 \le 47 \\ x_1 + 4x_2 \le 32 \\ 2x_1 + x_2 \le 22 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$


Теперь среди всех возможных планов задачи мы будем искать оптимальный план  $\left(x_{_{1}}^{*};x_{_{2}}^{*}\right)$ , то есть такой план, при котором целевая функция достигает своего наибольшего значения.

Область решения системы ограничений, т.е. совокупность всех планов задачи, представляет собой выпуклый многоугольник на плоскости  $x_1Ox_2$ . Чтобы построить этот многоугольник, мы будем последовательно строить полуплоскости — области решений каждого из неравенств системы ограничений. Построим область решений первого неравенства системы ограничений  $3x_1 + 5x_2 \le 47$ . Сначала построим прямую, заданную уравнением  $3x_1 + 5x_2 = 47$ . Для этого найдем координаты двух точек этой прямой, например, (4;7) и (14;1). Через эти точки проведем прямую **I**.

Для определения полуплоскости решений нашего неравенства возьмем произвольную точку плоскости, не лежащую на прямой  $3x_1 + 5x_2 = 47$ , например, (0;0). Подставив ее координаты в неравенство  $3x_1 + 5x_2 \le 47$ , получим верное числовое неравенство  $0 \le 47$ , а это означает, что начало координат лежит в полуплоскости решений рассматриваемого неравенства. Противоположную полуплоскость мы заштрихуем.




Аналогично строим полуплоскости решений остальных неравенств системы ограничений, каждый раз заштриховывая «ненужную» полуплоскость (прямые  $x_1 + 4x_2 \le 32$  и  $2x_1 + x_2 \le 22$  имеют соответственно номера **II** и **III**). Оставшаяся не заштрихованной часть плоскости представляет собой искомый многоугольник.



Теперь среди точек построенного многоугольника *OABCD* мы будем искать ту точку, в которой целевая функция задачи

 $F(x_1;x_2)=4x_1+3x_2$  достигает своего максимального значения. Для каждой точки плоскости  $x_1Ox_2$  целевая функция  $F(x_1;x_2)$  принимает фиксированное значение. Множество точек, на которых  $F(x_1;x_2)$  принимает фиксированное значение  $F_1$ , есть прямая  $4x_1+3x_2=F_1$  (обозначим ее  $f_1$ ), которая перпендикулярна вектору  $\overrightarrow{N}=4\overrightarrow{i}+3\overrightarrow{j}$ . Если прямую  $f_1$  передвигать параллельно самой себе в положительном направлении вектора  $\overrightarrow{N}$ , то целевая функция  $F(x_1;x_2)$  будет возрастать, а в противоположном направлении — убывать. Построим прямую  $f_1$  для того случая, когда  $F_1=0$ , т.е. построим прямую  $4x_1+3x_2=0$ .



Как видно из рисунка, при передвижении прямой  $f_1$  в положительном направлении вектора  $\overrightarrow{N}$  целевая функция достигнет своего наибольшего значения в вершине многоугольника C - в точке пересечения прямых  $3x_1+5x_2=47$  и  $2x_1+x_2=22$ .

Решив систему:

$$\begin{cases} 3x_1^* + 5x_2^* = 47 \\ 2x_1^* + x_2^* = 22 \end{cases}$$

найдем координаты точки C(9;4). Максимальное значение целевой функции  $F^* = F(9;4) = 4 \cdot 9 + 3 \cdot 4 = 36 + 12 = 48$  условных денежных единиц.

### Ответ:

Для достижения максимальной прибыли от реализации готовой продукции предприятию необходимо выпустить 9 единиц продукции вида  $P_1$  и 4 единицы продукции вида  $P_2$ , при таком плане прибыль от реализации составит 48 условных денежных единиц.

# Задачи контрольной работы №3

### За∂ачи №1-30:

Найти общее решение дифференциального уравнения  $ax^c + by^d \cdot y' = 0$  и написать уравнение интегральной кривой, проходящей через точку  $M(x_0; y_0)$ . Значения параметров  $a, b, c, d, x_0, y_0$  даны в таблице №1.

| Tr ~     | 3 C 1      |
|----------|------------|
| 1 аолица | <b>№</b> 1 |
| таолина  | 7121       |

| №                                                                                | а       | b                  | c            | d                | $\mathcal{X}_0$    | $\mathcal{Y}_0$  |
|----------------------------------------------------------------------------------|---------|--------------------|--------------|------------------|--------------------|------------------|
| 1.                                                                               | 2       | 3                  | 1            | 2                | 2                  | 1                |
| 2.                                                                               | 2 -2    | 3 -3               | 2            | 2<br>2<br>3<br>1 | 2<br>-2<br>2<br>-1 | 1                |
| 2.<br>3.<br>4.                                                                   | 4       | -1                 | 1            | 3                | 2                  | -1               |
| 4.                                                                               | 1       | 2                  | 3            | 1                | -1                 | 1                |
| 5.<br>6.                                                                         | 3       | 2<br>2<br>-1       | 2            | 1                | 2                  | 3                |
| 6.                                                                               | 6       |                    | 2<br>3<br>3  | 3<br>2<br>3<br>2 | 1                  | 0                |
| 7.                                                                               | 4       | 3                  | 3            | 2                | 1                  | 1                |
| 7.<br>8.                                                                         | -4      | 3<br>1<br>1        | 3            | 3                | 1                  | 1                |
| 9.                                                                               | 1       |                    | 1            | 2                | 3                  | 2                |
| <b>10.</b>                                                                       | -3<br>1 | 4                  | 2 2          | 1                | 2 -1               | 1<br>2<br>3<br>1 |
| 11.<br>12.                                                                       | 1       | 6                  | 2            | 2                | -1                 | 1                |
| 12.                                                                              | -4      | 1                  | 3            | 1                | 1                  | 4                |
| <b>13.</b>                                                                       | 3       | 4                  | 2 3          | 3<br>3<br>1<br>2 | 1                  | 2 1              |
| 14.                                                                              | 4       | 3                  | 3            | 3                | 1                  | 1                |
| <b>15.</b>                                                                       | -1      |                    | 1            | 3                | 5                  | 1                |
| 16.                                                                              | 2       | 1                  | 2            | 1                | 2                  | 3                |
| <b>17.</b>                                                                       | 1       | -1                 | 2            | 2                | 1                  | 3 -2             |
| 18.                                                                              | 4       | -1                 | 1            | 1                | 3                  | 4                |
| 19.                                                                              | 8       | -1<br>-3<br>3<br>1 | 3            | 2                | 1                  | 1                |
| 20.                                                                              | 2       | 3                  | 3<br>-2<br>1 | 1                | 1                  | 3                |
| 21.                                                                              | 1       |                    | -2           | -2               | -1                 | 1                |
| 14.<br>15.<br>16.<br>17.<br>18.<br>19.<br>20.<br>21.<br>22.<br>23.<br>24.<br>25. | 1       | 1                  | 1            | -2<br>1          | -2<br>-2<br>-2     | 4                |
| <b>23.</b>                                                                       | 1       | 1                  | -1           | -1               | -2                 | 4                |
| 24.                                                                              | -1      | 1                  | -1           | -1               | -2                 | 4                |
| <b>25.</b>                                                                       | 1       | 1                  | -2           | -1               | 1                  | 1                |
| 26.                                                                              | -1      | 1                  | 0            | -1               | 1                  | e                |

| No  | а  | b  | c  | d  | $x_0$ | $\mathcal{Y}_0$ |
|-----|----|----|----|----|-------|-----------------|
| 27. | -1 | -2 | -2 | -1 | 1     | e               |
| 28. | 2  | -1 | -3 | -1 | 1     | e               |
| 29. | 2  | 3  | -1 | 1  | e     | 1               |
| 30. | 1  | -1 | -3 | 1  | 1     | 1               |

# Задачи №31-60:

Найти частное решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами:

$$y'' + ay' + by = 0,$$

удовлетворяющее заданным начальным условиям  $y(x_0) = y_0$ ,  $y'(x_0) = y'_0$ , где значения a, b,  $x_0$ ,  $y_0$ ,  $y'_0$  даны в таблице №2.

Таблица №2

|     |    |    |                 |       | 1      |
|-----|----|----|-----------------|-------|--------|
| №   | а  | b  | $x_0$           | $y_0$ | $y_0'$ |
| 31. | -7 | 10 | 0               | 2     | -1     |
| 32. | 2  | 10 | $\frac{\pi}{2}$ | 0     | 1      |
| 33. | -6 | 9  | 0               | 1     | 0      |
| 34. | 8  | 7  | 0               | 2     | 1      |
| 35. | 0  | 9  | $\pi$           | 0     | 1      |
| 36. | -7 | 12 | 0               | 2     | -2     |
| 37. | 9  | 0  | 0               | 1     | -3     |
| 38. | -3 | 2  | 0               | 0     | 1      |
| 39. | -5 | 6  | 0               | 5     | 0      |
| 40. | -2 | 5  | 0               | -1    | 0      |
| 41. | 0  | 16 | $\pi$           | -1    | 0      |
| 42. | 10 | 25 | 0               | 1     | 1      |
| 43. | -6 | 0  | 0               | 2     | -2     |
| 44. | -4 | 4  | 0               | 1     | 3      |
| 45. | -8 | 15 | 0               | 1     | -2     |
| 46. | -4 | 17 | $\frac{\pi}{2}$ | 0     | 1      |

|            |    |    |                 | одонжение и | и от тапа в т |
|------------|----|----|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------|
| №          | a  | b  | $\mathcal{X}_0$ | $y_0$       | $y_0'$                                                                                                          |
| 47.        | -2 | 1  | 1               | 0           | 2                                                                                                               |
| 48.        | 0  | 1  | $\pi$           | -1          | -4                                                                                                              |
| 49.        | -7 | 6  | 0               | 2           | 0                                                                                                               |
| <b>50.</b> | 8  | 16 | 0               | 1           | 0                                                                                                               |
| 51.        | -6 | 8  | 0               | 1           | 2                                                                                                               |
| 52.        | -8 | 16 | 0               | 2           | 5                                                                                                               |
| 53.        | -4 | 13 | $\pi$           | 0           | 1                                                                                                               |
| 54.        | -2 | -8 | 0               | 0           | 5                                                                                                               |
| 55.        | 0  | 4  | 0               | 1           | 2                                                                                                               |
| <b>56.</b> | -1 | -2 | 0               | 2           | 5                                                                                                               |
| 57.        | 0  | 4  | $\pi$           | -3          | -4                                                                                                              |
| 58.        | 1  | -2 | 0               | 3           | 5                                                                                                               |
| 59.        | -4 | 3  | 0               | 3           | 7                                                                                                               |
| 60.        | 6  | 9  | 0               | 1           | -3                                                                                                              |

### Задачи №61-90:

На изготовление двух видов продукции  $P_1$  и  $P_2$  требуется три вида сырья  $S_1$ ,  $S_2$  и  $S_3$ . Запасы каждого вида сырья ограничены и составляют соответственно  $b_1$ ,  $b_2$  и  $b_3$  условных единиц. При заданной технологии количество сырья, необходимое для изготовления единицы каждого из видов продукции, известно и задано в таблице:

| Cymya   | Прод     | укция    | 20110011 01101 0 |  |  |
|---------|----------|----------|------------------|--|--|
| Сырье   | $P_1$    | $P_{2}$  | Запасы сырья     |  |  |
| $S_1$   | $A_{11}$ | $A_{12}$ | $b_1$            |  |  |
| $S_2$   | $A_{21}$ | $A_{22}$ | $b_2$            |  |  |
| $S_3$   | $A_{31}$ | $A_{32}$ | $b_3$            |  |  |
| Прибыль | $C_1$    | $C_2$    |                  |  |  |

Здесь  $A_{ij}$   $(i=1,2,3;\ j=1,2)$  означает количество единиц сырья вида  $S_i$ , необходимое для изготовления единицы продукции вида

 $P_{j}$ . В последней строке таблицы указаны значения прибыли, выраженной в условных денежных единицах и получаемой предприятием от реализации единицы каждого вида продукции.

Требуется составить такой план выпуска продукции видов  $P_1$  и  $P_2$ , при котором прибыль от реализации всей продукции была бы максимальной.

Значения  $A_{ii}$ ,  $b_i$  и  $C_i$  даны в таблице №3.

Таблица №3

| №          | А        | A        | $b_{_1}$ | A        | A        | $b_2$   | $A_{31}$         | A        | $b_3$   | $C_1$          | $C_2$ |
|------------|----------|----------|----------|----------|----------|---------|------------------|----------|---------|----------------|-------|
| задачи     | $A_{11}$ | $A_{12}$ | $\nu_1$  | $A_{21}$ | $A_{22}$ | $\nu_2$ | <sup>7</sup> 131 | $A_{32}$ | $\nu_3$ | $\mathbf{c}_1$ | $C_2$ |
| 61.        | 1        | 1        | 8        | 1        | 4        | 20      | 1                | 0        | 5       | 1              | 2     |
| <b>62.</b> | 1        | 5        | 35       | 2        | 1        | 16      | 1                | 0        | 6       | 2              | 3     |
| 63.        | 1        | 4        | 28       | 1        | 1        | 10      | 1                | 0        | 7       | 3              | 5     |
| 64.        | 1        | 6        | 24       | 1        | 2        | 12      | 1                | 0        | 8       | 1              | 1     |
| 65.        | 1        | 3        | 30       | 2        | 3        | 36      | 1                | 0        | 9       | 2              | 4     |
| 66.        | 1        | 4        | 36       | 3        | 2        | 38      | 1                | 0        | 10      | 1              | 1     |
| 67.        | 1        | 4        | 36       | 5        | 3        | 44      | 1                | 0        | 7       | 2              | 3     |
| 68.        | 1        | 2        | 15       | 1        | 3        | 21      | 1                | 0        | 5       | 2              | 5     |
| 69.        | 2        | 8        | 48       | 1        | 2        | 14      | 1                | 0        | 6       | 2              | 7     |
| 70.        | 1        | 5        | 35       | 2        | 3        | 27      | 1                | 0        | 7       | 1              | 1     |
| 71.        | 1        | 7        | 63       | 2        | 1        | 22      | 1                | 0        | 9       | 2              | 3     |
| 72.        | 1        | 7        | 56       | 2        | 1        | 21      | 1                | 0        | 8       | 2              | 3     |
| 73.        | 1        | 3        | 30       | 3        | 1        | 26      | 1                | 0        | 7       | 1              | 1     |
| 74.        | 3        | 1        | 12       | 1        | 2        | 9       | 1                | 0        | 4       | 2              | 2     |
| 75.        | 1        | 6        | 42       | 1        | 1        | 12      | 1                | 0        | 8       | 1              | 2     |
| 76.        | 2        | 7        | 49       | 3        | 2        | 31      | 1                | 0        | 9       | 2              | 3     |
| 77.        | 1        | 9        | 81       | 2        | 1        | 26      | 1                | 0        | 10      | 1              | 1     |
| 78.        | 1        | 3        | 21       | 1        | 1        | 11      | 1                | 0        | 8       | 1              | 2     |
| 79.        | 1        | 2        | 14       | 2        | 1        | 13      | 1                | 0        | 5       | 3              | 4     |
| 80.        | 1        | 3        | 24       | 3        | 1        | 24      | 1                | 0        | 7       | 2              | 5     |
| 81.        | 4        | 1        | 28       | 1        | 4        | 28      | 1                | 1        | 10      | 1              | 2     |
| 82.        | 3        | 5        | 40       | 1        | 1        | 10      | 2                | 1        | 16      | 3              | 4     |
| 83.        | 1        | 1        | 10       | 2        | 1        | 18      | 3                | 5        | 40      | 6              | 5     |
| 84.        | 1        | 1        | 6        | 2        | 1        | 10      | 2                | 3        | 15      | 3              | 1     |
| 85.        | 1        | 3        | 12       | 1        | 1        | 6       | 2                | 1        | 10      | 2              | 7     |
| 86.        | 2        | 1        | 10       | 2        | 3        | 15      | 1                | 1        | 6       | 3              | 8     |

| №      | A        | A        | $b_{\cdot}$          | A        | A        | $b_{2}$              | A        | A        | $b_{2}$ | C               | C               |
|--------|----------|----------|----------------------|----------|----------|----------------------|----------|----------|---------|-----------------|-----------------|
| задачи | $A_{11}$ | $A_{12}$ | $\boldsymbol{\nu}_1$ | $A_{21}$ | $A_{22}$ | $\boldsymbol{\nu}_2$ | $A_{31}$ | $A_{32}$ | $\nu_3$ | $\mathcal{C}_1$ | $\mathcal{C}_2$ |
| 87.    | 1        | 3        | 18                   | 1        | 1        | 8                    | 3        | 1        | 18      | 1               | 1               |
| 88.    | 1        | 1        | 8                    | 3        | 2        | 21                   | 1        | 3        | 18      | 2               | 1               |
| 89.    | 0        | 1        | 5                    | 1        | 1        | 8                    | 3        | 1        | 18      | 5               | 2               |
| 90.    | 3        | 2        | 21                   | 0        | 1        | 5                    | 1        | 1        | 8       | 2               | 3               |

# Контрольная работа № 4

Для определения индивидуальных заданий к контрольной работе №4 используйте таблицу №4.

Таблица №4

|                                            |   |     | По  | следня | я циф | ра ном | іера за | четної | й книж |     | цизт |
|--------------------------------------------|---|-----|-----|--------|-------|--------|---------|--------|--------|-----|------|
|                                            |   | 1   | 2   | 3      | 4     | 5      | 6       | 7      | 8      | 9   | 0    |
|                                            | 1 | 1,  | 2,  | 3,     | 4,    | 5,     | 6,      | 7,     | 8,     | 9,  | 10,  |
|                                            |   | 31, | 32, | 33,    | 34,   | 35,    | 36,     | 37,    | 38,    | 39, | 40,  |
|                                            |   | 61  | 62  | 63     | 64    | 65     | 66      | 67     | 68     | 69  | 70   |
|                                            | 2 | 11, | 12, | 13,    | 14,   | 15,    | 16,     | 17,    | 18,    | 19, | 20,  |
|                                            |   | 41, | 42, | 43,    | 44,   | 45,    | 46,     | 47,    | 48,    | 49, | 50,  |
| M                                          |   | 71  | 72  | 73     | 74    | 75     | 76      | 77     | 78     | 79  | 80   |
| KK                                         | 3 | 21, | 22, | 23,    | 24,   | 25,    | 26,     | 27,    | 28,    | 29, | 30,  |
| НИС                                        |   | 51, | 52, | 53,    | 54,   | 55,    | 56,     | 57,    | 58,    | 59, | 60,  |
| Предпоследняя цифра номера зачетной книжки |   | 81  | 82  | 83     | 84    | 85     | 86      | 87     | 88     | 89  | 90   |
| 10Ĭ                                        | 4 | 20, | 19, | 18,    | 17,   | 16,    | 15,     | 14,    | 13,    | 12, | 11,  |
| етн                                        |   | 41, | 40, | 39,    | 38,   | 37,    | 36,     | 35,    | 34,    | 33, | 32,  |
| ач                                         |   | 71  | 70  | 69     | 68    | 67     | 66      | 65     | 64     | 63  | 62   |
| <b>8</b> 3                                 | 5 | 10, | 9,  | 8,     | 7,    | 6,     | 5,      | 4,     | 3,     | 2,  | 1,   |
| ıep                                        |   | 31, | 51, | 52,    | 53,   | 54,    | 55,     | 56,    | 57,    | 58, | 59,  |
| ION                                        |   | 61  | 81  | 82     | 83    | 84     | 85      | 86     | 87     | 88  | 89   |
| a F                                        | 6 | 30, | 29, | 28,    | 27,   | 26,    | 25,     | 24,    | 23,    | 22, | 21,  |
| ф                                          |   | 60, | 40, | 41,    | 42,   | 43,    | 44,     | 45,    | 46,    | 47, | 48,  |
| ЩИ                                         |   | 90  | 70  | 71     | 72    | 73     | 74      | 75     | 76     | 77  | 78   |
| ВВ                                         | 7 | 2,  | 3,  | 4,     | 5,    | 6,     | 7,      | 8,     | 9,     | 10, | 11,  |
| ДH;                                        |   | 49, | 50, | 51,    | 52,   | 53,    | 54,     | 55,    | 56,    | 57, | 58,  |
| ле                                         |   | 79  | 80  | 81     | 82    | 83     | 84      | 85     | 86     | 87  | 88   |
| 100                                        | 8 | 12, | 13, | 14,    | 15,   | 16,    | 17,     | 18,    | 19,    | 20, | 21,  |
| еді                                        |   | 59, | 60, | 31,    | 32,   | 33,    | 34,     | 35,    | 36,    | 37, | 38,  |
| dII                                        | _ | 89  | 90  | 61     | 62    | 63     | 64      | 65     | 66     | 67  | 68   |
|                                            | 9 | 22, | 23, | 24,    | 25,   | 26,    | 27,     | 28,    | 29,    | 30, | 1,   |
|                                            |   | 39, | 40, | 41,    | 42,   | 43,    | 44,     | 45,    | 46,    | 47, | 48,  |
|                                            |   | 69  | 70  | 71     | 72    | 73     | 74      | 75     | 76     | 77  | 78   |
|                                            | 0 | 15, | 14, | 13,    | 12,   | 11,    | 10,     | 9,     | 8,     | 7,  | 6,   |
|                                            |   | 49, | 50, | 51,    | 52,   | 53,    | 54,     | 55,    | 56,    | 57, | 58,  |
|                                            |   | 79  | 80  | 81     | 82    | 83     | 84      | 85     | 86     | 87  | 88   |

### Программа

### I. Теория вероятностей

- 1. Предмет теории вероятностей и ее значение для экономической науки. Классификация событий. Пространство элементарных событий. Алгебра событий. Понятие случайного события.
- 2. Классическое и статистическое определения вероятности случайного события.
- 3. Вероятность суммы и произведения событий. Формула полной вероятности. Формула Байеса.
- 4. Дискретные случайные величины. Функция распределения и ее свойства. Математическое ожидание и дисперсия дискретной случайной величины, их свойства.
- 5. Схема Бернулли. Биномиальное распределение и его числовые характеристики. Теоремы Муавра-Лапласа (без доказательства).
- 6. Непрерывные случайные величины. Функция распределения и плотность распределения непрерывной случайной величины, их взаимосвязь и свойства.
- 7. Нормальное распределение и его свойства.
- 8. Понятие о законе больших чисел. Устойчивость относительных частот и устойчивость средних. Понятие о центральной предельной теореме Ляпунова.

### **II.** Математическая статистика

- 1. Генеральная совокупность и выборка. Вариационный ряд. Гистограмма, эмпирическая функция распределения, выборочная средняя и дисперсия.
- 2. Статистическое оценивание генеральной средней. Понятие о методе моментов. Погрешность оценивания. Доверительная вероятность и доверительный интервал.
- 3. Понятие о критерии согласия. Статистическая проверка гипотез о равенстве долей и средних.
- 4. Проверка гипотез о законе распределения генеральной совокупности с помощью критериев согласия  $\chi^2$  и Колмогорова.

- 5. Функциональная зависимость и регрессия. Кривые регрессии и их свойства.
- 6. Определение параметров линейной регрессии методом наименьших квадратов. Коэффициенты регрессии и корреляции, их свойства.

# Вопросы для самопроверки

- 1. Что Вы понимаете под случайным событием?
- 2. Дайте определение суммы, произведения событий и противоположного события.
- 3. Что Вы понимаете под благоприятным и неблагоприятным исходами для некоторого события A?
- 4. Дайте классическое и статистическое определение вероятности.
- 5. Сформулируйте и докажите теорему о вероятности суммы событий. Как будет выглядеть эта теорема для несовместных событий?
- 6. Дайте определение условной вероятности. Какие события называются независимыми?
- 7. Как определяется вероятность произведения событий? Чему равна вероятность произведения независимых событий?
- 8. Дайте определение полной группы событий. Приведите пример полной группы событий. Сформулируйте и докажите формулу полной вероятности.
- 9. Для каких целей используется формула Байеса?
- 10. Объясните, в чем состоит схема повторных испытаний, и выведите формулу Бернулли.
- 11. Сформулируйте локальную и интегральную теоремы Лапласа и объясните их значение.
- 12. Дайте определение случайной величины и укажите, какие виды случайных величин Вы знаете. Что называется законом распределения дискретной случайной величины, ее математическим ожиданием, дисперсией и среднеквадратическим отклонением? Укажите свойства математического ожидания и дисперсии.
- 13. Дайте определение функции распределения случайной величины (интегральной функции распределения). Как по функции распределения найти плотность распределения

- (дифференциальную функцию распределения) непрерывной случайной величины? Укажите свойства функции распределения и плотности распределения непрерывных случайных величин.
- 14. Как определяются математическое ожидание, дисперсия и среднеквадратическое отклонение непрерывной случайной величины?
- 15. Как по функции распределения найти вероятность попадания непрерывной случайной величины в заданный интервал?
- 16. Охарактеризуйте нормальное распределение (опишите плотность распределения и функцию распределения). Каков смысл функции Лапласа?
- 17. Сформулируйте закон больших чисел и теорему Ляпунова. Почему нормально распределенные случайные величины широко распространены на практике?
- 18. В чем разница между повторными и бесповторными выборками?
- 19. Дайте определение генеральной и выборочной средней, генеральной и выборочной дисперсии, генеральной и выборочной доли.
- 20. Что Вы понимаете под эмпирической функцией распределения?
- 21. Как определяются несмещенность, эффективность и состоятельность оценки? Дайте оценку генеральных средней, доли, дисперсии по выборочным данным.
- 22. Как найти доверительные интервалы для оценки математического ожидания нормально распределенного признака генеральной совокупности?
- 23. Что понимается под функциональной, статистической и корреляционной зависимостями?
- 24. Отыскание параметров выборочного уравнения прямой линии регрессии. Выборочный коэффициент корреляции.
- 25. Статистические гипотезы. Их виды. Ошибки первого и второго рода.
- 26. Чем отличается статистический критерий для проверки гипотезы от наблюдаемого значения этого критерия?
- 27. Как строится критическая область?

- 28. Какой критерий используется при проверке гипотезы о равенстве средних двух генеральных совокупностей?
- 29. Как используется критерий Колмогорова?

### Задача №1

На предприятии переработки сельскохозяйственной продукции установлены три поточных линии по производству колбасных изделий. На первой линии производится 25% изделий от всего объема их производства, на второй – 35%, а на третьей линии – 40%. Каждая из этих линий характеризуется соответственно следующими процентами изделий высшего качества: 97%, 95% и 92%. Требуется определить:

- 1. вероятность того, что наудачу взятое изделие, выпущенное предприятием, окажется низкого качества;
- 2. вероятность того, что обнаруженное изделие низкого качества изготовлено:
  - а) на первой линии;
  - б) на второй линии;
  - в) на третьей линии.

### Решение:

Пусть  $H_1$ ,  $H_2$ ,  $H_3$  - события (гипотезы), состоящие в том, что наудачу взятое изделие изготовлено соответственно на первой, второй и третьей линиях.

Из условия задачи следует, что вероятности этих событий:

$$P(H_1) = 0.25$$
;  $P(H_2) = 0.35$ ;  $P(H_3) = 0.40$ .

При этом события  $H_{\scriptscriptstyle 1},\,H_{\scriptscriptstyle 2}$  и  $H_{\scriptscriptstyle 3}$  образуют полную группу событий, т.к. они попарно несовместны и

$$P(H_1) + P(H_2) + P(H_3) = 1.$$

Обозначим A - событие, означающее, что наудачу взятое изделие низкого качества, тогда из условия задачи определяются условные вероятности:  $P_{H_1}(A) = 0.03$  - вероятность того, что колбасное изделие низкого качества, если оно изготовлено на первой линии (100%-97%=3%).

Аналогично определим условные вероятности  $P_{H_2}(A) = 0.05$  и  $P_{H_3}(A) = 0.08$  соответственно для второй и третьей линий.

Теперь можно ответить на первый вопрос задачи: определить вероятность того, что наудачу взятое изделие, выпущенное предприятием, окажется низкого качества. Для этого используем формулу полной вероятности:

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)$$
 (для n=3)

Получаем:

$$P(A) = 0.25 \cdot 0.003 + 0.35 \cdot 0.005 + 0.40 \cdot 0.08 =$$
  
=  $0.0075 + 0.0175 + 0.0320 = 0.057$ .

Т.е. процент изделий низкого качества на предприятии составляет 5,7%.

Для того, чтобы на второй вопрос задачи, следует воспользоваться формулой Байеса:

$$P_{A}(H_{i}) = \frac{P(H_{i}) \cdot P_{H_{i}}(A)}{P(A)},$$

с помощью этой формулы мы получим ответ на следующий вопрос: какова вероятность того, что наудачу взятое изделие низкого качества было изготовлено на i-й линии.

а) для первой линии

$$P_A(H_1) = \frac{0.25 \cdot 0.03}{0.057} = \frac{0.0075}{0.057} = \frac{5}{38} < 0.25;$$

б) для второй линии

$$P_A(H_2) = \frac{0.35 \cdot 0.05}{0.057} = \frac{0.0175}{0.057} = \frac{35}{114} < 0.35;$$

в) для третьей линии

$$P_A(H_3) = \frac{0.40 \cdot 0.08}{0.057} = \frac{0.032}{0.057} = \frac{32}{57} > 0.40.$$

Формулы Байеса позволяют переоценить вероятности гипотез  $H_i$  после того, как становится известным, что в результате случайного эксперимента произошло событие A - извлекли изделие низкого качества. Однако определяемые события вновь образуют полную

группу, т.к. они попарно несовместны и  $\sum_{i=1}^n P_A(H_i) = 1$ , т.е.  $\frac{5}{38} + \frac{35}{114} + \frac{32}{57} = 1.$ 

#### Задача №2

В целях изучения урожайности подсолнечника проведено выборочное обследование десяти фермерских хозяйств области, отобранных в случайном порядке. При этом получены следующие данные (x, ц/га):

16,1; 15,4; 17,3; 16,6; 17,9; 16,5; 16,8; 15,1; 17,1; 16,3. По данным выборки определите:

- 1. Какое количество фермерских хозяйств n необходимо обследовать для того, чтобы ошибка при оценке генеральной средней не превышала бы  $\Delta_{\bar{x}} = 0.2$  ц/га с вероятностью  $P_1 = 0.95$ ;
- 2. Установить с доверительной вероятностью  $P_2 = 0.90$  пределы, в которых находится доля хозяйств в генеральной совокупности, имеющих урожайность подсолнечника не ниже 17 ц/га, при условии, что эта доля в выборке объемом n осталась прежней.

#### Решение:

Рассмотрим ряд распределения случайной величины x, разместив все значения в порядке возрастания:

Заметим, что исходные данные представляют собой величины, каждая из которых встречается по одному разу, поэтому математическое ожидание (средняя) и дисперсия определяются по формулам:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{165,1}{10} = 16,51;$$

$$\sigma_{x}^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - (\bar{x})^{2} = \frac{2732,23}{10} - (16,51)^{2} = 0,6429 \approx (0,8018)^{2}.$$

1. Чтобы по заданной доверительной вероятности  $P_1=0.95$  определить значение параметра функции Лапласа  $t_1$  надо по таблице значений функции Лапласа (смотри приложение 1) найти значение параметра t, соответствующего значению функции  $\Phi(t)=\frac{P_1}{2}=0.475$ . Этому значению соответствует  $t_1=1.96$ .

Для определения необходимой численности выборки будем исходить из предельной ошибки выборки для оценки генеральной средней  $\Delta_{\bar{x}}=0,2$ , параметра функции Лапласа для заданной доверительной вероятности  $P_1=0,95$   $\left(t_1=1,96\right)$  и дисперсии  $\sigma_{\bar{x}}^2=0,6429$  по формуле:

$$n \geq \frac{t_1^2 \cdot \boldsymbol{\sigma}_x^2}{\left(\Delta_{\bar{x}}\right)^2}.$$

В нашем случае

$$n \ge \frac{(1,96)^2 \cdot 0,6429}{(0,2)^2} = 61,74 \text{ T.e. } n \ge 62.$$

2. Для того чтобы ответить на второй вопрос задачи, воспользуемся формулой для оценки ошибки доли  $\Delta_P$  для заданной доверительной вероятности  $P_2=0.90$  ( $t_2=1.645$ ).

$$\Delta_P = t_2 \cdot \sqrt{\frac{p \cdot q}{n}},$$

где p - это доля тех хозяйств в выборке, которые имеют урожайность  $x \ge 17$  ц/га. Таких хозяйств в выборке 3 из 10, т.е.

$$p = \frac{3}{10} = 0,3$$
. Следовательно,  $q = 1 - p = 1 - 0,3 = 0,7$ .

По условию задачи эта доля не изменилась при n=62, поэтому ошибка при оценке доли в генеральной совокупности

$$\Delta_P = 1,645 \cdot \sqrt{\frac{0,3 \cdot 0,7}{62}} = 0,095737 \approx 0,096.$$

Теперь можно определить пределы, в которых с вероятностью P = 0.9 находится доля хозяйств в генеральной совокупности, имеющих урожайность не ниже 17 ц/га:

$$\{0.3 - 0.096 \le P \le 0.3 + 0.096\} = \{0.204 \le P \le 0 < 396\},\$$

т.е. таких хозяйств в области от 20% до 40%.

### Задача №3

Получено следующее распределение малых предприятий по объему выпускаемой продукции x (ед.) и ее себестоимости y (руб/ед.):

$$x_i$$
 50
 100
 150
 200
 300
 350
 400
 450
 500
 550
 600
 650

  $y_i$ 
 160
 155
 150
 150
 140
 135
 135
 130
 125
 120
 120
 110

Предполагая, что между переменными x и y существует линейная корреляционная зависимость, необходимо:

- 1. Вычислить коэффициент корреляции; решить вопрос о тесноте линейной связи между объемом продукции и ее себестоимостью; проверить значимость  $r_{xy}$  на основе t-критерия Стьюдента.
- 2. Составить уравнение прямой регрессии  $\overline{y}(x) = ax + b$ , применив метод наименьших квадратов.
- 3. Полученные результаты нанести на график корреляционного поля и сделать прогноз о себестоимости продукции на малых предприятиях с объемом выпускаемой продукции:

x=250 единиц (интерполяция) x=700 единиц (экстраполяция).

### Решение:

1. Для того чтобы ответить на первый и второй вопросы задачи, нам понадобятся следующие суммы:

$$n = 12; \ S_1 = \sum_{i=1}^{12} x_i = 4300; \ S_2 = \sum_{i=1}^{12} y_i = 1630;$$
$$S_3 = \sum_{i=1}^{12} x_i^2 = 1985000; \ S_4 = \sum_{i=1}^{12} y_i^2 = 224100;$$
$$S_5 = \sum_{i=1}^{12} x_i y_i = 549750.$$

Коэффициент корреляции определяется с помощью найденных сумм по формуле:

$$r_{xy} = \frac{n S_5 - S_1 \cdot S_2}{\sqrt{(n S_3 - S_1^2) \cdot (n S_4 - S_2^2)}}.$$

Подставив в эту формулу соответствующие значения, получим:

$$r_{xy} = \frac{12 \cdot 549750 - 4300 \cdot 1630}{\sqrt{(12 \cdot 1985000 - (4300)^2) \cdot (12 \cdot 224100 - (1630)^2)}} = \frac{-412000}{\sqrt{5330000 \cdot 32300}} = -\frac{412}{\sqrt{533 \cdot 323}} \approx -\frac{412}{414,92047} \approx -0,9930.$$

Знак «минус» означает, что линейная корреляционная зависимость y(x) является убывающей (чем больше объем выпускаемой продукции, тем ниже ее себестоимость).

Значение  $\left|r_{xy}\right|=\left|-0.9930\right|$  близко к единице, следовательно, можно сделать вывод о сильной корреляционной связи между факторами x и y.

Значимость линейного коэффициента корреляции проверяется на основе *t*-критерия Стьюдента:

$$t_P = \sqrt{\frac{r_{xy}^2}{1 - r_{xy}^2} \cdot (n - 2)} = \frac{|r_{xy}|}{\sqrt{1 - r_{xy}^2}} \cdot \sqrt{n - 2}.$$

При подстановке наших значений, получаем:

$$t_P = \frac{0,9930 \cdot \sqrt{10}}{\sqrt{1 - 0,9930^2}} = 223,84421.$$

Теперь по таблице распределения Стьюдента (t-распределение) находим для  $\alpha=0{,}05$  и N=12-1=11 значение  $t_{\kappa p}=2{,}201$ .

Так как  $t_p$  (расчетное) значительно превышает  $t_{\kappa p}$  (критическое табличное), то гипотеза  $H_0: r_{\kappa y}=0$  отвергается, что свидетельствует о значимости линейного коэффициента корреляции, а следовательно, и о статистической существенности зависимости между объемом продукции и ее себестоимости.

2. Для определения параметров a и b уравнения прямой линии регрессии запишем систему нормальных уравнений:

$$\begin{cases} bn + a\sum_{i=1}^{12} x_i = \sum_{i=1}^{12} y_i \\ b\sum_{i=1}^{12} x_i + a\sum_{i=1}^{12} x_i^2 = \sum_{i=1}^{12} x_i y_i \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} 12b + 4300a = 1630 \\ 4300b + 1985000a = 549750 \end{cases}.$$

Разделим коэффициенты первого уравнения системы на 12, а коэффициенты второго – на 4300 и после элементарных преобразований получим решение:

$$\begin{cases} b + 358, (3)a = 135, 8(3) \\ b + 461,6279a = 127,84883 \end{cases} \Rightarrow \begin{cases} b = 135, 8(3) - 358, (3)a \\ -103,29457a = 7,9845 \end{cases} \Rightarrow \begin{cases} a \approx -0,0773 \\ b \approx 163,53 \end{cases}.$$

Искомое уравнение прямой линии регрессии:

$$\overline{y}(x) = -0.0773x + 163.53$$
.

3. Построим корреляционное поле и прямую регрессии (рис.1)

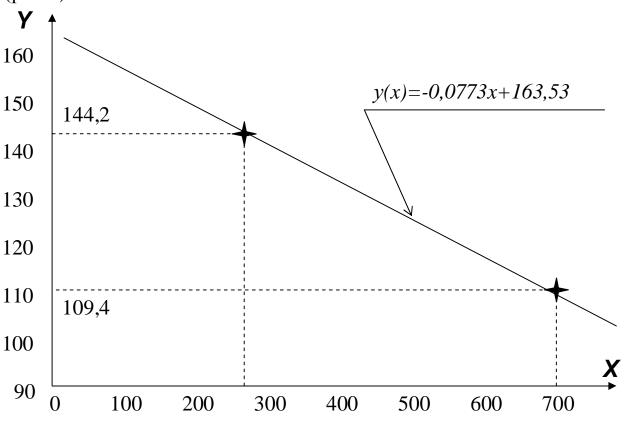



Рис 1. Корреляционное поле; прямая регрессии.

Определим, используя уравнение регрессии,  $y(250) \approx 144,2$  и  $y(700) \approx 109,4$ , т.е. прогнозируемые значения себестоимости продукции при объеме производства 250 единиц приблизительно равны 144,2 руб/ед, а при объеме 700 единиц следует ожидать себестоимость приблизительно 109,4 руб/ед.

# Задачи контрольной работы №4

#### Задачи №1-30:

На предприятии изготовляются изделия определенного вида на трех поточных линиях. На первой линии производится  $M_1\%$  изделий от всего объема их производства, на второй -  $M_2\%$ , на третьей -  $M_3\%$ . Каждая из линий характеризуется соответственно следующими процентами годности изделий:  $K_1\%$ ,  $K_2\%$  и  $K_3\%$ . Требуется определить вероятность того, что наугад взятое изделие, выпущенное предприятием, окажется бракованным, а также вероятности того, что это бракованное изделие сделано на первой, второй и третьей линиях.

Таблица №1

| No  | $\mathbf{M_1}$ | $\mathbf{M_2}$ | $M_3$ | $\mathbf{K}_{1}$ | $\mathbf{K}_2$ | $\mathbf{K}_3$ |
|-----|----------------|----------------|-------|------------------|----------------|----------------|
| 1.  | 15             | 55             | 30    | 92               | 97             | 93             |
| 2.  | 35             | 35             | 30    | 95               | 94             | 91             |
| 3.  | 20             | 35             | 45    | 98               | 97             | 92             |
| 4.  | 10             | 40             | 50    | 92               | 96             | 93             |
| 5.  | 25             | 40             | 35    | 95               | 97             | 92             |
| 6.  | 40             | 30             | 30    | 91               | 95             | 97             |
| 7.  | 10             | 20             | 70    | 92               | 95             | 94             |
| 8.  | 25             | 15             | 60    | 96               | 95             | 93             |
| 9.  | 30             | 25             | 45    | 91               | 96             | 95             |
| 10. | 20             | 30             | 50    | 93               | 94             | 95             |
| 11. | 25             | 20             | 55    | 96               | 92             | 97             |
| 12. | 45             | 30             | 25    | 94               | 95             | 97             |
| 13. | 30             | 35             | 35    | 93               | 95             | 96             |
| 14. | 20             | 40             | 40    | 96               | 93             | 95             |
| 15. | 25             | 25             | 50    | 97               | 93             | 95             |

|            |       |                | 1     |                | толиц          |                |
|------------|-------|----------------|-------|----------------|----------------|----------------|
| No         | $M_1$ | $\mathbf{M}_2$ | $M_3$ | $\mathbf{K_1}$ | $\mathbf{K}_2$ | $\mathbf{K}_3$ |
| <b>16.</b> | 15    | 45             | 40    | 93             | 96             | 98             |
| <b>17.</b> | 20    | 25             | 55    | 97             | 92             | 95             |
| 18.        | 35    | 25             | 40    | 95             | 92             | 98             |
| 19.        | 40    | 35             | 25    | 94             | 96             | 97             |
| 20.        | 10    | 30             | 60    | 97             | 93             | 95             |
| 21.        | 35    | 40             | 25    | 96             | 93             | 98             |
| 22.        | 20    | 45             | 35    | 94             | 97             | 95             |
| 23.        | 30    | 40             | 30    | 97             | 94             | 96             |
| 24.        | 25    | 30             | 45    | 93             | 92             | 95             |
| 25.        | 30    | 30             | 40    | 94             | 98             | 96             |
| 26.        | 30    | 50             | 20    | 98             | 95             | 94             |
| 27.        | 40    | 20             | 40    | 92             | 94             | 97             |
| 28.        | 25    | 35             | 40    | 95             | 96             | 92             |
| 29.        | 30    | 20             | 50    | 98             | 96             | 93             |
| 30.        | 15    | 35             | 50    | 91             | 97             | 95             |

### Задачи №31-60:

В целях изучения численности жителей в поселках городского типа проведено выборочное обследование 10 населенных пунктов,

отобранных в случайном порядке. При этом получены следующие данные (x, тыс. чел):  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$ ,  $x_5$ ,  $x_6$ ,  $x_7$ ,  $x_8$ ,  $x_9$ ,  $x_{10}$ .

По данным выборки определите:

- 1. Какое количество n поселков необходимо обследовать для того, чтобы ошибка при оценке генеральной средней не превышала бы  $\Delta_{\bar{x}}$  с вероятностью  $P_1$ ?
- 2. Установить с доверительной вероятностью  $P_2$  пределы, в которых находится доля поселков в генеральной совокупности, имеющих численность населения ниже  $x_0$  (тыс. чел) при условии, что эта доля в выборке объема n осталась прежней.

Таблица №2

| №   | $x_1$ | $x_2$ | $x_3$ | $\mathcal{X}_4$ | $x_5$ | $\mathcal{X}_6$ | $\mathcal{X}_7$ | $x_8$ | $x_9$ | $x_{10}$ | $\Delta_{\bar{x}}$ | $P_1$ | $x_0$ | $P_2$ |
|-----|-------|-------|-------|-----------------|-------|-----------------|-----------------|-------|-------|----------|--------------------|-------|-------|-------|
| 31. | 8     | 5     | 3     | 10              | 15    | 2               | 12              | 7     | 9     | 6        | 1                  | 0,95  | 5     | 0,90  |
| 32. | 8     | 10    | 5     | 9               | 17    | 12              | 15              | 6     | 3     | 18       | 1,5                | 0,97  | 8     | 0,85  |
| 33. | 4     | 8     | 18    | 14              | 9     | 2               | 11              | 6     | 15    | 12       | 3                  | 0,96  | 6     | 0,89  |
| 34. | 8     | 11    | 17    | 6               | 10    | 3               | 14              | 12    | 15    | 4        | 1                  | 0,94  | 8     | 0,87  |
| 35. | 7     | 13    | 18    | 4               | 11    | 16              | 5               | 12    | 15    | 9        | 1,2                | 0,97  | 7     | 0,86  |
| 36. | 6     | 9     | 16    | 3               | 7     | 10              | 11              | 13    | 8     | 4        | 1                  | 0,95  | 6     | 0,90  |
| 37. | 10    | 13    | 16    | 6               | 18    | 4               | 9               | 19    | 11    | 7        | 1,4                | 0,96  | 9     | 0,85  |
| 38. | 5     | 11    | 16    | 2               | 9     | 14              | 3               | 10    | 13    | 7        | 1,2                | 0,93  | 5     | 0,87  |
| 39. | 9     | 15    | 20    | 6               | 13    | 18              | 7               | 14    | 17    | 11       | 1,1                | 0,94  | 9     | 0,86  |
| 40. | 4     | 7     | 16    | 2               | 9     | 1               | 10              | 12    | 6     | 13       | 3                  | 0,96  | 6     | 0,89  |
| 41. | 5     | 7     | 2     | 15              | 3     | 12              | 8               | 10    | 6     | 9        | 1                  | 0,95  | 5     | 0,90  |
| 42. | 8     | 11    | 7     | 14              | 4     | 16              | 2               | 17    | 9     | 5        | 1,4                | 0,94  | 5     | 0,84  |
| 43. | 9     | 6     | 13    | 6               | 11    | 16              | 3               | 8     | 10    | 7        | 1                  | 0,93  | 6     | 0,85  |
| 44. | 9     | 11    | 16    | 6               | 10    | 18              | 13              | 7     | 4     | 19       | 1,5                | 0,96  | 9     | 0,86  |
| 45. | 4     | 14    | 12    | 17              | 10    | 3               | 8               | 15    | 11    | 6        | 1                  | 0,97  | 8     | 0,87  |
| 46. | 6     | 8     | 3     | 16              | 4     | 13              | 9               | 11    | 7     | 10       | 1                  | 0,95  | 6     | 0,90  |
| 47. | 10    | 8     | 17    | 3               | 6     | 18              | 12              | 5     | 15    | 9        | 1,2                | 0,97  | 8     | 0,85  |
| 48. | 9     | 12    | 15    | 18              | 7     | 11              | 4               | 13    | 16    | 5        | 1                  | 0,93  | 9     | 0,89  |
| 49. | 3     | 13    | 11    | 16              | 9     | 2               | 7               | 14    | 10    | 5        | 1                  | 0,95  | 7     | 0,86  |
| 50. | 11    | 8     | 15    | 6               | 13    | 18              | 5               | 10    | 12    | 9        | 1,1                | 0,94  | 8     | 0,87  |
| 51. | 5     | 8     | 11    | 17              | 3     | 10              | 1               | 13    | 7     | 14       | 3                  | 0,96  | 5     | 0,89  |
| 52. | 11    | 13    | 18    | 8               | 12    | 20              | 15              | 9     | 6     | 21       | 1,6                | 0,93  | 11    | 0,85  |
| 53. | 7     | 11    | 14    | 21              | 17    | 12              | 5               | 9     | 18    | 15       | 3                  | 0,94  | 9     | 0,90  |

| No  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $\mathcal{X}_7$ | $x_8$ | $x_9$ | $x_{10}$ | $\Delta_{\bar{x}}$ | $P_1$ | $x_0$ | $P_2$ |
|-----|-------|-------|-------|-------|-------|-------|-----------------|-------|-------|----------|--------------------|-------|-------|-------|
| 54. | 9     | 12    | 8     | 15    | 5     | 17    | 3               | 18    | 10    | 6        | 1,3                | 0,97  | 8     | 0,86  |
| 55. | 5     | 9     | 12    | 19    | 15    | 10    | 3               | 7     | 16    | 13       | 3                  | 0,97  | 7     | 0,89  |
| 56. | 10    | 16    | 8     | 21    | 7     | 14    | 19              | 15    | 18    | 12       | 1,3                | 0,93  | 10    | 0,87  |
| 57. | 3     | 7     | 10    | 17    | 13    | 8     | 1               | 5     | 14    | 11       | 3                  | 0,96  | 5     | 0,89  |
| 58. | 9     | 12    | 14    | 19    | 6     | 10    | 13              | 16    | 11    | 7        | 1,1                | 0,95  | 10    | 0,85  |
| 59. | 8     | 11    | 14    | 20    | 6     | 13    | 4               | 16    | 10    | 17       | 3                  | 0,93  | 8     | 0,86  |
| 60. | 6     | 12    | 4     | 17    | 3     | 10    | 15              | 11    | 14    | 8        | 1,1                | 0,94  | 6     | 0,87  |

### Задачи №61-90:

Зависимость между стажем работы (x, лет) некоторой категории рабочих и производительностью их труда (y, ед. в смену) представлены в таблице Nollangle 3.

Предполагая, что между переменными x и y существует линейная корреляционная зависимость, требуется:

- 1) вычислить коэффициент корреляции, сделать вывод о тесноте связи между стажем работы и производительностью труда; проверить значимость  $r_{xy}$  с помощью t-критерия Стьюдента;
  - 2) составить уравнение прямой регрессии  $\overline{y}(x) = ax + b$ ;
- 3) полученные данные изобразить графически и сделать прогноз о производительности труда рабочих, имеющих стаж  $x_a$  и  $x_b$ .

Таблица №3

|     |       |       |       | ı               |                   | 1                     | 1               | 1     |       |          |          | _        | тоттіц |       |
|-----|-------|-------|-------|-----------------|-------------------|-----------------------|-----------------|-------|-------|----------|----------|----------|--------|-------|
| No  | $x_1$ | $x_2$ | $x_3$ | $\mathcal{X}_4$ | $\mathcal{X}_{5}$ | $x_6$                 | $\mathcal{X}_7$ | $x_8$ | $x_9$ | $x_{10}$ | $x_{11}$ | $x_{12}$ | v      | r     |
| 112 | $y_1$ | $y_2$ | $y_3$ | $y_4$           | $y_5$             | <i>y</i> <sub>6</sub> | $y_7$           | $y_8$ | $y_9$ | $y_{10}$ | $y_{11}$ | $y_{12}$ | $X_a$  | $X_b$ |
| 61  | 1     | 3     | 5     | 6               | 8                 | 10                    | 12              | 13    | 14    | 15       | 17       | 21       | 7      | 25    |
| 61. | 11    | 26    | 34    | 38              | 47                | 55                    | 63              | 67    | 71    | 76       | 83       | 99       | /      | 23    |
| 62. | 25    | 26    | 27    | 29              | 31                | 33                    | 34              | 36    | 37    | 39       | 40       | 41       | 30     | 45    |
| 02. | 33    | 33    | 30    | 28              | 26                | 23                    | 23              | 19    | 18    | 16       | 14       | 12       | 30     | 43    |
| 62  | 3     | 4     | 6     | 7               | 8                 | 10                    | 11              | 12    | 14    | 15       | 16       | 18       | 5      | 20    |
| 63. | 8     | 10    | 11    | 12              | 12                | 15                    | 16              | 16    | 19    | 19       | 21       | 25       | )      | 20    |
| 64. | 25    | 26    | 27    | 29              | 31                | 33                    | 34              | 35    | 36    | 38       | 40       | 42       | 30     | 45    |
| U4. | 56    | 54    | 54    | 49              | 46                | 42                    | 40              | 39    | 37    | 34       | 30       | 27       | 30     | 43    |

|            |       | 1     |       |                 | 1     | 1     |                 |                 |       | тродо    | J171(C11. | TIC TUC  | УЛИЦЬ       | 1 3 1 2 3   |
|------------|-------|-------|-------|-----------------|-------|-------|-----------------|-----------------|-------|----------|-----------|----------|-------------|-------------|
| No         | $x_1$ | $x_2$ | $x_3$ | $\mathcal{X}_4$ | $x_5$ | $x_6$ | $\mathcal{X}_7$ | $\mathcal{X}_8$ | $x_9$ | $x_{10}$ | $x_{11}$  | $x_{12}$ | $X_a$       | $X_{b}$     |
| 212        | $y_1$ | $y_2$ | $y_3$ | $y_4$           | $y_5$ | $y_6$ | $y_7$           | $y_8$           | $y_9$ | $y_{10}$ | $y_{11}$  | $y_{12}$ | $\lambda_a$ | $\lambda_b$ |
| 65         | 2     | 4     | 6     | 7               | 9     | 11    | 13              | 14              | 15    | 16       | 18        | 22       | 8           | 25          |
| 65.        | 9     | 24    | 32    | 36              | 45    | 53    | 61              | 65              | 69    | 74       | 81        | 97       | 0           | 25          |
| 66.        | 24    | 25    | 26    | 28              | 30    | 32    | 33              | 35              | 36    | 38       | 39        | 40       | 27          | 45          |
| 00.        | 35    | 35    | 32    | 30              | 28    | 25    | 25              | 21              | 20    | 18       | 16        | 14       | 21          | 43          |
| 67.        | 4     | 5     | 7     | 8               | 9     | 11    | 12              | 13              | 15    | 16       | 17        | 19       | 10          | 20          |
| 07.        | 9     | 11    | 12    | 13              | 13    | 16    | 17              | 17              | 20    | 20       | 22        | 26       | 10          | 20          |
| 68.        | 27    | 28    | 29    | 31              | 33    | 35    | 36              | 37              | 38    | 39       | 42        | 43       | 30          | 45          |
| 00.        | 54    | 52    | 51    | 47              | 44    | 40    | 40              | 37              | 35    | 32       | 30        | 25       | 30          | 43          |
| 69.        | 3     | 5     | 7     | 8               | 10    | 12    | 14              | 15              | 16    | 17       | 19        | 23       | 9           | 25          |
| 02.        | 7     | 22    | 30    | 34              | 43    | 51    | 59              | 63              | 67    | 72       | 79        | 95       | 9           | 23          |
| 70.        | 5     | 6     | 8     | 9               | 10    | 12    | 13              | 14              | 16    | 17       | 18        | 20       | 11          | 22          |
| 70.        | 10    | 12    | 13    | 14              | 14    | 17    | 18              | 18              | 21    | 21       | 23        | 27       | 11          | 22          |
| 71.        | 23    | 24    | 25    | 27              | 28    | 30    | 31              | 33              | 34    | 35       | 36        | 37       | 26          | 40          |
| /1.        | 32    | 30    | 30    | 27              | 27    | 27    | 24              | 24              | 20    | 20       | 19        | 18       | 20          | 40          |
| 72.        | 23    | 24    | 25    | 27              | 29    | 31    | 32              | 33              | 34    | 36       | 38        | 40       | 30          | 45          |
| 14.        | 52    | 50    | 49    | 45              | 40    | 40    | 35              | 35              | 33    | 30       | 25        | 20       | 30          | 43          |
| <b>73.</b> | 4     | 6     | 8     | 9               | 11    | 13    | 15              | 16              | 17    | 18       | 20        | 24       | 10          | 25          |
| 13.        | 5     | 20    | 28    | 32              | 41    | 49    | 57              | 61              | 65    | 70       | 77        | 93       | 10          | 23          |
| 74.        | 23    | 24    | 25    | 27              | 29    | 31    | 32              | 34              | 35    | 37       | 38        | 39       | 30          | 40          |
| /4.        | 37    | 37    | 34    | 32              | 30    | 27    | 27              | 23              | 22    | 20       | 18        | 16       | 30          | 40          |
| 75.        | 6     | 7     | 9     | 10              | 11    | 13    | 14              | 15              | 17    | 18       | 19        | 21       | 12          | 25          |
| 13.        | 11    | 13    | 14    | 15              | 15    | 18    | 19              | 19              | 22    | 22       | 24        | 28       | 12          | 23          |
| <b>76.</b> | 1     | 2     | 5     | 6               | 8     | 9     | 11              | 12              | 13    | 14       | 16        | 18       | 10          | 20          |
| 70.        | 11    | 14    | 26    | 29              | 36    | 40    | 48              | 50              | 55    | 58       | 65        | 73       | 10          | 20          |
| 77.        | 20    | 21    | 22    | 25              | 26    | 27    | 28              | 29              | 30    | 31       | 33        | 35       | 24          | 36          |
| //•        | 30    | 30    | 29    | 26              | 24    | 24    | 22              | 22              | 20    | 20       | 17        | 16       | 24          | 30          |
| <b>78.</b> | 2     | 3     | 5     | 6               | 7     | 9     | 10              | 11              | 13    | 14       | 15        | 17       | 4           | 20          |
| 70.        | 7     | 9     | 10    | 11              | 11    | 14    | 15              | 15              | 18    | 18       | 20        | 24       | 4           | 20          |
| 79.        | 26    | 27    | 28    | 30              | 32    | 34    | 35              | 36              | 37    | 39       | 41        | 43       | 29          | 45          |
| 17.        | 55    | 53    | 52    | 48              | 45    | 41    | 40              | 38              | 36    | 33       | 30        | 25       | <i></i>     | 43          |
| 80.        | 2     | 3     | 6     | 7               | 9     | 10    | 12              | 13              | 14    | 15       | 17        | 19       | 5           | 20          |
| ου.        | 9     | 12    | 24    | 27              | 34    | 38    | 46              | 48              | 53    | 56       | 63        | 71       | <i>J</i>    | 20          |
| 81.        | 21    | 22    | 23    | 26              | 27    | 28    | 29              | 30              | 31    | 32       | 34        | 36       | 25          | 40          |
| 01.        | 28    | 28    | 27    | 24              | 22    | 22    | 20              | 20              | 18    | 18       | 15        | 14       | 23          | 40          |
|            |       |       |       |                 |       |       |                 |                 |       |          |           |          |             |             |

|     |    |    |    |    |    |    |    |    |    | Родо |    |    | 1      |    |
|-----|----|----|----|----|----|----|----|----|----|------|----|----|--------|----|
| 82. | 7  | 8  | 10 | 11 | 12 | 14 | 15 | 16 | 18 | 19   | 20 | 22 | 13     | 25 |
| 04. | 12 | 14 | 15 | 16 | 16 | 19 | 20 | 20 | 23 | 23   | 25 | 29 | 13     | 23 |
| 83. | 24 | 25 | 26 | 28 | 31 | 32 | 33 | 34 | 35 | 37   | 40 | 41 | 30     | 45 |
| 03. | 53 | 51 | 50 | 46 | 43 | 40 | 37 | 36 | 34 | 30   | 26 | 25 | 30     | 43 |
| 84. | 3  | 4  | 7  | 8  | 10 | 11 | 13 | 14 | 15 | 16   | 18 | 20 | 5      | 25 |
| 04. | 7  | 10 | 22 | 25 | 32 | 36 | 44 | 46 | 51 | 54   | 61 | 69 | ر<br>ر | 23 |
| 85. | 22 | 23 | 24 | 27 | 28 | 29 | 30 | 31 | 32 | 33   | 35 | 37 | 25     | 40 |
| 05. | 26 | 26 | 25 | 22 | 20 | 20 | 18 | 18 | 16 | 16   | 13 | 12 | 23     | 40 |
| 86. | 1  | 4  | 6  | 8  | 10 | 12 | 14 | 15 | 16 | 17   | 18 | 23 | 5      | 25 |
| ου. | 7  | 14 | 18 | 22 | 26 | 31 | 35 | 37 | 40 | 41   | 44 | 54 | 7      | 23 |
| 87. | 28 | 29 | 31 | 32 | 34 | 36 | 37 | 38 | 39 | 41   | 43 | 45 | 30     | 40 |
| 07. | 50 | 50 | 48 | 44 | 40 | 38 | 35 | 34 | 32 | 30   | 25 | 20 | 30     | 40 |
| 88. | 4  | 5  | 8  | 9  | 11 | 12 | 14 | 15 | 16 | 17   | 19 | 21 | 10     | 25 |
| 00. | 5  | 8  | 20 | 23 | 30 | 34 | 42 | 44 | 49 | 52   | 59 | 67 | 10     | 23 |
| 89. | 23 | 24 | 25 | 28 | 29 | 30 | 31 | 32 | 33 | 34   | 36 | 38 | 35     | 40 |
| 07. | 24 | 24 | 23 | 20 | 18 | 18 | 16 | 16 | 14 | 14   | 11 | 10 | 33     | 40 |
| 90. | 22 | 23 | 24 | 26 | 28 | 30 | 31 | 32 | 33 | 35   | 37 | 39 | 25     | 40 |
| 70. | 57 | 55 | 54 | 50 | 47 | 44 | 40 | 40 | 38 | 35   | 30 | 28 | 43     | 40 |

### Рекомендуемая литература

- 1. Высшая математика для экономистов, под редакцией проф. Н.Ш. Кремера, М., Банки и бизнес, 1997 (и последующие издания), 439с.
- 2. Общий курс высшей математики для экономистов, под редакцией проф. В.И. Ермакова, М., Инфра-М, 2001, 656с.
- 3. Сборник задач по высшей математике для экономистов, под редакцией проф. В.И. Ермакова, М., Инфра-М, 2001, 575с.
- 4. Теория вероятностей и математическая статистика. Н.Ш. Кремер, М., ЮНИТИ, 2001, 450с.

# Дополнительная литература

- 1. Краткий курс аналитической геометрии. Н.В. Ефимов, М., Наука, 1969, 580с.
- 2. Дифференциальное и интегральное исчисление для втузов, Н.С. Пискунов, М., Наука ФизМатЛит, 1997, т.І 432с, т.ІІ 560с.
- 3. Теория вероятностей и математическая статистика, В.Е. Гмурман, М., Высшая школа, 1998, 479с.
- 4. Руководство к решению задач по теории вероятностей и математической статистике, В.Е. Гмурман, М., Высшая школа, 1998, 410с.

**Таблица значений функции**  $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^{2}/2} dz$  Приложение 1

| X    | Ф(х)    | X    | Ф(х)    | X    | Ф(х)    | X    | Ф(х)    |
|------|---------|------|---------|------|---------|------|---------|
| 0,00 | 0,00000 | 0,40 | 0,15542 | 0,80 | 0,28814 | 1,20 | 0,38493 |
| 0,01 | 0,00399 | 0,41 | 0,15910 | 0,81 | 0,29103 | 1,21 | 0,38686 |
| 0,02 | 0,00798 | 0,42 | 0,16276 | 0,82 | 0,29389 | 1,22 | 0,38877 |
| 0,03 | 0,01197 | 0,43 | 0,16640 | 0,83 | 0,29673 | 1,23 | 0,39065 |
| 0,04 | 0,01595 | 0,44 | 0,17003 | 0,84 | 0,29955 | 1,24 | 0,39251 |
| 0,05 | 0,01994 | 0,45 | 0,17364 | 0,85 | 0,30234 | 1,25 | 0,39435 |
| 0,06 | 0,02392 | 0,46 | 0,17724 | 0,86 | 0,30511 | 1,26 | 0,39617 |
| 0,07 | 0,02790 | 0,47 | 0,18082 | 0,87 | 0,30785 | 1,27 | 0,39796 |
| 0,08 | 0,03188 | 0,48 | 0,18439 | 0,88 | 0,31057 | 1,28 | 0,39973 |
| 0,09 | 0,03586 | 0,49 | 0,18793 | 0,89 | 0,31327 | 1,29 | 0,40147 |
| 0,10 | 0,03983 | 0,50 | 0,19146 | 0,90 | 0,31594 | 1,30 | 0,40320 |
| 0,11 | 0,04380 | 0,51 | 0,19497 | 0,91 | 0,31859 | 1,31 | 0,40490 |
| 0,12 | 0,04776 | 0,52 | 0,19847 | 0,92 | 0,32121 | 1,32 | 0,40658 |
| 0,13 | 0,05172 | 0,53 | 0,20194 | 0,93 | 0,32381 | 1,33 | 0,40824 |
| 0,14 | 0,05567 | 0,54 | 0,20540 | 0,94 | 0,32639 | 1,34 | 0,40988 |
| 0,15 | 0,05962 | 0,55 | 0,20884 | 0,95 | 0,32894 | 1,35 | 0,41149 |
| 0,16 | 0,06356 | 0,56 | 0,21226 | 0,96 | 0,33147 | 1,36 | 0,41308 |
| 0,17 | 0,06749 | 0,57 | 0,21566 | 0,97 | 0,33398 | 1,37 | 0,41466 |
| 0,18 | 0,07142 | 0,58 | 0,21904 | 0,98 | 0,33646 | 1,38 | 0,41621 |
| 0,19 | 0,07535 | 0,59 | 0,22240 | 0,99 | 0,33891 | 1,39 | 0,41774 |
| 0,20 | 0,07926 | 0,60 | 0,22575 | 1,00 | 0,34134 | 1,40 | 0,41924 |
| 0,21 | 0,08317 | 0,61 | 0,22907 | 1,01 | 0,34375 | 1,41 | 0,42073 |
| 0,22 | 0,08706 | 0,62 | 0,23237 | 1,02 | 0,34614 | 1,42 | 0,42220 |
| 0,23 | 0,09095 | 0,63 | 0,23565 | 1,03 | 0,34849 | 1,43 | 0,42364 |
| 0,24 | 0,09483 | 0,64 | 0,23891 | 1,04 | 0,35083 | 1,44 | 0,42507 |
| 0,25 | 0,09871 | 0,65 | 0,24215 | 1,05 | 0,35314 | 1,45 | 0,42647 |
| 0,26 | 0,10257 | 0,66 | 0,24537 | 1,06 | 0,35543 | 1,46 | 0,42785 |
| 0,27 | 0,10642 | 0,67 | 0,24857 | 1,07 | 0,35769 | 1,47 | 0,42922 |
| 0,28 | 0,11026 | 0,68 | 0,25175 | 1,08 | 0,35993 | 1,48 | 0,43056 |
| 0,29 | 0,11409 | 0,69 | 0,25490 | 1,09 | 0,36214 | 1,49 | 0,43189 |
| 0,30 | 0,11791 | 0,70 | 0,25804 | 1,10 | 0,36433 | 1,50 | 0,43319 |
| 0,31 | 0,12172 | 0,71 | 0,26115 | 1,11 | 0,36650 | 1,51 | 0,43448 |
| 0,32 | 0,12552 | 0,72 | 0,26424 | 1,12 | 0,36864 | 1,52 | 0,43574 |
| 0,33 | 0,12930 | 0,73 | 0,26730 | 1,13 | 0,37076 | 1,53 | 0,43699 |
| 0,34 | 0,13307 | 0,74 | 0,27035 | 1,14 | 0,37286 | 1,54 | 0,43822 |
| 0,35 | 0,13683 | 0,75 | 0,27337 | 1,15 | 0,37493 | 1,55 | 0,43943 |
| 0,36 | 0,14058 | 0,76 | 0,27637 | 1,16 | 0,37698 | 1,56 | 0,44062 |
| 0,37 | 0,14431 | 0,77 | 0,27935 | 1,17 | 0,37900 | 1,57 | 0,44179 |
| 0,38 | 0,14803 | 0,78 | 0,28230 | 1,18 | 0,38100 | 1,58 | 0,44295 |
| 0,39 | 0,15173 | 0,79 | 0,28524 | 1,19 | 0,38298 | 1,59 | 0,44408 |

**Таблица значений функции**  $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^{2}/2} dz$  Приложение 1

|      | <b>A</b> /> |      | <b>A</b> (-) | V 2  |         |      | ()      |  |  |
|------|-------------|------|--------------|------|---------|------|---------|--|--|
| X    | Ф(х)        | X    | Ф(х)         | X    | Ф(х)    | X    | Ф(х)    |  |  |
| 1,60 | 0,44520     | 2,00 | 0,47725      | 2,40 | 0,49180 | 2,80 | 0,49744 |  |  |
| 1,61 | 0,44630     | 2,01 | 0,47778      | 2,41 | 0,49202 | 2,81 | 0,49752 |  |  |
| 1,62 | 0,44738     | 2,02 | 0,47831      | 2,42 | 0,49224 | 2,82 | 0,49760 |  |  |
| 1,63 | 0,44845     | 2,03 | 0,47882      | 2,43 | 0,49245 | 2,83 | 0,49767 |  |  |
| 1,64 | 0,44950     | 2,04 | 0,47932      | 2,44 | 0,49266 | 2,84 | 0,49774 |  |  |
| 1,65 | 0,45053     | 2,05 | 0,47982      | 2,45 | 0,49286 | 2,85 | 0,49781 |  |  |
| 1,66 | 0,45154     | 2,06 | 0,48030      | 2,46 | 0,49305 | 2,86 | 0,49788 |  |  |
| 1,67 | 0,45254     | 2,07 | 0,48077      | 2,47 | 0,49324 | 2,87 | 0,49795 |  |  |
| 1,68 | 0,45352     | 2,08 | 0,48124      | 2,48 | 0,49343 | 2,88 | 0,49801 |  |  |
| 1,69 | 0,45449     | 2,09 | 0,48169      | 2,49 | 0,49361 | 2,89 | 0,49807 |  |  |
| 1,70 | 0,45543     | 2,10 | 0,48214      | 2,50 | 0,49379 | 2,90 | 0,49813 |  |  |
| 1,71 | 0,45637     | 2,11 | 0,48257      | 2,51 | 0,49396 | 2,91 | 0,49819 |  |  |
| 1,72 | 0,45728     | 2,12 | 0,48300      | 2,52 | 0,49413 | 2,92 | 0,49825 |  |  |
| 1,73 | 0,45818     | 2,13 | 0,48341      | 2,53 | 0,49430 | 2,93 | 0,49831 |  |  |
| 1,74 | 0,45907     | 2,14 | 0,48382      | 2,54 | 0,49446 | 2,94 | 0,49836 |  |  |
| 1,75 | 0,45994     | 2,15 | 0,48422      | 2,55 | 0,49461 | 2,95 | 0,49841 |  |  |
| 1,76 | 0,46080     | 2,16 | 0,48461      | 2,56 | 0,49477 | 2,96 | 0,49846 |  |  |
| 1,77 | 0,46164     | 2,17 | 0,48500      | 2,57 | 0,49492 | 2,97 | 0,49851 |  |  |
| 1,78 | 0,46246     | 2,18 | 0,48537      | 2,58 | 0,49506 | 2,98 | 0,49856 |  |  |
| 1,79 | 0,46327     | 2,19 | 0,48574      | 2,59 | 0,49520 | 2,99 | 0,49861 |  |  |
| 1,80 | 0,46407     | 2,20 | 0,48610      | 2,60 | 0,49534 | 3,00 | 0,49865 |  |  |
| 1,81 | 0,46485     | 2,21 | 0,48645      | 2,61 | 0,49547 | 3,01 | 0,49869 |  |  |
| 1,82 | 0,46562     | 2,22 | 0,48679      | 2,62 | 0,49560 | 3,02 | 0,49874 |  |  |
| 1,83 | 0,46638     | 2,23 | 0,48713      | 2,63 | 0,49573 | 3,03 | 0,49878 |  |  |
| 1,84 | 0,46712     | 2,24 | 0,48745      | 2,64 | 0,49585 | 3,04 | 0,49882 |  |  |
| 1,85 | 0,46784     | 2,25 | 0,48778      | 2,65 | 0,49598 | 3,05 | 0,49886 |  |  |
| 1,86 | 0,46856     | 2,26 | 0,48809      | 2,66 | 0,49609 | 3,06 | 0,49889 |  |  |
| 1,87 | 0,46926     | 2,27 | 0,48840      | 2,67 | 0,49621 | 3,07 | 0,49893 |  |  |
| 1,88 | 0,46995     | 2,28 | 0,48870      | 2,68 | 0,49632 | 3,08 | 0,49896 |  |  |
| 1,89 | 0,47062     | 2,29 | 0,48899      | 2,69 | 0,49643 | 3,09 | 0,49900 |  |  |
| 1,90 | 0,47128     | 2,30 | 0,48928      | 2,70 | 0,49653 | 3,10 | 0,49903 |  |  |
| 1,91 | 0,47193     | 2,31 | 0,48956      | 2,71 | 0,49664 | 3,11 | 0,49906 |  |  |
| 1,92 | 0,47257     | 2,32 | 0,48983      | 2,72 | 0,49674 | 3,12 | 0,49910 |  |  |
| 1,93 | 0,47320     | 2,33 | 0,49010      | 2,73 | 0,49683 | 3,13 | 0,49913 |  |  |
| 1,94 | 0,47381     | 2,34 | 0,49036      | 2,74 | 0,49693 | 3,14 | 0,49916 |  |  |
| 1,95 | 0,47441     | 2,35 | 0,49061      | 2,75 | 0,49702 | 3,15 | 0,49918 |  |  |
| 1,96 | 0,47500     | 2,36 | 0,49086      | 2,76 | 0,49711 | 3,16 | 0,49921 |  |  |
| 1,97 | 0,47558     | 2,37 | 0,49111      | 2,77 | 0,49720 | 3,17 | 0,49924 |  |  |
| 1,98 | 0,47615     | 2,38 | 0,49134      | 2,78 | 0,49728 | 3,18 | 0,49926 |  |  |
| 1,99 | 0,47670     | 2,39 | 0,49158      | 2,79 | 0,49736 | 3,19 | 0,49929 |  |  |

**Таблица значений функции**  $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^{2}/2} dz$  Приложение 1

|      |         |      |         | V 2  | 0       |      |         |
|------|---------|------|---------|------|---------|------|---------|
| X    | Ф(х)    | X    | Ф(х)    | X    | Ф(х)    | X    | Ф(х)    |
| 3,20 | 0,49931 | 3,40 | 0,49966 | 3,60 | 0,49984 | 3,80 | 0,49993 |
| 3,21 | 0,49934 | 3,41 | 0,49968 | 3,61 | 0,49985 | 3,81 | 0,49993 |
| 3,22 | 0,49936 | 3,42 | 0,49969 | 3,62 | 0,49985 | 3,82 | 0,49993 |
| 3,23 | 0,49938 | 3,43 | 0,49970 | 3,63 | 0,49986 | 3,83 | 0,49994 |
| 3,24 | 0,49940 | 3,44 | 0,49971 | 3,64 | 0,49986 | 3,84 | 0,49994 |
| 3,25 | 0,49942 | 3,45 | 0,49972 | 3,65 | 0,49987 | 3,85 | 0,49994 |
| 3,26 | 0,49944 | 3,46 | 0,49973 | 3,66 | 0,49987 | 3,86 | 0,49994 |
| 3,27 | 0,49946 | 3,47 | 0,49974 | 3,67 | 0,49988 | 3,87 | 0,49995 |
| 3,28 | 0,49948 | 3,48 | 0,49975 | 3,68 | 0,49988 | 3,88 | 0,49995 |
| 3,29 | 0,49950 | 3,49 | 0,49976 | 3,69 | 0,49989 | 3,89 | 0,49995 |
| 3,30 | 0,49952 | 3,50 | 0,49977 | 3,70 | 0,49989 | 3,90 | 0,49995 |
| 3,31 | 0,49953 | 3,51 | 0,49978 | 3,71 | 0,49990 | 3,91 | 0,49995 |
| 3,32 | 0,49955 | 3,52 | 0,49978 | 3,72 | 0,49990 | 3,92 | 0,49996 |
| 3,33 | 0,49957 | 3,53 | 0,49979 | 3,73 | 0,49990 | 3,93 | 0,49996 |
| 3,34 | 0,49958 | 3,54 | 0,49980 | 3,74 | 0,49991 | 3,94 | 0,49996 |
| 3,35 | 0,49960 | 3,55 | 0,49981 | 3,75 | 0,49991 | 3,95 | 0,49996 |
| 3,36 | 0,49961 | 3,56 | 0,49981 | 3,76 | 0,49992 | 3,96 | 0,49996 |
| 3,37 | 0,49962 | 3,57 | 0,49982 | 3,77 | 0,49992 | 3,97 | 0,49996 |
| 3,38 | 0,49964 | 3,58 | 0,49983 | 3,78 | 0,49992 | 3,98 | 0,49997 |
| 3,39 | 0,49965 | 3,59 | 0,49983 | 3,79 | 0,49992 | 3,99 | 0,49997 |