МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ДЕПАРТАМЕНТ КАДРОВОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ

ТВЕРСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ

Кафедра математики

МАТЕМАТИКА

Задания для контрольных работ студентов-заочников инженерного факультета и методические указания к их решению. Часть II

Тверь – Сахарово 2006

Составитель: доцент кафедры математики Тверской Государственной сельскохозяйственной академии Рятин $A.\Gamma$.

Рецензент — зав. кафедрой ВТ и МАС, д.т.н., профессор Гриднев В.Р.

Методические указания одобрены на заседании кафедры математики от 16 мая 2006 года.

Утверждены на заседании методической комиссии инженерного факультета от _____ протокол №__

В работе составлены задания к трем контрольным работам для студентов-заочников инженерного факультета по темам: дифференциальное и интегральное исчисления функций многих переменных, числовые и функциональные ряды, обыкновенные дифференциальные уравнения, теория вероятностей. Для каждого задания подробно решена типовая задача.

При выполнении контрольной работы студент выбирает тот вариант, который совпадает с последней цифрой его учебного

шифра. При этом, если предпоследняя цифра шифра есть число нечетное (1,3,5,7,9), то номера задач для соответствующего варианта даны в таблице 1, если эта цифра есть четное число (2,4,6,8,0), то номера задач даны в таблице 2.

Таблица 1

Номер	Номера задач		
варианта	Работа 4	Работа 5	Работа 6
1	1 21 41 61	1 21 41 61 81 101	1 21 41 61 81
2	2 22 42 62	2 22 42 62 82 102	2 22 42 62 82
3	3 23 43 63	3 23 43 63 83 103	3 23 43 63 83
4	4 24 44 64	4 24 44 64 84 104	4 24 44 64 84
5	5 25 45 65	5 25 45 65 85 105	5 25 45 65 85
6	6 26 46 66	6 26 46 66 86 106	6 26 46 66 86
7	7 27 47 67	7 27 47 67 87 107	7 27 47 67 87
8	8 28 48 68	8 28 48 68 88 108	8 28 48 68 88
9	9 29 49 69	9 29 49 69 89 109	9 29 49 69 89
10	10 30 50 70	10 30 50 70 90 110	10 30 50 70 90

Таблица 2

Номер	Номера задач		
варианта	Работа 4	Работа 5	Работа 6
1	11 31 51 71	11 31 51 71 91 111	11 31 51 71 91
2	12 32 52 72	12 32 52 72 92 112	12 32 52 72 92
3	13 33 53 73	13 33 53 73 93 113	13 33 53 73 93
4	14 34 54 74	14 34 54 74 94 114	14 34 54 74 94
5	15 35 55 75	15 35 55 75 95 115	15 35 55 75 95
6	16 36 56 76	16 36 56 76 96 116	16 36 56 76 96
7	17 37 57 77	17 37 57 77 97 117	17 37 57 77 97
8	18 38 58 78	18 38 58 78 98 118	18 38 58 78 98
9	19 39 59 79	19 39 59 79 99 119	19 39 59 79 99
10	20 40 60 80	20 40 60 80 100 120	20 40 60 80 100

Контрольная работа №4

В задачах 1-20 данную функцию z = f(x, y) исследовать на экстремум.

1.
$$z = xy - x^2 - 2y^2 + x + 10y - 8$$
.

2.
$$z = 3x^2 + 3xy + y^2 - 6x - 2y + 1$$
.

3.
$$z = 3xy - x^2 - 4y^2 + 4x - 6y - 1$$
.

4.
$$z = 3x^2 + 3y^2 + 5xy + 4x + 7y + 5$$
.

5.
$$z = 3xy - x^2 - 3y^2 - 6x + 9y - 4$$
.

6.
$$z = x^2 + y^2 + 3xy - x - 4y + 1$$
.

7.
$$z = x^2 + y^2 - xy - x - 4y + 1$$
.

8.
$$z = 3x^2 + 3y^2 + 5xy + x - y + 5$$
.

9.
$$z = x^2 + 2xy - y^2 + 6x - 10y + 1$$
.

10.
$$z = 4 - 5x^2 - y^2 - 4xy - 4x - 2y$$
.

11.
$$z = 2x^2 + 3y^2 - 2xy + 2x - 16y + 3$$
.

12.
$$z = 6xy - 2x^2 - y^2 - 14x + 5$$
.

13.
$$z = 2x^2 - y^2 + 3xy - 2x + 7y + 6$$
.

14.
$$z = 10xy - 3x^2 - 2y^2 - 26x + 18y - 1$$
.

15.
$$z = 3x^2 + 2y^2 - 2xy + 18x + 8y - 1$$
.

16.
$$z = 3 - 3x^2 + 5y^2 - 8xy + 4x + 26y$$
.

17.
$$z = 2x^2 3y^2 - 2xy + 8x + 10y - 6$$
.

18
$$z = 5x^2 - 3y^2 + 2xy - 18x - 10y + 4$$
.

19.
$$z = 5 - 7x^2 - 5y^2 + 2xy - 34x + 34y$$
.

20.
$$z = 2x^2 - 3y^2 + 2xy - 10x + 16y - 7$$
.

Решение типового примера. Исследовать на экстремум функцию $z = x^2 + xy + y^2 - 3x - 6y - 3$.

Решение. Точками экстремума (точками максимума или минимума) могут быть лишь критические точки. Имеем, $z'_x = 2x + y - 3$; $z'_y = x + 2y - 6$. Так как частные производные существуют, то критические

точки найдем из системы уравнений: $\begin{cases} z_x' = 0 \\ z_y' = 0 \end{cases}$

или $\begin{cases} 2x+y-3=0 \\ x+2y-6=0 \end{cases}$ откуда x=0; y=3. Найденную критическую точку $M_0(0;3)$ проверим на экстремум. Для этого найдем три числа $A=z''_{xx}(0;3)$; $B=z''_{xx}(0;3)$; $C=z''_{xx}(0;3)$. Если

определитель $\Delta = \begin{vmatrix} AB \\ BC \end{vmatrix} > 0$, то в (·) (0;3) имеется экстремум, причем, если A>0, то минимум, если A<0, то максимум. Имеем, $z''_{xx} = 2$, $z''_{xy} = 1$, $z''_{yy} = 2$. Поэтому A=2; B=1; C=2 и

 $\Delta = \begin{vmatrix} 21 \\ 12 \end{vmatrix} = 4 - 1 = 3 > 0$. Значит в (·) (0;3) имеется

экстремум и т.к. A=2>0, то минимум. Получаем, $\min z = z(0;3) = 0 + 0 + 3^2 - 3 \cdot 0 - 6 \cdot 3 - 3 = -12$.

В задачах 21 — 40 требуется: 1) построить на плоскости хоу область интегрирования заданного интервала; 2) изменить порядок интегрирования и вычислить площадь области при заданном и измененном порядках интегрирования.

$$21. \int_{0}^{2} dx \int_{x^{2}}^{2\sqrt{2}x} dy. \qquad 27. \int_{0}^{3} dx \int_{8-3x}^{3} dy. \qquad 33. \int_{0}^{5} dx \int_{\frac{2x^{2}}{5}-4}^{4} \qquad 38. \int_{1}^{5} dx \int_{(x-1)^{2}/8}^{4y}$$

$$22. \int_{0}^{3} dx \int_{\frac{2x^{2}/3}{3}}^{3} dy. \qquad 28. \int_{0}^{4} dx \int_{x^{3}/8}^{4y} dy. \qquad 34. \int_{0}^{3} dx \int_{x^{2}-3}^{3} dy. \qquad 39. \int_{0}^{3} dx \int_{\frac{2x^{3}/9}{5}}^{4y} dy.$$

$$23. \int_{0}^{6} dx \int_{x^{2}/4}^{3x/2} dy. \qquad 29. \int_{0}^{4} dx \int_{3x^{2}/8}^{3} dy. \qquad 35. \int_{0}^{4} dx \int_{x^{2}/2}^{4y} dy.$$

$$24. \int_{0}^{9} dx \int_{\frac{x^{2}}{9}+1}^{x+1} \qquad 30. \int_{1}^{5} dx \int_{(x-1)^{2}/4}^{4y} dy. \qquad 36. \int_{1}^{7} dx \int_{(x-1)^{2}/6}^{x-1} dy.$$

$$25. \int_{0}^{4} dx \int_{x^{3}/8}^{2x} dy. \qquad 31. \int_{0}^{3} dx \int_{4x^{2}/9}^{4y} dy. \qquad 37. \int_{0}^{4} dx \int_{x^{2}-3}^{2x-3} dy.$$

$$26. \int_{0}^{8} dx \int_{\frac{x^{2}}{2}-1}^{4y} dy. \qquad 32. \int_{0}^{6} dx \int_{x^{2}-4}^{4x} dy.$$

Решение типового примера. Дан повторный интеграл $\int_0^1 dx \int_{x^2}^x dy$. 1) построить на плоскости

область интегрирования D заданного интеграла; 2) изменить порядок интегрирования и вычислить площадь области D при заданном и измененном порядках интегрирования.

Решение задачи. Пределы внутреннего интеграла показывают, что область D ограничена сверху линией y=x а снизу $y=x^2$. Пределы внешнего интеграла показывают что данные функции определены на отрезке [0;1]. Поэтому область D имеет вид При изменении порядка интегрирования переменная у меняется на отрезке [0;1], а область D ограничена справа функцией $x = \sqrt{y}$, а слева

x=y. Мы получаем
$$\int_{0}^{1} dy \int_{y}^{\sqrt{y}} dx$$
. Вычисляем

площадь области D при заданном порядке интегрировании

$$D = \int_{0}^{1} dx \int_{x^{2}}^{x} dy = \int_{0}^{1} y \Big|_{x^{2}}^{x} dx = \int_{0}^{1} (x - x^{2}) dx = \left(\frac{x^{2}}{2} - \frac{x^{3}}{3}\right) \Big|_{0}^{1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

При измененном порядке интегрировании получим

$$D = \int_{0}^{1} dy \int_{y}^{\sqrt{y}} dx = \int_{0}^{1} x \left| \sqrt{y} dy \right| = \int_{0}^{1} (\sqrt{y} - y) dy = \left(\frac{2}{3} y^{\frac{3}{2}} - \frac{y^{2}}{2} \right) \left| \frac{1}{0} = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

В задачах 41 – 60 вычислить объем тела, ограниченного указанными поверхностями. Данное тело и область интегрирования изобразить на чертеже.

41.
$$z = 3x$$
, $y = \sqrt{9-x^2}$, $y = 0$, $z = 0$.

42.
$$z = 2x + y$$
, $y = \sqrt{4 - x^2}$, $x = 0$, $y = 0$, $z = 0$.

43.
$$z = 8 - x^2 - y^2$$
, $x + y = 2$, $x = 0$, $y = 0$, $z = 0$.

44.
$$z = 9x^2 + 3y^2 + 2$$
, $x + y = 1$, $x = 0$, $y = 0$, $z = 0$.

45.
$$z = 6 - y$$
, $y = x^2$, $y = 4$, $z = 0$ ($y \le 4$).

46.
$$z = 2y$$
, $y = \frac{3}{2}\sqrt{4-x^2}$, $x = 0$, $z = 0$.

47.
$$z = x^2 + \frac{y^2}{3}$$
, $x + y = 3$, $x = 0$, $y = 0$, $z = 0$.

48.
$$z = 2x$$
, $y = \frac{x^2}{2}$, $x = 2$, $y = 0$, $z = 0$.

49.
$$z = 8 - 2x^2 - 4y$$
, $x + 2y = 2$, $x = 0$, $y = 0$, $z = 0$.

50.
$$z = y^2 + 2$$
, $x = 3$, $y = 2$, $x = 0$, $y = 0$, $z = 0$.

51.
$$z = 9 - y^2$$
, $y = x$, $y = 3$, $x = 0$, $z = 0$.

52.
$$z = x^2 + y^2 + 1$$
, $x + y = 3$, $x = 0$, $y = 0$, $z = 0$.

53.
$$z = \frac{x^2}{4} + y + 1$$
, $x + y = 4$, $x = 2$, $x = 0$, $y = 0$, $z = 0$.

54.
$$z=12-x^2-y^2$$
, $x+y=3$, $x=0$, $y=0$, $z=0$.

55.
$$z = x + y + 2$$
, $y = 2x$, $x = 3$, $x = 0$, $y = 0$, $z = 0$.

56.
$$z = x^2 + y^2$$
, $y = x$, $y = 2x$, $x = 2$, $z = 0$.

57.
$$z=6-x-y$$
, $2x+y=4$, $x=0$, $y=0$, $z=0$.

58.
$$z = 12 - 3x^2$$
, $2x + y = 4$, $x = 0$, $y = 0$, $z = 0$.

59.
$$z = x^2 + 1$$
, $4x + 3y - 12 = 0$, $x = 0$, $y = 0$, $z = 0$.

60.
$$z = 3x + 2y$$
, $y = \frac{4}{3}\sqrt{9 - x^2}$, $x = 0$, $y = 0$, $z = 0$.

Решение типового примера. Вычислить объем тела, ограниченного плоскостями координат (x=0; y=0; z=0), плоскостями x=4; y=4 и параболоидом вращения $z=x^2+y^2+1$. Решение. Из условия задачи видно, что тело ограничено снизу на плоскости z=0 квадратом со стороной а=4. Сверху тело ограничено поверхностью $z=x^2+y^2+1$. Поэтому его объем $V=\iint_D (x^2+y^2+1)dxdy$, где область D- квадрат: $0 \le x \le 4 \ 0 \le y \le 4$,. Поэтому $V=\int_0^4 dx \int_0^4 (x^x+y^2+1)dy = \int_0^4 (x^2y+\frac{y^3}{3}+4) \Big|_0^4 dx = \int_0^4 (4x^2+\frac{64}{3}+4)dx = \int_0^4 (4x^2+\frac{$

В задачах 61 - 80 даны криволинейный интеграл $\int P(x,y)dx + Q(x,y)dy$ и четыре точки плоскости хоу: O(0,0), A(4,0), B(0,8), C(4,8). Вычислить данный интеграл от точки O до точки C по трем различным путям: 1) по ломанной OAC; 2) по ломанной OBC; 3) по дуге OC параболы $y = \frac{1}{2}x^2$. Полученные результаты сравнить и объяснить их совпадение.

61.
$$\int (x-y)dx - (x-2y)dy,$$

62.
$$\int (2+xy)dx + (\frac{x^2}{2}-y)dy$$
,

63.
$$\int (x^3 - 2y) dx - (2x - 5) dy,$$

64.
$$\int (2x-3y)dx - (3x-4y)dy$$
,

65.
$$\int (4+xy^2)dx + (x^2y - 3y^2)dy,$$

66.
$$\int (3x-2y)dx - (2x+y)dy$$
,

$$67. \int (1+2xy)dx + (x^2 - y)dy,$$

$$68. \int (5x-2y)dx - (2x - y)dy,$$

$$69. \int (3x^2 - y)dx - (x+2y)dy,$$

$$70. \int (4xy+3)dx + (2x^2 - \frac{3}{2}y^2)dy,$$

$$71. \int (x+y)dx + (x+2y)dy,$$

$$72. \int (xy-2)dx + (\frac{x^2}{2}+y)dy,$$

$$73. \int (x^2 - 2y)dx - (2x+3)dy,$$

$$74. \int (x-3y)dx - (3x+y)dy,$$

$$75. \int (2+xy)dx + (\frac{x^2}{2}-3)dy,$$

$$76. \int (2x-3y)dx + (-3x+2y)dy$$

$$77. \int (3+y)dx + (x-y)dy,$$

$$78. \int (2x-5y)dx + (1-5x)dy,$$

$$79. \int (4x-y)dx + (5-x)dy,$$

$$80. \int (x^2y-3)dx + (y+\frac{x^3}{3})dy.$$

Решение типового примера. Дан криволинейный интеграл $\int 2x dx + x^2 dy$ и четыре

точки плоскости хоу: О (0;0), А (4;0), В (0;8), С (4;8). Вычислить данный интеграл по трем различным путям: 1) по ломанной ОАС, 2) по ломанной ОВС, 3) по дуге ОС параболы $y = \frac{1}{2}x^{2}$. Полученные результаты сравнить и

объяснить их совпадение.

Решение задачи: 1) $\int\limits_{OAC} = \int\limits_{OA} + \int\limits_{AC}$. Вычислим $\int\limits_{OA}$. Уравнение отрезка OA: y=0; $x \in [0;4]$ тогда

dy=0 и
$$\int_{OA} 2xydx + x^2dy = \int_{0}^{4} 2x \cdot 0 \cdot dx + x^2 \cdot 0 = 0$$
.

Далее уравнение AC: x=4; $y \in [0;8]$. Тогда dx=0и

$$\int_{AC} 2xydx + x^2dy = \int_{0}^{8} 2 \cdot 4 \cdot y \cdot 0 + 4^2 \cdot dy = \int_{0}^{8} 16dy = 16y \Big|_{0}^{8} = 128$$

Поэтому $\int = 0 + 128 = 128$

$$(2) \int_{OBC} = \int_{OB} + \int_{BC} \int_{BC} = \int_{OB} \int_$$

отрезка OB: x=0; $y \in [0;8]$. Поскольку dx=0 и

$$\int_{OB} 2xy dx + x^{2} dy = \int_{0}^{8} 2 \cdot 0 \cdot y \cdot 0 + 0 \cdot dy = 0.$$
 Далее,

уравнение BC: y=8; $x \in [0;4]$. Тогда dy=0 и

$$\int_{BC} 2xydx + x^2dy = \int_{0}^{4} 2x \cdot 8dx + x^2 \cdot 0 = 16 \int_{0}^{4} xdx = 8x^2 \Big|_{0}^{4} = 128.$$

$$\Pi \text{O9TOMY} \int_{OBC} 128.$$

3) Вычислим интеграл по дуге параболы: $y = \frac{1}{2}x^2, x \in [0;4]$, тогда dy=xdx и

$$\int_{OC} 2xydx + x^2dy = \int_{0}^{4} \left(2x \cdot \frac{1}{2}x^2 + x^3\right) dx = \int_{0}^{4} 2x^3 dx = \frac{x^4}{2} \Big|_{0}^{4} = 128$$

Вывод: по всем трем путям, соединяющим точки O(0;0) и C(4;8) интеграл одинаков. Здесь в интеграле $\int P dx + Q dy$ функции P=2xy,

 $Q=x^2$ и $P_y^{'}=2x; Q_x^{'}=2x$ удовлетворяют условию независимости интеграла от пути интегрирования: $P_y^{'}=Q_x^{'}$.

Контрольная работа № 5.

В задачах 1-20 найти частное решение дифференциального уравнения, удовлетворяющее указанному начальному условию.

1.
$$y'\cos^2 x + y = tgx$$
, $y(0) = -1$.

2.
$$(1+x^2)y' + y = arctgx$$
, $y(0) = 1$.

3.
$$y'\sqrt{1-x^2} + y = \arcsin x$$
, $y(0) = -1$.

4.
$$y' + 2ytg 2x = \sin 4x$$
, $y(0) = 0$.

5.
$$y' + y = -e^{2x}y^2$$
, $y(0) = 1$.

6.
$$xy' - y = x^2 \cos x$$
, $y(\pi/2) = \pi/2$.

7.
$$xy' + y = -x^2y^2$$
, $y(1) = 1$.

8.
$$y' \sin x - y \cos x = 1$$
, $y(\pi/2) = 0$.

9.
$$xy' + 2y = 3x^5y^2$$
, $y(1) = -1$.

10.
$$y' + 2xy = 3x^2e^{-x^2}$$
, $y(0) = 0$.

11.
$$xy' - y = x^3$$
, $y(1) = \frac{1}{2}$.

12.
$$xy' - y = -2 \ln x$$
, $y(1) = 2$.

13.
$$x^3y' + 3x^2y = 2$$
, $y(1) = 2$.

14.
$$y' + e^x y = e^{2x}$$
, $y(0) = 0$.

15.
$$xy' + y = x + 1$$
, $y(1) = 1$.

16.
$$y' - y \cos x = -\sin 2x$$
, $y(0) = 2$.

17.
$$xy' - y = -\ln x$$
, $y(1) = 1$.

18.
$$y' - 4xy = -4x^3$$
, $y(0) = \frac{1}{2}$.

19.
$$2xy' + y = 2x^3$$
, $y(1) = \frac{2}{7}$.
20. $y' + xy = -x^3$, $y(0) = 2$.

Решение типового примера. Найти частное решение дифференциального уравнения $xy' + y = e^x$, удовлетворяющее данному условию y(1)=е.

условию у(1)=e. Решение. Данное уравнение является линейным и его можно решить с помощью подстановки Бернулли. Положим, у=uv. Тогда y' = u'v + uv'. Подставим в исходное уравнение. Получим, $x \cdot (u'v + uv') + u \cdot v = e^x$ или $xu'v + xuv' + uv = e^x$ или $xu'v + u(xv' + v) = e^x$. Потребуем, чтобы выполнялось равенство xv' + v + 0, т.е. $\frac{xdv}{dx} = -v$ или $\frac{dv}{v} = -\frac{dx}{x}$ или, после интегрирования $\ln v = -\ln x$, т.е. $v = \frac{1}{x}$. Для найденного $v = \frac{1}{x}$ уравнение примет вид

 $x \cdot u' \cdot \frac{1}{x} = e^x$ или $u' = e^x$ т.е. $u = \int e^x dx = e^x + C$. Значит, общим решением уравнения будет $y = (e^x + C) \cdot \frac{1}{x}$. Подставляя заданное начальное условие y(1)=е, получим e=e+C.

Откуда C=0 и нужным частным решением будет $y = \frac{1}{x}e^{x}$.

В задачах 21 – 40 понизить порядок и решить дифференциальное уравнение, удовлетворяющее начальным условиям.

21.
$$y'' - y' - x^2 = 0$$
, $y(1) = \frac{4}{3}$, $y'(1) = 3$.
22. $y'' - y'ctgx = \sin x$, $y(\pi/2) = 1$, $y'(\pi/2) = \pi/2$.
23. $y'' = \frac{x}{\sqrt{(1-x^2)^3}}$, $y(0) = 1$, $y'(0) = 2$.
24. $xy'' - 2y' = 2x^4$, $y(1) = \frac{1}{5}$, $y'(1) = 4$.
25. $xy'' = \ln x + 1$, $y(1) = 0$, $y'(1) = 0$.
26. $y'' + y'tgx = \cos x$, $y(0) = 1$, $y'(0) = 0$.
27. $y'' = \frac{x}{\sqrt{(1-4x^2)^3}}$, $y(1) = \frac{1}{4}$, $y'(1) = 2$.
29. $xy'' - y' = x^2 \cos x$, $y(\pi/2) = 1$, $y'(\pi/2) = \pi/2$.
30. $x^3y'' = 4\ln x$, $y(1) = 4$, $y'(1) = 0$.
31. $y'' - e^y y' = 0$, $y(0) = 0$, $y'(0) = 1$.
32. $y'y'' = 2y$, $y(0) = 0$, $y'(0) = 0$.
33. $yy'' = (y')^2$, $y(0) = 1$, $y'(0) = 3$.
34. $y^3y'' = 3$, $y(1) = 1$, $y'(1) = 1$.

35.
$$y'' - 12y^2 = 0$$
, $y(0) = \frac{1}{2}$, $y'(0) = 1$.
36. $2y'' = e^{4y}$, $y(0) = 0$, $y'(0) = \frac{1}{2}$.
37. $(y-2)y'' = 2(y')^2$, $y(0) = 3$, $y'(0) = 1$.
38. $2yy'' = 3 + (y')^2$, $y(1) = 1$, $y'(1) = 1$.
39. $y'' = 3\sqrt{y+1}$, $y(2) = 0$, $y'(2) = 2$.
40. $(y+1)^2y'' = (y')^3$, $y(0) = 0$, $y'(0) = 1$.

В уравнениях 21-30 отсутствует переменная у, т.е. они имеют вид F(x, y', y'') = 0 и понизить их порядок можно заменой y' = p, где p-3ависит от х и уравнение примет вид F(x, p, p') = 0.

В уравнениях 31-40 отсутствует переменная x, т.е. они имеют вид F(y,y',y'')=0. В этом случае понизить их порядок можно заменой y'=p, где p зависит от у и $y''=\frac{dp}{dx}=\frac{dp}{dy}\cdot\frac{dy}{dx}=\frac{dp}{dy}\cdot p$. Например, понизить порядок и решить дифференциальное уравнение $2y''=3y^2$, удовлетворяющее начальным условиям: y(-2)=1: y'(-2)=-1.

Решение: пусть
$$y' = p$$
 и $y'' = \frac{dp}{dy} \cdot p$. Тогда $2 \cdot \frac{dp}{dy} \cdot p = 3y^2$ или $2pdp = 3y^2dy$. После интегрирования обеих частей равенства, получим $p^2 = y^3 + C_1$ или $(y')^2 = y^3 + C_1$. Подставляя начальные условия, найдем C_1 . Получим $(-1)^2 = 1^3 + C_1$. Откуда $C_1 = 0$ и $(y')^2 = y^3$. Т.к. из начальных условий следует, что $y'(-2) = -1$, то из уравнения $(y')^2 = y^3$ имеем, $y' = -\sqrt{y^3}$ или $\frac{dy}{dx} = -\sqrt{y^3}$ или $-\frac{dy}{\sqrt{y^3}} = dx$. После интегрирования, получим $\frac{2}{\sqrt{y}} = x + C_2$. Подставляя начальные условия, найдем C_2 . Имеем $\frac{2}{1} = -2 + C_2$. Откуда $C_2 = 4$ и нужное частное решение имеет вид $\frac{2}{\sqrt{y}} = x + 4$.

В задачах 41 – 60 даны линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами. Найти частное решение,

удовлетворяющее указанным начальным условиям.

41.
$$y'' - 2y' - 8y = 16x^2 + 2$$
, $y(0) = 0$, $y'(0) = 5$.

42.
$$y'' + 4y = 3\cos x$$
, $y(0) = 1$, $y'(0) = 2$.

43.
$$y'' - y' - 2y = 3e^{2x}$$
, $y(0) = 2$, $y'(0) = 5$.

44.
$$y'' - 2y' = 2x + 1$$
, $y(0) = 1$, $y'(0) = 1$.

45.
$$y'' - 2y' + y = 9e^{-2x}$$
, $y(0) = 1$, $y'(0) = 1$.

46.
$$y'' - 4y = 4\sin 2x$$
, $y(0) = 2$, $y'(0) = 7$.

47.
$$y'' + y' = 3\cos x - \sin x$$
, $y(0) = 0$, $y'(0) = 1$.

48.
$$y'' - y' - 6y = 6x^2 - 4x - 3$$
, $y(0) = 3$, $y'(0) = 5$.

49.
$$y'' - 3y' - 8y = 3e^{3x}$$
, $y(0) = 2$, $y'(0) = 4$.

50.
$$y'' - 4y' + 5y = 5x - 4$$
, $y(0) = 0$, $y'(0) = -4$.

51.
$$y'' + y' - 2y = \cos x - 3\sin x$$
, $y(0) = 1$, $y'(0) = 2$.

52.
$$y'' - 4y = (3x - 1)e^{-x}$$
, $y(0) = 0$, $y'(0) = -4$.

53.
$$y'' + y = 6\sin 2x$$
, $y(\pi) = -1$, $y'(\pi) = -4$.

54.
$$y'' - 5y' - 8y = 10x + 3$$
, $y(0) = 2$, $y'(0) = 4$.

55.
$$y'' + y' - 2y = 4e^{2x} - 2x + 1$$
, $y(0) = 3$, $y'(0) = 5$.

56.
$$y'' - 2y' = 6x^2$$
, $y(0) = 1$, $y'(0) = 1$.

57.
$$y'' - 4y' + 3y = 8e^{5x}$$
, $y(0) = 3$, $y'(0) = 7$.

58.
$$y'' - 4y - y = 4\sin 2x$$
, $y(0) = 2$, $y'(0) = 7$.

59.
$$y'' + 6y' + 9y = 2e^{-3x}$$
, $y(0) = 1$, $y'(0) = -3$.

60.
$$y'' + 2y' + y = -2\sin x$$
, $y(0) = 1$, $y'(0) = 2$.

Решение типового примера. Найти частное решение неоднородного дифференциального уравнения с постоянными коэффициентами,

удовлетворяющее начальным условиям: $y'' - 2y' + 10y = 10x^2 + 16x + 6$; y(0) = 1,8; y'(0) = 0.

Решение: для нахождения общего решения исходного уравнения найдем \bar{y} общее решение соответствующего однородного уравнения, а затем y - частное решение исходного уравнения. Общим решением исходного уравнения будет $y = \bar{y} + y^*$. Составим характеристическое уравнение и найдем его корни. Имеем, $k^2 - 2k + 10 = 0$. Откуда,

$$k_{1,2} = 1 \pm \sqrt{1-10} = 1 \pm \sqrt{-9} = 1 \pm 3i$$
, soe $i = \sqrt{-1}$.

Поскольку корни характеристического уравнения комплексные числа, то $\bar{y} = e^x(C_1\sin 3x + C_2\cos 3x)$. Частное решение будем искать в виде многочлена $y^* = ax^2 + bx + c$. Найдем производные и подставим y^* в исходное уравнение. Имеем,

$$y^* = 2ax + b; y^* = 2a$$
. Значит,
 $2a - 2(2ax + b) + 10(ax^2 + bx + c) = 10x^2 + 16x + 6$. Или
 $10ax^2 + (10b - 4a)x + 2a - 2b + 10c = 10x^2 + 16x + 6$.

Откуда, приравнивая коэффициенты при х в одинаковых степенях, получим систему

уравнений:
$$\begin{cases} 10a=10\\ 10b-4a=16\\ 2a-2b+10c=6 \end{cases}$$
, откуда a=1; b=2;

c=0.8.

Поэтому $y^* = x^2 + 2x + 0,8$ и общим решение будет $y = e^x (C_1 \sin 3x + C_2 \cos 3x) + x^2 + 2x + 0,8$. Для нахождения значений $C_{1,}C_{2}$ подставим начальные условия y(0) = 0,8, y'(0) = 0.

Получим

$$y' = e^{x} (C_{1} \sin 3x + C_{2} \cos 3x) + 3e^{x} (C_{1} \cos 3x - C_{2} \sin 3x) + 2x + 2$$

$$\begin{cases} 1.8 = C_{2} + 0.8 \\ 0 = C_{2} + 3C_{1} + 2 \end{cases}, \text{ откуда } C_{2} = 1, C_{1} = -1. \text{ Нужное}$$

частное решение имеет вид $y = e^{x}(\cos 3x - \sin 3x) + x^{2} + 2x + 0.8$.

В задачах 61 – 70 исследовать сходимость рядов, пользуясь признаком сходимости Даламбера.

$$61. \qquad \sum_{n=1}^{\infty} \frac{2^n}{n^5}.$$

$$64. \qquad \sum_{n=1}^{\infty} \frac{n^n}{n!}.$$

62.
$$\sum_{n=1}^{\infty} \frac{3^n}{(n+1)!}$$

65.
$$\sum_{n=1}^{\infty} \frac{n}{2^{n/2}}$$
.

63.
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}.$$

66.
$$\sum_{n=1}^{\infty} \frac{2n(n+1)}{5^n}.$$

67.
$$\sum_{n=1}^{\infty} \frac{n^3}{(n+1)!}$$

$$68. \qquad \sum_{n=1}^{\infty} \frac{n}{(2n-1) \cdot 5^n}.$$

69.
$$\sum_{n=1}^{\infty} \frac{(n+1)^{n/2}}{n!}.$$

70.
$$\sum_{n=1}^{\infty} \frac{3^{n}}{(n+1)(n+2)}$$

Решение типового примера.

Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$.

Решение. Имеем,
$$a_n = \frac{n^2}{2}$$
; $a_{n+1} = \frac{(n+1)^2}{2^{n+1}}$. Найдем

$$\lim \frac{a_n + 1}{a_n} = \lim_{n \to \infty} \frac{(n+1)^2 \cdot 2^n}{2^{n+1} \cdot n^2} = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} \cdot \frac{1}{2} = \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{4}\right)^2 = \frac{1}{2}$$

Так как $\frac{1}{2}$ <1, то по признаку Даламбера ряд сходится.

В задачах 71 — 80 исследовать сходимость рядов, пользуясь интегральным признаком сходимости Коши.

71.
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)[\ln(n+1)]^3}.$$

$$77.\sum_{n=1}^{\infty}\frac{n}{e^{n^2}}.$$

72.
$$\sum_{n=1}^{\infty} \frac{1}{2n(2n+1)}$$

$$78.\sum_{n=1}^{\infty}\frac{n}{e^{n/2}}.$$

73.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{4n-3}}$$
.

79.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
.

74.
$$\sum_{n=1}^{\infty} \frac{1}{3n+1}$$
.

80.
$$\sum_{n=1}^{\infty} \frac{3n}{n^3 + 1}$$
.

75.
$$\sum_{n=1}^{\infty} \frac{1}{3n+2}$$
.

76.
$$\sum_{n=1}^{\infty} \frac{1}{1+4n^2}$$
.

Решение типового примера. Исследовать на сходимость ряд, пользуясь интегральным признаком сходимости. $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$.

Решение. Здесь общим членом a_n положительного ряда будет $a_n = \frac{n}{n^2 + 1}$.

Рассмотрим функцию $f(x) = \frac{x}{x^2 + 1}$ и исследуем на сходимость несобственный интеграл $\int\limits_{1}^{\infty} \frac{x dx}{x^2 + 1} = \frac{1}{2} \ln \left(x^2 + 1 \right) \Big|_{1}^{\infty} = \infty - \frac{1}{2} \ln 2 = \infty$. Так как несобственный интеграл расходится, то и ряд $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$. также расходится по интегральному признаку.

В задачах 81 – 100 дан степенной ряд

$$\sum_{n=1}^{\infty} \frac{a^n x^n}{b^n \sqrt[k]{n}}$$

Написать первые четыре члена ряда, найти интервал сходимости ряда и выяснить вопрос о сходимости ряда на концах интервала. Значения a, b и k даны.

81.
$$a = 2, b = 3, k = 4$$
.

82.
$$a = 6, b = 5, k = 5$$
.

83.
$$a = 3, b = 4, k = 5$$
.

84.
$$a = 5, b = 2, k = 4$$
.

85.
$$a = 4, b = 3, k = 3$$
.

86.
$$a = 2, b = 3, k = 5$$
.

87.
$$a = 5, b = 6, k = 2.$$

88.
$$a = 3, b = 5, k = 6$$
.

89.
$$a = 3, b = 7, k = 3.$$

90.
$$a = 2, b = 7, k = 3$$
.

91.
$$a = 7, b = 5, k = 4$$
.

92.
$$a = 4, b = 5, k = 3$$
.

93.
$$a = 5, b = 7, k = 4.$$

94.
$$a = 6, b = 7, k = 4.$$

95.
$$a = 3, b = 8, k = 5.$$

96.
$$a = 5, b = 8, k = 2.$$

97.
$$a = 4, b = 7, k = 3.$$

98.
$$a = 8, b = 3, k = 4.$$

99.
$$a = 2, b = 5, k = 3.$$

100.
$$a = 9, b = 2, k = 5.$$

Решение типового примера. Написать четыре члена степенного ряда, найти интервал его сходимости и исследовать вопрос о сходимости ряда на концах

интервала.
$$\sum_{m=1}^{\infty} \frac{2^n x^n}{5^n \sqrt{n+1}}$$
.

Решение. Имеем

$$\sum_{n=1}^{\infty} \frac{2^n x^n}{5^n \sqrt{n+1}} = \frac{2x}{5\sqrt{2}} + \frac{4x^2}{25\sqrt{3}} + \frac{8x^3}{125\sqrt{4}} + \frac{16x^4}{625\sqrt{5}} + \dots$$

Для нахождения интервала сходимости применим признак Даламбера для соответствующего положительного ряда (в интервале сходимости степенной ряд сходится абсолютно). Имеем,

$$\lim_{n \to \infty} \frac{2^{n+1} |x|^{n+1} 5^n \sqrt{n+1}}{5^{n+1} \sqrt{n+2} \cdot 2^n |x|^n} = \frac{2}{5} |x| \cdot \lim_{n \to \infty} \frac{\sqrt{1+n}}{\sqrt{n+2}} = \frac{2}{5} |x| \cdot \lim_{n \to \infty} \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} = \frac{2}{5} |x|$$

По признаку Даламбера ряд сходится, если $\frac{2}{5}|x| < 1$ и расходится, если $\frac{2}{5}|x| > 1$. Значит интервалом сходимости служит $\frac{2}{5}|x| < 1$ или $|x| < \frac{5}{2}$ или $x \in \left(-\frac{5}{2}; \frac{5}{2}\right)$. Исследуем сходимость

ряда на концах интервала. Пусть $x = -\frac{5}{2}$,

тогда получаем ряд $\sum_{n=1}^{\infty} \frac{2^n \left(-\frac{5}{2}\right)^n}{5^n \sqrt{n+1}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ - знакочередующийся ряд сходится по признаку Лейбница (общий член монотонно стремится к нулю). Пусть теперь $x = \frac{5}{2}$, тогда

получаем ряд
$$\sum_{n=1}^{\infty} \frac{2^n \left(\frac{5}{2}\right)^n}{5^n \sqrt{n+1}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$$
.

Исследуем его сходимость с помощью интегрального признака. Для этого исследуем на сходимость несобственный интеграл

$$\int_{1}^{\infty} \frac{dx}{\sqrt{x+1}} = 2\sqrt{x+1} \bigg|_{1}^{\infty} = \infty - 2\sqrt{2} = \infty$$
. Так как

несобственный интеграл расходится, то и ряд расходится.

Ответ: область сходимости ряда:
$$-\frac{5}{2} \le x < \frac{5}{2}$$

В задачах 101 — 120 требуется вычислить определенный интеграл с точностью до 0,001 путем предварительного разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

$$101. \int_{0}^{1} \frac{\sin x}{\sqrt[3]{x}} dx. \qquad 109. \quad \int_{0}^{1/2} \frac{\arctan x}{x} dx. \qquad 116. \quad \int_{0}^{1} e^{-0.1x^{3}} .dx.$$

$$102. \int_{0}^{1/2} \frac{x dx}{\sqrt{1+x^{3}}}. \qquad 110. \quad \int_{0}^{1/3} \frac{\sin 3x}{x} dx.$$

$$103. \int_{0}^{1} x \cos \sqrt{x} dx. \qquad 111. \quad \int_{0}^{1/4} x^{2} \cos \sqrt{x} dx.$$

$$104. \int_{0}^{1} \sqrt{xe^{-x^{2}}} dx. \qquad 112. \quad \int_{0}^{1/4} x \ln(1+\sqrt{x}) dx. \qquad 118. \quad \int_{0}^{1/2} x \cos \sqrt{2x} dx.$$

$$105. \int_{0}^{1/4} x e^{-\sqrt{x}} dx. \qquad 113. \quad \int_{0}^{1} x \sqrt{x} \sin \sqrt{x} dx. \qquad 119. \quad \int_{0}^{1/2} \frac{\arctan (x^{2})}{x} dx.$$

$$106. \int_{0}^{1/2} \frac{\ln(1+x^{2})}{x^{2}} dx. \qquad 114. \quad \int_{0}^{1/2} \frac{dx}{\sqrt[3]{(1+x^{3})^{2}}}.$$

$$107. \quad \int_{0}^{1/2} \frac{dx}{\sqrt[4]{(1+x^{4})^{3}}}. \qquad 115. \quad \int_{0}^{1/2} \frac{x dx}{\sqrt[4]{1+x^{4}}}.$$

$$108. \quad \int_{0}^{1/4} \frac{\sqrt{x} dx}{\sqrt[3]{1+x^{2}}}.$$

Решение типового примера. Вычислить с точностью до 0,001 интеграл $\int_{0}^{1/2} \frac{dx}{1+x^4}$.

Решение. Разложим подинтегральную функцию в степенной ряд с помощью биномиального ряда

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots$$
Имеем,
$$\frac{1}{1+x^4} = (1+x^4)^{-1} = 1 - x^4 + x^8 - x^{12} + \dots$$
Тогда
$$\int_0^{1/2} \frac{dx}{1+x^4} = \int_0^{1/2} (1-x^4 + x^8 - x^{12} + \dots) dx =$$

$$= x \Big| \frac{1}{2} - \frac{x^5}{5} \Big|_0^{1/2} + \frac{x^9}{9} \Big|_0^{1-2} - \frac{x^{13}}{13} \Big|_0^{1/2} + \dots =$$

$$= 0.5 - \frac{1}{5} \left(\frac{1}{2}\right)^5 + \frac{1}{9} \left(\frac{1}{2}\right)^9 - \frac{1}{13} \left(\frac{1}{2}\right)^{13} + \dots = 0.5 - \frac{1}{160} + \frac{1}{4608} - \dots$$

Мы получили знакочередующийся ряд, третий член которого меньше 0,0003. Поэтому для вычисления его суммы с точностью до 0,001 достаточно взять два его

члена. Получаем,
$$\int_{0}^{1/2} \frac{dx}{1+x^4} \approx 0.5 - \frac{1}{160} \approx 0.494.$$

Контрольная работа №6

В задачах 1-20 вычислить вероятность события, используя классическое определение вероятности как долю благоприятных исходов опыта среди всех равновозможных исходов, теоремы сложения и умножения вероятностей, а также формулу полной вероятности.

- 1. В ящике 100 одинаковых по виду деталей, в т.ч. 80 стандартных и 20 нестандартных. Извлекаются 3 детали. Какова вероятность, что среди них две стандартные?
- 2. Вероятность попадания в мишень равна 0,8. После первого попадания стрельба прекращается. Найти вероятность того, что будет произведено не менее 4 выстрелов.
- 3. В урне 4 белых и 6 черных шаров. Наудачу вынуто 5 шаров. Найти вероятность того, что из них два шара белые и три черные.
- 4. 70 % населения данной местности доживают до 50 лет, из них 40 % доживают до 70 лет. Найти вероятность

- того, что новорожденный доживет до 70 лет.
- 5. Среди 6 винтовок пристрелянными являются только 2. Вероятность попадания из пристрелянной винтовки равна 0,9, из непристрелянной 0,2. Найти вероятность поражения цели из наудачу взятой винтовки.
- 6. Экспедиция издательства отправила газеты в три почтовых отделения. Вероятность своевременной доставки в первое отделение равна 0,95, во второе 0,9, в третье 0,8. Найти вероятность того, что хотя бы одно отделение получит газеты вовремя.
- 7. Сборщик получил три ящика: в первом ящике 40 деталей, из них 20 окрашенных; во втором 50, из них 10 окрашенных; в третьем 30 деталей, из них 15 окрашенных. Найти вероятность того, что наугад извлеченная деталь из наугад взятого ящика окажется окрашенной.
- 8. В урне 2 белых и 5 черных шаров. Из урны вынимают наудачу два шара. Найти вероятность того, что оба шара будут белыми.

- 9. На предприятиях брак составляет в среднем 1,5 % от общего выпуска изделий. Среди годных изделий первый сорт составляет 80 %. Какова вероятность того, что наудачу взятое изделие окажется изделием первого сорта, если оно взято из общей массы изготовленной продукции?
- 10.Из 15 мальчиков и 10 девочек составляется наугад группа из 5 человек. Какова вероятность того, что в нее попадут 3 мальчика и 2 девочки?
- 11. Стрелок производит 3 выстрела по мишени, вероятность попадания в цель при одном выстреле равна 0,8. Найти вероятность поражения цели хотя бы одним выстрелом.
- 12. В урне 3 белых и 5 черных шаров. Из урны вынимают наугад 2 шара. Найти вероятность того, что оба шара белые.
- 13. Три станка работают независимо. Вероятность того, что первый станок в течении смены выйдет из строя равна 0,1, для второго и третьего станков эти вероятности соответственно равны 0,2 и 0,3. Найти вероятность того, что в

- течении смены хотя бы один станок выйдет из строя.
- 14.В ящике 12 писем, из них 7 иногородних и 5 городских. Какова вероятность, что среди 5 наугад вынутых писем окажутся 3 иногородних?
- 15. Три стрелка производят по одному выстрелу по мишени. Вероятность попадания в мишень первым стрелком равна 0,9, вторым 0,8, третьим 0,7. Найти вероятность того, что мишень будет поражена.
- 16.В группе 12 студентов, из них 7 отличников. Из группы взято наудачу 5 человек. Какова вероятность, что среди них окажется 3 отличника?
- 17.Полный комплект домино содержит 28 костей. Какова вероятность того, что наугад взятая кость содержит 8 очков?
- 18. Два стрелка делают 2 выстрела по мишени. Для первого стрелка вероятность попадания в цель при одном выстреле равна 0,7, для второго 0,9. Найти вероятность поражения цели хотя бы одним выстрелом.

- 19. Рабочий обслуживает три станка, работающих независимо друг от друга. Вероятность того, что в течении часа не потребует внимания рабочего первый станок 0,9, второй 0,8, третий 0,85. Найти вероятность того, что в течении часа, хотябы один станок потребует внимания рабочего.
- 20.Из трамвайного парка в случайном порядке выходят 4 трамвая №1 и 8 трамваев маршрута №2. Найти вероятность того, что второй из вышедших на линию трамваев будет иметь №1.

Пример решения задачи. В партии 2% бракованных изделий. Среди небракованных изделий 80% изделий высшего сорта из партии наудачу взято изделие. Какова вероятность, что оно первого сорта?

Решение. Пусть A — изделие не бракованное, B — изделие первого сорта. Тогда B=A*B и по теореме умножения вероятностей $P(B)=P(A)*P_A(B)$. Но, т.к. вероятность брака равна 0,02, то P(A)=0,98. Далее по условию $P_A(B)=0,8$. Поэтому P(B)=0,98*0,8=0,784.

В задачах 21 – 40 вычислить вероятность события используя схему повторных независимых испытаний: одно и тоже испытание проводится п раз. В каждом испытании событие А может появится с вероятностью р. Найти вероятность того, что в п испытаниях событие А появится ровно к раз. Задача решается с помощью формулы Бернулли.

$$P_{n,k} = C_n^k p^k (1-p)^{n-k},$$
 где $C_n^k = \frac{n \cdot (n-1)(n-2)..(n-k+1)}{1 \cdot 2 \cdot 3... \cdot k}.$

При этом, если n — велико, то при использовании формулы Бернулли возникают большие трудности вычислительного характера. Для преодоления этих трудностей используют приближенные формулы Пуассона и Лапласа. Формула Пуассона

$$P_{n,k} = \frac{\lambda^k}{k!e^{\lambda}}$$
 применяется тогда, когда n —

велико, а p – мало, т.е. $np=\lambda < 10$.

В случае, если n – велико, а p – значительное, т.е. p>>10, то формула Пуассона дает большую погрешность и в этом случае пользуются формулой Лапласа:

$$P_{n,k} = \frac{1}{\sqrt{npq}} \varphi\left(\frac{k - np}{\sqrt{npq}}\right), \ \ \partial e \ q = 1 - p; \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

дифференциальная функция Лапласа. Функция $\varphi(x)$ табулирована и ее значения можно найти в соответствующих таблицах. При решении задачи о вероятности того, что в п испытаниях события А появилось не менее k раз и не более k_2 раза используют интегральную функцию Лапласа

$$P_{n,k_1 \le k \le k_2} = \Phi\left(\frac{k_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{k_1 - np}{\sqrt{npq}}\right), \text{ где}$$

$$\Phi(x) = \int_0^x \varphi(z)dz = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{z^2}{2}} dz.$$

- 21. Вероятность изготовления стандартной детали равна 0,8. Найти вероятность того, что из 5 изготовленных деталей стандартных будет а) три, б) не менее олной.
- 22. Вероятность появления бракованной детали равна 0,008. Найти вероятность того, что из 500 случайно отобранных деталей окажется три бракованных.
- 23.Производятся независимые испытания новых машин, в каждом из которых

- вероятность появления события A отказ равна 0,8. Найти вероятность того, что в 100 испытаниях событие A появится более 79 раз.
- 24. Всхожесть семян данного растения составляет 90 %. Найти вероятность того, что из четырех посеянных семян взойдут: а) три, б) не менее трех.
- 25. Семена содержат 0,1 % сорняков. Какова вероятность при случайном отборе 2000 семян обнаружить 5 семян сорняков?
- 26.В хлопке число длинных волокон составляет 80 %. Какова вероятность того, что среди взятых наудачу 5 волокон длинных окажется а) три, б) не более двух.
- 27. Вероятность выживания бактерий после радиоактивного облучения равна 0,004. Найти вероятность того, что после облучения из 500 бактерий останется не менее 3 бактерий.
- 28. Вероятность того, что деталь выточенная на станке-автомате окажется первого сорта равна 0,8. Найти вероятность того, что из 100

- выточенных деталей первого сорта окажется не менее 72 и не более 84.
- 29. Прибор состоит из 4 узлов. Вероятность безотказной работы в течении смены для каждого узла равна 0,8. Узлы выходят из строя независимо один от другого. Найти вероятность того, что за смену откажут: а) два узла, б) не менее двух узлов.
- 30.Производятся независимые испытания, в каждом из которых вероятность появления события А равна 0,8. Найти вероятность того, что в 100 испытаниях событие А появится: а) ровно 90 раз, б) не менее 90 раз, в) менее 90 раз.
- 31.Принимая вероятность рождения мальчика и девочки одинаковыми, найти вероятность того, что среди 6 новорожденных а) 4 мальчика, б) не более двух девочек.
- 32. Вероятность отказа агрегата при одном испытании равна 0,8. найти вероятность того, что при 100 испытаниях агрегат откажет более 70 раз.
- 33.Производятся 5 независимых испытаний, в каждом из которых

- вероятность появления события А равна 0,1. Найти вероятность того, что событие А появится а) 2 раза, б) не менее 4 раз, в) менее 4 раз.
- 34. Для оценки надежности узла проводятся 5 независимых испытаний. Вероятность его отказа при одном испытании равна 0,4. Найти вероятность того, что узел откажет не менее трех раз.
- 35.Производятся независимые испытания, в каждом из которых вероятность появления события А равна 0,2. Найти вероятность того, что в 100 испытаниях событие А появится: а) ровно 20 раз, б) более 20 раз, в) не более 20 раз.
- 36.В некотором водоеме карпы составляют 80 %. Найти вероятность того, что из 5 выловленных в этом водоеме рыб окажется: а) 4 карпа, б) не менее 4 карпов.
- 37. На склад поступают изделия, из которых 80 % оказываются высшего сорта. Найти вероятность того, что из 100 взятых изделий не менее 85 изделий окажутся высшего сорта.

- 38. Устройство состоит из 1000 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течении часа равна 0,002. Найти вероятность того, что за час откажут 4 элемента.
- 39. Книга издана тиражом в 50000 экземпляров. Вероятность того, что в книге имеется дефект брошюровки, равна 0,0001. Найти вероятность того, что тираж содержит 5 неправильно сброшюрованных книг.
- 40. Доля бракованных деталей, выпускаемых станком-автоматом, составляет 25 %. Наудачу взято 6 деталей. Найти вероятность того, что среди взятых деталей будет: а) ровно 5 бракованных, б) не более 5 бракованных.

Пример решения задачи. Вероятность появления события А в каждом из 625 испытаниях равна 0,64. Найти вероятность того, что событие А в этих испытаниях появится ровно 415 раз. Здесь n=625- велико, а p=0,64 значительно, т.е. $n \cdot p = 625 \cdot 0,64 = 400 > 10$. Поэтому для решения

задачи мы воспользуемся формулой Лапласа. Имеем, n=625, p=0.64, np=625*0.64=400, npg=625*0.64*0.36=144, $\sqrt{npg} = \sqrt{144} = 12$. Π_0 формуле Лапласа имеем,

$$P_{(625,415)} = \frac{1}{12}\varphi\frac{(415-400)}{12} = \frac{1}{12}\varphi(1,25) = \frac{1}{12} \cdot 0,1826 = 0,0152$$

В задачах 41 – 60 задан закон распределения случайной величины X (в первой строке таблицы даны возможные значения величины Х, а во второй строке указаны вероятности р этих возможных значений).

Найти: 1) математическое ожидание M(X); 2) дисперсию D(X); 3) среднее квадратическое отклонение σ.

41.
$$\begin{pmatrix} X & 23 & 25 & 28 & 29 \\ p & 0,3 & 0,2 & 0,4 & 0,1. \end{pmatrix}$$

42.
$$\begin{pmatrix} X & 17 & 21 & 25 & 27 \\ p & 0,2 & 0,4 & 0,3 & 0,1. \end{pmatrix}$$

44.
$$\begin{pmatrix} X & 12 & 16 & 19 & 21 \\ p & 0,1 & 0,5 & 0,3 & 0,1. \end{pmatrix}$$

46.
$$\begin{pmatrix} X & 30 & 32 & 35 & 40 \\ p & 0.1 & 0.5 & 0.2 & 0.2. \end{pmatrix}$$

- 47. $\begin{pmatrix} X & 12 & 14 & 16 & 20 \\ p & 0,1 & 0,2 & 0,5 & 0,2. \end{pmatrix}$
 - y 0,1 0,2 0,3 0,2 X 21 25 28 31
- 48. $\frac{x}{p}$ 0,1 0,4 0,2 0,3.
- 49. $\frac{X}{p}$ 60 64 67 70 $\frac{X}{p}$ 0,1 0,3 0,4 0,2.
- 50. *X* 45 47 50 52
- p 0,2 0,4 0,3 0,1.

 X 46 49 51 55

- 53. $\begin{pmatrix} X & 78 & 80 & 84 & 85 \\ p & 0.2 & 0.3 & 0.1 & 0.4. \end{pmatrix}$

- 56. $\frac{X}{p}$ 56 58 60 64 $\frac{56}{p}$ 0,2 0,3 0,4 0,1.
- 57. *X* 31 34 37 40
- p 0,3 0,5 0,1 0,1.

 50 X 17 20 23 27
- 59. $\begin{pmatrix} X & 28 & 32 & 34 & 36 \\ p & 0.1 & 0.2 & 0.2 & 0.5. \end{pmatrix}$

Пример решения типовой задачи. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины, заданной рядом распределения.

$$\frac{x}{p} \begin{vmatrix} -5 \\ 0.4 \end{vmatrix} \frac{2}{0.3} \begin{vmatrix} 3 \\ 0.1 \end{vmatrix} \frac{4}{0.2}$$

Решение. Математическое ожидание дискретной случайной величины находится по формуле $M(X) = \sum x_i p_i$. В нашем случае $M(X) = -5 \cdot 0.4 + 2 \cdot 0.3 + 3 \cdot 0.1 + 4 \cdot 0.2 = = -2 + 0.6 + 0.3 + 0.8 = -0.3$

Дисперсия находится по формуле: $D(X) = M(x+0,3)^2 = (-5+0,3)^2 \cdot 0,4 + (2+0,3)^2 \cdot 0,3 + (3+0,3)^2 \cdot 0,1 + (4+0,3)^2 \cdot 0,2 = 15,21$ Среднее квадратическое отклонение $\sigma(x) = \sqrt{D(x)} = \sqrt{15,21} = 3,9.$

В задачах 61 – 80 случайная величина X задана интегральной функцией распределения F(x). Найти: 1) дифференциальную функцию распределения f(x); 2) математическое ожидание M (x); 3) дисперсию D(X).

61.
$$F(x) = \begin{cases} 0 & npu \ x < 0, \\ x^2 & npu \ 0 \le x \le 1, \\ 1 & \text{при } x > 1. \end{cases}$$

62.
$$F(x) = \begin{cases} 0 & npu \ x < 0, \\ \frac{x^2}{16} & npu \ 0 \le x \le 4, \\ 1 & npu \ x > 4. \end{cases}$$

63.
$$F(x) = \begin{cases} 0 & npu \ x < 2, \\ x - 2 & npu \ 2 \le x \le 3, \\ 1 & npu \ x > 3. \end{cases}$$

64.
$$F(x) = \begin{cases} 0 & npu & x < 0, \\ \frac{x^2}{4} & npu & 0 \le x \le 2, \\ 1 & npu & x > 2. \end{cases}$$

65.
$$F(x) = \begin{cases} 0 & npu \ x < 4, \\ x - 4 & npu \ 4 \le x \le 5, \\ 1 & при \ x > 5. \end{cases}$$

66.
$$F(x) = \begin{cases} 0 & npu \ x < 0, \\ \frac{x^3}{8} & npu \ 0 \le x \le 2, \\ 1 & при \ x > 2. \end{cases}$$

67.
$$F(x) = \begin{cases} 0 & npu \ x < 0, \\ \frac{x^2}{9} & npu \ 0 \le x \le 3, \\ 1 & \text{при } x > 3. \end{cases}$$

68.
$$F(x) = \begin{cases} 0 & npu \ x < 1, \\ x - 1 & npu \ 1 \le x \le 2, \\ 1 & пpu \ x > 2. \end{cases}$$

69.
$$F(x) = \begin{cases} 0 & npu \ x < 2, \\ x & npu \ 0 \le x \le 1, \\ 1 & npu \ x > 1. \end{cases}$$

70.
$$F(x) = \begin{cases} 0 & npu \ x < 0, \\ \frac{x^3}{27} & npu \ 0 \le x \le 3, \\ 1 & при \ x > 3. \end{cases}$$

71.
$$F(x) = \begin{cases} 0 & npu \ x \le \frac{1}{5}, \\ \left(x - \frac{1}{5}\right)^2 & npu \ \frac{1}{5} < x \le \frac{6}{5}, \\ 1 & при \ x > \frac{6}{5}. \end{cases}$$

72.
$$F(x) = \begin{cases} 0 & npu & x \le 0, \\ \frac{1}{8}x^2 + \frac{1}{4}x & npu & 0 < x \le 2, \\ 1 & npu & x > 2. \end{cases}$$

73.
$$F(x) = \begin{cases} 0 & npu \ x \le 0, \\ \frac{1}{3}x^2 + \frac{2}{3}x & npu \ 0 < x \le 1, \\ 1 & \text{при } x > 1. \end{cases}$$

74.
$$F(x) = \begin{cases} 0 & npu \ x \le 0, \\ \frac{1}{27} x^2 + \frac{2}{9} x & npu \ 0 < x \le 3, \\ 1 & npu \ x > 3. \end{cases}$$

75.
$$F(x) = \begin{cases} 0 & npu & x \le -2, \\ \frac{1}{49}(x+2)^2 & npu - 2 < x \le 5, \\ 1 & npu & x > 5. \end{cases}$$
76.
$$F(x) = \begin{cases} 0 & npu & x \le \frac{1}{4}, \\ (x - \frac{1}{4})^2 & npu & \frac{1}{4} < x \le \frac{5}{4}, \\ 1 & npu & x > \frac{5}{4}. \end{cases}$$
77.
$$F(x) = \begin{cases} 0 & npu & x \le -1, \\ \frac{1}{16}(x+1)^2 & npu - 1 < x \le 3, \\ 1 & npu & x > 3. \end{cases}$$
78.
$$F(x) = \begin{cases} 0 & npu & x \le 0, \\ \frac{1}{2}x^2 + \frac{1}{2}x & npu & 0 < x \le 1, \\ 1 & npu & x > 1. \end{cases}$$

79.
$$F(x) = \begin{cases} 0 & npu \ x \le -\frac{1}{2}, \\ \left(x + \frac{1}{2}\right)^2 & npu - \frac{1}{2} < x \le \frac{1}{2}, \\ 1 & \text{при } x > \frac{1}{2}. \end{cases}$$

80.
$$F(x) = \begin{cases} 0 & npu \ x \le 0, \\ \frac{1}{4}x^2 + \frac{3}{4}x & npu \ 0 < x \le 1, \\ 1 & пpu \ x > 1. \end{cases}$$

Пример решения типовой задачи. Случайная величина X задана интегральной функцией распределения

$$F(x) = \begin{cases} 0 & npu \ x \le 0, \\ \frac{x}{4} & npu \ 0 < x \le 4, \\ 1 & при \ x > 4. \end{cases}$$

Найдем: 1) дифференциальную функцию распределения f(x), 2) математическое ожидание M(X), 3) дисперсию D(X). Решение. Найти дифференциальную функцию f(x)

$$f(x) = F'(x) = \begin{cases} 0 & npu \ x \le 0, \\ \frac{1}{4} & npu \ 0 < x \le 4, \\ 0 & при \ x > 4. \end{cases}$$

Математическое ожидание Х найдем по

формуле:
$$M(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx = \int_{0}^{4} x \cdot \frac{1}{4} dx = \frac{x^{2}}{8} \begin{vmatrix} 4 \\ 0 \end{vmatrix} = 2$$

$$D(x) = \int_{-\infty}^{\infty} (x - M(x))^{2} \cdot f(x) dx = \int_{0}^{4} (x - 2)^{2} \cdot \frac{1}{4} dx = \frac{(x - 2)^{3}}{12} \begin{vmatrix} 4 \\ 0 \end{vmatrix} = \frac{1}{12} (8 + 8) = \frac{16}{12} = \frac{4}{3}.$$

В задачах 81 – 100 дано, что детали, выпускаемые цехом, по размеру диаметра

распределены по нормальному закону. Стандартная длина диаметра детали (математическое ожидание) равна а мм, среднее квадратическое отклонение - σ мм. Найти: 1) вероятность того, что диаметр наудачу взятой детали будет больше α мм и меньше β мм; 2) вероятность того, что диаметр детали отклонится от стандартной длины не более чем на δ мм. Значения а, σ , α , β , δ даны.

81.
$$a = 50$$
, $\sigma = 5$, $\alpha = 45$, $\beta = 52$, $\delta = 3$.

82.
$$a = 20$$
, $\sigma = 3$, $\alpha = 17$, $\beta = 26$, $\delta = 1.5$.

83.
$$a = 36$$
, $\sigma = 4$, $\alpha = 30$, $\beta = 40$, $\delta = 2$.

84.
$$a = 60$$
, $\sigma = 5$, $\alpha = 54$, $\beta = 70$, $\delta = 8$.

85.
$$a = 48$$
, $\sigma = 4$, $\alpha = 45$, $\beta = 56$, $\delta = 3$.

86.
$$a = 30$$
, $\sigma = 3$, $\alpha = 24$, $\beta = 33$, $\delta = 1.5$.

87.
$$a = 35$$
, $\sigma = 4$, $\alpha = 27$, $\beta = 37$, $\delta = 2$.

88.
$$a = 45$$
, $\sigma = 5$, $\alpha = 40$, $\beta = 48$, $\delta = 3$.

89.
$$a = 40$$
, $\sigma = 3$, $\alpha = 34$, $\beta = 43$, $\delta = 1.5$.

90.
$$a = 25$$
, $\sigma = 2$, $\alpha = 20$, $\beta = 27$, $\delta = 1$.

91.
$$a=10$$
, $\sigma=4$, $\alpha=2$, $\beta=13$, $\delta=2$.

92.
$$a=9$$
, $\sigma=5$, $\alpha=5$, $\beta=14$, $\delta=3$.

93.
$$a = 8$$
, $\sigma = 1$, $\alpha = 4$, $\beta = 9$, $\delta = 0.5$.

94.
$$a = 7$$
, $\sigma = 2$, $\alpha = 3$, $\beta = 10$, $\delta = 1$.

95.
$$a=6$$
, $\sigma=3$, $\alpha=2$, $\beta=11$, $\delta=1,5$.

96.
$$a=5$$
, $\sigma=1$, $\alpha=1$, $\beta=12$, $\delta=0.5$.

97.
$$a=4$$
, $\sigma=5$, $\alpha=2$, $\beta=11$, $\delta=2$.

98.
$$a=3$$
, $\sigma=2$, $\alpha=3$, $\beta=10$, $\delta=1$.

99.
$$a = 2$$
, $\sigma = 5$, $\alpha = 4$, $\beta = 9$, $\delta = 2$.

100.
$$a = 2$$
, $\sigma = 4$, $\alpha = 6$, $\beta = 10$, $\delta = 2$.

Решение типовой задачи. Заданы математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение принадлежащее интервалу $(\alpha;\beta)$, 2) вероятность того, что абсолютная величина отклонения X — а окажется меньше σ . Здесь a=20, σ =5, α =10, β =25, δ =4. Решение. Вероятность того, что нормальная случайная величина X примет значение, принадлежащее интервалу $(\alpha;\beta)$ равна:

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$$
, где $\Phi(x)$ —

интегральная функция Лапласа:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_0^{x^3} e^{-\frac{z^2}{2}} dz$$
 . Подставляя исходные

данные получим

$$P(10 < X < 25) = \Phi\left(\frac{25 - 20}{5}\right) - \Phi\left(\frac{10 - 20}{5}\right) = \Phi(1) - \Phi(-2) =$$

= $\Phi(1) + \Phi(2) = 0,3413 + 0,4772 = 0,8185$
Вероятность того, что абсолютная величина отклонения $X - a$ окажется меньше δ
вычисляется по формуле:

$$P(|X-a|<4)=2\Phi(\frac{4}{5})=2\cdot\Phi(0.8)=2\cdot0.2881=0.5762$$

Таблица значений функции $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ Таблица 1

				-		V 2/1				
X	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3925	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0,4	3683	3668	3653	3637	3821	3605	3589	3572	3555	3538
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0,8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551
2,0	0,0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2,1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363
2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139
2,6	0136	0132	0129	0126	0122	0119	0116	0113	0110	0107
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	0081
2,8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046
2.0	0.0044	00.10	00.42	0040	0020	0020	000=	0025	0005	0024
3,0	0,0044	0043	0042	0040	0039	0038	0037	0036	0035	0034
3,1	0033	0032	0031	0030	0029	0028	0027	0026	0025	0025
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018
3,3	0017	0017	0016	0016	0015	0015	0014	0014	0013	0013
3,4	0012	0012	0012	0011	0011	0010	0010	0010	0009	0009
3,5	0009	0008	0008	0008	0008	0007	0007	0007	0007	0006
3,6	0006	0006	0006	0005	0005	0005	0005	0005	0005	0004
3,7	0004	0004	0004	0004	0004	0004	0003	0003	0003	0002
3,8	0003	0003	0003	0003	0003	0002	0002	0002	0002	0002
3,9	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001

Таблица 2 Таблица значений функции Лапласа $\varphi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_0^x e^{-\frac{x^2}{2}} \mathrm{d}z$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0					
0.1 0.0040 0.46 0.1772 0.91 0.3186 1.36 0.4131 0.2 0.0080 0.47 0.1808 0.92 0.3212 1.37 0.4147 0.3 0.0120 0.48 1.1844 0.93 0.3238 1.38 0.4162 0.4 0.0160 0.49 0.1879 0.94 0.3264 1.39 0.4172 0.5 0.0199 0.50 0.1915 0.95 0.3289 1.40 0.4192 0.6 0.0239 0.51 0.1950 0.96 0.3315 1.41 0.4202 0.8 0.0319 0.53 0.2019 0.98 0.3365 1.43 0.4226 0.8 0.0319 0.53 0.2019 0.98 0.3365 1.43 0.4226 0.9 0.0359 0.54 0.2054 0.99 0.3389 1.44 0.4221 0.10 0.0398 0.55 0.2088 1.00 0.3413 1.45 0.4225 0.	X	$\Phi(x)$	X	$\Phi(x)$	X	$\Phi(x)$	X	$\Phi(x)$			
0.2 0.0080 0.47 0.1808 0.92 0.3212 1.37 0.4162 0.3 0.0120 0.48 1.1844 0.93 0.3238 1.38 0.4162 0.4 0.0160 0.49 0.1879 0.94 0.3264 1.39 0.4177 0.5 0.0199 0.50 0.1915 0.95 0.3289 1.40 0.4192 0.6 0.0239 0.51 0.1950 0.96 0.3315 1.41 0.4207 0.7 0.0279 0.52 0.1985 0.97 0.3340 1.42 0.4222 0.8 0.0319 0.53 0.2019 0.98 0.3365 1.43 0.4236 0.10 0.0398 0.55 0.2088 1.00 0.3413 1.45 0.4265 0.11 0.0438 0.56 0.2123 1.01 0.34381 1.46 0.4279 0.12 0.0478 0.57 0.2157 1.02 0.3461 1.47 0.4292 <td< td=""><td>0,0</td><td>0,0000</td><td>0,45</td><td>0,1736</td><td>0,90</td><td>0,3159</td><td>1,35</td><td>0,4115</td></td<>	0,0	0,0000	0,45	0,1736	0,90	0,3159	1,35	0,4115			
0,3 0,0120 0,48 1,1844 0,93 0,3238 1,38 0,4162 0,4 0,0160 0,49 0,1879 0,94 0,3264 1,39 0,4177 0,5 0,0199 0,50 0,1915 0,95 0,3289 1,40 0,4192 0,6 0,0239 0,51 0,1950 0,96 0,3315 1,41 0,4207 0,7 0,0279 0,52 0,1985 0,97 0,3340 1,42 0,4221 0,8 0,0319 0,53 0,2019 0,98 0,3365 1,43 0,4236 0,9 0,0359 0,54 0,2054 0,99 0,3389 1,44 0,4251 0,10 0,0398 0,55 0,2088 1,00 0,3413 1,45 0,4251 0,11 0,0438 0,56 0,2123 1,01 0,3438 1,46 0,4279 0,12 0,0478 0,57 0,2157 1,02 0,3461 1,47 0,4292	0,1	0,0040	0,46	0,1772	0,91	0,3186	1,36	0,4131			
0.4 0.0160 0.49 0.1879 0.94 0.3264 1,39 0.4177 0.5 0.0199 0.50 0.1915 0.95 0.3289 1,40 0.4192 0.6 0.0239 0.51 0.1985 0.96 0.3315 1,41 0.4207 0.7 0.0279 0.52 0.1985 0.97 0.3340 1,42 0.4222 0.8 0.0319 0.53 0.2019 0.98 0.3365 1,43 0.4236 0.9 0.0359 0.54 0.2054 0.99 0.3389 1,44 0.4251 0.10 0.0398 0.55 0.2088 1,00 0.3413 1,45 0.4265 0.11 0.0438 0.57 0.2157 1,02 0.3461 1,47 0.4279 0.12 0.0478 0.57 0.2157 1,02 0.3461 1,47 0.4292 0.13 0.0517 0.58 0.2190 1,03 0.3485 1,48 0,4306 <td< td=""><td>0,2</td><td>0,0080</td><td>0,47</td><td>0,1808</td><td>0,92</td><td>0,3212</td><td>1,37</td><td>0,4147</td></td<>	0,2	0,0080	0,47	0,1808	0,92	0,3212	1,37	0,4147			
0.5 0,0199 0,50 0,1915 0,95 0,3289 1,40 0,4192 0.6 0,0239 0,51 0,1950 0,96 0,3315 1,41 0,4207 0.7 0,0279 0,52 0,1985 0,97 0,3340 1,42 0,4222 0.8 0,0319 0,53 0,2019 0,98 0,3365 1,43 0,4236 0,9 0,0359 0,54 0,2054 0,99 0,3389 1,44 0,4251 0,10 0,0398 0,55 0,2088 1,00 0,3413 1,45 0,4265 0,11 0,0438 0,56 0,2123 1,01 0,3438 1,46 0,4279 0,12 0,0478 0,57 0,2157 1,02 0,3461 1,47 0,4299 0,13 0,0517 0,58 0,2190 1,03 0,3485 1,48 0,4306 0,15 0,0596 0,60 0,2224 1,04 0,3508 1,49 0,4319 <t< td=""><td>0,3</td><td>0,0120</td><td>0,48</td><td>1,1844</td><td>0,93</td><td>0,3238</td><td>1,38</td><td>0,4162</td></t<>	0,3	0,0120	0,48	1,1844	0,93	0,3238	1,38	0,4162			
0.6 0,0239 0,51 0,1950 0,96 0,3315 1,41 0,4207 0.7 0,0279 0,52 0,1985 0,97 0,3340 1,42 0,4222 0.8 0,0319 0,53 0,2019 0,98 0,3365 1,43 0,4236 0.9 0,0359 0,54 0,2054 0,99 0,3389 1,44 0,4251 0,10 0,0398 0,55 0,2088 1,00 0,3413 1,45 0,4265 0,111 0,0438 0,56 0,2123 1,01 0,3438 1,46 0,4279 0,12 0,0478 0,57 0,2157 1,02 0,3461 1,47 0,4292 0,13 0,0517 0,58 0,2190 1,03 0,3485 1,48 0,4306 0,14 0,0557 0,59 0,2224 1,04 0,3508 1,49 0,4319 0,15 0,0696 0,60 0,2257 1,05 0,3531 1,50 0,4332	0,4	0,0160	0,49	0,1879	0,94	0,3264	1,39	0,4177			
0,7 0,0279 0,52 0,1985 0,97 0,3340 1,42 0,4226 0,8 0,0319 0,53 0,2019 0,98 0,3365 1,43 0,4236 0,9 0,0359 0,54 0,2054 0,99 0,3389 1,44 0,4251 0,10 0,0398 0,55 0,2088 1,00 0,3413 1,45 0,4265 0,11 0,0438 0,56 0,2123 1,01 0,3438 1,46 0,4279 0,13 0,9517 0,58 0,2190 1,03 0,3485 1,48 0,4396 0,14 0,0557 0,59 0,2224 1,04 0,3508 1,49 0,4319 0,15 0,0596 0,60 0,2257 1,05 0,3531 1,50 0,4332 0,16 0,0636 0,61 0,2291 1,06 0,3554 1,51 0,4345 0,17 0,0675 0,62 0,2324 1,07 0,3577 1,52 0,4357	0,5	0,0199	0,50	0,1915	0,95	0,3289	1,40	0,4192			
0.8 0.0319 0.53 0.2019 0.98 0.3365 1,43 0.4236 0.9 0.0359 0.54 0.2054 0.99 0.3389 1,44 0.4251 0.10 0.0398 0.555 0.2088 1,00 0.3413 1,45 0.4265 0.11 0.0438 0.56 0.2123 1,01 0.3438 1,46 0.4279 0.12 0.0478 0.57 0.2157 1,02 0.3461 1,47 0.4292 0.13 0.0517 0.58 0.2190 1,03 0.3485 1,48 0,4306 0.14 0.0557 0.59 0.2224 1,04 0.3508 1,49 0,4319 0.15 0.0596 0,60 0.2257 1,05 0,3531 1,50 0,4332 0,16 0.0636 0,61 0.2291 1,06 0,3554 1,51 0,4345 0,17 0.0675 0,62 0,2324 1,07 0,3577 1,52 0,4357	0,6	0,0239	0,51	0,1950	0,96	0,3315	1,41	0,4207			
0,9 0,0359 0,54 0,2054 0,99 0,3389 1,44 0,4251 0,10 0,0398 0,55 0,2088 1,00 0,3413 1,45 0,4265 0,11 0,0438 0,56 0,2123 1,01 0,3438 1,46 0,4279 0,12 0,0478 0,57 0,2157 1,02 0,3461 1,47 0,4292 0,13 0,0517 0,58 0,2190 1,03 0,3485 1,48 0,4306 0,14 0,0557 0,59 0,2224 1,04 0,3508 1,49 0,4319 0,15 0,0596 0,60 0,2257 1,05 0,3531 1,50 0,4332 0,16 0,0636 0,61 0,2291 1,06 0,3554 1,51 0,4345 0,17 0,0675 0,62 0,2324 1,07 0,3577 1,52 0,4357 0,18 0,0714 0,63 0,2357 1,08 0,3599 1,53 0,4370	0,7	0,0279	0,52	0,1985	0,97	0,3340	1,42	0,4222			
0,10 0,0398 0,55 0,2088 1,00 0,3413 1,45 0,4265 0,11 0,0438 0,56 0,2123 1,01 0,34438 1,46 0,4279 0,12 0,0478 0,57 0,2157 1,02 0,3461 1,47 0,4292 0,13 0,0517 0,58 0,2190 1,03 0,3485 1,48 0,4306 0,14 0,0557 0,59 0,2224 1,04 0,3508 1,49 0,4319 0,15 0,0596 0,60 0,22257 1,05 0,3531 1,50 0,4319 0,16 0,0636 0,61 0,2291 1,06 0,3554 1,51 0,4345 0,17 0,0675 0,62 0,23324 1,07 0,3577 1,52 0,4357 0,18 0,0714 0,663 0,23357 1,08 0,3599 1,53 0,4370 0,19 0,0753 0,64 0,2389 1,09 0,3621 1,54 0,4382	0,8	0,0319	0,53	0,2019	0,98	0,3365	1,43	0,4236			
0,11 0,0438 0,56 0,2123 1,01 0,3438 1,46 0,4279 0,12 0,0478 0,57 0,2157 1,02 0,3461 1,47 0,4292 0,13 0,0517 0,58 0,2190 1,03 0,3485 1,48 0,4306 0,14 0,0557 0,59 0,2224 1,04 0,3508 1,49 0,4319 0,15 0,0596 0,60 0,2257 1,05 0,3531 1,50 0,4319 0,16 0,0636 0,61 0,2291 1,06 0,3554 1,51 0,4345 0,17 0,0675 0,62 0,2324 1,07 0,3577 1,52 0,4357 0,18 0,0714 0,63 0,2357 1,08 0,3599 1,53 0,4370 0,19 0,0753 0,64 0,2389 1,09 0,3621 1,54 0,4382 0,20 0,0793 0,65 0,2422 1,10 0,3643 1,55 0,4394	0,9	0,0359	0,54	0,2054	0,99	0,3389	1,44	0,4251			
0,12 0,0478 0,57 0,2157 1,02 0,3461 1,47 0,4292 0,13 0,0517 0,58 0,2190 1,03 0,3485 1,48 0,4306 0,14 0,0557 0,59 0,2224 1,04 0,3508 1,49 0,4319 0,15 0,0596 0,60 0,2257 1,05 0,3531 1,50 0,4332 0,16 0,0636 0,61 0,2291 1,06 0,3554 1,51 0,4345 0,17 0,0675 0,62 0,2324 1,07 0,3577 1,52 0,4387 0,18 0,0714 0,63 0,2357 1,08 0,3599 1,53 0,4370 0,19 0,0793 0,66 0,24389 1,09 0,3621 1,54 0,4382 0,20 0,0793 0,66 0,2454 1,11 0,3665 1,56 0,4496 0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418	0,10	0,0398	0,55	0,2088	1,00	0,3413	1,45	0,4265			
0,13 0,0517 0,58 0,2190 1,03 0,3485 1,48 0,4306 0,14 0,0557 0,59 0,2224 1,04 0,3508 1,49 0,4319 0,15 0,0596 0,60 0,2257 1,05 0,3531 1,50 0,4332 0,16 0,0636 0,61 0,2291 1,06 0,3554 1,51 0,4345 0,17 0,0675 0,62 0,2324 1,07 0,3577 1,52 0,4357 0,18 0,0714 0,63 0,2357 1,08 0,3599 1,53 0,4370 0,19 0,0753 0,64 0,2389 1,09 0,3621 1,54 0,4382 0,20 0,0793 0,65 0,24422 1,10 0,3643 1,55 0,4394 0,21 0,0832 0,66 0,24454 1,11 0,3686 1,57 0,4418 0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418	0,11	0,0438	0,56	0,2123	1,01	0,3438	1,46	0,4279			
0,14 0,0557 0,59 0,2224 1,04 0,3508 1,49 0,4319 0,15 0,0596 0,60 0,2257 1,05 0,35531 1,50 0,4332 0,16 0,0636 0,61 0,2291 1,06 0,3554 1,51 0,4345 0,17 0,0675 0,62 0,2324 1,07 0,3577 1,52 0,4357 0,18 0,0714 0,63 0,2357 1,08 0,3599 1,53 0,4370 0,19 0,0753 0,64 0,2389 1,09 0,3621 1,54 0,4382 0,20 0,0793 0,65 0,2422 1,10 0,3643 1,55 0,4394 0,21 0,0882 0,66 0,2454 1,11 0,3665 1,56 0,4406 0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418 0,23 0,9910 0,68 0,2517 1,13 0,3708 1,58 0,4429	0,12	0,0478	0,57	0,2157	1,02	0,3461	1,47	0,4292			
0,15 0,0596 0,60 0,2257 1,05 0,3531 1,50 0,4332 0,16 0,0636 0,61 0,2291 1,06 0,3554 1,51 0,4345 0,17 0,0675 0,62 0,2324 1,07 0,3577 1,52 0,4387 0,18 0,0714 0,63 0,2357 1,08 0,3599 1,53 0,4370 0,19 0,0753 0,64 0,2389 1,09 0,3621 1,54 0,4382 0,20 0,0793 0,65 0,2422 1,10 0,3643 1,55 0,4394 0,21 0,0832 0,66 0,2454 1,11 0,3665 1,56 0,4406 0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418 0,23 0,0910 0,68 0,2517 1,13 0,3708 1,58 0,4429 0,24 0,0948 0,69 0,2549 1,14 0,3729 1,59 0,4441	0,13	0,0517	0,58	0,2190	1,03	0,3485	1,48	0,4306			
0,16 0,0636 0,61 0,2291 1,06 0,3554 1,51 0,4345 0,17 0,0675 0,62 0,2324 1,07 0,35777 1,52 0,4357 0,18 0,0714 0,63 0,2357 1,08 0,3599 1,53 0,4370 0,19 0,0753 0,64 0,2389 1,09 0,3621 1,54 0,4382 0,20 0,0793 0,65 0,2422 1,10 0,3643 1,55 0,4394 0,21 0,0832 0,66 0,2454 1,11 0,3686 1,57 0,4418 0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418 0,23 0,9910 0,68 0,2517 1,13 0,3708 1,58 0,4429 0,24 0,0948 0,69 0,2549 1,14 0,3729 1,60 0,4452 0,25 0,0987 0,70 0,2580 1,15 0,3749 1,60 0,4452	0,14	0,0557	0,59	0,2224	1,04	0,3508	1,49	0,4319			
0,17 0,0675 0,62 0,2324 1,07 0,3577 1,52 0,4357 0,18 0,0714 0,63 0,2357 1,08 0,3599 1,53 0,4370 0,19 0,0753 0,64 0,2389 1,09 0,3621 1,54 0,4382 0,20 0,0793 0,65 0,2422 1,10 0,3643 1,55 0,4394 0,21 0,0832 0,66 0,2454 1,11 0,3665 1,56 0,4406 0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418 0,23 0,9910 0,68 0,2517 1,13 0,3708 1,58 0,4429 0,24 0,0948 0,69 0,2549 1,14 0,3729 1,59 0,4441 0,25 0,0987 0,70 0,2580 1,15 0,3749 1,60 0,4452 0,26 0,1026 0,71 0,2611 1,16 0,3770 1,61 0,4463	0,15	0,0596	0,60	0,2257	1,05	0,3531	1,50	0,4332			
0,18 0,0714 0,63 0,2357 1,08 0,3599 1,53 0,4370 0,19 0,0753 0,64 0,2389 1,09 0,3621 1,54 0,4382 0,20 0,0793 0,65 0,2422 1,10 0,3643 1,55 0,4394 0,21 0,0832 0,66 0,2454 1,11 0,3665 1,56 0,4406 0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418 0,23 0,0910 0,68 0,2517 1,13 0,3708 1,58 0,4429 0,24 0,0948 0,69 0,2549 1,14 0,3729 1,59 0,4441 0,25 0,0987 0,70 0,2580 1,15 0,3749 1,60 0,4452 0,26 0,1026 0,71 0,2611 1,16 0,3770 1,61 0,4463 0,27 0,1064 0,72 0,2642 1,17 0,3790 1,62 0,4474	0,16	0,0636	0,61	0,2291	1,06	0,3554	1,51	0,4345			
0,19 0,0753 0,64 0,2389 1,09 0,3621 1,54 0,4382 0,20 0,0793 0,65 0,2422 1,10 0,3643 1,55 0,4394 0,21 0,0832 0,66 0,2454 1,11 0,3665 1,56 0,4406 0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418 0,23 0,0910 0,68 0,2517 1,13 0,3708 1,58 0,4429 0,24 0,0948 0,69 0,2549 1,14 0,3729 1,59 0,4449 0,25 0,0987 0,70 0,2580 1,15 0,3749 1,60 0,4452 0,26 0,1026 0,71 0,2611 1,16 0,3770 1,61 0,4463 0,28 1,1103 0,73 0,2673 1,18 0,3810 1,63 0,4484 0,29 0,1141 0,74 0,2703 1,19 0,3830 1,64 0,4495	0,17	0,0675	0,62	0,2324	1,07	0,3577	1,52	0,4357			
0,20 0,0793 0,65 0,2422 1,10 0,3643 1,55 0,4394 0,21 0,0832 0,66 0,2454 1,11 0,36655 1,56 0,4406 0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418 0,23 0,0910 0,68 0,2517 1,13 0,3708 1,58 0,4429 0,24 0,0948 0,69 0,2549 1,14 0,3729 1,59 0,4441 0,25 0,0987 0,70 0,2580 1,15 0,3749 1,60 0,44452 0,26 0,1026 0,71 0,2611 1,16 0,3770 1,61 0,4463 0,27 0,1064 0,72 0,2642 1,17 0,3790 1,62 0,4474 0,28 1,1103 0,73 0,2673 1,18 0,3810 1,63 0,4484 0,29 0,1141 0,74 0,2703 1,19 0,3830 1,64 0,4495	0,18	0,0714	0,63		1,08	0,3599	1,53	0,4370			
0,21 0,0832 0,66 0,2454 1,11 0,3665 1,56 0,4406 0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418 0,23 0,0910 0,68 0,2517 1,13 0,3708 1,58 0,4429 0,24 0,0948 0,69 0,2549 1,14 0,3729 1,59 0,4441 0,25 0,0987 0,70 0,2580 1,15 0,3749 1,60 0,4452 0,26 0,1026 0,71 0,2611 1,16 0,3770 1,61 0,4463 0,27 0,1064 0,72 0,2642 1,17 0,3790 1,62 0,4474 0,28 1,1103 0,73 0,2673 1,18 0,3810 1,63 0,4484 0,29 0,1141 0,74 0,2703 1,19 0,3830 1,64 0,4495 0,31 0,2117 0,75 0,2734 1,20 0,3849 1,66 0,4515	0,19	0,0753	0,64	0,2389	1,09	0,3621	1,54	0,4382			
0,22 0,0871 0,67 0,2486 1,12 0,3686 1,57 0,4418 0,23 0,0910 0,68 0,2517 1,13 0,3708 1,58 0,4429 0,24 0,0948 0,69 0,2549 1,14 0,3729 1,59 0,4441 0,25 0,0987 0,70 0,2580 1,15 0,3749 1,60 0,4452 0,26 0,1026 0,71 0,2611 1,16 0,3770 1,61 0,4463 0,27 0,1064 0,72 0,2642 1,17 0,3790 1,62 0,4474 0,28 1,1103 0,73 0,2673 1,18 0,3810 1,63 0,4484 0,29 0,1141 0,74 0,2703 1,19 0,3830 1,64 0,4495 0,31 0,1217 0,76 0,2734 1,20 0,3849 1,65 0,4505 0,31 0,1217 0,76 0,2764 1,21 0,3869 1,66 0,4515	0,20	0,0793	0,65	0,2422	1,10	0,3643	1,55	0,4394			
0.23 0.0910 0.68 0.2517 1,13 0.3708 1,58 0,4429 0.24 0.0948 0,69 0.2549 1,14 0,3729 1,59 0,4441 0.25 0.0987 0,70 0.2580 1,15 0,3749 1,60 0,44452 0.26 0.1026 0,71 0,2611 1,16 0,3770 1,61 0,4463 0.27 0,1064 0,72 0,2642 1,17 0,3790 1,62 0,4474 0.28 1,1103 0,73 0,2673 1,18 0,3810 1,63 0,4484 0.29 0,1141 0,74 0,2703 1,19 0,3830 1,64 0,4495 0,30 0,1179 0,75 0,2734 1,20 0,3849 1,65 0,4505 0,31 0,1217 0,76 0,2764 1,21 0,3889 1,66 0,4515 0,32 0,1255 0,77 0,2794 1,22 0,3883 1,67 0,4525	0,21	0,0832	0,66	0,2454	1,11	0,3665	1,56	0,4406			
0,24 0,0948 0,69 0,2549 1,14 0,3729 1,59 0,4441 0,25 0,0987 0,70 0,2580 1,15 0,3749 1,60 0,4452 0,26 0,1026 0,71 0,2611 1,16 0,3770 1,61 0,4463 0,27 0,1064 0,72 0,2642 1,17 0,3790 1,62 0,4474 0,28 1,1103 0,73 0,2673 1,18 0,3810 1,63 0,4484 0,29 0,1141 0,74 0,2703 1,19 0,3830 1,64 0,4495 0,30 0,1179 0,75 0,2734 1,20 0,3849 1,65 0,4505 0,31 0,1217 0,76 0,2764 1,21 0,3869 1,66 0,4515 0,32 0,1255 0,77 0,2794 1,22 0,3883 1,67 0,4525 0,33 0,1293 0,78 0,2823 1,23 0,3907 1,68 0,4535	0,22		0,67	0,2486	1,12	0,3686	1,57	0,4418			
0,25 0,0987 0,70 0,2580 1,15 0,3749 1,60 0,4452 0,26 0,1026 0,71 0,2611 1,16 0,3770 1,61 0,4462 0,27 0,1064 0,72 0,2642 1,17 0,3790 1,62 0,4474 0,28 1,1103 0,73 0,2673 1,18 0,3810 1,63 0,4484 0,29 0,1141 0,74 0,2703 1,19 0,3830 1,64 0,4495 0,30 0,1179 0,75 0,2734 1,20 0,3849 1,65 0,4505 0,31 0,1217 0,76 0,2764 1,21 0,3869 1,66 0,4515 0,32 0,1255 0,77 0,2794 1,22 0,3883 1,67 0,4525 0,33 0,1293 0,78 0,2823 1,23 0,3907 1,68 0,4535 0,34 0,1331 0,79 0,2852 1,24 0,3925 1,69 0,4545	0,23	0,0910	0,68	0,2517	1,13	0,3708	1,58	0,4429			
0.26 0.1026 0.71 0.2611 1,16 0.3770 1,61 0,4463 0.27 0,1064 0,72 0,2642 1,17 0,3790 1,62 0,4474 0.28 1,1103 0,73 0,2673 1,18 0,3810 1,63 0,4484 0.29 0,1141 0,74 0,2703 1,19 0,3830 1,64 0,4495 0,30 0,1179 0,75 0,2734 1,20 0,3849 1,65 0,4505 0,31 0,1217 0,76 0,2764 1,21 0,3869 1,66 0,4515 0,32 0,1255 0,77 0,2794 1,22 0,3883 1,67 0,4525 0,33 0,1293 0,78 0,2823 1,23 0,3907 1,68 0,4535 0,34 0,1331 0,79 0,2852 1,24 0,3925 1,69 0,4545 0,35 0,1368 0,80 0,2881 1,25 0,3944 1,70 0,4554	0,24	0,0948		0,2549	1,14	0,3729	1,59	0,4441			
0,27 0,1064 0,72 0,2642 1,17 0,3790 1,62 0,4474 0,28 1,1103 0,73 0,2673 1,18 0,3810 1,63 0,4484 0,29 0,1141 0,74 0,2703 1,19 0,3830 1,64 0,4495 0,30 0,1179 0,75 0,2734 1,20 0,3849 1,65 0,4505 0,31 0,1217 0,76 0,2764 1,21 0,3869 1,66 0,4515 0,32 0,1255 0,77 0,2794 1,22 0,3883 1,67 0,4525 0,33 0,1293 0,78 0,2823 1,23 0,3907 1,68 0,4535 0,34 0,1331 0,79 0,2852 1,24 0,3925 1,69 0,4545 0,35 0,1368 0,80 0,2881 1,25 0,3944 1,70 0,4554 0,36 0,1406 0,81 0,2910 1,26 0,3962 1,71 0,4564	0,25	0,0987	0,70	0,2580	1,15	0,3749	1,60	0,4452			
0.28 1,1103 0,73 0,2673 1,18 0,3810 1,63 0,4484 0.29 0,1141 0,74 0,2703 1,19 0,3830 1,64 0,4495 0,30 0,1179 0,75 0,2734 1,20 0,3849 1,65 0,4505 0,31 0,1217 0,76 0,2764 1,21 0,3869 1,66 0,4515 0,32 0,1255 0,77 0,2794 1,22 0,3883 1,67 0,4525 0,33 0,1293 0,78 0,2823 1,23 0,3907 1,68 0,4535 0,34 0,1331 0,79 0,2852 1,24 0,3925 1,69 0,4545 0,35 0,1368 0,80 0,2881 1,25 0,3944 1,70 0,4554 0,36 0,1406 0,81 0,2910 1,26 0,3962 1,71 0,4564 0,37 0,1443 0,82 0,2839 1,27 0,3980 1,72 0,4573	0,26	0,1026		0,2611	1,16	0,3770		0,4463			
0.29 0.1141 0.74 0.2703 1,19 0.3830 1,64 0.4495 0.30 0.1179 0.75 0.2734 1,20 0.3849 1,65 0,4505 0.31 0.1217 0.76 0.2764 1,21 0,3869 1,66 0,4515 0.32 0.1255 0.77 0.2794 1,22 0,3883 1,67 0,4525 0.33 0,1293 0,78 0,2823 1,23 0,3907 1,68 0,4535 0,34 0,1331 0,79 0,2852 1,24 0,3925 1,69 0,4545 0,35 0,1368 0,80 0,2881 1,25 0,3944 1,70 0,4544 0,36 0,1406 0,81 0,2910 1,26 0,3962 1,71 0,4564 0,37 0,1443 0,82 0,2839 1,27 0,3980 1,72 0,4573 0,38 0,1480 0,83 0,2967 1,28 0,3997 1,73 0,4582	0,27	0,1064		0,2642	1,17	0,3790	1,62	0,4474			
0,30 0,1179 0,75 0,2734 1,20 0,3849 1,65 0,4505 0,31 0,1217 0,76 0,2764 1,21 0,3869 1,66 0,4515 0,32 0,1255 0,77 0,2794 1,22 0,3883 1,67 0,4525 0,33 0,1293 0,78 0,2823 1,23 0,3907 1,68 0,4535 0,34 0,1331 0,79 0,2852 1,24 0,3925 1,69 0,4545 0,35 0,1368 0,80 0,2881 1,25 0,3944 1,70 0,4554 0,36 0,1406 0,81 0,2910 1,26 0,3962 1,71 0,4564 0,37 0,1443 0,82 0,2839 1,27 0,3980 1,72 0,4573 0,38 0,1480 0,83 0,2967 1,28 0,3997 1,73 0,4582 0,40 0,1554 0,84 0,2995 1,29 0,4015 1,74 0,4591	0,28	1,1103		0,2673	1,18	0,3810	1,63	0,4484			
0.31 0.1217 0.76 0.2764 1.21 0.3869 1,66 0.4515 0.32 0.1255 0.77 0.2794 1,22 0.3883 1,67 0.4525 0.33 0.1293 0.78 0.2823 1,23 0.3907 1,68 0.4535 0.34 0.1331 0.79 0.2852 1,24 0.3925 1,69 0.4545 0.35 0.1368 0.80 0.2881 1,25 0.3944 1,70 0,4554 0.36 0.1406 0.81 0.2910 1,26 0.3962 1,71 0.4564 0.37 0.1443 0.82 0.2839 1,27 0.3980 1,72 0,4573 0.38 0.1480 0.83 0.2967 1,28 0,3997 1,73 0,4582 0.39 0.1517 0.84 0,2995 1,29 0,4015 1,74 0,4591 0,40 0.1554 0.85 0,3023 1,30 0,4032 1,75 0,4599	0,29	0,1141	0,74	0,2703	1,19	0,3830	1,64	0,4495			
0.32 0.1255 0.77 0.2794 1,22 0.3883 1,67 0,4525 0,33 0,1293 0,78 0,2823 1,23 0,3907 1,68 0,4535 0,34 0,1331 0,79 0,2852 1,24 0,3925 1,69 0,4545 0,35 0,1368 0,80 0,2881 1,25 0,3944 1,70 0,4554 0,36 0,1406 0,81 0,2910 1,26 0,3962 1,71 0,4564 0,37 0,1443 0,82 0,2839 1,27 0,3980 1,72 0,4573 0,38 0,1480 0,83 0,2967 1,28 0,3997 1,73 0,4582 0,39 0,1517 0,84 0,2995 1,29 0,4015 1,74 0,4591 0,40 0,1554 0,85 0,3023 1,30 0,4032 1,75 0,4599 0,41 0,1591 0,86 0,3051 1,31 0,4049 1,76 0,4608	0,30	0,1179	0,75	0,2734	1,20	0,3849					
0,33 0,1293 0,78 0,2823 1,23 0,3907 1,68 0,4535 0,34 0,1331 0,79 0,2852 1,24 0,3925 1,69 0,4545 0,35 0,1368 0,80 0,2881 1,25 0,3944 1,70 0,4554 0,36 0,1406 0,81 0,2910 1,26 0,3962 1,71 0,4564 0,37 0,1443 0,82 0,2839 1,27 0,3980 1,72 0,4573 0,38 0,1480 0,83 0,2967 1,28 0,3997 1,73 0,4582 0,39 0,1517 0,84 0,2995 1,29 0,4015 1,74 0,4591 0,40 0,1554 0,85 0,3023 1,30 0,4032 1,75 0,4599 0,41 0,1591 0,86 0,3051 1,31 0,4049 1,76 0,4608 0,42 0,1628 0,87 0,3078 1,32 0,4066 1,77 0,4616	0,31	0,1217	0,76	0,2764	1,21	0,3869		0,4515			
0,34 0,1331 0,79 0,2852 1,24 0,3925 1,69 0,4545 0,35 0,1368 0,80 0,2881 1,25 0,3944 1,70 0,4554 0,36 0,1406 0,81 0,2910 1,26 0,3962 1,71 0,4564 0,37 0,1443 0,82 0,2839 1,27 0,3980 1,72 0,4573 0,38 0,1480 0,83 0,2967 1,28 0,3997 1,73 0,4582 0,39 0,1517 0,84 0,2995 1,29 0,4015 1,74 0,4591 0,40 0,1554 0,85 0,3023 1,30 0,4032 1,75 0,4599 0,41 0,1591 0,86 0,3051 1,31 0,4049 1,76 0,4608 0,42 0,1628 0,87 0,3078 1,32 0,4066 1,77 0,4616 0,43 0,1664 0,88 0,3106 1,33 0,4082 1,78 0,4625							1,67				
0.35 0.1368 0.80 0.2881 1,25 0.3944 1,70 0,4554 0.36 0,1406 0,81 0,2910 1,26 0,3962 1,71 0,4564 0,37 0,1443 0,82 0,2839 1,27 0,3980 1,72 0,4573 0,38 0,1480 0,83 0,2967 1,28 0,3997 1,73 0,4582 0,39 0,1517 0,84 0,2995 1,29 0,4015 1,74 0,4591 0,40 0,1554 0,85 0,3023 1,30 0,4032 1,75 0,4599 0,41 0,1591 0,86 0,3051 1,31 0,4049 1,76 0,4608 0,42 0,1628 0,87 0,3078 1,32 0,4066 1,77 0,4616 0,43 0,1664 0,88 0,3106 1,33 0,4082 1,78 0,4625	0,33	0,1293		0,2823	1,23	0,3907	1,68	0,4535			
0,36 0,1406 0,81 0,2910 1,26 0,3962 1,71 0,4564 0,37 0,1443 0,82 0,2839 1,27 0,3980 1,72 0,4573 0,38 0,1480 0,83 0,2967 1,28 0,3997 1,73 0,4582 0,39 0,1517 0,84 0,2995 1,29 0,4015 1,74 0,4591 0,40 0,1554 0,85 0,3023 1,30 0,4032 1,75 0,4599 0,41 0,1591 0,86 0,3051 1,31 0,4049 1,76 0,4608 0,42 0,1628 0,87 0,3078 1,32 0,4066 1,77 0,4616 0,43 0,1664 0,88 0,3106 1,33 0,4082 1,78 0,4625											
0,37 0,1443 0,82 0,2839 1,27 0,3980 1,72 0,4573 0,38 0,1480 0,83 0,2967 1,28 0,3997 1,73 0,4582 0,39 0,1517 0,84 0,2995 1,29 0,4015 1,74 0,4591 0,40 0,1554 0,85 0,3023 1,30 0,4032 1,75 0,4599 0,41 0,1591 0,86 0,3051 1,31 0,4049 1,76 0,4608 0,42 0,1628 0,87 0,3078 1,32 0,4066 1,77 0,4616 0,43 0,1664 0,88 0,3106 1,33 0,4082 1,78 0,4625	0,35	0,1368	0,80		1,25	0,3944	1,70	0,4554			
0,38 0,1480 0,83 0,2967 1,28 0,3997 1,73 0,4582 0,39 0,1517 0,84 0,2995 1,29 0,4015 1,74 0,4591 0,40 0,1554 0,85 0,3023 1,30 0,4032 1,75 0,4599 0,41 0,1591 0,86 0,3051 1,31 0,4049 1,76 0,4608 0,42 0,1628 0,87 0,3078 1,32 0,4066 1,77 0,4616 0,43 0,1664 0,88 0,3106 1,33 0,4082 1,78 0,4625											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
0,40 0,1554 0,85 0,3023 1,30 0,4032 1,75 0,4599 0,41 0,1591 0,86 0,3051 1,31 0,4049 1,76 0,4608 0,42 0,1628 0,87 0,3078 1,32 0,4066 1,77 0,4616 0,43 0,1664 0,88 0,3106 1,33 0,4082 1,78 0,4625											
0,41 0,1591 0,86 0,3051 1,31 0,4049 1,76 0,4608 0,42 0,1628 0,87 0,3078 1,32 0,4066 1,77 0,4616 0,43 0,1664 0,88 0,3106 1,33 0,4082 1,78 0,4625											
0,42	. , .	.,				.,		.,			
0,43 0,1664 0,88 0,3106 1,33 0,4082 1,78 0,4625											
0,44 0,1700 0,89 0,3133 1,34 0,4099 1,79 0,4633											
	0,44	0,1700	0,89	0,3133	1,34	0,4099	1,79	0,4633			

Продолжение таблицы 2

		iipogotiintiiit ittotiiigsi					
X	$\Phi(x)$	X	$\Phi(x)$	X	$\Phi(x)$	X	Ф(х)
1,80	0,4641	2,00	0,4772	2,40	0,4918	2,80	0,4974
1,81	0,4649	2,02	0,4783	2,42	0,4922	2,82	0,4976
1,82	0,4656	2,04	0,4793	2,44	0,4927	2,84	0,4977
1,83	0,4664	2,06	0,4803	2,46	0,4931	2,86	0,4979
1,84	0,4671	2,08	0,4812	2,48	0,4934	2,88	0,4980
1,85	0,4678	2,10	0,4821	2,50	0,4938	2,90	0,4981
1,86	0,4686	2,12	0,4830	2,52	0,4941	2,92	0,4982
1,87	0,4693	2,14	0,4838	2,54	0,4945	2,94	0,4984
1,88	0,4699	2,16	0,4846	2,56	0,4948	2,96	0,4985
1,89	0,4706	2,18	0,4854	2,58	0,4951	2,98	0,4986
1,90	0,4713	2,20	0,4861	2,60	0,4953	3,00	0,49865
1,91	0,4719	2,22	0,4868	2,62	0,4956	3,20	0,49931
1,92	0,4726	2,24	0,4875	2,64	0,4959	3,40	0,49966
1,93	0,4732	2,26	0,4881	2,66	0,4961	3,60	0,499841
1,94	0,4738	2,28	0,4887	2,68	0,4963	3,80	0,499928
1,95	0,4744	2,30	0,4893	2,70	0,4965	4,00	0,499968
1,96	0,4750	2,32	0,4898	2,72	0,4967	4,50	0,499997
1,97	0,4756	2,34	0,4904	2,74	0,4969	5,00	0,499997
1,98	0,4761	2,36	0,4909	2,76	0,4971		
1,99	0,4767	2,38	0,4913	2,78	0,4973		