ФГБОУ «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ЗАОЧНОГО ОБРАЗОВАНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

Контрольная работа по математическому анализу №1

080100.62 Экономика (профиль Финансы и кредит)

Составители:

В.Н.Бабин, Р.Т.Бильданов, С.Н.Бурков, М.В.Грунина, С.А.Журавская, В.Г.Шефель.

Контрольная работа по математическому анализу №1 / Новосиб. гос. аграр. ун-т; Сост. В.Н.Бабин, Р.Т.Бильданов, С.Н.Бурков, М.В.Грунина, С.А.Журавская, В.Г.Шефель. — Новосибирск, 2013. — 10 с.

Контрольные задания предназначены для студентов заочной формы обучения по специальности 080100.62 Экономика (профиль Бухгалтерский учет, анализ и аудит)

Утверждены методическим советом Института заочного образования и повышения квалификации.

Ответственный за выпуск проф. И.Я. Эйгерис

При выполнении контрольной работы студент должен руководствоваться следующими указаниями.

- 1. Каждая работа должна выполнятся в отдельной тетради (в клетку), на внешней обложке которой должны быть ясно написаны фамилия студента, его инициалы, полный шифр, дата отсылки работы в институт, домашний адрес студента.
- 2. Контрольные задачи следует располагать в порядке номеров, указанных в заданиях. Перед решением каждой задачи надо полностью переписать её условие.
- 3. Решение задач следует излагать подробно, делая соответствующие ссылки на вопросы теории с указанием необходимых формул, теорем.
- 4. Решение задач геометрического содержания должно сопровождаться чертежами (желательно на миллиметровой бумаге), выполненными аккуратно, с указанием осей координат и единиц масштаба. Объяснения к задачам должны соответствовать обозначениям, приведённым на чертежах.
- 5. На каждой странице тетради необходимо оставлять поля шириной 3-4 см для замечаний преподавателя.
- 6. Контрольная работа должна выполняться **самостоятельно**. Несамостоятельно выполненная работа лишает студента возможности проверить степень своей подготовленности по теме.

Если преподаватель установит несамостоятельное выполнение работы, то она не будет зачтена.

- 7. Получив из института прорецензированную работу (как зачтённую, так и незачтённую), студент должен исправить все отмеченные рецензентом ошибки и недочёты. В случае незачёта по работе студент обязан в кратчайший срок выполнить все требования рецензента и представить работу на повторное рецензирование, приложив при этом первоначально выполненную работу.
- 8. В межсессионный период или во время лабораторно-экзаменационной сессии студент должен пройти на кафедре высшей математики собеседование по зачтённой контрольной работе.
- 9. Студент выполняет тот вариант контрольной работы, который совпадает с последней цифрой его учебного шифра.

№ варианта	Номер задачи для контрольных работ				
1	1	11	21	31	41
2	2	12	22	32	42
3	3	13	23	33	43
4	4	14	24	34	44
5	5	15	25	35	45
6	6	16	26	36	46
7	7	17	27	37	47
8	8	18	28	38	48
9	9	19	29	39	49
0	10	20	30	40	50

Контрольная работа №1

В задачах 1-10 найти пределы функций

1. a)
$$\lim_{x \to x_0} \frac{2x^2 - 5x - 3}{3x^2 - 4x - 15}$$
 при **1)** $x_0 = 2$, **2)** $x_0 = 3$, **3)** $x_0 = \infty$;

6)
$$\lim_{x \to 4} \frac{\sqrt{x-1} - \sqrt{7-x}}{x-4}$$
; **B)** $\lim_{x \to 0} \frac{3x}{\arctan 4}$; **r)** $\lim_{n \to \infty} \left(\frac{2n-3}{2n+5}\right)^{3n+2}$.

2. a)
$$\lim_{x \to x_0} \frac{4x^2 - 7x - 2}{2x^2 - x - 6}$$
 при **1)** $x_0 = 0$, **2)** $x_0 = 2$, **3)** $x_0 = \infty$;

6)
$$\lim_{x \to 2} \frac{x-2}{\sqrt{x+2} - \sqrt{6-x}}$$
; **B)** $\lim_{x \to 0} \frac{\operatorname{tg} 2x}{\sin 5x}$; **r)** $\lim_{n \to \infty} \left(\frac{3n+2}{3n-4}\right)^{2n-7}$.

3. a)
$$\lim_{x \to x_0} \frac{2x^2 + 5x - 3}{x^2 + 5x + 6}$$
 при **1)** $x_0 = 3$, **2)** $x_0 = -3$, **3)** $x_0 = \infty$;

6)
$$\lim_{x \to 5} \frac{\sqrt{x-1} - \sqrt{9-x}}{x-5}$$
; **B)** $\lim_{x \to 0} \frac{\operatorname{ctg} 3x}{\operatorname{ctg} 5x}$; **r)** $\lim_{n \to \infty} \left(\frac{n-6}{n-4}\right)^{4n+2}$.

4. a)
$$\lim_{x \to x_0} \frac{3x^2 + 11x + 10}{2x^2 + 5x + 2}$$
 при **1)** $x_0 = -3$, **2)** $x_0 = -2$, **3)** $x_0 = \infty$;

6)
$$\lim_{x\to 2} \frac{x-2}{\sqrt{x+3}-\sqrt{7-x}}$$
; **B)** $\lim_{x\to 0} \frac{4x}{\arccos 2x}$; **r)** $\lim_{n\to \infty} \left(\frac{5n-3}{5n+6}\right)^{n-3}$.

5. a)
$$\lim_{x \to x_0} \frac{3x^2 - 14x + 8}{2x^2 - 7x + 4}$$
 при **1)** $x_0 = 2$, **2)** $x_0 = 4$, **3)** $x_0 = \infty$;

6)
$$\lim_{x \to -2} \frac{\sqrt{x+7} - \sqrt{3-x}}{x+2}$$
; **B)** $\lim_{x \to 0} \operatorname{tg} 2x \operatorname{ctg} 3x$; **r)** $\lim_{n \to \infty} \left(\frac{4n-5}{4n-3}\right)^{3n+5}$.

6. a)
$$\lim_{x \to x_0} \frac{4x^2 - 25x + 25}{2x^2 - 15x + 25}$$
 при **1)** $x_0 = 2$, **2)** $x_0 = 5$, **3)** $x_0 = \infty$;

6)
$$\lim_{x \to -1} \frac{x+1}{\sqrt{x+5} - \sqrt{3-x}}$$
; **B)** $\lim_{x \to 0} \sin 6x \cot 2x$; **r)** $\lim_{n \to \infty} \left(\frac{n-4}{n+5}\right)^{5n+3}$.

7. a)
$$\lim_{x \to x_0} \frac{7x^2 + 26x - 8}{2x^2 + x - 28}$$
 при 1) $x_0 = 1$, 2) $x_0 = -4$, 3) $x_0 = \infty$;

6)
$$\lim_{x\to 2} \frac{\sqrt{x+4}-\sqrt{8-x}}{x-2}$$
; **B)** $\lim_{x\to 0} \frac{\arctan 7x}{5x}$; **r)** $\lim_{n\to \infty} \left(\frac{2n-5}{2n+3}\right)^{4n-5}$.

8. a)
$$\lim_{x \to x_0} \frac{2x^2 + 15x + 25}{x^2 + 15x + 50}$$
 при **1)** $x_0 = 5$, **2)** $x_0 = -5$, **3)** $x_0 = \infty$;

6)
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x-2} - \sqrt{6-x}}$$
; **B)** $\lim_{x \to 0} \frac{\operatorname{tg} 5x}{\operatorname{tg} 4x}$; **r)** $\lim_{n \to \infty} \left(\frac{3n-1}{3n+6}\right)^{2n+3}$.

9. a)
$$\lim_{x \to x_0} \frac{3x^2 + 5x - 8}{2x^2 + 3x - 5}$$
 при **1)** $x_0 = -2$, **2)** $x_0 = 1$, **3)** $x_0 = \infty$;

6)
$$\lim_{x\to 3} \frac{\sqrt{x-2}-\sqrt{4-x}}{x-3}$$
; **B)** $\lim_{x\to 0} \frac{\sin 3x}{\operatorname{tg} 2x}$; **r)** $\lim_{n\to \infty} \left(\frac{5n-3}{5n+4}\right)^{n+4}$.

10. a)
$$\lim_{x \to x_0} \frac{6x^2 + 13x + 7}{3x^2 + 8x + 5}$$
 при **1)** $x_0 = -2$, **2)** $x_0 = -1$, **3)** $x_0 = \infty$;

6)
$$\lim_{x\to 6} \frac{x-6}{\sqrt{x-3}-\sqrt{9-x}}$$
; **B)** $\lim_{x\to 0} \frac{\arcsin 8x}{4x}$; **r)** $\lim_{n\to \infty} \left(\frac{4n+1}{4n-3}\right)^{5n-1}$.

В задачах 11-20 исследовать функцию на непрерывность и построить эскиз графика.

11.
$$y = \begin{cases} -x, & x \le 0; \\ x^2, & 0 < x \le 2; \\ x+1, & x > 2. \end{cases}$$
 12. $y = \begin{cases} x^2 + 1, & x \le 1; \\ 2x, & 1 < x \le 3; \\ x+2, & x > 3. \end{cases}$

$$x-3, x<0;$$

$$= \begin{cases} x+1, & 0 \le x \le 4; \end{cases}$$

13.
$$y = \begin{cases} x-3, & x < 0; \\ x+1, & 0 \le x \le 4; \\ 3+\sqrt{x}, & x > 4. \end{cases}$$

$$\left(2x^2 \quad x < 0\right)$$

15.
$$y = \begin{cases} 2x^2, & x \le 0; \\ x, & 0 < x \le 1; \\ 2, & x > 1. \end{cases}$$

$$\cos x, \ x \le \pi/2;$$

17.
$$y = \begin{cases} \cos x, & x \le \pi/2; \\ 0, & \pi/2 < x < \pi; \\ \pi/2, & x \ge \pi. \end{cases}$$

19.
$$y = \begin{cases} 3x+1, & x < 0; \\ x^2+1, & 0 \le x < 1; \\ 0, & x \ge 1. \end{cases}$$

14.
$$v = \begin{cases} \sqrt{1-x}, & x \le 1 \\ 0, & 1 < x < 2 \end{cases}$$

14.
$$y = \begin{cases} \sqrt{1-x}, & x \le 1; \\ 0, & 1 < x \le 2; \\ x-2, & x > 2. \end{cases}$$

$$\int \sin x, \quad x < 0;$$

16.
$$y = \begin{cases} \sin x, & x < 0; \\ x, & 0 \le x \le 2; \\ 0, & x > 2. \end{cases}$$

$$\begin{cases} x-1, & x \leq 0; \end{cases}$$

18.
$$y = \begin{cases} x-1, & x \le 0; \\ x^2, & 0 < x < 2; \\ 2x, & x \ge 2. \end{cases}$$

20.
$$y = \begin{cases} 0, & x \le 0; \\ \lg x, & 0 < x < \pi/2; \\ x, & x \ge \pi/2. \end{cases}$$

В задачах 21-30 найти производные заданных функций.

21. a)
$$y = \left(3x^4 - \frac{5}{4\sqrt{x}} + 2\right)^5$$
;

B)
$$y = \arccos 2x + \sqrt{1 - 4x^2}$$
;

a)
$$y = \left(5x^2 - 4\sqrt[4]{x^5} + 3\right)^3$$
;

$$\mathbf{B}) \ y = \arctan \sqrt{x^2 - 1};$$

$$\mathbf{B}) \ \ y = \operatorname{arctg} \sqrt{x^2 - 1};$$

a)
$$y = \left(\frac{1}{4}x^8 + 8\sqrt[8]{x^3} - 1\right)^3$$
;

$$\mathbf{B)} \ \ y = \arccos\sqrt{x+1};$$

23.

a)
$$y = \left(\frac{1}{5}x^5 - 3x\sqrt[3]{x} - 4\right)^4$$
;

6)
$$y = \ln \sqrt[5]{\left(\frac{1-5x}{1+5x}\right)^3}$$
;

$$\mathbf{r)} \ \ y = 2^{\operatorname{tg} x} + x \sin 2x.$$

6)
$$y = \ln \sqrt[6]{\frac{1 - x^6}{1 + x^6}};$$

$$r) v = e^{3x} + 2x tg 3x.$$

6)
$$y = \ln 4 \sqrt{\frac{4x-1}{1+x^4}};$$

$$\mathbf{r)} \ \ y = 3^{\cos x} - x \sin 2x.$$

6)
$$y = \ln \sqrt[3]{\frac{x^3 - 3}{x^3 + 2}}$$
;

B)
$$y = \arctan \sqrt{x-1}$$
;

$$\mathbf{r}$$
) $y = \sqrt{x} \operatorname{ctg} 3x - 2^{x^2}$.

25. a)
$$y = \left(3x^8 + 5\sqrt[5]{x^2} - 3\right)^5$$
;

6)
$$y = \ln \sqrt[5]{\left(\frac{5x+3}{x^5+1}\right)^2}$$
;

B)
$$y = \operatorname{arctg} \frac{2}{x-3}$$
;

r)
$$y = 5^{\sqrt{x}} - x^2 \operatorname{tg} 2x$$
.

26. a)
$$y = \left(5x^4 - \frac{2}{x\sqrt{x}} + 3\right)^2$$
;

6)
$$y = \ln 5 \sqrt{\frac{1 - 8x}{x^8 + 1}};$$

B)
$$y = \arccos \sqrt{1-x}$$
;

r)
$$y = 3^{\sqrt{x}} + \frac{1 - \sin 3x}{1 + \sin 3x}$$
.

27. a)
$$y = \left(4x^3 + \frac{3}{x\sqrt[3]{x}} - 2\right)^5$$
;

6)
$$y = \ln 6 \left(\frac{x^6 - 1}{6x + 5} \right)^7$$
;

B)
$$y = \operatorname{arcctg} \sqrt{x-1}$$
;

$$\mathbf{r)} \ \ y = 2^{x^2 + 1} - x \sin 4x.$$

28. a)
$$y = \left(7x^5 - 3x\sqrt[3]{x^2} - 6\right)^4$$
;

6)
$$y = \ln \sqrt[3]{\left(\frac{3x-4}{3x+1}\right)^4}$$
;

B)
$$y = \arcsin 3x - \sqrt{1 - 9x^2}$$
;

$$r$$
) $y = e^{tgx} - \sqrt{x} \cos 2x$.

29. a)
$$y = \left(3x^4 - \frac{4}{\sqrt[4]{x}} - 3\right)^5$$
;

6)
$$y = \ln \sqrt{\left(\frac{x^6 - 3}{6x + 2}\right)^3}$$
;

B)
$$y = \operatorname{arctg} \frac{1}{r-1}$$
;

$$\mathbf{r)} \ \ y = x \, \text{tg} \, 3x + 2^{x-2}.$$

30. a)
$$y = \left(8x^3 - \frac{9}{x^2\sqrt{x}} + 6\right)^5$$
;

6)
$$y = \ln \sqrt[7]{\left(\frac{7x-4}{x^7-2}\right)^3}$$
;

B)
$$y = \arcsin \sqrt{1-x}$$
;

r)
$$y = 3^{\sin x} - \sqrt[3]{x} \operatorname{tg} 3x$$
.

В задачах **31-40** вычислить предел функции с помощью правила Лопиталя.

31.
$$\lim_{x \to 0} \frac{\sqrt[3]{1-6x}-1+2x}{x^2}$$
.

33.
$$\lim_{x\to 0} \frac{6\sin 2x - 12x}{x^3}$$
.

35.
$$\lim_{x\to 0} \frac{3 \operatorname{tg} 2x - 6x}{x^3}$$
.

37.
$$\lim_{x\to 0} \frac{e^{-5x}-1+5x}{x^2}$$
.

39.
$$\lim_{x\to 0} \frac{2\sin 3x - 6x}{x^3}$$
.

32.
$$\lim_{x\to 0} \frac{2e^{\frac{x}{2}} - 2 - x}{x^2}$$
.

34.
$$\lim_{x \to 0} \frac{\sqrt{1+4x} - 1 - 2x}{x^2}.$$

36.
$$\lim_{x\to 0} \frac{\ln(1-3x)+3x}{x^2}$$
.

38.
$$\lim_{x\to 0} \frac{\arcsin 4x - 4x}{x^3}$$
.

40.
$$\lim_{x\to 0} \frac{2\ln(1+0,5x)-x}{x^2}$$
.

В задачах **41-50** провести полное исследование функции и построить её график.

41.
$$y = (x^3 + 4)/x^2$$
.

43.
$$y = 2/(x^2 + 2x)$$
.

45.
$$y = 12x/(9+x^2)$$
.

47.
$$y = (4-x^3)/x^2$$
.

49.
$$y = (2x^3 + 1)/x^2$$
.

42.
$$y = (x^2 - x + 1)/(x - 1)$$
.

44.
$$y = 4x^2/(3+x^2)$$
.

46.
$$y = (x^2 - 3x + 3)/(x - 1)$$
.

48.
$$y = (x^2 - 4x + 1)/(x - 4)$$
.

50.
$$y = (x-1)^2/x^2$$
.

Контрольная работа по математическому анализу №1

Составители: Бабин Владислав Николаевич
Бильданов Ринат Талгатович
Бурков Сергей Николаевич
Грунина Мария Викторовна
Журавская Светлана Александровна
Шефель Валентина Гавриловна

Редактор Н.К.Крупина

Лицензия №020426 от 7 мая 1997 г.

Подписано к печати "__"____ 201_ г. Формат 84×108/32 Объём 0,75 уч.-изд.л. Тираж 100 экз.

Издательский центр НГАУ 630039, Новосибирск, ул. Добролюбова, 160