Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

Кафедра математики

А.А. Ельцов, Т.А. Ельцова

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

Методические указания по выполнению контрольных работ Корректор: Осипова Е.А.

Ельцов А.А., Ельцова Т.А.

Интегральное исчисление: методические указания по выполнению контрольных работ. — Томск: Факультет дистанционного обучения, ТУСУР, 2013. - 60 с.

[©] Факультет дистанционного обучения, ТУСУР, 2013

СОДЕРЖАНИЕ

Методические указания по выполнению	
контрольных работ	
Контрольная работа № 1	4
Контрольная работа № 2	20
Контрольные работы	34
Выбор варианта контрольных работ	34
Контрольная работа № 1	34
Вариант 1.1	34
Вариант 1.2	35
Вариант 1.3	36
Вариант 1.4	37
Вариант 1.5	38
Вариант 1.6	39
Вариант 1.7	40
Вариант 1.8	41
Вариант 1.9	42
Вариант 1.10	43
Контрольная работа № 2	44
Вариант 2.1	44
Вариант 2.2	45
Вариант 2.3	45
Вариант 2.4	46
Вариант 2.5	47
Вариант 2.6	48
Вариант 2.7	49
Вариант 2.8	50
Вариант 2.9	
Вариант 2.10	52
Литература	53
Приложение 1 Комплексные числа и действия над ними	
Приложение 2 Таблица интегралов	
•	
Приложение 3 Прямая таблица дифференциалов	
Приложение 4 Обратная таблица дифференциалов	60

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ

Контрольная работа № 1

Контрольная работа № 1 выполняется после изучения глав «Неопределённый интеграл» и «Определённый интеграл». Контрольная работа содержит 17 задач.

Задачи 1—4 относятся к теме: «Подведение под знак дифференциала». Для решения этих задач необходимо изучить п. 1.2.1.

Приведём ещё один из подобных примеров.

$$\int e^{5\sin 4x} \cos 4x \, dx = \frac{1}{4} \int e^{5\sin 4x} d(\sin 4x) =$$

$$= \frac{1}{4 \cdot 5} \int e^{5\sin 4x} d(5\sin 4x) = \frac{1}{20} e^{5\sin 4x} + C.$$

Задачи для самостоятельного решения

Найти интегралы:

1)
$$\int (1+\sin x)^3 \cos x \, dx$$
; 2) $\int \frac{(3+2\ln x)^5}{x} dx$; 3) $\int \frac{\sqrt{1+\ln x}}{x} dx$;

4) $\int \frac{x}{\sqrt{2+x^2}} dx$; 5) $\int \frac{\cos x \, dx}{\sqrt{2+3\sin x}}$; 6) $\int \frac{dx}{x(1+2\ln x)^3}$;

7) $\int \frac{x^3}{1+x^4} dx$; 8) $\int \frac{dx}{\cos^2 x(2+tgx)}$; 9) $\int \frac{dx}{x(5+\ln x)}$;

10) $\int \frac{x dx}{9+x^2}$; 11) $\int \frac{x dx}{16+x^2}$; 12) $\int \frac{\cos x}{9+\sin^2 x} dx$;

13) $\int \frac{dx}{\sin^2 x(4+\cot x^2)}$; 14) $\int \frac{dx}{x(3+\ln^2 x)}$; 15) $\int \frac{dx}{36+x^2}$;

16) $\int \frac{dx}{9+x^2}$; 17) $\int \frac{x dx}{9+x^4}$; 18) $\int \frac{x dx}{16+9x^4}$;

19) $\int e^{x^2+\ln x} dx$; 20) $\int e^{\cos 4x} \sin 4x \, dx$; 21) $\int e^{(\ln^2 x+2)} \frac{\ln x}{x} \, dx$;

22) $\int e^{1/x^3} \cdot \frac{dx}{x^4}$; 23) $\int \frac{\cos \ln x}{x} \, dx$; 24) $\int \frac{1}{\sqrt{x}} \cos \sqrt{x} \, dx$;

$$25) \int \frac{1}{x^7} \cos\left(\frac{1}{x^6}\right) dx.$$

Ответы: 1) $\frac{1}{8}(1+2\sin x)^4+C$; 2) $\frac{1}{12}(3+2\ln x)^6+C$;

3)
$$\frac{2}{3}(1+\ln x)^{\frac{3}{2}}+C$$
; 4) $\sqrt{2+x^2}+C$; 5) $\frac{2}{3}\sqrt{2+3\sin x}+C$;

6)
$$-\frac{1}{4} \frac{1}{(1+2\ln x)^2} + C$$
; 7) $\frac{1}{4} \ln(1+x^4) + C$; 8) $\ln|2+ \lg x| + C$;

9)
$$\ln |5 + \ln x| + C$$
; 10) $\frac{1}{2} \ln(9 + x^2) + C$; 11) $\frac{1}{2} \ln(16 + x^2) + C$;

12)
$$\frac{1}{3} \arctan \frac{\sin x}{3} + C$$
; 13) $-\frac{1}{2} \arctan \frac{\cot x}{2} + C$; 14) $\frac{1}{\sqrt{3}} \arctan \frac{\ln x}{\sqrt{3}} + C$;

15)
$$\frac{1}{6} \arctan \frac{x}{6} + C$$
; 16) $\frac{1}{3} \arctan \frac{x}{3} + C$; 17) $\frac{1}{6} \arctan \frac{x^2}{3} + C$;

18)
$$\frac{1}{24} \operatorname{arctg} \frac{3x^2}{4} + C$$
; 19) $\frac{1}{2} e^{x^2} + C$; 20) $-\frac{1}{4} e^{\cos 4x} + C$;

21)
$$\frac{1}{2}e^{(\ln^2 x + 2)} + C$$
; 22) $-\frac{1}{3}e^{1/x^3} + C$; 23) $-\sin \ln x + C$;

24)
$$-2\sin\sqrt{x} + C$$
; 25) $\frac{1}{6}\sin\left(\frac{1}{x^6}\right) + C$.

Задача 5 относится к теме: «Интегрирование по частям». Для решения этой задачи необходимо изучить п. 1.2.2.

Приведём пример.

Вычислить $\int (x+9)\cos 7x dx$.

Полагаем $U=x+9,\ dV=\cos 7xdx.$ Тогда dU=dx, $\int dV=\int \cos 7xdx=\frac{1}{7}\sin 7x+C\ ,$ и в качестве V можем взять $V=\frac{1}{7}\sin 7x$, поэтому

$$\int (x+9)\cos 7x dx = \frac{1}{7}(x+9)\sin 7x - \frac{1}{7}\int \sin 7x dx =$$

$$= \frac{1}{7}(x+9)\sin 7x + \frac{1}{49}\cos 7x + C.$$

Задача 6 решается либо с помощью интегрирования по частям, либо с помощью замены переменной.

Приведём ещё один пример. Вычислим вначале интеграл $\int \frac{x^5}{\left(1+x^3\right)^{10}} dx$ интегрированием по частям. Положим

$$U=x^3,\ dV=rac{x^2dx}{\left(1+x^3
ight)^{10}}$$
. Тогда $dU=3x^2dx, V=-rac{1}{27}(1+x^3)^{-9}$ и по-

ЭТОМУ

$$\int \frac{x^5}{\left(1+x^3\right)^{10}} dx = -\frac{1}{27}x^3(1+x^3)^{-9} + \int \frac{1}{27}(1+x^3)^{-9} 3x^2 dx =$$

$$= -\frac{1}{27}x^3(1+x^3)^{-9} - \frac{1}{216}(1+x^3)^{-8} + C.$$

Найдём теперь этот интеграл с помощью замены переменной $z = 1 + x^3$. Тогда $dz = 3x^2 dx$, $x^3 = z - 1$, и поэтому

$$\int \frac{x^5}{\left(1+x^3\right)^{10}} dx = \frac{1}{3} \int \frac{z-1}{z^{10}} dz = \frac{1}{3} \int z^{-9} dz - \frac{1}{3} \int z^{-10} dz =$$

$$= -\frac{1}{24} z^{-8} + \frac{1}{27} z^{-9} + C = \frac{1}{27} \left(1+x^3\right)^{-9} - \frac{1}{24} \left(1+x^3\right)^{-8} + C.$$

В контрольной работе нужно привести один из этих вариантов по усмотрению студента.

Задачи для самостоятельного решения

Найти интегралы:

- 1) $\int x \sin 5x dx$; 2) $\int \ln(x+1) dx$; 3) $\int \ln(x^2+4) dx$;
- 4) $\int \arctan 2x dx$; 5) $\int x tg^2 2x dx$; 6) $\int (x^2 + 1) \ln x dx$;
- 7) $\int \operatorname{arcctg} 5x dx$; 8) $\int xe^{2x} dx$; 9) $\int x^3 e^{x^2} dx$;
- 10) $\int e^{2x} \cos 3x \, dx$; 11) $\int e^{5x} \cos 2x \, dx$.

Ответы: 1) $-\frac{1}{5}x\cos 5x + \frac{1}{25}x\sin 5x + C$;

2)
$$x\ln(x+1) - x + \ln(x+1) + C$$
; 3) $x\ln(x^2+4) - 2x + 2\arctan\frac{x}{2} + C$;

4)
$$x \arctan 2x - \frac{1}{4} \ln(1 + 4x^2) + C$$
; 5) $\frac{1}{2} x \tan 2x - \frac{x^2}{2} + \frac{1}{4} \ln|\cos 2x| + C$;

6)
$$(\frac{x^3}{3} + x) \ln x - \frac{x^3}{3} - x + C$$
; 7) $x \operatorname{arcctg} 5x + \frac{1}{10} \ln(1 + 25x^2) + C$;

8)
$$\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + C$$
; 9) $\frac{1}{2}x^2e^{x^2} - \frac{1}{2}e^{x^2} + C$;

10)
$$\frac{2e^{2x}\cos 3x + 3e^{2x}\sin 3x}{13} + C; 11) \frac{5e^{5x}\cos 2x - 2e^{5x}\cos 2x}{29} + C.$$

Задача 7 относится к теме: «Интегрирование простейших иррациональностей». Для решения этой задачи необходимо изучить первую часть п. 1.2.5.

Приведём пример.

Вычислить
$$\int \frac{\sqrt[5]{(x+2)}}{3\sqrt{x+2} + \sqrt[5]{(x+2)^6}} dx$$
. Наименьшее общее

кратное чисел 2 и 5 равно 10. Поэтому делаем замену $x+2=t^{10}$. Тогда $dx=10t^9dt$ и

$$\int \frac{\sqrt[5]{(x+2)}}{3\sqrt{x+2} + \sqrt[5]{(x+2)^6}} dx = \int \frac{t^2 10t^9 dt}{3t^5 + t^{12}} = 10 \int \frac{t^6}{3 + t^7} dt =$$

$$= \frac{10}{7} \ln\left| 3 + t^7 \right| + C = \frac{10}{7} \ln\left| 3 + (x+2)^{\frac{7}{10}} \right| + C.$$

Задачи для самостоятельного решения

Найти интегралы:

1)
$$\int \frac{x+5}{x-2} dx$$
; 2) $\int \frac{2x+5}{x-3} dx$; 3 $\int \frac{(x+5)^2}{x^2+25} dx$; 4) $\int \frac{x^2}{x^2+9} dx$;

5)
$$\int \sin^2 3x \, dx$$
; 6)
$$\int \cos^3 4x \, dx$$
; 7)
$$\int \sin 7x \cos 3x \, dx$$
; 8)
$$\int \operatorname{tg}^2 3x \, dx$$
;

9)
$$\int tg^4 7x dx$$
; 10) $\int \frac{dx}{x^2 + 4x + 5}$; 11) $\int \frac{dx}{x^2 + 4x + 29}$;

12)
$$\int \frac{dx}{4x^2 + 8x + 5}$$
; 13) $\int \frac{dx}{\sqrt{6x - x^2 - 8}}$; 14) $\int \frac{dx}{\sqrt{5 - 4x^2 + 8x}}$;

15)
$$\int \frac{(x+3)dx}{4x^2+8x+5}$$
; 16) $\int \frac{(3x+2)dx}{\sqrt{5-4x^2+8x}}$.

Ответы: 1)
$$x + 7 \ln |x - 2| + C$$
; 2) $2x + 11 \ln |x - 3| + C$;

3)
$$x + 5\ln(x^2 + 25) + C$$
;

3)
$$x + 5\ln(x^2 + 25) + C$$
; 4) $x - 3\arctan\frac{x}{3} + C$;

5)
$$\frac{1}{2}x - \frac{1}{12}\sin 6x + C$$
;

5)
$$\frac{1}{2}x - \frac{1}{12}\sin 6x + C$$
; 6) $\frac{1}{4}\sin 4x - \frac{1}{12}\sin^3 4x + C$;

7)
$$-\frac{1}{8}\cos 4x - \frac{1}{20}\cos 10x + C$$
; 8) $\frac{1}{3} \operatorname{tg} 3x - x + C$;

9)
$$\frac{1}{21}$$
tg³7x - $\frac{1}{7}$ tg7x - x + C; 10) arctg(x + 2) + C;

10)
$$\operatorname{arctg}(x+2) + C$$

11)
$$\operatorname{arctg} \frac{x+2}{5} + C$$
;

12)
$$\frac{1}{2} \operatorname{arctg}(2x+2) + C$$
;

13)
$$\arcsin(x-3)+C$$
;

14)
$$\frac{1}{2}\arcsin\frac{2(x-1)}{3} + C$$
;

15)
$$\frac{1}{8}\ln(4x^2 + 8x + 5) + \arctan(2x + 2) + C$$
;

16)
$$-\frac{3}{4}\sqrt{5-4x^2+8x} + \frac{11}{6}\arcsin\frac{2(x-1)}{3} + C$$
.

Задача 8 относится к теме: Интегрирование выражений, содержащих тригонометрические функции». Для решения этой задачи необходимо изучить вторую часть п. 1.2.5.

Приведём пример.

Вычислить интеграл
$$\int \frac{\cos^3 5x}{2 + \sin^2 5x} dx$$
.

Так как при смене знака у функции $\cos 5x$ подынтегральная функция меняет знак, то делаем замену $\sin 5x = t$, получаем

$$\int \frac{\cos^3 5x}{2 + \sin^2 5x} dx = \frac{1}{5} \int \frac{(1 - t^2)dt}{2 + t^2} = \frac{1}{5} \int \frac{3 - (t^2 + 2)}{2 + t^2} dt =$$

$$= \frac{3}{5\sqrt{2}} \arctan \frac{t}{\sqrt{2}} + \frac{1}{5}t + C = \frac{3}{5\sqrt{2}} \arctan \frac{\sin 5x}{\sqrt{2}} + \frac{1}{5}\sin 3x + C.$$

Задачи для самостоятельного решения

Вычислить интегралы:

1)
$$\int \frac{\sqrt{x-3}}{x-3-\sqrt[3]{(x-3)^2}} dx$$
; 2) $\int \frac{\sqrt[4]{x+2}+1}{\sqrt{x+2}+\sqrt[4]{(x+2)^3}} dx$;

3)
$$\int \frac{\sqrt{x-1}-1}{\sqrt{x-1}+1} dx$$
; 4) $\int \frac{\sin^3 x}{1+\cos^2 x} dx$; 5) $\int \cos^4 x \sin^3 x dx$;

6)
$$\int \frac{dx}{x^2 \sqrt{9-x^2}}$$
; 7) $\int \frac{dx}{x^2 \sqrt{1+x^2}}$; 8) $\int \frac{\sin^2 x}{\cos^6 x} dx$.

Ответы: 1)
$$2\sqrt{x-3} + 6\sqrt[6]{x-3} + 3\ln\left|\frac{\sqrt[6]{x-3}-1}{\sqrt[6]{x-3}+1}\right| + C$$
;

2)
$$2\sqrt{x+2} + C$$
; 3) $2\sqrt{x+2} + C$; 4) $\cos x - 2 \arctan \cos x + C$;

5)
$$\frac{\sin^7 x}{7} - \frac{\sin^9 x}{9} + C$$
; 6) $-\frac{1}{9} \text{ctg}(\arcsin \frac{x}{3}) + C = -\frac{1}{9} \text{tg}(\arccos \frac{x}{3}) + C$;

7)
$$-\frac{1}{16\sin(\arctan(\frac{x}{4}))} + C$$
; 8) $\frac{\lg^3 x}{3} + \frac{\lg^5 x}{5} + C$.

Задача 9 относится к теме: «Интегрирование рациональных дробей». Для решения этой задачи необходимо изучить п. 1.2.4.

Приведём пример.

Найти
$$\int \frac{2x^3 - 8x^2 - 9x + 69}{(x^2 + 2x + 2)(x - 5)^2} dx$$
.

Корни знаменателя — $x_{1,2} = 5$ кратности 2 и пара комплексносопряжённых корней $x_{3,4} = -1 \pm i$ кратности 1. Поэтому подынтегральная функция может быть представлена в виде

$$\frac{2x^3 - 8x^2 - 9x + 69}{(x^2 + 2x + 2)(x - 5)^2} = \frac{A_1}{x - 5} + \frac{A_2}{(x - 5)^2} + \frac{Mx + N}{x^2 + 2x + 2}.$$

Приводя к общему знаменателю и подобные, получаем:

$$\frac{2x^3 - 8x^2 - 9x + 69}{(x^2 + 2x + 2)(x - 5)^2} = \frac{(A_1 + M)x^3 + (-3A_1 + A_2 - 10M + N)x^2}{(x^2 + 2x + 2)(x - 5)^2} + \frac{(-8A_1 + 2A_2 + 25M - 10N)x + (-10A_1 + 2A_2 + 25N)}{(x^2 + 2x + 2)(x - 5)^2}.$$

Приравнивая коэффициенты при одинаковых степенях x в числителях правой и левой частей последнего соотношения, получаем:

$$\begin{cases} A_1 + M = 2, \\ -3A_1 + A_2 - 10M + N = -8, \\ -8A_1 + 2A_2 + 25M - 10N = -9, \\ -10A_1 + 2A_2 + 25N = 69. \end{cases}$$

Решая эту систему, находим $A_1 = 1, A_2 = 2, M = 1, N = 3$. Таким образом,

$$\int \frac{2x^3 - 8x^2 - 9x + 69}{(x^2 + 2x + 2)(x - 5)^2} dx = \int \frac{dx}{x - 5} + 2\int \frac{dx}{(x - 5)^2} + \int \frac{x + 3}{x^2 + 2x + 2} dx =$$

$$= \ln|x - 5| - \frac{2}{x - 5} + \frac{1}{2}\ln(x^2 + 2x + 2) + 2\arctan(x + 1) + C.$$

Задачи для самостоятельной работы

1. Вычислить интегралы:

a)
$$\int \frac{x^3 - 9x^2 - 22x + 79}{(x^2 + 2x + 26)(x - 3)^2} dx$$
; 6) $\int \frac{2x^3 - 5x^2 + 12x - 49}{(x^2 - 6x + 25)(x - 1)^2} dx$.

2. Написать разложение рациональной дроби на элементарные (не находя коэффициентов):

a)
$$\frac{3x^2 + 4x - 8}{(x^2 + 1)^3 (x - 2)^2 (x - 3)}$$
; 6) $\frac{x^3 - 4x^2 + 9}{(x^2 + 2x + 10)^2 (x + 1)^3 (x - 1)}$.

Ответы:

1. a)
$$\ln(x^2 + 2x + 26) + \frac{1}{5} \arctan \left| \frac{x+1}{5} - \ln \left| x - 3 \right| + \frac{1}{x-3} + C$$
;

6)
$$\ln(x^2 - 6x + 25) + \frac{7}{4} \arctan \frac{x-3}{4} + \frac{2}{x-1} + C$$
.

2. a)
$$\frac{M_1x + N_1}{(x^2 + 1)^3} + \frac{M_2x + N_2}{(x^2 + 1)^2} + \frac{M_3x + N_3}{x^2 + 1} + \frac{A_1}{(x - 2)^2} + \frac{A_2}{(x - 2)} + \frac{A_3}{x - 3}$$
;

6)
$$\frac{M_1x + N_1}{(x^2 + 2x + 10)^2} + \frac{M_2x + N_2}{x^2 + 2x + 10} + \frac{A_1}{(x+1)^3} + \frac{A_2}{(x+1)^2} + \frac{A_3}{x+1} + \frac{A_4}{x-1}$$

Задача 10 относится к теме: «Интегрирование по частям в определённом интеграле». Для решения этой задачи необходимо изучить п. 1.2.2, п. 2.3.

Приведём пример.

Вычислить интеграл $\int\limits_0^1 x^5 e^{x^3+1} dx$. Полагаем $U=x^3$, $dV=x^2 e^{x^3+1} dx$. Тогда $dU=3x^2 dx$, $V=\frac{1}{3}e^{x^3+1}$ и, после применения формулы интегрирования по частям, имеем:

$$\int_{0}^{1} x^{5} e^{x^{3}+1} dx = \frac{1}{3} x^{3} e^{x^{3}+1} \Big|_{0}^{1} - \int_{0}^{1} x^{2} e^{x^{3}+1} dx =$$

$$= \frac{1}{3} x^{3} e^{x^{3}+1} \Big|_{0}^{1} - \frac{1}{3} e^{x^{3}+1} \Big|_{0}^{1} = \frac{1}{3} e^{2} - \frac{1}{3} e^{2} + \frac{1}{3} e = \frac{1}{3} e.$$

Задачи для самостоятельной работы

Вычислить интегралы:

1)
$$\int_{0}^{\frac{\pi}{2}} x \sin 6x dx$$
; 2)
$$\int_{0}^{e} \ln(x+1) dx$$
; 3)
$$\int_{0}^{\frac{\pi}{6}} x \operatorname{tg}^{2} 2x dx$$
; 4)
$$\int_{1}^{3} \operatorname{arctg} 5x dx$$
; 5)
$$\int_{0}^{5} x e^{2x} dx$$
.

Ответы: 1)
$$\frac{\pi}{12}$$
; 2) $(e+1)\ln(e+1)-e$; 3) $\frac{\pi\sqrt{3}}{12}-\frac{\pi^2}{72}+\frac{1}{4}\ln\frac{1}{2}$; 4) $3\arctan 5 - \arctan 5 - 0,1(\ln 226 - \ln 26)$; 5) $\frac{9e^{10}+1}{4}$.

Задача 11 относится к теме: «Вычисление интегралов по формуле Ньютона—Лейбница». Первообразная вычисляется с помощью преобразования подынтегрального выражения. Поэтому необходимо изучить п. 1.2.3, п. 2.3.

Приведём пример.

$$\int_{\frac{\pi}{8}}^{\frac{\pi}{6}} \cos 3x \cos 5x dx = \frac{1}{2} \int_{\frac{\pi}{8}}^{\frac{\pi}{6}} (\cos 2x + \cos 8x) dx =$$

$$= \left(\frac{1}{4} \sin 2x + \frac{1}{16} \sin 8x \right) \Big|_{\frac{\pi}{8}}^{\frac{\pi}{6}} = \frac{1}{4} \left(\sin \frac{\pi}{3} - \sin \frac{\pi}{4} \right) + \frac{1}{16} \left(\sin \frac{8\pi}{6} - \sin \pi \right) =$$

$$= \frac{1}{4} \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \right) + \frac{1}{16} \left(\frac{\sqrt{3}}{2} - 0 \right) = \frac{5\sqrt{3} - 4\sqrt{2}}{32}.$$

Задачи для самостоятельного решения

Вычислить интегралы:

$$1)\int_{0}^{2} x\sqrt{2+x^{2}} dx; 2)\int_{1}^{e} \frac{\sqrt[3]{1+\ln x}}{x} dx; 3)\int_{0}^{1} \frac{x^{5}}{1+x^{6}} dx; 4)\int_{0}^{1} \frac{x^{5}}{4+x^{12}} dx;$$

$$5)\int_{0}^{\frac{\pi}{2}} e^{2\sin 3x} \cos 3x dx; 6) \int_{1}^{2} e^{\frac{1}{x}} \frac{dx}{x^{2}}; 7) \int_{\frac{\pi^{2}}{36}}^{\frac{\pi^{2}}{16}} \sin \sqrt{x} \frac{dx}{\sqrt{x}}; 8) \int_{0}^{\frac{2}{4\sqrt{3}}} \frac{x dx}{16 + 9x^{4}}.$$

Ответы: 1)
$$\frac{\sqrt{216}}{3} - \frac{\sqrt{8}}{3}$$
; 2) $\frac{3}{4}$ (2 $\sqrt[3]{2}$ -1); 3) $\frac{1}{6}$ ln 2; 4) $\frac{1}{12}$ arctg $\frac{1}{2}$;

5)
$$\frac{1}{6}(e^{-2}-1)$$
; 6) $-\sqrt{e}+e$; 7) $\sqrt{3}-\sqrt{2}$; 8) $\frac{\pi}{12}$.

Задачи для самостоятельного решения

Вычислить интегралы:

1)
$$\int_{64}^{4096} \frac{\sqrt{x}}{x - \sqrt[3]{x^2}} dx; 2) \int_{2}^{10} \frac{\sqrt[4]{x - 1} + 1}{\sqrt{x - 1} + \sqrt[4]{(x - 1)^3}} dx; 3) \int_{0}^{\frac{\pi}{3}} \frac{dx}{\cos^4 x};$$

$$4) \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin^3 x dx.$$

Ответы: 1)
$$128 + 3\ln\frac{9}{5}$$
; 2) 4; 3) $2\sqrt{3}$; 4) $\frac{2}{35}$.

Задача 12 относится к теме: «Выяснение сходимости несобственных интегралов первого рода с использованием определения». Для решения этой задачи необходимо изучить п. 2.5.1.

Приведём примеры.

а) Выяснить сходимость интеграла
$$\int_{2}^{\infty} \frac{dx}{x^{2} - 4x + 20}.$$
 Имеем
$$\int_{2}^{\infty} \frac{dx}{x^{2} - 4x + 20} = \lim_{A \to \infty} \int_{2}^{A} \frac{dx}{x^{2} - 4x + 20} = \lim_{A \to \infty} \int_{2}^{A} \frac{dx}{(x - 2)^{2} + 16} = \lim_{A \to \infty} \frac{1}{4} \left(\operatorname{arctg} \frac{x - 2}{4} \right) \Big|_{2}^{A} = \lim_{A \to \infty} \frac{1}{4} \left(\operatorname{arctg} \left(\frac{A - 2}{4} \right) - \operatorname{arctg} 0 \right) = \frac{\pi}{8}.$$
 Следо-

вательно, интеграл сходится и его значение равно $\frac{\pi}{8}$.

б) Выяснить сходимость интеграла $\int\limits_2^\infty \frac{x-2}{x^2-4x+20} dx$. По определению получаем:

$$\int_{2}^{\infty} \frac{x-2}{x^{2}-4x+20} dx = \lim_{A \to \infty} \int_{2}^{A} \frac{x-2}{x^{2}-4x+20} dx = \lim_{A \to \infty} \frac{1}{2} \int_{2}^{A} \frac{d(x^{2}-4x+20)}{x^{2}-4x+20} = \lim_{A \to \infty} \left(\frac{1}{2} \ln(x^{2}-4x+20) \Big|_{0}^{A} \right) = \lim_{A \to \infty} \frac{1}{2} \ln(A^{2}-4A+20) - \ln 8 = \infty.$$

Следовательно, интеграл расходится.

Задачи для самостоятельного решения

Вычислить несобственные интегралы первого рода или доказать их расходимость:

1)
$$\int_{e}^{\infty} \frac{dx}{x \ln^3 x}$$
; 2) $\int_{e}^{\infty} \frac{dx}{x \sqrt[3]{\ln x}}$; 3) $\int_{0}^{\infty} \frac{dx}{x^2 + 2x + 10}$; 4) $\int_{0}^{\infty} \frac{(x+1)dx}{x^2 + 2x + 10}$;

5)
$$\int_{0}^{\infty} \frac{dx}{\sqrt{x+2}}$$
; 6) $\int_{0}^{\infty} \frac{dx}{\sqrt{(x+1)^3}}$.

Ответы: 1) 0,5; 2) расходится; 3) $\frac{\pi}{6} - \frac{1}{3} \operatorname{arctg} \frac{1}{3}$;

4) расходится; **5**) расходится; **6**) 2.

Задача 13 относится к теме: «Выяснение сходимости несобственных интегралов второго рода с использованием определения». Для решения этой задачи необходимо изучить п. 2.5.2.

Приведём примеры.

а) Выяснить сходимость интеграла
$$\int_{3}^{4} \frac{dx}{\sqrt[5]{x-3}}$$
.

Подынтегральная функция имеет особенность в точке x = 3. По определению имеем

$$\int_{3}^{4} \frac{dx}{\sqrt[5]{x-3}} = \lim_{\delta \to 0} \int_{3+\delta}^{4} \frac{dx}{\sqrt[5]{x-3}} = \lim_{\delta \to 0} \left(\frac{5}{4} (x-3)^{\frac{4}{5}} \right) \Big|_{3+\delta}^{4} = \frac{5}{4}.$$

б) Выяснить сходимость интеграла
$$\int_{1}^{3} \frac{dx}{\sqrt[3]{(3-x)^{5}}}$$
.

Подынтегральная функция имеет особенность в точке x = 3. По определению имеем:

$$\int_{1}^{3} \frac{dx}{\sqrt[3]{(3-x)^{5}}} = \lim_{\delta \to 0} \int_{1}^{3-\delta} \frac{dx}{\sqrt[3]{(3-x)^{5}}} = -\lim_{\delta \to 0} \left(\frac{3}{2} (3-x)^{-\frac{2}{3}} \right) \Big|_{1}^{3-\delta} = \infty.$$

Следовательно, интеграл расходится.

Задачи для самостоятельного решения

Используя определение, выяснить сходимость несобственных интегралов второго рода:

1)
$$\int_{1}^{e} \frac{dx}{x\sqrt[4]{\ln x}}$$
; 2) $\int_{0}^{1} \frac{dx}{x\sqrt[5]{\ln x}}$; 3) $\int_{0.5}^{1} \frac{dx}{x\sqrt[5]{\ln x}}$; 4) $\int_{0}^{3} \frac{dx}{\sqrt[3]{3-x}}$;

5)
$$\int_{2}^{5} \frac{dx}{\sqrt[4]{x-2}}$$
; 6) $\int_{1}^{4} \frac{dx}{\sqrt[3]{x-3}}$; 7) $\int_{1}^{2} \frac{dx}{\sqrt{(2-x)^{3}}}$; 8) $\int_{0}^{3} \frac{dx}{\sqrt[3]{(3-x)^{4}}}$;

9)
$$\int_{1}^{4} \frac{dx}{\sqrt[4]{(x-3)^6}}$$
.

Ответы: 1)
$$\frac{4}{3}$$
; 2) расходится; 3) $\sqrt[5]{(\ln 0,5)^4}$; 4) $-\frac{3}{2}\sqrt[3]{9}$;

5)
$$\frac{4}{3}\sqrt[4]{27}$$
; 6) $\frac{3}{2}(1-\sqrt[3]{4})$; 7) расходится; 8) расходится;

9) расходится.

Задача 14 относится к теме: «Выяснение сходимости несобственных интегралов первого рода с использованием теоремы сравнения». Для решения этой задачи необходимо изучить п. 2.5.1.

Приведём примеры.

а) Выяснить сходимость интеграла
$$\int_{1}^{\infty} \frac{\sqrt{4x+3}}{5x^2+4x+3} dx$$
.

Находя порядок малости подынтегральной функции относительно функции $\frac{1}{r}$, получаем

$$\lim_{x \to \infty} \left(\frac{\sqrt{4x+3}}{5x^2 + 4x + 3} : \frac{1}{x^{\alpha}} \right) =$$

$$= \lim_{x \to \infty} \frac{\sqrt{4x+3}}{5x^2 + 4x + 3} = \lim_{x \to \infty} \frac{\sqrt{x}\sqrt{4+\frac{3}{x}} \cdot x^{\alpha}}{x^2 \left(5+\frac{4}{x}+\frac{3}{x^2}\right)} = \begin{cases} 0, \text{если } \alpha < 1, 5; \\ \frac{2}{5}, \text{если } \alpha = 1, 5; \\ \infty, \text{если } \alpha > 1, 5. \end{cases}$$

Таким образом, порядок малости подынтегральной функции относительно $\frac{1}{x}$ равен 1,5 и, следовательно, интеграл сходится.

б) Выяснить сходимость интеграла
$$\int_{1}^{\infty} \frac{\sqrt{9x^3 + 4}}{4x^2 + 7} dx$$
.

Находя порядок малости подынтегральной функции относи-

тельно функции
$$\frac{1}{x}$$
, получаем $\lim_{x\to\infty} \left(\frac{\sqrt{9x^3+4}}{4x^2+7} : \frac{1}{x^{\alpha}}\right) =$

$$= \lim_{x\to\infty} \frac{x^{\alpha}\sqrt{9x^3+4}}{4x^2+7} = \lim_{x\to\infty} \frac{x^{\alpha}\sqrt{x^3}\cdot\sqrt{9+\frac{4}{x^3}}}{x^2\left(4+\frac{7}{x^2}\right)} = \begin{cases} 0, \text{если } \alpha < 0,5; \\ \frac{3}{4}, \text{если } \alpha = 0,5; \\ \infty, \text{если } \alpha > 0,5. \end{cases}$$

Таким образом, порядок малости подынтегральной функции относительно $\frac{1}{x}$ равен 0,5 и, следовательно, интеграл расходится.

Задачи для самостоятельного решения

Используя признак сравнения, выяснить сходимость несобственных интегралов (в ответе указаны сходимость и порядок малости подынтегральной функции относительно $\frac{1}{-}$):

1)
$$\int_{1}^{\infty} \frac{x+3}{(x^2+1)\sqrt{x+2}} dx; 2) \int_{1}^{\infty} \frac{\sqrt{x-1}}{x^2+4\sqrt{x}-1} dx; 3) \int_{1}^{\infty} \frac{\sqrt{x+2}}{\sqrt{x^3+5}} dx;$$

4)
$$\int_{1}^{\infty} \frac{\sqrt{x+2}}{\sqrt{x^4+8}} dx$$
; 5) $\int_{1}^{\infty} \frac{x \operatorname{arctg} x}{2+x^2 \cdot \sqrt[3]{x+2}} dx$; 6) $\int_{1}^{\infty} \frac{\sqrt{x+2}}{(7x+8)(\sqrt[3]{x^2+1})} dx$.

Ответы: 1) сходится, $\alpha = 1,5$; 2) сходится, $\alpha = 1,5$;

3) расходится, $\alpha = 1; 4$) сходится, $\alpha = 1,5;$

5) сходится,
$$\alpha = \frac{4}{3}$$
; 6) сходится, $\alpha = \frac{7}{6}$.

Задача 15 относится к теме: «Выяснение сходимости несобственных интегралов второго рода с использованием теоремы сравнения». Для решения этой задачи необходимо изучить п. 2.5.2.

Приведём примеры.

а) В интеграле $\int_{2}^{4} \frac{dx}{\sqrt{x} \cdot \sqrt[5]{16 - x^2}}$ подынтегральная функция

имеет особенность в точках x=0 и $x=\pm 4$. Точки x=0 и x=-4 в промежуток интегрирования не входят. Поэтому, находя порядок роста этой функции относительно $\frac{1}{4-x}$, имеем

$$\lim_{x \to 4} \frac{(4-x)^{\alpha}}{\sqrt{x} \cdot \sqrt[5]{16-x^2}} = \lim_{x \to 4} \frac{(4-x)^{\alpha}}{\sqrt{x} \cdot \sqrt[5]{4-x} \cdot \sqrt[5]{4+x}} =$$

$$= \begin{cases} \infty, & \text{если } \alpha < \frac{1}{5}; \\ \frac{1}{2 \cdot \sqrt[5]{8}}, & \text{если } \alpha = \frac{1}{5}; \\ 0, & \text{если } \alpha > \frac{1}{5}. \end{cases}$$

Таким образом, порядок роста равен $\frac{1}{5}$ и интеграл сходится.

б) Выясним сходимость интеграла
$$\int_{0}^{1} \frac{\sqrt{\sin 2x}}{x^2} dx.$$

Подынтегральная функция имеет особенность в точке x=0 . Находя порядок роста этой функции относительно $\frac{1}{x}$, имеем:

$$\lim_{x \to 0} \frac{\sqrt{\sin 2x} \cdot x^{\alpha}}{x^{2}} = \lim_{x \to 0} \frac{\sqrt{2} \cdot \sqrt{\sin 2x} \cdot x^{\alpha}}{\sqrt{2x} \cdot \sqrt{x^{3}}} = \begin{cases} \infty, & \text{если } \alpha < 1,5; \\ \sqrt{2}, & \text{если } \alpha = 1,5; \\ 0, & \text{если } \alpha > 1,5. \end{cases}$$

Таким образом, порядок роста равен 1,5 и интеграл расходится.

Задачи для самостоятельного решения

Используя теорему сравнения, выяснить сходимость несобственных интегралов (в ответе указаны: точка, в которой функция бесконечно большая; порядок роста подынтегральной функции относительно пробной функции; сходимость):

1)
$$\int_{1}^{2} \frac{dx}{\sqrt{4 - x^{2}} \cdot \sqrt[3]{x - 1}}; 2) \int_{0}^{\frac{\pi}{2}} \sqrt[5]{\sin^{2} x} dx; 3) \int_{0}^{\pi} \frac{\sqrt{x} \cdot \sqrt[3]{\pi - x}}{\sin x} dx;$$
4)
$$\int_{0}^{1} \frac{\ln(1 + \sqrt[7]{x})}{\sqrt{x}} dx; 5) \int_{0}^{2} \frac{e^{\sqrt[4]{x}} - 1}{\sqrt{x^{5}}} dx; 6) \int_{1}^{2} \frac{dx}{\sqrt[5]{8 - x^{3}}}; 7) \int_{1}^{2} \frac{dx}{\sqrt[4]{16 - x^{4}}};$$
8)
$$\int_{1}^{2} \frac{dx}{\sqrt[7]{32 - x^{5}}}; 9) \int_{2}^{3} \frac{dx}{\sqrt{x - 2} \cdot \sqrt[4]{9 - x^{2}}}; 10) \int_{2}^{4} \frac{dx}{\sqrt{x + 2} \cdot \sqrt[5]{9 - x^{2}}}.$$

Ответы: 1)
$$x = 1$$
, $\alpha = \frac{1}{3}$, $x = 2$, $\alpha = \frac{1}{2}$, сходится;

2)
$$x = 0$$
, $\alpha = \frac{3}{5}$, сходится; 3) $x = 0$, $\alpha = \frac{1}{2}$, $x = \pi$, $\alpha = \frac{2}{3}$, сходится;

4)
$$x = 0$$
, $\alpha = \frac{5}{14}$, сходится; 5) $x = 0$, $\alpha = 1$, расходится;

6)
$$x = 2$$
, $\alpha = \frac{1}{5}$, сходится; 7) $x = 2$, $\alpha = \frac{1}{3}$, сходится;

8)
$$x = 2$$
, $\alpha = \frac{1}{7}$, еходится; 9) $x = 2$, $\alpha = \frac{1}{2}$, $x = 3$, $\alpha = \frac{1}{4}$, еходится;

10)
$$x = 3$$
, $\alpha = \frac{1}{5}$, сходится.

Задача 16 относится к теме: «Геометрические приложения определённого интеграла». Для решения этой задачи необходимо изучить п. 2.6.

Приведём пример.

Найти площадь криволинейной трапеции, ограниченной линиями $x=0,\ x=\frac{\pi}{2},\ y=0,\ y=\cos x$. В данном случае

$$S = \int_{0}^{\frac{\pi}{2}} \cos x dx = \sin x \Big|_{0}^{\frac{\pi}{2}} = 1 - 0 = 1.$$

Задача 17 относится к теме: «Геометрические приложения определённого интеграла». Для решения этой задачи необходимо изучить п. 2.6.

Приведём пример.

Найти длину дуги кривой $\begin{cases} x = 2\cos 3t, \\ y = 2\sin 3t, \end{cases}$ заключенной между

точами $t_1 = 0$ и $t_2 = \frac{\pi}{2}$.

Так как кривая задана параметрически, то $x_t' = -6\sin 3t, \, y_t' = 6\cos 3t$, и поэтому

$$l = 6 \int_{0}^{\pi/2} \sqrt{\cos^2 3t + \sin^2 3t} \, dt = \frac{6}{2} \int_{0}^{\pi/2} dt = 3t \Big|_{0}^{\pi/2} = \frac{3\pi}{2}.$$

Задачи для самостоятельного решения

- 1. Найти площадь фигуры, ограниченной линиями $y = e^x$, $y = e^{-x}$, x = -1.
- 2. Найти площадь фигуры, ограниченной линиями $y = x^3$, $y = \frac{1}{5}x^4$.
- 3. Найти площадь фигуры, ограниченной линиями $y = \frac{1}{1+x^2}, \ y = \frac{1}{2}x^4.$
- 4. Трапеция ограничена кривыми $y = e^x$, y = 0, x = 0, x = 1. Найти объём тела, полученного вращением этой трапеции:
 - а) вокруг оси OX; б) вокруг оси OY.
- 5. Найти длину дуги кривой $y = \ln x$, заключенной между точками $x_1 = \sqrt{8}$ и $x_2 = \sqrt{24}$.
- 6. Найти длину дуги кривой $\begin{cases} x = \cos 2t, \\ y = \sin 2t, \end{cases}$ заключенной между точками $t_1 = 0$ и $t_2 = \pi$.
- 7. Найти длину дуги кривой $\rho = a \sin \phi$, заключенной между точками $\phi_1 = 0$ и $\phi_2 = \pi$.

Ответы: 1.
$$-2+e+\frac{1}{e}$$
; 2. $\frac{125}{4}$; 3. $\frac{\pi}{2}$ - 0,2;

4. a)
$$\frac{\pi}{2}(e^2-1)$$
, 6) 2π ; 5. $1+\ln\sqrt{\frac{4}{3}}$; 6. $\sqrt{2}\pi$; 7. πa .

Контрольная работа № 2

Контрольная работа № 2 выполняется после изучения глав «Кратные интегралы» и «Криволинейные и поверхностные интегралы. Теория поля». Контрольная работа содержит 9 задач.

Задача 1 относится к теме: «Вычисление кратных интегралов». Для решения этой задачи необходимо изучить п. 3.2.

Приведём пример.

Пусть область D — внутренность треугольника с вершинами A(3,2), B(7,5), C(5,3). Вычислить интеграл $\iint_D (3x+2y) dx dy$.

Найдем уравнения прямых АВ, ВС, АС. Уравнение прямой

$$AB$$
 можно записать в виде $\frac{x-3}{4} = \frac{y-2}{3}$ или, что то же самое, в форме $y = \frac{3}{4}x - \frac{1}{4}$; прямой AC в форме $\frac{x-3}{2} = \frac{y-2}{1}$ или $y = \frac{1}{2}x + \frac{1}{2}$; прямой CB в виде $\frac{x-5}{2} = \frac{y-3}{2}$ или $y = x-2$. Как

для перехода к повторному интегралу с внешним интегрированием по x, так и для перехода к повторному интегралу с внешним интегрированием по y (смотри формулы (3.1) и (3.2)), приходится разбивать область на две. Для повторного интеграла с внешним интегрированием по x соответствующие области задаются неравенствами:

$$D_1: 3 \le x \le 5, \ \frac{1}{2}x + \frac{1}{2} \le y \le \frac{3}{4}x - \frac{1}{4},$$
$$D_2: 5 \le x \le 7, \ x - 2 \le y \le \frac{3}{4}x - \frac{1}{4}.$$

Таким образом,

$$\iint_{D} (3x+2y)dydxdy = \int_{3}^{5} dx \int_{0,5x+0,5}^{\frac{3}{4}x-\frac{1}{4}} (3x+2y)dydy + \int_{5}^{7} dx \int_{x-2}^{\frac{3}{4}x-\frac{1}{4}} (3x+2y)dydy.$$

Для первого интеграла имеем

$$\iint_{D_1} (3x+2y)dxdy = \int_3^5 dx \int_{\frac{x+1}{2}}^{\frac{3x-1}{4}} (3x+2y)dy = \int_3^5 (3xy+y^2) \Big|_{\frac{x+1}{2}}^{\frac{3x-1}{4}} dx =$$

$$= \int_3^5 \left(3x + \frac{3x-1}{4} + \left(\frac{3x-1}{4} \right)^2 - 3x + \frac{x+1}{2} - \left(\frac{x+1}{2} \right)^2 \right) dx =$$

$$= \int_3^5 \left(\frac{36x^2 - 12x + 9x^2 - 6x + 1 - 24x^2 - 24x - 4x^2 - 8x - 4}{16} \right) dx =$$

$$= \int_3^5 \left(\frac{17x^2 - 50x - 3}{16} \right) dx = \left(\frac{17\frac{x^3}{3} - 25x^2 - 3x}{16} \right) \Big|_3^5 =$$

$$= \left(\frac{17\frac{5^3}{3} - 25 \cdot 5^2 - 3 \cdot 5}{16} \right) - \left(\frac{17\frac{3^3}{3} - 25 \cdot 3^2 - 3 \cdot 3}{16} \right) = \frac{13}{12}.$$

Для второго интеграла имеем

$$\iint_{D_2} (3x+2y) dxdy = \int_5^7 dx \int_{x-2}^{\frac{3x-1}{4}} (3x+2y) dy = \int_5^7 (3xy+y^2) \Big|_{x-2}^{\frac{3x-1}{4}} dx =$$

$$= \int_5^7 \left(3x \frac{3x-1}{4} + \left(\frac{3x-1}{4} \right)^2 - 3x(x-2) - (x-2)^2 \right) dx =$$

$$= \int_5^7 \left(\frac{36x^2 - 12x + 9x^2 - 6x + 1 - 64x^2 + 64x + 32}{16} \right) dx =$$

$$= \int_5^7 \left(\frac{-19x^2 + 46x + 33}{16} \right) dx = \left(\frac{-19\frac{x^3}{3} + 23x^2 + 33x}{16} \right) \Big|_5^7 =$$

$$= \left(\frac{-19\frac{7^3}{3} + 23 \cdot 7^2 + 33 \cdot 7}{16} \right) - \left(\frac{-19\frac{5^3}{3} + 23 \cdot 5^2 + 33 \cdot 5}{16} \right) = -\frac{1145}{24}.$$

Складывая с предыдущим, окончательно получаем

$$\iint\limits_{D} (3x+2y)dydxdy = -\frac{373}{8}.$$

Задача 2 относится к теме: «Вычисление кратных интегралов». Для решения этой задачи необходимо изучить п. 3.2.

Приведём пример.

Изменить порядок интегрирования в интеграле

$$\iint_{D} f(x, y) dx dy = \int_{0}^{1} dx \int_{-\sqrt[3]{x}}^{0} f(x, y) dy + \int_{1}^{2} dx \int_{x-2}^{0} f(x, y) dx.$$

Исходная область представлена в виде объединения двух областей $D_1: 0 \le x \le 1, -\sqrt[3]{x} \le y \le 0$ и $D_2: 1 \le x \le 2, x-2 \le y \le 0$. Таким образом, эта область ограничена кривыми $y=-\sqrt[3]{x},$ y=x-2 и x=0. Ее также можно задать неравенствами $D: -1 \le y \le 0, -y^3 \le x \le y+2$. Поэтому

$$\iint_{D} f(x, y) dx dy = \int_{-1}^{0} dy \int_{-y^{3}}^{y+2} f(x, y) dx.$$

Задачи для самостоятельного решения

- **1**. В двойном интеграле $\iint_D f(x,y) dx dy$, для заданной области D, перейти к повторным и расставить пределы интегрирования (приведены оба варианта ответа).
 - 1) Область *D* задана неравенствами a) $x \ge |y|, x^2 + y^2 \le 2x$;
 - 6) $y \ge |x|, x^2 + y^2 \le 2y$; B) $x \ge y, x^2 + y^2 \le 2x$;
 - Γ) $x \le y$, $x^2 + y^2 \le 2x$; π) $y \ge x^2$, $y \le \sqrt{-x}$; e) $y \ge 0$, $y \le 4 x^2$.
 - 2) Область D есть внутренность треугольника с вершинами
 - a) A(1,0), B(3,0), C(3,-4); δ) A(1,0), B(3,1), C(5,-4);
 - B) A(-1,1), B(2,3), C(5,-2); Γ) A(-1,0), B(2,4), C(5,-2).
- 3) Область D есть внутренность четырёхугольника с вершинами A(0,0), B(2,2), C(4,1), D(3,-1).

2. В повторном интеграле поменять порядок интегрирования:

a)
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f(x,y) dy + \int_{1}^{2} dx \int_{0}^{(x-2)^{2}} f(x,y) dy;$$
b)
$$\int_{0}^{1} dx \int_{0}^{x^{3}} f(x,y) dy + \int_{1}^{2} dx \int_{0}^{-(x-2)^{3}} f(x,y) dy;$$
B)
$$\int_{0}^{4} dx \int_{-1}^{0} f(x,y) dy + \int_{4}^{5} dx \int_{x-5}^{0} f(x,y) dy.$$

$$Omeembi: \mathbf{1.1}) \text{ a)} \int_{0}^{1} dx \int_{-x}^{x} f(x,y) dy + \int_{1}^{2} dx \int_{-\sqrt{2x-x^{2}}}^{\sqrt{2x-x^{2}}} f(x,y) dy =$$

$$= \int_{-1}^{0} dy \int_{-y}^{1+\sqrt{1-y^{2}}} f(x,y) dx + \int_{0}^{1} dy \int_{y}^{1+\sqrt{1-y^{2}}} f(x,y) dx;$$
6)
$$\int_{-1}^{0} dx \int_{-x}^{x} f(x,y) dy = \int_{0}^{1} dy \int_{-y}^{y} f(x,y) dx + \int_{0}^{1} dy \int_{-\sqrt{2y-y^{2}}}^{\sqrt{2y-y^{2}}} f(x,y) dx;$$
B)
$$\int_{0}^{1} dx \int_{-\sqrt{2x-x^{2}}}^{x} f(x,y) dy + \int_{1}^{2} dx \int_{-\sqrt{2x-x^{2}}}^{\sqrt{2x-x^{2}}} f(x,y) dy = \int_{0}^{0} dy \int_{-1+\sqrt{1-y^{2}}}^{1+\sqrt{1-y^{2}}} f(x,y) dx + \int_{0}^{1} dy \int_{y}^{y} f(x,y) dy = \int_{1}^{0} dy \int_{-\sqrt{1-y^{2}}}^{y} f(x,y) dx;$$

$$\int_{-1}^{0} dx \int_{x^{2}}^{\sqrt{-x}} f(x,y) dy = \int_{0}^{1} dy \int_{\sqrt{y}}^{\sqrt{y}} f(x,y) dx;$$

$$\pi \int_{-1}^{0} dx \int_{x^{2}}^{\sqrt{-x}} f(x,y) dy = \int_{0}^{1} dy \int_{-\sqrt{4-y}}^{-y} f(x,y) dx;$$
e)
$$\int_{-2}^{2} dx \int_{0}^{4-x^{2}} f(x,y) dy + \int_{0}^{4} dy \int_{-\sqrt{4-y}}^{4-y} f(x,y) dx;$$

2) a)
$$\int_{1}^{3} dx \int_{-4(x-1)}^{0} f(x,y) dy = \int_{-4}^{0} dy \int_{-\frac{y}{4}+1}^{3} f(x,y) dx;$$
6)
$$\int_{1}^{3} dx \int_{-x+1}^{x-1} f(x,y) dy + \int_{3}^{5} dx \int_{-x+1}^{-5x+17} f(x,y) dy = \int_{-4}^{0} dy \int_{-y+1}^{5} f(x,y) dx + \int_{0}^{1} dy \int_{2y+1}^{5} f(x,y) dx;$$
B)
$$\int_{-1}^{2} \int_{\frac{x+1}{2}}^{2x+5} f(x,y) dy + \int_{2}^{5} dx \int_{\frac{x+1}{2}}^{-5x+19} f(x,y) dy = \int_{-2}^{1} \int_{-2y+1}^{3y-19} f(x,y) dy + \int_{1}^{3} \int_{\frac{3y-19}{5}}^{3y-19} f(x,y) dy;$$
r)
$$\int_{-1}^{2} \int_{\frac{x+1}{2}}^{4x+4} \int_{-3}^{3} f(x,y) dy + \int_{2}^{5} dx \int_{\frac{x+1}{2}}^{5} f(x,y) dy = \int_{-2}^{0} \int_{-3y-1}^{3y-19} f(x,y) dx + \int_{0}^{4} \int_{\frac{3y-5}{4}}^{4y} f(x,y) dx.$$
3)
$$\int_{0}^{2} dx \int_{-\frac{x}{3}}^{x} f(x,y) dy + \int_{0}^{3} dx \int_{2x-7}^{x-2x+8} f(x,y) dy + \int_{0}^{4} \int_{y-2x+8}^{4y-2} f(x,y) dy + \int_{3}^{4} dx \int_{2x-7}^{2x+6} f(x,y) dx = \int_{-3}^{0} \int_{-3y}^{y+7} f(x,y) dx + \int_{0}^{1} \int_{y}^{y+7} f(x,y) dx + \int_{0}^{2} \int_{y}^{y+7} f(x,y) dx + \int_{0}^{2} \int_{y}^{y+7} f(x,y) dx;$$
2. a)
$$\int_{0}^{1} dy \int_{\sqrt{y}}^{y+5} f(x,y) dx.$$
B)
$$\int_{-1}^{0} dy \int_{0}^{y+5} f(x,y) dx.$$

Задача 3 относится к темам: «Замена переменных в кратных интегралах», «Геометрические приложения кратных интегралов». Для решения этой задачи необходимо изучить п. 3.3 и п. 3.4.

Приведём пример.

Вычислить площадь области, заданной неравенствами

$$(x-r)^2 + y^2 \le r^2$$
, $y \ge 0$, $-2x + 2r \ge y$,

перейдя предварительно к полярным координатам.

Проще всего эту задачу решать, если перенести начало координат в центр окружности, то есть перейти к новым переменным по формулам $x_1 = x - r$, $y_1 = y$. В новых переменных область будет задаваться неравенствами $(x_1)^2 + (y_1)^2 \le r^2$, $y_1 \ge 0$, $-2x_1 \ge y_1$. Находя точки пересечения прямой $y_1 = -2x_1$ с окружностью $(x_1)^2 + (y_1)^2 = r^2$, получаем $x_1 = \pm \frac{r}{\sqrt{5}}$, $y_1 = \mp \frac{r}{\sqrt{5}}$. На границе области лежит точка $\left(\frac{r}{\sqrt{5}}, \frac{2r}{\sqrt{5}}\right)$. Поэтому в полярных координатах область будет задаваться неравенствами $0 \le \rho \le r$, $\pi + \arctan(2) = \pi - \arctan(2) \le \varphi \le \pi$. Следовательно,

$$S = \iint_D dxdy = \int_0^r \rho d\rho \int_{\pi-\operatorname{arctg} 2}^{\pi} d\varphi = \frac{r^2 \operatorname{arctg} 2}{2}.$$

Задача 4 относится к темам: «Вычисление кратных интегралов», «Геометрические приложения кратных интегралов». Для решения этой задачи необходимо изучить п. 3.2 и п. 3.4.

Приведём пример.

Найти объем области, ограниченной поверхностями x=0, $y=0,\ z=0, x+y=2, z=x^2+y^2+2$. Данная область является цилиндром, проекция которого на плоскость XOY есть треугольник с границей $x=0,\ y=0,\ x+y=2,$ одновременно являющейся направляющей цилиндра. Сверху и снизу цилиндр ограничен поверхностями $z=0, z=x^2+y^2+2$. Поэтому

$$V(G) = \iiint_G dx dy dz = \int_0^2 dx \int_0^{2-x} dy \int_0^{x^2 + y^2 + 2} dz = \int_0^2 dx \int_0^{2-x} (x^2 + y^2 + 2) dy =$$

$$= \int_0^2 (x^2 y + \frac{y^3}{3} + 2y) \Big|_0^{2-x} dx = \int_0^2 (x^2 (2-x) + \frac{(2-x)^3}{3} + (2-x)) dx =$$

$$= \frac{1}{3} \int_{0}^{2} \left(20 - 18x + 12x^{2} - 4x^{3}\right) dx = \frac{1}{3} \left(20x - 9x^{2} + 4x^{3} - x^{4}\right) \Big|_{0}^{2} = \frac{20}{3}.$$

Задачи для самостоятельной работы

В тройном интеграле $\iiint f(x,y,z) dx dy dz$ перейти к повтор-

ным и расставить пределы интегрирования, если область D задана неравенствами (приведён один из вариантов ответов):

1)
$$x \ge 0$$
, $y \ge 0$, $z \ge 0$, $x + y \le 1$, $z \le x^2 + y^2 + 1$;

2)
$$x \ge 0$$
, $y \ge 0$, $z \ge 0$, $x + y \le 2$, $x^2 + y^2 \ge z$;

3)
$$z \ge 0$$
, $x^2 + y^2 \le 4 - z$;

4)
$$x \ge 0$$
, $y \ge 0$, $z \ge 0$, $x + y \le 1$, $x + y + z - 2 \le 0$.

4)
$$x \ge 0$$
, $y \ge 0$, $z \ge 0$, $x + y \le 1$, $x + y + z - 2$
Omeemы: 1)
$$\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{x^{2}+y^{2}+1} f(x, y, z) dz;$$
2)
$$\int_{0}^{2} dx \int_{0}^{2-x} dy \int_{0}^{x^{2}+y^{2}} f(x, y, z) dz;$$
3)
$$\int_{-2}^{2} dx \int_{-\sqrt{4-x^{2}}}^{4-x^{2}} dy \int_{0}^{4-x^{2}-y^{2}} f(x, y, z) dz;$$

$$\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{4-x^{2}-y^{2}} f(x, y, z) dz;$$

2)
$$\int_{0}^{2} dx \int_{0}^{2-x} dy \int_{0}^{x^{2}+y^{2}} f(x, y, z) dz$$
;

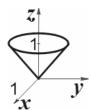
3)
$$\int_{-2}^{2} dx \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} dy \int_{0}^{4-x^2-y^2} f(x, y, z) dz;$$

4)
$$\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{2-x-y} f(x, y, z) dz$$
.

Задача 5 относится к темам: «Вычисление кратных интегралов», «Замена переменных в кратных интегралах». Для решения этой задачи необходимо изучить п. 3.2 и п. 3.3.

Приведём пример.

Вычислить интеграл $\iiint y dx dy dz$, если область



D задана неравенствами $z \ge \sqrt{x^2 + y^2}$, $z \le 3$.

Область интегрирования есть внутренность прямого кругового конуса $z^2 = x^2 + y^2$, лежащая в полупространстве $z \ge 0$ и ограниченная плоскостью

z=3. В данном случае удобно перейти к цилиндрической системе координат. Из уравнения $z=\sqrt{x^2+y^2}$ при z=3 получаем $x^2+y^2=9$. Поэтому проекцией данной части конуса на плоскость XOY будет круг радиуса 3 с центром в начале координат. Следовательно, $0 \le \rho \le 3$, $0 \le \phi < 2\pi$. Уравнение данной нам части конуса $z=\sqrt{x^2+y^2}$ в цилиндрической системе координат будет иметь вид $z=\rho$. Поэтому $\rho \le z \le 3$. Подынтегральная функция в цилиндрической системе координат примет вид $y=\rho\sin\phi$. Таким образом, получаем:

$$\iiint_{D} y dx dy dz = \int_{0}^{2\pi} d\varphi \int_{0}^{3} d\rho \int_{\rho}^{3} \rho \sin \varphi \rho dz = \int_{0}^{2\pi} d\varphi \int_{0}^{3} d\rho \int_{\rho}^{3} \rho^{2} \sin \varphi dz =$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{3} \left(\rho^{2} \sin \varphi \cdot z \Big|_{\rho}^{3} \right) d\rho = \int_{0}^{2\pi} d\varphi \int_{0}^{3} \sin \varphi \cdot \rho^{2} (3 - \rho) d\rho =$$

$$= \int_{0}^{2\pi} \sin \varphi \cdot \left(\frac{3\rho^{3}}{3} - \frac{\rho^{4}}{4} \right) \Big|_{0}^{3} d\varphi = \frac{27}{12} \int_{0}^{2\pi} \sin \varphi d\varphi = -\frac{27}{12} \cos \varphi \Big|_{0}^{2\pi} = 0.$$

Задачи для самостоятельно работы

В двойном интеграле $\iint_D f(x,y) dx dy$ перейти к полярным координатам и расставить пределы интегрирования, если область D задана неравенствами:

1)
$$1 \le x^2 + y^2 \le 4$$
, $y \ge x$, $y \le 3x$; 2) $y \ge x$, $y \le \sqrt{3}x$, $y \le 3$;

3)
$$y \ge x$$
, $y \le \sqrt{3}x$, $x + y \le 3$; 4) $x - 2y \ge 4$, $x \le 4$, $y \ge -2$;

5)
$$x^2 + y^2 \le 4y$$
; 6) $2y \le x^2 + y^2 \le 4y$; 7) $x \ge |y|, x^2 + y^2 \le 2x$;

8)
$$y \ge |x|, x^2 + y^2 \le 2y$$
.

В тройном интеграле $\iiint\limits_D f(x,y,z) dx dy dz$ перейти к сфериче-

ским или цилиндрическим координатам и расставить пределы интегрирования, если область D задана неравенствами:

9)
$$x \ge 0$$
, $y \ge 0$, $z \ge 0$, $4 \le x^2 + y^2 + z^2 \le 9$;

10)
$$x \ge 0$$
, $y \ge 0$, $z \ge 0$, $z \le 4 - x^2 - y^2$;

11)
$$x^2 + y^2 \le 4$$
, $x^2 + y^2 \le 8z$, $z \le 6$;

12)
$$x^2 + y^2 \le 4$$
, $x^2 + y^2 \ge 8z$, $z \ge 0$.

Ответы:

1)
$$\int_{1}^{2} d\rho \int_{\frac{\pi}{4}}^{\arctan 3} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\varphi;$$

2)
$$\int_{\frac{\pi}{4}}^{\frac{3}{3}} d\varphi \int_{0}^{\frac{3}{\sin\varphi}} f(\rho\cos\varphi, \rho\sin\varphi) \rho d\rho;$$

3)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\varphi \int_{0}^{\frac{3}{\cos\varphi + \sin\varphi}} f(\rho\cos\varphi, \rho\sin\varphi)\rho d\rho;$$

$$\int_{-\arctan (0,5)}^{-\arctan (0,5)} \int_{\sin \varphi}^{-\frac{2}{\sin \varphi}} \int_{-\arctan (0,5)}^{-\frac{2}{\sin \varphi}} \int_{-\arctan (0,5)}^{-\frac{4}{\cos \varphi}} \int_{-\arctan (0,5)}^{-\frac{4}{\cos \varphi}} \int_{-\arctan (0,5)}^{-\frac{4}{\cos \varphi}} \int_{-\arcsin \varphi}^{-\frac{4}{\cos \varphi}} f(\rho \cos \varphi, \rho \sin \varphi) \rho \, d\rho;$$

5)
$$\int_{0}^{\pi} d\varphi \int_{0}^{4\sin\varphi} f(\rho\cos\varphi, \rho\sin\varphi)\rho d\rho;$$

6)
$$\int_{0}^{\pi} d\varphi \int_{2\sin\varphi}^{4\sin\varphi} f(\rho\cos\varphi, \rho\sin\varphi) \rho d\rho;$$

7)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\varphi \int_{0}^{2\cos\varphi} f(\rho\cos\varphi, \rho\sin\varphi)\rho d\rho;$$

8)
$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} d\varphi \int_{0}^{2\sin\varphi} f(\rho\cos\varphi, \rho\sin\varphi)\rho d\rho;$$

9) сферические координаты,

$$\int_{2}^{3} d\rho \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{\frac{\pi}{2}} f(\rho \cos \varphi \sin \theta, \rho \sin \varphi, \rho \cos \theta) \rho^{2} \sin \theta d\theta;$$

10) цилиндрические координаты,

$$\int_{0}^{2} d\rho \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{4-\rho^{2}} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho dz;$$

11) цилиндрические координаты,

$$\int_{0}^{2} d\rho \int_{0}^{2\pi} d\varphi \int_{\frac{\rho^{2}}{8}}^{6} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho dz;$$

12) цилиндрические координаты,

$$\int_{0}^{2} d\rho \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\rho^{2}}{8}} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho dz.$$

Задача 6 относится к теме: «Криволинейные и поверхностные интегралы второго рода». Для решения этой задачи необходимо изучить п. 4.4.

Приведём пример.

Вычислить работу силы $f(x,y)=(x+2y)\mathbf{i}+xy\mathbf{j}$ по перемещению точки вдоль кривой $x=\cos^2 t,\ y=\sin t,\ 0\le t\le \pi$ в сторону увеличения параметра.

Работа по перемещению точки под действием силы f(x, y) равна криволинейному интегралу второго рода $\int_{\gamma} (x+2y)dx + xydy$.

Так как $dx = -2\cos t \sin t dt$, $dy = \cos t dt$, то этот интеграл равен

$$\int_{\gamma} (x+2y)dx + xydy =$$

$$= \int_{0}^{\pi} ((\cos^{2} t + 2\sin t)(-2\cos t \sin t) + \cos^{2} t \sin t \cos t)dt =$$

$$= \left(\frac{2\cos^4 t}{4} - \frac{4\sin^3 t}{3} - \frac{\cos^4 t}{4}\right)\Big|_0^{\pi} = 0.$$

Задача 7 относится к теме: «Теория поля». Для решения этой задачи необходимо изучить п. 4.5.

Приведём пример.

Доказать, что поле $f(x, y, z) = (2xy^2z, 2x^2yz, x^2y^2 + 2z)^T = 2xy^2z\mathbf{i} + 2x^2yz\mathbf{j} + (x^2y^2 + 2z)\mathbf{k} = (P, Q, R)^T$ потенциально, и восстановить его потенциал.

Найдем
$$rot$$
 $f = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}$. Так
$$\frac{\partial R}{\partial y} = 2x^2y, \quad \frac{\partial Q}{\partial z} = 2x^2y, \quad \frac{\partial P}{\partial z} = 2xy^2, \\ \frac{\partial R}{\partial x} = 2xy^2, \quad \frac{\partial Q}{\partial x} = 4xyz, \quad \frac{\partial P}{\partial y} = 4xyz, \text{ то } rot f = 0$$
 и поле потенциально во всем пространстве. Следовательно, криволинейный интеграл
$$\int_{A_0}^{A} P \, dx + Q \, dy + R dz \quad \text{по любому пути,}$$

соединяющему две точки, не зависит от пути интегрирования. В качестве начальной точки интегрирования A_0 выберем начало координат (0,0,0). Конечную точку возьмем произвольную с координатами (x,y,z). Наиболее простыми путями интегрирования являются возможные ломаные, состоящие из отрезков прямых, параллельных координатным осям. Поэтому для пути, изображенного на рисунке (с учетом того, что $(x_0,y_0,z_0)=(0,0,0)$),

$$U(x, y, z) = \int_{A_0}^{A} (f, \overline{dl}) = \int_{0}^{x} P(x, 0, 0) dx + \int_{0}^{y} Q(x, y, 0) dy + \int_{0}^{z} R(x, y, z) dz =$$

$$= \int_{0}^{x} (2x \cdot 0 \cdot 0) dx + \int_{0}^{y} (2x^2z \cdot 0) dy + \int_{0}^{z} (x^2y^2 + 2z) dz = x^2y^2z + z^2.$$

Таким образом, $U(x,y,z)=x^2y^2z+z^2$. Любой другой потенциал исходного поля равен $x^2y^2z+z^2+C$.

Задачи для самостоятельного решения

1. Вычислить $\int\limits_{\gamma} y dx + x^2 dy$: а) вдоль кривой $y=x^3$ от точки A(0,0) до точки B(2,8); б) вдоль кривой $x=\cos t,\ y=\sin t$,

 $0 \le t \le 2\pi$ в направлении увеличения параметра; в) вдоль прямой, соединяющей точки A(2,1), B(3,-1) от точки A к точке B.

- 2. Найти работу по перемещению материальной точки под действием силы $f(x,y,z)=(x+y)\mathbf{i}+2xy\mathbf{j}+z^2\mathbf{k}$: а) вдоль кривой $x=2\cos t,\ y=3\sin t,\ z=t^3,\ 0\le t\le \pi$ в направлении увеличения параметра; б) вдоль прямой, соединяющей точки $A(1,2,-1),\ B(2,4,2)$ от точки A к точке B.
- 3. Вычислить поток вектора $f(x, y, z) = (x + y, y + z, zy)^T$ через часть поверхности 2x 3y + 4z = 12, заключённую между координатными плоскостями в направлении нормали (2, -3, 4).
- 4. Вычислить поток вектора $f(x, y, z) = (x + y, y, z)^T$ через нижнюю половину сферы радиуса R в направлении внутренней нормали.

Ответы: 1. a) 23,2; б)
$$-\pi$$
; в) $-\frac{38}{3}$; 2. a) $\frac{\pi^9}{3} - 3\pi + 24$; б) $\frac{101}{6}$; 3. 84; 4. $-2\pi R^3$.

Задача 8 относится к теме: «Криволинейные и поверхностные интегралы второго рода». Для решения этой задачи необходимо изучить п. 4.4.

Приведём пример.

Вычислить поток вектора $f(x, y, z) = (2yz, 4xyz, 2xy)^T$ через часть плоскости 2x - y + 2z = 6, ограниченную координатными плоскостями в сторону нормали $(2, -1, 2)^T$.

Поток вектора через поверхность равен поверхностному интегралу второго рода $I = \iint_S 2yzdydz + 4xyzdxdz + 2xydxdy$. По-

верхность однозначно проектируется на все три координатные плоскости. Вычислим этот интеграл с помощью проектирования на плоскость *XOY*. Так как явное уравнение поверхности

$$z = \frac{6-2x+y}{2}$$
, to $z'_x = -1$, $z'_y = \frac{1}{2}$. Поэтому (см. [1], [2])

$$I = \iint_{D} \left(2y \frac{6 - 2x + y}{2} \cdot 1 + 4xy \frac{6 - 2x + y}{2} \left(-\frac{1}{2} \right) + 2xy \right) dxdy =$$

$$= \iint_{D} \left(6y - 6xy + 2x^{2}y + y^{2} - xy^{2} \right) dxdy,$$

где D — проекция поверхности S на плоскость XOY. Расставляя в последнем интеграле пределы интегрирования и вычисляя полученный повторный интеграл, имеем:

$$I = \int_{0}^{3} dx \int_{2x-6}^{0} \left(6y - 6xy + 2x^{2}y + y^{2} - xy^{2}\right) dy = -\frac{189}{5}.$$

Задача 9 относится к темам: «Криволинейные и поверхностные интегралы второго рода», «Теория поля». Для решения этой задачи необходимо изучить п. 4.4, 4.5.

Приведём пример.

Найти поток векторного поля $f(x,y,z) = xz\mathbf{i} + x^2y\mathbf{j} + y^2z\mathbf{k} = (xz,x^2y,y^2z)^T$ через внешнюю сторону поверхности, ограниченной конусом $z = \sqrt{x^2 + y^2}$ и плоскостью z = 3. По теореме Гаусса—Остроградского поток векторного поля через поверхность равен

$$\iint_{\partial G} (f, \overline{dS}) = \iint_{\partial G} xz dy dz + x^2 y dx dz + y^2 z dx dy =$$

$$= \iiint_{G} div f(x, y, z) \cdot dx dy dz = \iiint_{G} (x^2 + y^2 + z) \cdot dx dy dz.$$

Переходя к цилиндрическим координатам, окончательно получаем

$$\int_{0}^{2\pi} d\varphi \int_{0}^{3} \rho d\rho \int_{\rho}^{3} ((\rho^{2} \cos^{2} \varphi + \rho^{2} \sin^{2} \varphi) + z) dz =$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{3} \rho d\rho \int_{\rho}^{3} (\rho^{2} + z) dz = \int_{0}^{2\pi} d\varphi \int_{0}^{3} \left(\rho^{2} z + \frac{z^{2}}{2}\right) \Big|_{\rho}^{3} \rho d\rho =$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{3} \left(\frac{9\rho}{2} + \frac{5\rho^{3}}{2} - \rho^{4}\right) d\rho = \int_{0}^{2\pi} \left(\frac{9\rho^{2}}{4} + \frac{5\rho^{4}}{8} - \frac{\rho^{5}}{5}\right) \Big|_{0}^{3} d\varphi =$$

$$= \int_{0}^{2\pi} \left(\frac{9 \cdot 9}{4} + \frac{5 \cdot 81}{8} - \frac{243}{5} \right) d\phi = \frac{891\pi}{20}.$$

Задачи для самостоятельного решения

- 1. Вычислить $\int_{\gamma} (x + \sqrt{y}) dl$: а) вдоль кривой $y = x^2, 0 \le x \le 2$;
- б) вдоль прямой, соединяющей точки A(2,1,3), B(3,4,7).
- 2. Вычислить $\int_{\gamma} (x+y) dl$ вдоль прямой, соединяющей точки A(1,2,1), B(4,4,3).
- 3. Вычислить $\int\limits_{\gamma} x^2 y dl$ вдоль кривой $x=2\cos t,\ y=2\sin t,$ $\pi \leq t \leq 2\pi$.
- 4. Вычислить поверхностный интеграл $\iint_S (6z 2x + y) dS$, если поверхность S есть часть плоскости 2x 3y + 6z = 12, лежащая в части пространства $x \ge 0$, $y \le 0$, $z \ge 0$.

Ответы: 1. a)
$$\frac{17\sqrt{17}-1}{6}$$
; б) $\frac{73\sqrt{26}}{18}$; 2. $\frac{11\sqrt{17}}{2}$; 3. $-\frac{32}{3}$; 4. -352 .

КОНТРОЛЬНЫЕ РАБОТЫ

Предлагаемые ниже контрольные работы могут быть использованы для студентов заочной формы обучения.

Выбор варианта контрольных работ

Выбор варианта контрольных работ осуществляется по общим правилам с использованием следующей формулы:

V = (N*K) div 100,

где V — искомый номер варианта,

N — общее количество вариантов,

div — целочисленное деление,

при V= 0 выбирается максимальный вариант,

К — значение 2-х последних цифр пароля.

Контрольная работа № 1

Вариант 1.1

Найти неопределённые интегралы

1.
$$\int x \sqrt[7]{x^2 + 4} \, dx$$
; 2. $\int \frac{\sqrt[6]{\cot x}}{\cos^2 x} dx$; 3. $\int \frac{\sin 2x}{1 + \sin^2 x} dx$;

4.
$$\int \frac{e^{-2x}}{1+e^{-4x}} dx$$
; 5. $\int (x+1)\cos 7x \, dx$; 6. $\int \frac{x^7}{2+x^4} dx$;

7.
$$\int \frac{dx}{\sqrt{x+2} + \sqrt[3]{x+2}}$$
; 8. $\int \frac{dx}{\sin^2 5x \cos^2 5x}$;

9.
$$\int \frac{8x^3 + 27x^2 + 40x + 28}{(x^2 + 4)(x + 2)^2} dx.$$

Вычислить определённые интегралы

10.
$$\int_{0}^{\frac{1}{3}} \arctan 3x dx$$
; 11. $\int_{0}^{\pi} \cos 3x \sin 4x dx$.

Вычислить несобственные интегралы или установить их расходимость

12.
$$\int_{e-1}^{\infty} \frac{dx}{(x+1)\ln(x+1)}; \quad 13. \int_{1}^{2} \frac{xdx}{\sqrt{4-x^2}}.$$

Выяснить сходимость несобственных интегралов

14.
$$\int_{1}^{\infty} \frac{x \cos x}{2 + 3x^3} dx$$
; 15.
$$\int_{0}^{1} \frac{x dx}{\sqrt{x} \sin^3 x}$$
.

16. Найти площадь области, ограниченной кривыми $y = x^2 - 2$, y = 2x + 1.

17. Найти длину дуги кривой

$$x = 2\cos t, \ y = 2\sin t, \ z = t, \ 0 \le t \le \frac{\pi}{2}.$$

Вариант 1.2

Найти неопределённые интегралы

1.
$$\int x \sqrt[7]{x^2 + 8} \, dx$$
; 2. $\int \frac{\sqrt[4]{\text{ctg}x}}{\sin^2 x} \, dx$; 3. $\int \frac{\sin 2x}{9 + \cos 2x} \, dx$;

4.
$$\int \frac{e^{2x}}{4+9e^{4x}} dx$$
; 5. $\int \ln(x^3+8) dx$; 6. $\int \frac{x^9}{\sqrt[3]{3+x^5}} dx$;

7.
$$\int \frac{dx}{\sqrt{2x+3} + \sqrt[4]{2x+3}}$$
; 8. $\int \frac{\cos 2x \, dx}{1 + \cos 2x}$;

9.
$$\int \frac{-x^3 + 3x^2 - 36x - 137}{(x^2 + 16)(x + 3)^2} dx.$$

Вычислить определённые интегралы

10.
$$\int_{0}^{\frac{\pi}{2}} x \cos 4x dx$$
; 11. $\int_{0}^{\frac{\pi}{2}} \cos 5x \sin x dx$.

Вычислить несобственные интегралы или установить их расходимость

12.
$$\int_{2}^{\infty} \frac{dx}{x \ln^4 x}$$
; 13. $\int_{1}^{2} \frac{dx}{\sqrt[3]{2-x}}$.

Выяснить сходимость несобственных интегралов

14.
$$\int_{1}^{\infty} \frac{\sin x}{\sqrt{x^3 + 2}} dx; \quad 15. \int_{1}^{4} \frac{\sqrt{x^2 + 1}}{\sqrt[3]{64 - x^3}} dx.$$

- 16. Найти площадь области, ограниченной кривыми $y = 2x^2 + 3$, $y = \sqrt{x} + 3$.
- 17. Найти длину дуги кривой $y = \sqrt{x^3}$, $2 \le x \le 4$.

Вариант 1.3

Найти неопределённые интегралы

1.
$$\int x \sin x^2 dx; \quad 2. \int \frac{\cos x}{\sqrt[3]{3 + \sin x}} dx; \quad 3. \int \frac{\cos 4x}{3 + \sin 4x} dx;$$

4.
$$\int \frac{e^{6x}}{16 + 2e^{12x}} dx$$
; 5. $\int \frac{\arcsin 3x}{\sqrt{3x + 1}} dx$; 6. $\int \frac{x^{11}}{\sqrt{4 + x^6}} dx$;

7.
$$\int \frac{\sqrt{x+3}}{3+\sqrt{x+3}} dx$$
; 8. $\int \frac{dx}{\sin^2 3x \cos^4 3x}$; 9. $\int \frac{x^2-4x+7}{(x^2+1)(x-1)^2} dx$.

Вычислить определённые интегралы

10.
$$\int_{0}^{\frac{\pi}{4}} x \sin 6x dx$$
; 11. $\int_{0}^{\pi} \cos 4x \sin 6x dx$.

Вычислить несобственные интегралы или установить их расходимость

12.
$$\int_{0}^{\infty} \frac{x^4 dx}{2 + x^5}; \quad 13. \int_{0}^{1} \frac{dx}{\sqrt[4]{(1 - x)^3}}.$$

Выяснить сходимость несобственных интегралов

14.
$$\int_{1}^{\infty} \frac{3x^2 + 1}{(2+x)^2 \sqrt{x^2 + 1}} dx; \quad 15. \int_{0}^{1} \frac{\ln(1+\sqrt{x})}{\sqrt{x^5} \sin 3x} dx.$$

16. Найти площадь области, ограниченной линиями $y = (x-2)^3$, y = 2(x-2).

17. Найти длину дуги кривой $x = 2t - \sin 2t$, $y = 1 - \cos 2t$, $0 \le t \le \pi$

Вариант 1.4

Найти неопределённые интегралы

1.
$$\int x \cos x^2 dx$$
; 2. $\int \frac{\sin x}{\sqrt[4]{2 + \cos x}} dx$; 3. $\int \text{tg} 3x dx$;

4.
$$\int \sqrt[3]{3 + e^{2x}} e^{2x} dx$$
; 5. $\int (2x + 1) \sin 4x dx$; 6. $\int x^{11} \cdot \sqrt[4]{3 + x^6} dx$;

7.
$$\int \frac{dx}{x\sqrt{2x-5}}$$
; 8. $\int \frac{dx}{\cos 4x \sin^3 4x}$; 9. $\int \frac{4x^3 - 19x^2 + 19x + 16}{(x^2 - 2x + 2)(x - 3)^2} dx$.

Вычислить определённые интегралы

10.
$$\int_{0}^{\sqrt{e-3}} \ln(x^2+3)dx; \quad 11. \int_{0}^{\pi} \cos 7x \cos 2x dx.$$

Вычислить несобственные интегралы или установить их расходимость

12.
$$\int_{0}^{\infty} \frac{dx}{x^2 + 6x + 34}$$
; 13.
$$\int_{1}^{\frac{e}{3}} \frac{dx}{x \ln 3x}$$
.

Выяснить сходимость несобственных интегралов

14.
$$\int_{1}^{\infty} \frac{x^3 + 6x^2 + 9}{5x^6 + 4x} dx$$
; 15.
$$\int_{0}^{1} \frac{\cos x}{x \sin 2x^2} dx$$
.

16. Найти площадь области, ограниченной линиями $y = e^{2x}$, $y = e^{-2x}$, x = 3.

17. Найти длину дуги кривой $y = \ln x$, $\sqrt{3} \le x \le \sqrt{4}$.

Вариант 1.5

Найти неопределённые интегралы

1.
$$\int \frac{x^2}{4+9x^6} dx$$
; 2. $\int \frac{(2+\ln x)^3}{x} dx$; 3. $\int \cot 5x dx$;

4.
$$\int \sqrt[5]{2 - e^{3x}} e^{3x} dx$$
; 5. $\int x \operatorname{tg}^2 9x dx$; 6. $\int \frac{x^{15}}{\sqrt{2 + x^8}} dx$;

7.
$$\int \frac{\sqrt{3x+1}-1}{\sqrt{3x+1}+1} dx \ 8. \int \frac{dx}{\sin 6x + \cos 6x};$$

9.
$$\int \frac{3x^3 - 3x^2 + 16}{(x^2 - 4x + 8)(x + 2)^2} dx.$$

Вычислить определённые интегралы

10.
$$\int_{1}^{e} x \ln^2 x dx$$
; 11. $\int_{0}^{\pi} \sin 3x \sin 2x dx$.

Вычислить несобственные интегралы или установить их расходимость

12.
$$\int_{0}^{\infty} \frac{x+2}{x^2+4x+5} dx$$
; 13.
$$\int_{-1}^{0} \frac{e^{\frac{1}{x^2}}}{x^3} dx$$
.

Выяснить сходимость несобственных интегралов

14.
$$\int_{1}^{\infty} \frac{x^2 \arctan x}{2 + x^2 \sqrt{x^3 + 1}} dx; \quad 15. \int_{0}^{1} \frac{e^{\sin x}}{\sqrt[5]{x} \sin^2 x} dx.$$

16. Найти площадь области, ограниченной линиями $y = 1 + 2x - x^2$, x + y - 1 = 0.

17. Найти длину дуги кривой $\rho = e^{\varphi}$, $0 \le \varphi \le \ln 3$.

Вариант 1.6

Найти неопределённые интегралы

1.
$$\int \frac{x^3}{9+16x^8} dx; \quad 2. \int \frac{\sqrt[3]{5+\ln x}}{x} dx; \quad 3. \int \frac{e^{2+\operatorname{tg}4x}}{\cos^2 4x} dx;$$
4.
$$\int (2+e^{6x})^3 e^{6x} dx; \quad 5. \int x \ln(5+x) dx; \quad 6. \int x^7 \sqrt[5]{3+x^4} dx;$$
7.
$$\int \frac{\sqrt[5]{(x+4)^3}}{\sqrt{(x+4)^3} - \sqrt[5]{(x+4)^7}} dx; \quad 8. \int \frac{dx}{\cos^3 2x \sin^3 2x};$$
9.
$$\int \frac{4x^3 + 13x^2 + 10x + 36}{(x^2 - 2x + 2)(x+4)^2} dx.$$

Вычислить определённые интегралы

10.
$$\int_{1}^{e} \ln^2 x dx$$
; 11. $\int_{-\pi}^{0} \cos 3x \sin 4x dx$.

Вычислить несобственные интегралы или установить их расходимость

12.
$$\int_{0}^{\infty} \frac{x^4}{8 + x^{10}} dx$$
; 13.
$$\int_{0}^{e} \frac{dx}{x \ln^3 4x}$$
.

Выяснить сходимость несобственных интегралов

14.
$$\int_{1}^{\infty} \frac{2 + \sin x}{(6x + 1)\sqrt{x^2 + 1}} dx$$
; 15.
$$\int_{0}^{2} \frac{\sqrt{\sin x}}{x^2(x + 4)} dx$$
.

16. Найти площадь области, ограниченной линиями $y = e^{-x}$, y = e, x = 1.

17. Найти длину дуги кривой

$$x = 4\cos^3 2t$$
, $y = 4\sin^3 2t$, $0 \le t \le \frac{\pi}{2}$.

Найти неопределённые интегралы

1.
$$\int \frac{x^2}{4+9x^3} dx$$
; 2. $\int e^{7+3\sin x} \cos x dx$; 3. $\int \sin 2x \sqrt{4+3\cos 2x} dx$;

4.
$$\int \frac{e^{7x}}{2+3e^{7x}} dx$$
; 5. $\int \ln(3+x) dx$; 6. $\int \frac{x^3}{\sqrt{5+x^2}} dx$;

$$5. \int \ln(3+x) \, dx;$$

6.
$$\int \frac{x^3}{\sqrt{5+x^2}} dx$$
;

7.
$$\int \frac{\sqrt[4]{3x} + 1}{(\sqrt{3x} + 4)\sqrt[4]{x^3}} dx; \quad 8. \int \frac{dx}{1 + \sin^2 3x};$$

9.
$$\int \frac{-x^3 + 7x^2 + 6x - 7}{(x^2 - 2x + 2)(x + 1)^2} \, dx.$$

Вычислить определённые интегралы

10.
$$\int_{0}^{1} x^{2} \arctan dx$$
; 11. $\int_{-\pi}^{0} \cos x \cos 7x dx$.

Вычислить несобственные интегралы или установить их расходимость

12.
$$\int_{0}^{\infty} \frac{dx}{x^2 + 2x + 10}$$
; 13.
$$\int_{0}^{e} \frac{4 \ln 4x dx}{x}$$
.

Выяснить сходимость несобственных интегралов

14.
$$\int_{1}^{\infty} \frac{x+1}{2x^3 + x^2 \sqrt{x}} dx$$
; 15.
$$\int_{0}^{1} \frac{\ln(1+4x^2)}{x^5} dx$$
.

16. Найти площадь области, ограниченной линиями $x^2 + 8y - 16 = 0$, y = 0.

17. Найти длину дуги кривой

$$y = \ln \cos x + 5, \ 0 \le x \le \frac{\pi}{3}.$$

Найти неопределённые интегралы

1.
$$\int \frac{x^3}{9+16x^4} dx$$
; 2. $\int e^{5+2\cos x} \sin x \, dx$; 3. $\int \sqrt[6]{7-\sin 4x} \cos 4x \, dx$;

4.
$$\int \frac{e^{4x}}{3+5e^{4x}} dx$$
; 5. $\int x \arctan 4x dx$; 6. $\int \frac{x^5}{(2+x^3)^4} dx$;

7.
$$\int \frac{\sqrt{x-5}}{1+\sqrt[3]{x-5}} dx$$
; 8. $\int \frac{dx}{\sin^3 5x}$; 9. $\int \frac{4x^2+x-23}{(x^2+2x+2)(x+3)^2} dx$.

Вычислить определённые интегралы

10.
$$\int_{0}^{1} \frac{\arcsin x}{\sqrt{1-x}} dx$$
; 11. $\int_{\pi}^{2\pi} \cos 2x \sin 3x dx$.

Вычислить несобственные интегралы или установить их расходимость

12.
$$\int_{0}^{\infty} \frac{x+4}{x^2+8x+25} dx$$
; 13.
$$\int_{0}^{1} \frac{x^2 dx}{\sqrt[4]{1-x^3}}$$
.

Выяснить сходимость несобственных интегралов

14.
$$\int_{1}^{\infty} \frac{dx}{x\sqrt[3]{\ln^2 x}}$$
; 15. $\int_{0}^{3} \frac{x+4}{x\sin^2 2x} dx$.

16. Найти площадь области, ограниченной линиями

$$y = x$$
, $y = \frac{1}{4}x^4$.

17. Найти длину дуги кривой, заданной в полярной системе координат уравнением $\rho = 1 - \cos \phi$, $-\frac{\pi}{3} \le \phi \le -\frac{\pi}{6}$.

Найти неопределённые интегралы

1.
$$\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx;$$
 2.
$$\int \frac{dx}{\cos^2 x (5 + 3\operatorname{tg} x)};$$
 3.
$$\int e^{3 + \cos 2x} \sin 2x dx;$$

4.
$$\int \frac{e^{7x}}{9+4e^{14x}} dx$$
; 5. $\int \arcsin 5x \, dx$ 6. $\int x^{19} \sqrt[3]{4+x^{10}} \, dx$;

7.
$$\int \frac{\sqrt[4]{x} + 1}{\sqrt[4]{x^5} + \sqrt[4]{x^3}} dx$$
; 8.
$$\int \frac{dx}{1 + \cos^2 3x}$$
; 9.
$$\int \frac{-6x^2 + 4x + 41}{(x^2 + 4x + 8)(x - 1)^2} dx$$
.

Вычислить определённые интегралы

10.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \operatorname{ctg}^2 3x dx$$
; 11. $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin 2x \sin 9x dx$.

Вычислить несобственные интегралы или установить их расходимость

12.
$$\int_{0}^{\infty} \frac{x^2 dx}{x^3 + 9}$$
; 13.
$$\int_{0}^{1} \frac{x^4 dx}{\sqrt[3]{1 - x^5}}$$
.

Выяснить сходимость несобственных интегралов

14.
$$\int_{3}^{\infty} \frac{5x^3 + 3}{(x^2 + 1)^2 \sqrt{x^2 + 4}} dx$$
; 15.
$$\int_{0}^{\pi} \frac{\cos x}{\sqrt{x^5}} dx$$
.

16. Найти площадь области, ограниченной линиями

$$y = \frac{-x^2}{1+x^2}, \ y = \frac{1}{2}x^2 - 1.$$

17. Найти длину дуги кривой, заданной в полярной системе координат уравнением $\rho = 2 - 2\cos\phi, \ \frac{\pi}{6} \le \phi \le \frac{\pi}{3}.$

Найти неопределённые интегралы

1.
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$
; 2. $\int \frac{e^{4+tgx}}{\cos^2 x} dx$; 3. $\int \frac{dx}{\cos^2 3x(4+7tg3x)} dx$;

4.
$$\int \frac{e^{4x}}{\sqrt{1-e^{8x}}} dx$$
; 5. $\int \arctan 8x dx$; 6. $\int x^{17} \cdot \sqrt[7]{9+x^9} dx$;

7.
$$\int \frac{\sqrt{3x+2}}{\sqrt[3]{3x+2}+1} dx$$
; 8. $\int \frac{dx}{\cos^3 4x}$; 9. $\int \frac{9x^2-48x+76}{(x^2+4x+8)(x+2)^2} dx$.

Вычислить определённые интегралы

10.
$$\int_{0}^{\frac{\pi}{28}} x \, \text{tg}^2 7x dx$$
; 11. $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin 5x \sin 8x dx$.

Вычислить несобственные интегралы или установить их расходимость

12.
$$\int_{e}^{\infty} \frac{\ln^2 5x dx}{x}$$
; 13.
$$\int_{0}^{1} \frac{e^{\int_{x^3}^{1/x^3}}}{x^4} dx$$
.

Выяснить сходимость несобственных интегралов

14.
$$\int_{2}^{\infty} \frac{3x^2 + 2x}{5x^5 + 8} dx$$
; 15.
$$\int_{0}^{1} \frac{e^{x^3} - 1}{\sqrt{x^7}} dx$$
.

16. Найти площадь области, ограниченной линиями y = 0, $y = 2x - x^2$.

17. Найти длину дуги кривой, заданной уравнением $y = \ln \sin x$, $\frac{\pi}{6} \le x \le \frac{\pi}{3}$.

Контрольная работа № 2

- 1. Вычислить $\iint_D (3x+2y)dxdy$, если D внутренность треугольника с вершинами в точках A(0,2), B(2,0), C(3,3).
 - 2. Изменить порядок интегрирования

$$\int_{-3}^{-2} dx \int_{-\sqrt{3+x}}^{0} f(x,y)dy + \int_{-2}^{0} dx \int_{-\sqrt{-x}}^{0} f(x,y)dy.$$

- 3. Вычислить площадь области, заданной неравенствами $x^2 + (y-r)^2 \le r^2$, $x \ge 0$, $-2x + r \ge y$, перейдя предварительно к полярным координатам.
 - 4. Вычислить объём тела, ограниченного поверхностями $x = 0, z = 0, y = 4x, z = \sqrt{y}, y = 2.$
- 5. Вычислить интеграл (в цилиндрических или сферических координатах) $\iiint\limits_V yx\,dxdydz$, где V область, заданная неравенствами $x^2+y^2+z^2\geq 4$, $x^2+y^2+z^2\leq 16$, $z\geq 0$.
- 6. Найти работу силы $f(x,y) = (x^2 2y)\mathbf{i} (2x y)\mathbf{j}$ по перемещению точки вдоль участка кривой $x = 2\cos t, \ y = 2\sin t,$ $0 \le t \le \frac{\pi}{2}$.
- 7. Проверить, что поле $F = (3x + 5yz)\mathbf{i} + (3y + 5xz)\mathbf{j} + (3z + 5xy)$ потенциально, и восстановить потенциал.
- 8. Вычислить поток вектора $f = 2x\mathbf{i} + 2y\mathbf{j} + z\mathbf{k}$ через часть поверхности x + y + 3z = 1, лежащую в первом октанте.
- 9. Вычислить поток вектора $f = x\mathbf{i} + 2y\mathbf{j} + z^2\mathbf{k}$ через замкнутую поверхность $z = x^2 + y^2$, z = 4.

- 1. Вычислить $\iint_D (2x+4y) dx dy$, если D внутренность треугольника с вершинами в точках A(0,1), B(2,0), C(3,4).
 - 2. Изменить порядок интегрирования

$$\int_{1}^{2} dx \int_{0}^{x-1} f(x, y) dy + \int_{2}^{3} dx \int_{0}^{(x-3)^{2}} f(x, y) dy.$$

- 3.Вычислить площадь области, заданной неравенствами $(x+r)^2+y^2\leq r^2,\ y\geq 0,\ 2x+2r\leq y,$ перейдя предварительно к полярным координатам.
 - 4. Вычислить объём тела, ограниченного поверхностями $x = 2, z = 0, y = 3x, z = y^2$.
- 5. Вычислить интеграл (в цилиндрических или сферических координатах) $\iiint_V xy\,dxdydz$, где V область, заданная неравенствами $x^2+y^2+z^2\leq a^2,\,x\leq 0,\,y\geq 0,\,z\leq 0$.
- 6. Найти работу силы $f(x,y) = (x^2 + 2y)\mathbf{i} (2x + y)\mathbf{j}$ по перемещению точки вдоль участка кривой $y = x^2$ от точки A(0,0) до точки B(3,9).
- 7. Проверить, что поле $f = 3x^2e^{4y}\mathbf{i} + 4x^2e^{4y}\mathbf{j}$ потенциально, и восстановить потенциал.
- 8. Вычислить поток вектора $f = 4x\mathbf{i} + 3y\mathbf{j} + z\mathbf{k}$ через часть поверхности 4x + 3y + 3z = 8, лежащую в первом октанте.
- 9. Вычислить поток вектора $f = 3x\mathbf{i} + 2y^2\mathbf{j} + z\mathbf{k}$ через замкнутую поверхность $x^2 + y^2 = 4$, z = 0, z = 2.

- 1. Вычислить $\iint_D (x-2y) dx dy$, если D внутренность треугольника с вершинами в точках A(-1,-1), B(2,2), C(3,0).
 - 2. Изменить порядок интегрирования

$$\int_{1}^{2} dx \int_{0}^{(x-1)^{2}} f(x,y)dy + \int_{2}^{3} dx \int_{0}^{3-x} f(x,y)dy.$$

- 3. Вычислить площадь области, заданной неравенствами $(x+r)^2+y^2\leq r^2,\ y\leq 0,\ 2x+2r\geq y,\$ перейдя предварительно к полярным координатам.
 - 4. Вычислить объём тела, ограниченного поверхностями $x = 3, z = 0, y = 2x, z = \sqrt{y}$.
- 5. Вычислить интеграл (в цилиндрических или сферических координатах) $\iiint_V \frac{y}{\sqrt{x^2+z^2}} dx dy dz$, где V область, заданная неравенствами $x^2+y^2+z^2 \leq 4R^2$, $x^2+z^2 \leq -2Rx$, $y \geq 0$.
- 6. Найти работу силы $f(x,y) = (x+2y)\mathbf{i} + x^2\mathbf{j}$ по перемещению точки вдоль участка кривой $x = 2t, y = t^2, 0 \le t \le 3$.
- 7. Проверить, что поле $f = (4x^3 + 3y)\mathbf{i} + (3x 3)\mathbf{j}$ потенциально, и восстановить потенциал.
- 8. Вычислить поток вектора $f = 2x\mathbf{i} + 3y\mathbf{j} + 4z\mathbf{k}$ через часть поверхности 5x + 3y + 2z = 5, лежащую в первом октанте.
- 9. Вычислить поток вектора $f = 2x\mathbf{i} + 3y\mathbf{j} + z^2\mathbf{k}$ через замкнутую поверхность $x^2 + y^2 + z^2 = 9$, z = 0, лежащую в полупространстве $z \ge 0$.

- 1. Вычислить $\iint_D (x+6y)dxdy$, если D внутренность треугольника с вершинами в точках A(1,1), B(-2,-2), C(0,3).
 - 2. Изменить порядок интегрирования

$$\int_{-3}^{-2} dx \int_{0}^{x+3} f(x,y)dy + \int_{-2}^{0} dx \int_{0}^{x^{2}} f(x,y)dy.$$

3.Вычислить площадь области, заданной неравенствами $(x-r)^2+y^2\leq r^2,\ y\geq 0, -2x+2r\geq y,$ перейдя предварительно к полярным координатам.

- 4. Вычислить объём тела, ограниченного поверхностями x = 0, z = 0, x + y = 3, $z = y^2$.
- 5. Вычислить интеграл (в цилиндрических или сферических координатах) $\iiint_V 10z \, dx \, dy \, dz$, где V область, заданная неравенствами $x^2 + y^2 + z^2 \le 9$, $x^2 + y^2 \le 4z^2$, $x \ge 0$, $z \ge 0$.
- 6. Найти работу силы $f(x,y)=(x^2+2y)\mathbf{i}-(3x+y)\mathbf{j}$ по перемещению точки вдоль участка кривой $x=3\cos t,\ y=2\sin t,$ $0\leq t\leq \frac{\pi}{4}.$
- 7. Проверить, что поле $f = (\ln y 3x^2)\mathbf{i} + \frac{x+1}{y}\mathbf{j}$ потенциально, и восстановить потенциал.
- 8. Вычислить поток вектора $f = 4y\mathbf{j} + 3z\mathbf{k}$ через часть поверхности 3x + 2y + 4z = 6, лежащую в первом октанте.
- 9. Вычислить поток вектора $f = 2x\mathbf{i} + 3y\mathbf{j} + z^2\mathbf{k}$ через замкнутую поверхность $x^2 + y^2 + z^2 = 4$, $x \ge 0$, $z \ge 0$.

- 1. Вычислить $\iint_D (4x + 5y) dx dy$, если D внутренность треугольника с вершинами в точках A(-1,-2), B(0,0), C(-2,-1).
 - 2. Изменить порядок интегрирования

$$\int_{-3}^{-2} dx \int_{0}^{(x+3)^{2}} f(x,y)dy + \int_{-2}^{0} dx \int_{0}^{-x} f(x,y)dy.$$

- 3.Вычислить площадь области, заданной неравенствами $x^2+(y-r)^2 \le r^2, \ x \ge 0, -2x+r \le y$, перейдя предварительно к полярным координатам.
 - 4. Вычислить объём тела, ограниченного поверхностями $x=0,\ z=0,\ x+2\,y=4,\ z=4\sqrt{y}$.

- 5. Вычислить интеграл (в цилиндрических или сферических координатах) $\iiint_V (x^2 + y^2) dx dy dz$, где V область, заданная неравенствами $x^2 + y^2 \le 4z$, $z \le 4$.
- 6. Найти работу силы $f(x,y) = (2xy 3y)\mathbf{i} (x^2 y)\mathbf{j}$ по перемещению точки вдоль участка кривой $x = 3y^2$ от точки A(0,0) до точки B(12,2).
- 7. Проверить, что поле $f = (6x + 3y)\mathbf{i} + (3x 3y^2)\mathbf{j}$ потенциально, и восстановить потенциал.
- 8. Вычислить поток вектора $f = 4x\mathbf{i} + y^2\mathbf{j} + 2z\mathbf{k}$ через часть поверхности 3x + 5y + 2z = 6, лежащую в первом октанте.
- 9. Вычислить поток вектора $f = 3x\mathbf{i} + 2y\mathbf{j} + 3z^2\mathbf{k}$ через замкнутую поверхность $x^2 + y^2 = 4 z$, z = 0.

- 1. Вычислить $\iint_D (x+3y) dx dy$, если D внутренность треугольника с вершинами в точках A(2,2), B(-1,3), C(3,4).
 - 2. Изменить порядок интегрирования

$$\int_{-3}^{-2} dx \int_{-\sqrt{3+x}}^{0} f(x,y)dy + \int_{-2}^{-1} dx \int_{x+1}^{0} f(x,y)dy.$$

- 3. Вычислить площадь области, заданной неравенствами $x^2 + (y-r)^2 \le r^2$, $x \le 0$, $2x + r \le y$, перейдя предварительно к полярным координатам.
 - 4. Вычислить объём тела, ограниченного поверхностями z = 0, z = 2x, $y^2 = 2 x$.
- 5. Вычислить интеграл (в цилиндрических или сферических координатах) $\iiint_V \sqrt{x^2 + y^2 + z^2} \, dx dy dz \,, \, \text{где } V \, \longrightarrow \, \text{область, заданная}$ неравенствами $x^2 + y^2 + z^2 \leq 9, \, x \geq y, \, y \geq 0.$

- 6. Найти работу силы $f(x,y) = (x^2 2y)\mathbf{i} + (3x y^2)\mathbf{j}$ по перемещению точки вдоль участка кривой $x = 9\cos t, \ y = 3\sin t,$ $0 \le t \le \frac{\pi}{2}$.
- 7. Проверить, что поле $f = 6x^2y\mathbf{i} + (2x^3 y)\mathbf{j}$ потенциально, и восстановить потенциал.
- 8. Вычислить поток вектора $f = 3x\mathbf{i} + 2y\mathbf{j} + z\mathbf{k}$ через часть поверхности 2x + 7y + 3z = 5, лежащую в первом октанте.
- 9. Вычислить поток вектора $f = x^2 \mathbf{i} + 4y \mathbf{j} + 2z \mathbf{k}$ через замкнутую поверхность $x^2 + y^2 = 3 + z$, z = 0.

- 1. Вычислить $\iint_D (x-3y)dxdy$, если D внутренность треугольника с вершинами в точках A(2,4), B(1,3), C(3,2).
 - 2. Изменить порядок интегрирования

$$\int_{1}^{2} dx \int_{-\sqrt{x-1}}^{0} f(x,y)dy + \int_{2}^{1+\sqrt{5}} dx \int_{-\sqrt{1+2x-x^{2}}}^{0} f(x,y)dy.$$

- 3. Вычислить площадь области, заданной неравенствами $(x-r)^2+y^2\leq r^2,\ y\leq 0, -2x+2r\geq y,$ перейдя предварительно к полярным координатам.
 - 4. Вычислить объём тела, ограниченного поверхностями z = 0, 2x 3y = 0, $4z = y^2$, x + y = 4.
- 5. Вычислить интеграл (в цилиндрических или сферических координатах) $\iiint_V z^2 dx dy dz$, где V область, заданная неравенствами $x^2 + y^2 + z^2 \le 16$, $z^2 \ge x^2 + y^2$, $y \ge 0$, $z \ge 0$.
- 6. Найти работу силы $f(x,y)=x^2y\mathbf{i}+(x+3y)\mathbf{j}$ по перемещению точки вдоль участка кривой $x^2+y^2=9$ от точки A(0,3) до точки B(3,0).

- 7. Проверить, что поле $f = e^{2y}\mathbf{i} + 2(x+5)e^{2y}\mathbf{j}$ потенциально, и восстановить потенциал.
- 8. Вычислить поток вектора $f = 4x\mathbf{i} + 7y\mathbf{j} + z\mathbf{k}$ через часть поверхности 3x + 7y + 2z = 12, лежащую в первом октанте.
- 9. Вычислить поток вектора $f = x^2 \mathbf{i} + 2y \mathbf{j} + 4z \mathbf{k}$ через замкнутую поверхность $z + 4 = x^2 + y^2$, z = 0.

- 1. Вычислить $\iint_D (3x+7y) dx dy$, если D внутренность треугольника с вершинами в точках A(4,3), B(3,2), C(0,1).
 - 2. Изменить порядок интегрирования

$$\int_{-3}^{-2} dx \int_{-(3+x)}^{0} f(x,y)dy + \int_{-2}^{-1} dx \int_{\sqrt[3]{x+1}}^{0} f(x,y)dy.$$

- 3. Вычислить площадь области, заданной неравенствами $x^2 + (y-r)^2 \le r^2$, $x \ge 0$, $2x + r \ge y$, перейдя предварительно к полярным координатам.
 - 4. Вычислить объём тела, ограниченного поверхностями y = 0, z = 0, x + y = 3, $z = x^2$.
- 5. Вычислить интеграл (в цилиндрических или сферических координатах) $\iiint_V \frac{5(x^2+y^2)}{3} dx dy dz, \ \text{где } V \ \ --- \ \text{область, заданная}$ неравенствами $16(x^2+y^2) \geq z^2, \ x^2+y^2 \leq 4, \ x \geq 0, \ z \geq 0$.
- 6. Найти работу силы $f(x,y) = xy\mathbf{i} + (x^2 2y)\mathbf{j}$ по перемещению точки вдоль участка кривой $x = 3\cos t, \ y = 4\sin t, \ 0 \le t \le \frac{\pi}{2}.$
- 7. Проверить, что поле $f = (2xy^2 + x^4)\mathbf{i} + 2x^2y\mathbf{j}$ потенциально, и восстановить потенциал.
- 8. Вычислить поток вектора $f = 3x\mathbf{i} + 2y\mathbf{j} + z\mathbf{k}$ через часть поверхности 2x + y + z = 4, лежащую в первом октанте.

9. Вычислить поток вектора $f = 2x\mathbf{i} - 3y\mathbf{j} + z\mathbf{k}$ через замкнутую поверхность $x^2 + y^2 = 8 - z$, z = 0.

- 1. Вычислить $\iint_D (5x+4y) dx dy$, если D внутренность треугольника с вершинами в точках A(2,4), B(3,2), C(-1,1).
 - 2. Изменить порядок интегрирования

$$\int_{1}^{2} dx \int_{-x+1}^{0} f(x,y)dy + \int_{2}^{3} dx \int_{x^{2}-4x+3}^{0} f(x,y)dy.$$

- 3. Вычислить площадь области, заданной неравенствами $(x-r)^2+y^2\leq r^2,\ y\geq 0,\ 2x-2r\leq y,$ перейдя предварительно к полярным координатам.
 - 4. Вычислить объём тела, ограниченного поверхностями x = 0, y = 0, z = 0, $z = y^2 + 1$, x + y = 2.
- 5. Вычислить интеграл (в цилиндрических или сферических координатах) $\iiint_V x^2 dx dy dz$, где V область, заданная неравенствами $x^2 + y^2 + z^2 \le 9$, $x^2 + y^2 \le 3z$.
- 6. Найти работу силы $f(x,y,z) = (xy-2y)\mathbf{i} (2x-y)\mathbf{j} + z\mathbf{k}$ по перемещению точки вдоль участка кривой $x = 3\cos t, \ y = 3\sin t,$ $z = t, \ 0 \le t \le \frac{\pi}{2}$.
- 7. Проверить, что поле $f = (2x + y^3)\mathbf{i} + 3xy^2\mathbf{j}$ потенциально, и восстановить потенциал.
- 8. Вычислить поток вектора $f = 2x\mathbf{i} + y\mathbf{j} + z^2\mathbf{k}$ через часть поверхности 2x + y + 3z = 12, лежащую в первом октанте.
- 9. Вычислить поток вектора $f = 3x\mathbf{i} + 4y\mathbf{j} z\mathbf{k}$ через замкнутую поверхность $x^2 + y^2 + z^2 = 4$, z = 0, лежащую в полупространстве $z \ge 0$.

- 1. Вычислить $\iint_D (2x+5y)dxdy$, если D внутренность треугольника с вершинами в точках A(1,1), B(3,2), C(4,0).
 - 2. Изменить порядок интегрирования

$$\int_{-2}^{-1} dx \int_{-\sqrt{2-x^2}}^{0} f(x,y)dy + \int_{-1}^{0} dx \int_{x}^{0} f(x,y)dy.$$

- 3. Вычислить площадь области, заданной неравенствами $x^2 + (y-r)^2 \le r^2$, $x \le 0$, $-2x + r \le y$, перейдя предварительно к полярным координатам.
 - 4. Вычислить объём тела, ограниченного поверхностями y = 0, z = 0, 3x + 2y = 6, $z = x^2$.
- 5. Вычислить интеграл (в цилиндрических или сферических координатах) $\iiint_V 5x \, dx \, dy \, dz$, где V область, заданная неравенствами $x^2 + y^2 \le 9$, $x^2 + y^2 \ge 9z$, $z \ge 0$.
- 6. Найти работу силы $f(x,y) = (2x+y)\mathbf{i} (3x+y^2)\mathbf{j}$ по перемещению точки вдоль участка кривой $x^3 = y$ от точки A(0,0) до точки B(3,27).
- 7. Проверить, что поле $f = (3x^2y^2 + 2x)\mathbf{i} + 2x^3y\mathbf{j}$ потенциально, и восстановить потенциал.
- 8. Вычислить поток вектора $f = 2x\mathbf{i} 3xy\mathbf{j} + 4z\mathbf{k}$ через часть поверхности 2x + 4y + 3z = 12, лежащую в первом октанте.
- 9. Вычислить поток вектора $f = 2x\mathbf{i} + y^2\mathbf{j} z\mathbf{k}$ через замкнутую поверхность $z + 5 = x^2 + y^2$, z = 0.

ЛИТЕРАТУРА

- 1. Горбанев Н. Н. Высшая математика І. Линейная алгебра. Аналитическая геометрия : учеб. пособие / Н. Н. Горбанев, А. А. Ельцов, Л. И. Магазинников. 2-е изд., перераб. и доп. Томск : Томск. гос. ун-т систем управления и радиоэлектроники, 2001.
- 2. Ельцов А. А. Высшая математика І. Дифференциальное исчисление / А. А. Ельцов, Г. А. Ельцова, Л. И. Магазинников. Томск : Томск. гос. ун-т систем управления и радиоэлектроники, 2001.
- 3. Зорич В. А. Математический анализ : в 2 ч. / В. А. Зорич. М. : Наука, 1981. Ч. 1. ; 1984. Ч. 2.
- 4. Фихтенгольц Γ . М. Курс дифференциального и интегрального исчисления : в 3 т. / Γ . М. Фихтенгольц. М. : Наука, 1969. Т. 1, 2 ; 1970. Т. 3.
- 5. Курош А. Г. Курс высшей алгебры / А. Г. Курош. М. : Физматгиз, 1963.
- 6. Градштейн И. С. Таблицы интегралов, сумм, рядов и произведений / И. С. Градштейн, И. М. Рыжик. — М.: Наука, 1971.
- 7. Бугров Я. С. Высшая математика: учебник для вузов: в 3 т. / Я. С. Бугров, С М. Никольский; под ред. В. А. Садовничего. 6-е изд., стереотип. М.: Дрофа, 2004. Т. 3: Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного.
- 8. Демидович Б. П. Основы вычислительной математики / Б. П. Демидович, И. А. Марон. М.: Наука, 1970.
- 9. Будак Б. Н. Кратные интегралы и ряды / Б. Н. Будак, С. В. Фомин. М.: Наука, 1967.
- 10. Бермант А. Ф. Краткий курс математического анализа для втузов / А. Ф. Бермант, И. Г. Араманович. М.: Наука, 1969.
- 11. Гюнтер Н. М. Сборник задач по высшей математике / Н. М. Гюнтер, Р. О Кузьмин. М. : Государственное издательство физико-математической литературы, 1959. Т. 2.

ПРИЛОЖЕНИЕ 1 Комплексные числа и действия над ними

При решении алгебраических уравнений степени два и выше иногда приходится рассматривать конструкции вида $a+b\cdot\sqrt{-1}$, где a и b — некоторые действительные числа. Например, подставляя формально конструкцию $1+2\cdot\sqrt{-1}$ в не имеющее действительных корней уравнение $x^2-2x+5=0$, получаем $\left(1+2\cdot\sqrt{-1}\right)^2-2\left(1+2\cdot\sqrt{-1}\right)+5$. Действуя в полученном выражении с конструкцией $1+2\cdot\sqrt{-1}$ как с двучленом по правилам алгебры, известным из школы, раскрывая скобки и приводя подобные, имеем

$$(1)^2 + 2 \cdot 2 \cdot \sqrt{-1} + \left(2 \cdot \sqrt{-1}\right)^2 - 2 - 2 \cdot 2 \cdot \sqrt{-1} + 5 = 4 + 4 \cdot (-1) = 0.$$

Таким образом, конструкцию $1+2\cdot\sqrt{-1}$ можно считать корнем новой природы (не действительным) уравнения $x^2-2x+5=0$.

Пусть i — некоторый формальный символ, x и y — действительные (вещественные) числа. Конструкции вида z = x + iy назовём комплексными числами, x действительной, а y мнимой частями комплексного числа z = x + iy и будем обозначать их соответственно x = Re z, y = Im z. Два комплексных числа будем считать равными, если совпадают их действительные и мнимые части. На множестве комплексных чисел введём операции сложения и умножения по формулам:

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2);$$

$$z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1).$$

Обратные операции определяются однозначно и задаются формулами:

$$z_1 - z_2 = (x_1 + iy_1) - (x_2 + iy_2) = (x_1 - x_2) + i(y_1 - y_2);$$

$$\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{(x_2)^2 + (y_2)^2}.$$

Каждому комплексному числу z = x + iy сопоставим точку (x, y) плоскости R^2 . Этим устанавливается взаимно однозначное

соответствие между комплексными числами и точками плоскости. Операция сложения комплексных чисел совпадает с операцией сложения радиус-векторов точек (x, y). Для операции умножения комплексных чисел не находится соответствующей операции над векторами.

Если действительные числа отождествить с комплексными числами вида $x+0 \cdot i$, то эти операции совпадают с обычными операциями над действительными числами, и поэтому комплексные числа являются расширением множества действительных чисел. Из введённых выше операций над комплексными числами следует, что для комплексного числа $i=0+i\cdot 1$ получаем $i^2=i\cdot i=-1$.

Модулем |z| комплексного числа z=x+iy назовём длину радиус-вектора точки (x,y), то есть число $|z|=\sqrt{x^2+y^2}$. Тогда

$$z = x + iy = \sqrt{x^2 + y^2} \cdot \left(\frac{x}{\sqrt{x^2 + y^2}} + i \frac{y}{\sqrt{x^2 + y^2}} \right).$$

Числа
$$\frac{x}{\sqrt{x^2+y^2}}$$
 и $\frac{y}{\sqrt{x^2+y^2}}$ являются соответственно коси-

нусом и синусом угла ϕ между радиус-вектором точки (x,y) и осью OX. Поэтому можем записать $z=|z|(\cos\phi+i\sin\phi)$. Эта форма записи числа z называется тригонометрической формой комплексного числа. Угол ϕ при этом называется аргументом числа z. Совершенно ясно, что числа, аргументы которых отличаются на 2π , совпадают. Среди всех значений аргумента числа z выбирают значение, называемое главным, и обозначают его arg z. Наиболее удобным является выбор главного значения ар-

гумента из промежутков
$$[0,2\pi)$$
, $[-\pi,\pi)$, $\left[-\frac{\pi}{2},\frac{3\pi}{2}\right]$. В пакете

Маthсаd главное значение аргумента выбирается из промежутка $[-\pi,\pi)$. При выборе главного значения аргумента из промежутка $[0,2\pi)$ его находят по формулам:

$$\begin{cases} \arctan \frac{y}{x}, & \text{если } x > 0, y > 0, \\ \frac{\pi}{2}, & \text{если } x = 0, y > 0, \\ \pi + \arctan \frac{y}{x}, & \text{если } x < 0, \\ \frac{3\pi}{2}, & \text{если } x = 0, y < 0, \\ 2\pi + \arctan \frac{y}{x}, & \text{если } x > 0, y < 0. \end{cases}$$

Формулы для нахождения главного значения аргумента при выборе его из других промежутков предлагается написать самостоятельно. Все значения аргумента обозначают $\operatorname{Arg} z$. Отметим, что $\operatorname{Arg} z = \operatorname{arg} z + 2k\pi$.

Полагая $e^{i\phi}=\cos\phi+i\sin\phi$, можем записать $z=|z|e^{i\phi}$. Эта форма записи числа z называется показательной формой записи комплексного числа. Так как $e^{-i\phi}=\cos(-\phi)+i\sin(-\phi)=\cos\phi-i\sin\phi$, то, складывая и вычитая с $e^{i\phi}$, получаем формулы Эйлера:

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}, \quad \sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}.$$

Далее, $e^{i\varphi_1}e^{i\varphi_2} = (\cos\varphi_1 + i\sin\varphi_1)(\cos\varphi_2 + i\sin\varphi_2) =$ = $\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2) = e^{i(\varphi_1 + \varphi_2)}$.

Поэтому:
$$z_1 z_2 = |z_1|(\cos \varphi_1 + i \sin \varphi_1)|z_2|(\cos \varphi_2 + i \sin \varphi_2) =$$

= $|z_1| \cdot |z_2| \cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) = |z_1| \cdot |z_2| e^{i(\varphi_1 + \varphi_2)}$.

Таким образом, мы получили, что при умножении комплексных чисел их модули перемножаются, а аргументы складываются. Аналогично при делении комплексных чисел их модули делятся, а аргументы вычитаются.

Как следствие этих результатов, получаем формулы Муавра:

$$z^{n} = |z|^{n} e^{in\varphi} = |z|^{n} (\cos n\varphi + i\sin n\varphi);$$

$$\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2k\pi}{n} + i\sin \frac{\varphi + 2k\pi}{n}\right), k = 0, 1, ..., n - 1.$$

Пример 1. Найти $\sqrt[3]{1}$.

Решение. Так как |1|=1, $\arg 1=0$, то, используя вышеприведённую формулу, имеем $\sqrt[3]{1}=\cos\frac{2k\pi}{3}+i\sin\frac{2k\pi}{3}$, k=0,1,2. Придавая k последовательно значения 0,1,2, получаем три значения корня кубического из единицы

$$\sqrt[3]{1}_1 = 1$$
, $\sqrt[3]{1}_2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $\sqrt[3]{1}_3 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

Пример 2. Найти $\sqrt{1+i}$.

Pешение. Так как $\left|1+i\right|=\sqrt{2}$, $\arg(1+i)=\frac{\pi}{4}$, то

$$\sqrt{1+i} = \sqrt{2} \left(\cos \frac{\frac{\pi}{4} + 2k\pi}{2} + i \sin \frac{\frac{\pi}{4} + 2k\pi}{2} \right), k = 0,1.$$
 Придавая k по-

следовательно значения 0,1, получаем два значения $\sqrt{1+i}$:

$$\left(\sqrt{1+i}\right)_1 = \sqrt{2}\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right);$$
$$\left(\sqrt{1+i}\right)_2 = \sqrt{2}\left(\cos\left(\frac{\pi}{8} + \pi\right) + i\sin\left(\frac{\pi}{8} + \pi\right)\right).$$

Заметим, что квадратные корни из комплексных чисел отличаются только знаками.

Пример 3. Решить уравнение $x^2 - 4x + 20 = 0$.

Решение. Выделяя в левой части полный квадрат, получаем $x^2 - 4x + 20 = x^2 - 4x + 4 + 16 = (x - 4)^2 + 16 = 0$. Следовательно, $(x - 4)^2 = -16$. Извлекая квадратный корень из числа -16, имеем $\sqrt{-16} = \pm 4i$. Поэтому $x - 4 = \pm 4i$ или $x = 4 \pm 4i$. Подставляя любое из этих комплексных чисел в исходное уравнение, убеждаемся в том, что они являются его решением.

Заметим, что комплексные решения квадратных уравнений могут быть получены по той же формуле, что и действительные, но при отрицательном дискриминанте.

ПРИЛОЖЕНИЕ 2 Таблица интегралов

$$1. \int 0 dx = C.$$

$$2. \int 1dx = x + C.$$

3.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1.$$

$$4. \int \frac{dx}{x} = \ln|x| + C.$$

5.
$$\int \frac{dx}{1+x^2} = \arctan x + C = -\arctan x + \tilde{C}.$$

5a.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C = -\frac{1}{a} \operatorname{arcctg} \frac{x}{a} + \tilde{C}.$$

6.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C = -\arccos x + \tilde{C}.$$

6a.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C = -\arccos \frac{x}{a} + \tilde{C}.$$

$$7. \int a^x dx = \frac{a^x}{\ln a} + C.$$

$$7a. \int e^x dx = e^x + C.$$

$$8. \int \cos x dx = \sin x + C.$$

$$9. \int \sin x dx = -\cos x + C.$$

$$10. \int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C.$$

$$11. \int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C.$$

$$12. \int \mathrm{sh} x dx = \mathrm{ch} x + C.$$

$$13. \int \mathrm{ch} x dx = \mathrm{sh} x + C.$$

14.
$$\int \frac{dx}{\sinh^2 x} = -\coth x + C.$$

$$15. \int \frac{dx}{\cosh^2 x} = \sinh x + C.$$

16.
$$\int e^{ax} \cos b \, x dx = \frac{e^{ax}}{a^2 + b^2} (b \sin bx + a \cos bx) + C$$
.

17.
$$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C.$$

ПРИЛОЖЕНИЕ 3 Прямая таблица дифференциалов

$$du^{\alpha} = \alpha \cdot u^{\alpha - 1} du;$$
 $d \ln u = \frac{du}{u};$

$$d a^{u} = a^{u} \ln a du;$$
 $d \cos u = -\sin u du;$

$$d \sin u = \cos u \, du;$$
 $d \operatorname{tg} u = \frac{du}{\cos^2 u};$

$$d \operatorname{ctg} u = -\frac{du}{\sin^2 u}; \qquad d \arcsin u = \frac{du}{\sqrt{1 - u^2}};$$

$$d \arccos u = -\frac{du}{\sqrt{1 - u^2}};$$
 $d \arctan u = \frac{du}{1 + u^2};$

$$d \operatorname{arcctg} u = -\frac{du}{1+u^2};$$

где u = u(x) — любая дифференцируемая функция.

ПРИЛОЖЕНИЕ 4 Обратная таблица дифференциалов

1.
$$dx = \frac{1}{a}d(ax) = \frac{1}{a}d(ax+b)$$
, где a и b — некоторые числа.

В частности, $dx = \frac{1}{2}d(2x) = \frac{1}{2}d(2x+b) = \frac{1}{3}d(3x) = \frac{1}{3}d(3x+b)$ и так далее.

2.
$$x^{\alpha}dx = \frac{1}{a+1}d(x^{\alpha+1}) = \frac{1}{a+1}d(x^{\alpha+1}+b), \alpha \neq -1$$
. В частности, $xdx = \frac{1}{2}d(x^2) = \frac{1}{2}d(x^2+b), \ x^2dx = \frac{1}{3}d(x^3) = \frac{1}{3}d(x^3+b),$ $\frac{dx}{x^2} = -d\left(\frac{1}{x}\right) = -d\left(\frac{1}{x}+b\right), \ \frac{dx}{x^3} = -\frac{1}{2}d\left(\frac{1}{x^2}\right) = -\frac{1}{2}d\left(\frac{1}{x^2}+b\right),$ $\frac{dx}{\sqrt{x}} = 2d(\sqrt{x}) = 2d(\sqrt{x}+b).$

3.
$$\frac{dx}{x} = d(\ln x) = d(\ln x + b) = \frac{1}{a}d(a\ln x + b)$$
.

4.
$$e^{x}dx = d(e^{x}) = d(e^{x} + b)$$
.

5.
$$\cos x dx = d \sin x = d(\sin x + b)$$
.

6.
$$\sin x dx = -d \cos x = -d(\cos x + b)$$
.

7.
$$\frac{dx}{\cos^2 x} = d \operatorname{tg} x = d (\operatorname{tg} x + b).$$

8.
$$\frac{dx}{\sin^2 x} = -d\operatorname{ctg} x = -d(\operatorname{ctg} x + b).$$

9.
$$\frac{dx}{1+x^2} = d(\operatorname{arctg} x) = -d(\operatorname{arcctg} x).$$

10.
$$\frac{dx}{\sqrt{1-x^2}} = d(\arcsin x) = -d(\arccos x).$$