ФГБОУ «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ЗАОЧНОГО ОБРАЗОВАНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Контрольная работа по линейной алгебре №3

080100.62 Экономика

(профиль: Бухгалтерский учет, анализ и аудит; Финансы и кредит)

Составители:

В.Н.Бабин, Р.Т.Бильданов, С.Н.Бурков, М.В.Грунина, С.А.Журавская, В.Г.Шефель.

Контрольная работа по линейной алгебре №3 / Новосиб. гос. аграр. ун-т; Сост. В.Н.Бабин, Р.Т.Бильданов, С.Н.Бурков, М.В.Грунина, С.А.Журавская, В.Г.Шефель. — Новосибирск, 2013. — 10 с.

Контрольные задания предназначены для студентов заочной формы обучения по специальности 080100.62 Экономика (профиль: Бухгалтерский учет, анализ и аудит; Финансы и кредит)

Утверждены методическим советом Института заочного образования и повышения квалификации.

Ответственный за выпуск проф. И.Я.Эйгерис

При выполнении контрольной работы студент должен руководствоваться следующими указаниями.

- 1. Каждая работа должна выполнятся в отдельной тетради (в клетку), на внешней обложке которой должны быть ясно написаны фамилия студента, его инициалы, полный шифр, дата отсылки работы в институт, домашний адрес студента.
- 2. Контрольные задачи следует располагать в порядке номеров, указанных в заданиях. Перед решением каждой задачи надо полностью переписать её условие.
- 3. Решение задач следует излагать подробно, делая соответствующие ссылки на вопросы теории с указанием необходимых формул, теорем.
- 4. Решение задач геометрического содержания должно сопровождаться чертежами (желательно на миллиметровой бумаге), выполненными аккуратно, с указанием осей координат и единиц масштаба. Объяснения к задачам должны соответствовать обозначениям, приведённым на чертежах.
- 5. На каждой странице тетради необходимо оставлять поля шириной 3-4 см для замечаний преподавателя.
- 6. Контрольная работа должна выполняться **самостоятельно**. Несамостоятельно выполненная работа лишает студента возможности проверить степень своей подготовленности по теме.

Если преподаватель установит несамостоятельное выполнение работы, то она не будет зачтена.

- 7. Получив из института прорецензированную работу (как зачтённую, так и незачтённую), студент должен исправить все отмеченные рецензентом ошибки и недочёты. В случае незачёта по работе студент обязан в кратчайший срок выполнить все требования рецензента и представить работу на повторное рецензирование, приложив при этом первоначально выполненную работу.
- 8. В межсессионный период или во время лабораторно-экзаменационной сессии студент должен пройти на кафедре высшей математики собеседование по зачтённой контрольной работе.
- 9. Студент выполняет тот вариант контрольной работы, который совпадает с последней цифрой его учебного шифра. При этом, если предпоследняя цифра его учебного шифра есть число нечётное (1, 3, 5, 7, 9), то номера задач для соответствующего варианта даны в левой части таблицы. Если предпоследняя цифра учебного шифра есть число чётное или ноль (2, 4, 6, 8, 0), то номера задач даны в правой части таблицы.

№	Номер задачи для контрольных работ									
вари- анта	предпоследняя цифра 1, 3, 5, 7, 9					предпоследняя цифра 2, 4, 6, 8, 0				
1	1	21	41	61		11	31	51	61	
2	2	22	42	62		12	32	52	62	
3	3	23	43	63		13	33	53	63	
4	4	24	44	64		14	34	54	64	
5	5	25	45	65		15	35	55	65	
6	6	26	46	66		16	36	56	66	
7	7	27	47	67		17	37	57	67	
8	8	28	48	68		18	38	58	68	
9	9	29	49	69		19	39	59	69	
0	10	30	50	70		20	40	60	70	

Контрольная работа №3

В задачах 1-20 найти собственные числа и собственные векторы линейного преобразования, заданного в некотором базисе матрицей A

$$\mathbf{1.} \ A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$$

$$\mathbf{2.} \ A = \begin{pmatrix} 1 & 3 & 3 \\ 3 & 3 & 1 \\ 3 & 1 & 3 \end{pmatrix}.$$

1.
$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$$
. **2.** $A = \begin{pmatrix} 1 & 3 & 3 \\ 3 & 3 & 1 \\ 3 & 1 & 3 \end{pmatrix}$. **3.** $A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$.

4.
$$A = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix}$$
. **5.** $A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 4 & -2 \\ 0 & -2 & 5 \end{pmatrix}$. **6.** $A = \begin{pmatrix} 3 & 3 & 1 \\ 3 & 1 & 3 \\ 1 & 3 & 3 \end{pmatrix}$.

$$\mathbf{5.} \ A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 4 & -2 \\ 0 & -2 & 5 \end{pmatrix}$$

6.
$$A = \begin{pmatrix} 3 & 3 & 1 \\ 3 & 1 & 3 \\ 1 & 3 & 3 \end{pmatrix}$$
.

7.
$$A = \begin{pmatrix} 5 & -2 & -2 \\ -2 & 6 & 0 \\ -2 & 0 & 4 \end{pmatrix}$$
. **8.** $A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix}$. **9.** $A = \begin{pmatrix} 7 & -4 & 0 \\ -4 & 5 & 4 \\ 0 & 4 & 3 \end{pmatrix}$.

$$\mathbf{8.} \ \ A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix}.$$

$$\mathbf{9.} \ A = \begin{pmatrix} 7 & -4 & 0 \\ -4 & 5 & 4 \\ 0 & 4 & 3 \end{pmatrix}.$$

10.
$$A = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 2 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
.

11.
$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}$$

10.
$$A = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 2 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
. **11.** $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}$. **12.** $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & -1 & 2 \\ -1 & 2 & -1 \end{pmatrix}$.

13.
$$A = \begin{pmatrix} 1 & -3 & -1 \\ -3 & 1 & 1 \\ -1 & 1 & 5 \end{pmatrix}$$
. **14.** $A = \begin{pmatrix} 3 & 4 & 4 \\ 4 & 4 & 3 \\ 4 & 3 & 4 \end{pmatrix}$. **15.** $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -5 & 2 \\ 1 & 2 & 1 \end{pmatrix}$.

14.
$$A = \begin{pmatrix} 3 & 4 & 4 \\ 4 & 4 & 3 \\ 4 & 3 & 4 \end{pmatrix}$$
.

15.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -5 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
.

16.
$$A = \begin{pmatrix} 2 & -2 & -2 \\ -2 & -2 & 2 \\ -2 & 2 & -2 \end{pmatrix}$$
. **17.** $A = \begin{pmatrix} 1 & 4 & 1 \\ 4 & 1 & 1 \\ 1 & 1 & 4 \end{pmatrix}$. **18.** $A = \begin{pmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix}$.

$$\mathbf{17.} \ \ A = \begin{pmatrix} 1 & 4 & 1 \\ 4 & 1 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$

18.
$$A = \begin{pmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix}$$

$$\mathbf{19.} \ \ A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 1 \end{pmatrix}.$$

19.
$$A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
. **20.** $A = \begin{pmatrix} 4 & 3 & 4 \\ 3 & 4 & 4 \\ 4 & 4 & 3 \end{pmatrix}$.

В задачах **21-40** привести уравнение кривой второго порядка f(x, y) = 0 к каноническому виду и найти точки её пересечения с прямой Ax + By + C = 0. Построить графики кривой и прямой.

21.
$$2x^2 - 4x - y + 3 = 0$$
, $2x - y - 1 = 0$.

22.
$$x-2y^2+4y-3=0$$
, $x-2y+1=0$.

23.
$$x^2 - 2x - y + 2 = 0$$
, $x - y = 0$.

24.
$$x-y^2+2y-2=0$$
, $x+y-2=0$.

25.
$$x^2 - 2x + y + 2 = 0$$
, $x - y - 2 = 0$.

26.
$$x + y^2 - 2y - 3 = 0$$
, $x + 1y + 1 = 0$.

27.
$$2x^2 + 8x + y + 7 = 0$$
, $2x + y + 3 = 0$.

28.
$$x-2y^2-4y+4=0$$
, $x-2y+4=0$.

29.
$$x^2 + 4x + y + 3 = 0$$
, $x - y + 3 = 0$.

30.
$$x + 2y^2 + 4y + 1 = 0$$
, $x + 2y + 1 = 0$.

31.
$$x^2 - 2x + y - 3 = 0$$
, $3x - y - 2 = 0$.

32.
$$y^2 + x - 4y + 6 = 0$$
, $3x + 10 = 0$.

33.
$$2x^2 + y^2 - 12x + 10 = 0$$
, $x + y - 2 = 0$.

34.
$$x^2 + 2x + y - 2 = 0$$
, $2x - y + 4 = 0$.

35.
$$2x^2 + 4x + y^2 - 2 = 0$$
, $2x + y + 2 = 0$.

36.
$$x^2 + 2y^2 - 12y + 10 = 0$$
, $x + y - 3 = 0$.

37.
$$x^2 + y^2 - 6x + 5 = 0$$
, $2x + y - 6 = 0$.

38.
$$y^2 + x + 4y + 3 = 0$$
, $x + 2y + 2 = 0$.

39.
$$x^2 + 2y^2 + 8y + 4 = 0$$
, $5y + 4 = 0$.

40.
$$x^2 + y^2 - 4x + 3 = 0$$
, $3x + y - 3 = 0$.

В задачах **41-60** даны два линейных преобразования. Найти преобразование, выражающее x_1'', x_2'', x_3'' через x_1, x_2, x_3 , и преобразование, выражающее x_1, x_2, x_3 через x_1'', x_2'', x_3'' .

41.
$$\begin{cases} x_1' = 2x_1 + x_2 + x_3 \\ x_2' = 2x_1 + 2x_2 + x_3 \\ x_3' = 3x_1 + 3x_2 + x_3 \end{cases} \begin{cases} x_1'' = 6x_1' - 4x_2' + 5x_3' \\ x_2'' = 3x_1' - x_2' + 4x_3' \\ x_3'' = 3x_1' - 2x_2' + 2x_3' \end{cases}$$

42.
$$\begin{cases} x_1' = x_1 + x_2 - x_3 \\ x_2' = x_1 + 2x_2 - 3x_3 \\ x_3' = 2x_1 + 2x_2 - 3x_3 \end{cases}, \begin{cases} x_1'' = 5x_1' - 4x_2' + 2x_3' \\ x_2'' = -4x_1' + x_2' - 2x_3' \\ x_3'' = 6x_1' - 3x_2' + 2x_3' \end{cases}$$

43.
$$\begin{cases} x_1' = 5x_1 - 4x_2 + 2x_3 \\ x_2' = 2x_1 - 2x_2 + x_3 \\ x_3' = 6x_1 - 3x_2 + 3x_3 \end{cases}, \begin{cases} x_1'' = 5x_1' - 4x_2' - 3x_3' \\ x_2'' = 2x_1' - 2x_2' - x_3' \\ x_3'' = 2x_1' - x_2' - x_3' \end{cases}$$

44.
$$\begin{cases} x_1' = x_1 - 3x_2 + 3x_3 \\ x_2' = x_1 - 4x_2 + 2x_3 \\ x_3' = 2x_1 - x_2 + 2x_3 \end{cases} \begin{cases} x_1'' = 3x_1' + 2x_2' - 2x_3' \\ x_2'' = 3x_1' + 4x_2' - 4x_3' \\ x_3'' = x_1' + x_2' - 2x_3' \end{cases}$$

45.
$$\begin{cases} x_1' = x_1 + x_2 + 2x_3 \\ x_2' = x_1 + 2x_2 + 2x_3 \\ x_3' = x_1 + 3x_2 + 3x_3 \end{cases} \begin{cases} x_1'' = x_1' - 3x_2' + 3x_3' \\ x_2'' = x_1' - 4x_2' + 2x_3' \\ x_3'' = 2x_1' - 4x_2' + 2x_3' \end{cases}$$

46.
$$\begin{cases} x_1' = 5x_1 - 4x_2 + 2x_3 \\ x_2' = -4x_1 + x_2 - 2x_3 \\ x_3' = 6x_1 - 3x_2 + 2x_3 \end{cases} \begin{cases} x_1'' = x_1' + x_2' - x_3' \\ x_2'' = x_1' + 2x_2' - 3x_3' \\ x_3'' = 2x_1' + 2x_2' - 3x_3' \end{cases}.$$

47.
$$\begin{cases} x_1' = 2x_1 + x_2 + x_3 \\ x_2' = 2x_1 + 2x_2 - x_3 \\ x_3' = -x_1 - x_2 + x_3 \end{cases}, \begin{cases} x_1'' = x_1' + x_2' - x_3' \\ x_2'' = 2x_1' + x_2' + 3x_3' \\ x_3'' = -x_1' + 2x_2' - x_3' \end{cases}$$

48.
$$\begin{cases} x_1' = 2x_1 + 2x_2 + x_3 \\ x_2' = x_1 + x_2 + 4x_3 \\ x_3' = 2x_1 + x_2 + 3x_3 \end{cases}, \begin{cases} x_1'' = x_1' + x_2' + x_3' \\ x_2'' = x_1' + 2x_2' + x_3' \\ x_3'' = x_1' + x_2' + 2x_3' \end{cases}$$

$$= 2x_1 + x_2 + 3x_3 \qquad \begin{cases} x_1'' = x_1' - 2x_2' + 3x_3' \\ x_2'' = 3x_1' + x_2' - x_2' \end{cases}$$

49.
$$\begin{cases} x_1' = 2x_1 + x_2 + 3x_3 \\ x_2' = 2x_1 - x_2 + x_3 \\ x_3' = 2x_1 - 2x_2 + x_3 \end{cases}, \begin{cases} x_1'' = x_1' - 2x_2' + 3x_3' \\ x_2'' = 3x_1' + x_2' - x_3' \\ x_3'' = -x_1' + 2x_2' - 2x_3' \end{cases}$$

$$\begin{cases} x_3' = 2x_1 - 2x_2 + x_3 & (x_3 = -x_1 + 2x_2 - 2x_3) \\ x_1' = x_1 + x_2 + 3x_3 & (x_1'' = x_1' - x_2' + 2x_3') \\ x_2' = x_1 - 2x_2 + 2x_3 & (x_2'' = -x_1' + 2x_2' + 2x_3') \end{cases}$$
50.
$$\begin{cases} x_1'' = x_1 - x_2 + x_3 \\ x_2'' = -x_1' + 2x_2' + 2x_3' \end{cases}$$

$$\begin{cases} x'_{2} = x_{1} - 2x_{2} + 2x_{3} \\ x'_{3} = 2x_{1} - 2x_{2} - 2x_{3} \end{cases}, \begin{cases} x''_{2} = -x'_{1} + 2x'_{2} + 2x'_{3} \\ x''_{3} = x'_{1} - 3x'_{2} + 3x'_{3} \end{cases}$$
$$\begin{cases} x'_{1} = 3x_{1} - x_{2} + x_{3} \\ x'_{2} = 2x'_{1} + 2x'_{2} - x'_{3} \end{cases}$$
$$\begin{cases} x''_{1} = x'_{1} + x'_{2} - 2x'_{3} \\ x''_{3} = x'_{1} + x'_{2} - 2x'_{3} \end{cases}$$

51.
$$\begin{cases} x'_1 = 3x_1 - x_2 + x_3 \\ x'_2 = 2x_1 + 2x_2 + x_3 \\ x'_3 = x_1 - 3x_2 + 2x_3 \end{cases} \begin{cases} x''_1 = 2x'_1 + 2x'_2 - x'_3 \\ x''_2 = x'_1 + x'_2 - 2x'_3 \end{cases} .$$

$$\begin{cases} x'_1 = 4x_1 + 3x_2 + 2x_3 \\ x''_2 = -2x'_1 + x'_2 - x'_3 \end{cases} \begin{cases} x''_1 = x'_1 - 2x'_2 - x'_3 \\ x''_2 = 3x'_1 + x'_2 + 2x'_3 \end{cases} .$$

$$\begin{cases} x_3' = 3x_1 + x_2 + x_3 & x_3'' = x_1' + 2x_2' + 2x_3' \\ x_1' = 2x_1 + 4x_2 + x_3 & x_2'' = -2x_1 + x_2 - x_3, \\ x_3' = x_1 + 2x_2 & x_3'' = 4x_1' - x_2' + x_3'. \\ x_3'' = 3x_1' - 2x_2' & x_3'' = -x_2' - 2x_2' - 3x_3' \end{cases}$$

54.
$$\begin{cases} x'_1 = -x_1 - 2x_2 - x_3 \\ x'_2 = x_1 + 2x_2 \\ x'_3 = 3x_1 + x_2 + x_3 \end{cases}, \begin{cases} x''_1 = -x'_1 - 2x'_2 - 3x'_3 \\ x''_2 = 4x'_1 + x'_2 + 3x'_3 \\ x''_3 = 3x'_1 + 2x'_2 + 4x'_3 \end{cases}$$
55.
$$\begin{cases} x'_1 = x_1 - x_2 - x_3 \\ x'_2 = -x_1 + 4x_2 + 2x_3 \\ x'_2 = 3x_1 + x_2 - x_2 \end{cases}, \begin{cases} x''_1 = 9x'_1 + 3x'_2 + 5x'_3 \\ x''_2 = 2x'_1 + 2x'_3 \\ x''_3 = x'_2 - x'_3 \end{cases}$$

 $x_2' = 3x_1 + 2x_2 + 7x_2$ $x_2'' = x_1' + 2x_2' + x_2'$

56.
$$\begin{cases} x'_1 = -x_1 + 7x_2 + 3x_3 \\ x'_2 = -x_1 + 4x_2 + 2x_3 \\ x'_3 = 2x_1 + 5x_2 + x_3 \end{cases} \begin{cases} x''_1 = 5x'_1 + 3x'_2 + x'_3 \\ x''_2 = 2x'_1 + 2x'_3 \\ x''_3 = -2x'_1 + x'_2 - 3x'_3 \end{cases}$$
57.
$$\begin{cases} x'_1 = 3x_1 - x_2 + 5x_3 \\ x'_2 = x_1 + 2x_2 + 4x_3 \end{cases} \begin{cases} x''_1 = 4x'_1 + 3x'_2 + x'_3 \\ x''_2 = 3x'_1 + 4x'_2 + 2x'_3 \end{cases}$$

$$\begin{cases} x_1' = x_1 + x_2 - x_3 & \begin{cases} x_1'' = 3x_1' + x_2' + x_3 \\ x_1'' = 3x_1' + x_2' + x_3' \end{cases} \end{cases}$$

58.
$$\begin{cases} x_1' = x_1 + x_2 - x_3 \\ x_2' = 2x_1 - x_2 + x_3 \\ x_3' = x_1 + x_3 \end{cases} \begin{cases} x_1'' = 3x_1' + x_2' + x_3' \\ x_2'' = 2x_1' + x_2' + 2x_3' \\ x_3'' = x_1' + 2x_2' + 3x_3' \end{cases}$$

59.
$$\begin{cases} x_1' = 2x_1 + 2x_2 + 2x_3 \\ x_2' = -2x_1 + 3x_2 - 3x_3, \\ x_3' = 4x_1 - 4x_2 + 5x_3 \end{cases} \begin{cases} x_1'' = x_1' + x_2' + x_3' \\ x_2'' = -x_2' + 2x_3' \\ x_3'' = -2x_1' + 3x_2' - 3x_3' \end{cases}$$

60.
$$\begin{cases} x_1' = x_1 - x_2 - x_3 \\ x_2' = -x_1 + 2x_2 + x_3 \\ x_3' = x_1 - 3x_2 - 2x_3 \end{cases} \begin{cases} x_1'' = x_1' + 2x_2' + 3x_3' \\ x_2'' = x_1' - x_2' - x_3' \\ x_3'' = x_1' - 3x_2' - 2x_3' \end{cases}.$$

В задачах 61-70 дано комплексное число а. Требуется: 1) записать число а в алгебраической и тригонометрической формах; 2) найти все корни уравнения $z^3 + a = 0$.

61.
$$a = \frac{2\sqrt{2}}{1+i}$$
.

62.
$$a = \frac{4}{1+i\sqrt{3}}$$
.

63.
$$a = -\frac{2\sqrt{2}}{1-i}$$
.

64.
$$a = -\frac{4}{1-i\sqrt{3}}$$
.

65.
$$a = -\frac{2\sqrt{2}}{1+i}$$
.

66.
$$a = \frac{2\sqrt{2}}{1}$$
.

67.
$$a = \frac{4}{1 - i \sqrt{3}}$$
.

68.
$$a = -\frac{4}{\sqrt{2}}$$
.

69.
$$a = \frac{1}{\sqrt{3} + i}$$
.

70.
$$a = \frac{1}{\sqrt{3} - i}$$
.

Контрольная работа по линейной алгебре №3

Составители: Бабин Владислав Николаевич
Бильданов Ринат Талгатович
Бурков Сергей Николаевич
Грунина Мария Викторовна
Журавская Светлана Александровна
Шефель Валентина Гавриловна

Редактор Н.К.Крупина

Лицензия №020426 от 7 мая 1997 г.

Подписано к печати "__"____ 201_ г. Формат 84×108/32 Объём 0,75 уч.-изд.л. Тираж 100 экз.

Издательский центр НГАУ 630039, Новосибирск, ул. Добролюбова, 160