

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «УРАЛЬСКИЙ ИНСТИТУТ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ»

ВЫСШАЯ МАТЕМАТИКА

Методические указания и варианты контрольной работы № 1 для слушателей факультета заочного обучения по направлению подготовки 280705 Пожарная безопасность 1 год обучения

ABBYICON

Бараховская О.В., Ваганова Г.В.

Высшая математика: Методические указания и варианты контрольной работы № 1 для слушателей факультета заочного обучения по направлению подготовки 280705 Пожарная безопасность. 1 год обучения. — Екатеринбург: ФГОУ ВПО «Уральский институт государственной противопожарной службы», 2011. — 56 с.

Методические указания предназначены для слушателей факультета заочного обучения по направлению подготовки 280705 Пожарная безопасность с целью выполнения контрольной работы № 1 по высшей математике.

Одобрено на заседании Методического совета ФГОУ ВПО «Уральский институт государственной противопожарной службы»

- © Бараховская О.В., 2011
- © Ваганова Г.В., 2011
- © УрИ ГПС МЧС России, 2011

Вступление

Данные методические рекомендации составлены в соответствии с рабочей программой по дисциплине высшая математика и предназначены для слушателей I курса факультета заочного обучения по направлению подготовки 280705 Пожарная безопасность. Они содержат краткие теоретические сведения по основным разделам курса и подробное решение типовых задач для самостоятельной подготовки к выполнению контрольной работы № 1.

В процессе изучения дисциплины высшая математика слушатели 1 курса факультета заочного обучения по направлению подготовки 280705 Пожарная безопасность:

знать:

- основные понятия и методы высшей алгебры, аналитической геометрии;
- основные понятия и методы математического анализа, дифференциального и интегрального исчисления, теории функций и функционального анализа;

уметь:

- употреблять математическую символику при решении инженерных задач;
- решать основные задачи общей алгебры и геометрии, дискретной математики;
- решать основные задачи математического анализа;

иметь представление:

- об арифметическом векторном пространстве (пространство R);
- о линейном пространстве, его размерности.

Все вышеперечисленные знания, умения и навыки приобретаются слушателями в процессе самостоятельной работы и на обязательных аудиторных занятиях.

Контрольная работа № 1 включает в себя практические задания по темам:

- 1. Элементы линейной алгебры;
- 2. Элементы аналитической геометрии;
- 3. Введение в математический анализ;
- 4. Дифференциальное исчисление функции одной переменной;
- 5. Теория функции комплексного переменного;
- 6. Интегральное исчисление функции одной переменной;
- 7. Функции нескольких переменных;
- 8. Дифференциальные уравнения.

TOOF Transcopping of the ABBYT COR

Литература

- 1. Шипачев В.С. Высшая математика: Учеб. для вузов / В.С. Шипачев. 6-е изд., стер. М.: Высш. шк., 2003. 479 с.
- 2. Пискунов Н.С. Дифференциальное и интегральное исчисление: Учеб. для втузов. В 2-х т. Т. I: М.: Интеграл Пресс, 2004. 416 с.
- 3. Шипачев В.С. Задачник по высшей математике: Учеб. пособие для вузов / В.С. Шипачев. 3-е изд., стер. М.: Высш. шк., 2003. 304 с.
- 4. Баврин И.И. Высшая математика: Учеб. для студ. естественнонаучных специальностей педагогических вузов. 2-е изд., стер. М.: Изд. центр «Академия»; Высш. шк., 2001. 616 с.
- 5. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. В 2-х ч. Ч. І: Учеб. пособие для втузов. 5-е изд., испр. М.: Высш. шк., 1999. 304 с.
- 6. Письменный Д.Т. Конспект лекций по высшей математике: Полный курс. M.: Айрис-пресс, 2004.
- 7. Лунгу К.Н., Письменный Д.Т. Сборник задач по высшей математике. 1 курс. М.: Айрис-пресс, 2004.

Выполнение и оформление контрольных работ

- 1. Слушатели выполняют контрольную работу в соответствии с учебным рабочим планом в сроки, установленные факультетом заочного обучения.
- 2. Слушатели должны выполнить один из 100 вариантов, номер, которого определяется по двум последним цифрам номера зачетной книжки.
- 3. Контрольная работа выполняется в отдельной тетради в клеточку, ручкой любого цвета, кроме зеленого и красного, аккуратно и разборчивым почерком, чертежи выполняются простым карандашом с использованием инструмента.
- 4. На титульном листе следует указать фамилию, имя, отчество, должность и звание слушателя, его адрес с указанием почтового индекса, номер зачетной книжки, номер варианта.
- 5. Задания в контрольных работах выполняются по порядку, согласно расположению их в варианте.
- 6. На заключительном листе контрольных работ следует указать список литературы, которым Вы пользовались при их выполнении.
- 7. Если контрольные работы выполнены с нарушением всех вышеперечисленных указаний или не полностью, то они возвращаются слушателю для доработки без проверки.
- 8. Если работа не зачтена, внимательно изучите все замечания рецензента. Переделайте работу в соответствии с рекомендациями рецензента.
- 9. Переделанную работу предоставляют на проверку вместе с незачтенными работами.

Варианты контрольной работы

	дарианты конт	pondito	n pavorbi
№	Sagarini	No	Задания
варианта 00	1, 50, 74, 98, 122, 146, 170, 194, 218	варианта	
01	2, 26, 75, 99, 123, 147, 171, 195, 219	02	3, 27, 51, 100, 124, 148, 172, 196, 220
03	4, 28, 52, 76, 125, 149, 173, 197, 221	04	5, 29, 53, 77, 101, 150, 174, 198, 222
05	6, 30, 54, 78, 102, 126, 175, 199, 223	06	7, 31, 55, 79, 103, 127, 151, 200, 224
07	8, 32, 56, 80, 104, 128, 152, 176, 225	08	9, 33, 57, 81, 105, 129, 153, 177, 201
09	10, 34, 58, 82, 106, 130, 154, 178, 202		11, 35, 59, 83, 107, 131, 155, 179, 203
11	12, 36, 60, 84, 108, 132, 156, 180, 205		13, 37, 61, 85, 109, 133, 157, 181, 205
13	14, 38, 62, 86, 110, 134, 158, 182, 206		15, 39, 63, 87, 111, 135, 159, 183, 207
15	16, 40, 64, 88, 112, 136, 160, 184, 208		17, 41, 65, 89, 113, 137, 161, 185, 209
17	18, 42, 66, 90, 114, 138, 162, 186, 210		19, 43, 67, 91, 115, 139, 163, 187, 211
19	20, 44, 68, 92, 116, 140, 164, 188, 212	20	21, 45, 69, 93, 117, 141, 165, 189, 213
21	22, 46, 70, 94, 118, 142, 166, 190, 214		23, 47, 71, 95, 119, 143, 167, 191, 215
23	24, 48, 72, 96, 120, 144, 168, 192, 216	24	25, 49, 73, 97, 121, 145, 169, 193, 217
25	1, 48, 51, 99, 101, 149, 151, 199, 201	26	2, 48, 52, 98, 102, 148, 152, 198, 202
27	3, 47, 53, 97, 103, 147, 153, 197,203	28	4, 46, 54, 96, 104, 146, 154, 196, 204
29	5, 45, 55, 95, 105, 145, 155, 195, 205	30	6, 44, 56, 94, 106, 144, 156, 194, 206
31	7, 43, 57, 93, 107, 143, 157, 193, 207	32	8, 42, 58, 92, 108, 142, 158, 192, 208
33	9, 41, 59, 91, 109, 141, 159, 191, 209	34	10, 40, 60, 90, 110, 140, 160, 190, 210
35	11, 39, 61, 89, 111, 139, 161, 189, 211	36	12, 38, 62, 88, 112, 138, 162, 188, 212
37	13, 37, 63, 87, 113, 137, 163, 187, 213	38	14, 36, 64, 86, 114, 136, 164, 186, 214
39	15, 35, 65, 85, 115, 135, 165, 185, 215	40	16, 34, 67, 84, 116, 134, 166, 184, 216
41	17, 33, 67, 83, 117, 133, 167, 183, 217	42	18, 32, 68, 82, 118, 132, 168, 182, 218
43	19, 31, 69, 81, 119, 131,169, 181, 219	44	20, 30, 70, 80, 120, 130, 170, 180, 220
45	21, 29, 71, 79, 121, 129, 171, 179, 221	46	22, 28, 72, 78, 122, 128, 172, 178, 222
47	23, 27, 73, 77, 123, 127, 173, 177, 223	48	24, 26, 74, 76, 124, 126, 174, 176, 224
49	25, 50, 75, 100, 125, 150,175,200, 225	50	1, 50, 51, 100, 101, 150, 151,200,201
51	2, 49, 52, 99, 102, 149, 152, 199, 202	52	3, 48, 53, 98, 103, 148, 153, 197, 203
53	4, 47, 54, 97, 104, 147, 154, 196, 204	54	5, 46, 55, 96, 105, 146, 155, 195, 205
55	6, 45, 56, 95, 106, 145, 156, 194, 206	56	7, 44, 57, 94, 107, 144, 157, 193, 207
57	8, 43, 58, 93, 108, 143, 158, 192, 208	58	9, 42, 59, 92, 109, 142, 159, 191, 209
59	10, 41, 60, 91, 110, 141, 160, 190, 210	60	11, 40, 61, 90, 111, 140, 161, 189, 211
61	12, 39, 62, 89, 112, 139, 162, 188, 212	62	13, 38, 63, 88, 113, 138, 163, 187, 213
63	14, 37, 64, 87, 114, 137, 164, 186, 214	64	15, 36, 65, 86, 115, 136, 165, 185, 215
65	16, 35, 66, 85, 116, 135, 166, 184, 216	66	17, 34, 67, 84, 117, 134, 167, 183, 217
67	18, 33, 68, 83, 118, 133, 168, 182, 218	68	19, 32, 69, 82, 119, 132, 169, 181, 219
69	20, 31, 70, 81, 120, 131, 170, 181, 220	70	21, 30, 71, 80, 121, 130, 171, 180, 221
71	22, 29, 72, 79, 122, 129, 172, 179, 222	72	23, 28, 73, 78, 123, 128, 173, 178, 223
-			

V. con 3	24, 27, 74, 77, 124, 127, 174, 177, 224	74	25, 26, 75, 76, 125, 126, 175, 176, 22.
75	1, 49, 72, 95, 118, 141, 164, 187, 210	76	2, 50, 73, 96, 119, 142, 165, 188, 211
77	3, 26, 74, 97, 120, 143, 166, 189, 212	78	4, 27, 75, 98, 121, 144, 167, 190, 213
79	5, 28, 51, 99, 122, 145, 168, 191, 214	80	6, 29, 52, 100, 123, 146, 169, 192, 215
81	7, 30, 53, 76, 124, 147, 170, 193, 216	82	8, 31, 54, 77, 125, 148, 171, 194, 217
83	9, 32, 52, 78, 101, 149, 172, 195, 218	84	10, 33, 56, 79, 102, 150, 173, 196, 219
85	11, 34, 57, 80, 103, 126, 174, 197, 220	86	12, 35, 58, 81, 104, 127, 175, 198, 221
87	13, 36, 59, 82, 105, 128, 151, 199, 222	88	14, 37, 60, 83, 106, 129, 152, 200, 223
89	15, 38, 61, 84, 107, 130, 153, 176, 224	90	16, 39, 62, 85, 108, 131, 154, 177, 225
91	17, 40, 63, 86, 109, 132, 155, 178, 201	92	18, 41, 64, 87, 110, 133, 156, 179, 202
93	19, 42, 65, 88, 111, 134, 157, 180, 203	94	20, 43, 66, 89, 112, 135, 158, 181, 204
95	21, 44, 67, 90, 113, 136, 159, 182, 205	96	22, 45, 68, 91, 114, 137, 160, 183, 206
97	23, 46, 69, 92, 115, 138, 161, 184, 207	98	24, 47, 70, 93, 116, 139, 162, 185, 208
99	25, 48, 71, 94, 117, 140, 163, 186, 209		

Указания к выполнению контрольной работы № 1

Тема 1. Элементы линейной алгебры

1. Множества. Действительные числа

Литература. [1], Гл. I, § 1-3; [3], Гл. I, § 1-3 задачи 9-11, 12-15, 23-52. Можно использовать также [2], Гл. I, § 1.2.; [2], Гл. I, задачи 1.1., 1.5., [3], Гл. I, § 1, задачи 1-11.

2. Матрицы, операции над ними. Определители

Литература. [1], Гл. X, § 1, 2.; [3], Гл. VII, § 1 разобрать пример № 1. Можно использовать также [6], Гл. I, § 1-3.; [7], Гл. I, § 1, 2 задачи 1.1.1., 1.1.5., 1.2.13., 1.4.1.; [5], Гл. IV, § 2 задачи 400-403.

3. Системы линейных уравнений. Правило Крамера

Литература. [1], Гл. X, § 3, 4.; [3], Гл. VII, § 2 разобрать примеры № 1-2. Можно использовать также [6], Гл. I, § 4.; [7], Гл. II, § 1-3 задачи 2.1.2., 2.2.2.

Примеры решения типовых задач

№ 1. Решить систему трех линейных уравнений с тремя неизвестными методом Крамера.

$$\begin{cases} 2x - 4y + 3z = 1 \\ x - 2y + 4z = 3 ; \\ 3x - y + 5z = 2 \end{cases}$$

- 1. Найдем определитель данной системы: $\Delta = \begin{vmatrix} 2 & -4 & 3 \\ 1 & -2 & 4 \\ 3 & -1 & 5 \end{vmatrix} = -25 \neq 0$.
- 2. Найдем определители $\Delta_1, \Delta_2, \Delta_3$, где Δ_1 получен из Δ путём замены первого столбца на столбец свободных членов, остальные определители находятся аналогично.

$$\Delta_1 = \begin{vmatrix} 1 & -4 & 3 \\ 3 & -2 & 4 \\ 2 & -1 & 5 \end{vmatrix} = 25, \ \Delta_2 = \begin{vmatrix} 2 & 1 & 3 \\ 1 & 3 & 4 \\ 3 & 2 & 5 \end{vmatrix} = 0, \ \Delta_3 = \begin{vmatrix} 2 & -4 & 1 \\ 1 & -2 & 3 \\ 3 & -1 & 2 \end{vmatrix} = -25.$$

3. Находим значения неизвестных x, y, z: $x = \frac{\Delta_1}{\Delta}, y = \frac{\Delta_2}{\Delta}, z = \frac{\Delta_3}{\Delta}$.

$$x = \frac{25}{-25} = -1$$
, $y = \frac{0}{-25} = 0$, $z = \frac{-25}{-25} = 1$.

4. Делаем проверку:

$$\begin{cases} 2(-1) - 4 \cdot 0 + 3 \cdot 1 = 1 \\ -1 - 2 \cdot 0 + 4 \cdot 1 = 3 \end{cases}; \begin{cases} -2 - 0 + 3 = 1 \\ -1 - 0 + 4 = 3 \end{cases}; \begin{cases} 1 = 1 \\ 3 = 3 \cdot 2 \end{cases}$$
$$(3(-1) - 0 + 5 \cdot 1 = 2 \end{cases}$$

Ответ: x = -1, y = 0, z = 1.

Тема 2. Элементы аналитической геометрии

1. Векторы

Литература. [1], Гл. III, § 1-4, Гл. IX, § 1-5.; [3], Гл. III, § 1-4 задачи 1-5, 16-18, 22-24, 38-40, 42-47; Гл. X, § 1-3 задачи 6-14, 22-33.

Можно использовать также [6], Гл. II, § 5.; [7], Гл. III, § 1 задачи 3.1.1., 3.1.13.-3.1.20.

2. Скалярное произведение векторов

Литература. [1], Гл. IX, § 6.; [3], Гл. X, § 4 задачи 41-51.

Можно использовать также [6], Гл. II, § 6.; [7], Гл. III, § 2 задачи 3.2.1., 3.2.4., 3.2.8.

3. Векторное произведение векторов

Литература. [1], Гл. IX, § 7.; [3], Гл. X, § 5 задачи 63-73.

Можно использовать также [6], Гл. II, § 7.; [7], Гл. III, § 3 задачи 3.3.1., 3.3.5., 3.3.9.

4. Смешанное произведение векторов

Литература. [1], Гл. IX, § 8.; [3], Гл. X, § 6 задачи 83-88, 98-100.

Можно использовать также [6], Гл. II, § 8.; [7], Гл. III, § 4 задачи 3.4.1., 3.4.4.

5. Линии на плоскости и в пространстве

Литература. [1], Гл. III, § 5-6, Гл. IX, § 9-13.; [3], Гл. III, § 5-7 задачи 52-54, 59-67, 68-85; Гл. X, § 7-9 задачи 101-103, 114-122,130-138, 153-162, 165-168, 172-181.

Можно использовать также [6], Гл. III, § 10.; [7], Гл. IV, § 1-2 задачи 4.2.1., 4.2.6., 4.2.8., 4.2.57., 4.2.67., 4.2.68.

6. Линии второго порядка

Литература. [1], Гл. III, § 7-8, Гл. IX, § 9-14.; [3], Гл. III, § 8 задачи 126-132, 139-147, 150-155.; Гл. X, § 10 задачи 166-171.

Можно использовать также [6], Гл. III, § 11.; [7], Гл. IV, § 3 задачи 4.3.1., 4.3.28., 4.3.31., 4.3.60., 4.3.64., 4.3.105, 4.3.106.

Примеры решения типовых задач

№ 2. Даны координаты вершин пирамиды $A_1 A_2 A_3 A_4$.:

 $A_1(0; 2; -2), A_2(1; 0; -1), A_3(0; 5; -1), A_4(0; 2; 1).$

Найти:

- 1) длину ребра $A_1 A_2$;
- 2) угол между ребрами $A_1 A_2$ и $A_1 A_4$;
- 3) площадь грани $A_1 A_2 A_3$;
- 4) объем пирамиды;

Решение

1. Найти длину ребра $A_1 A_2$.

$$\left| \overrightarrow{A_1 A_2} \right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$\left| \overrightarrow{A_1 A_2} \right| = \sqrt{(1 - 0)^2 + (0 - 2)^2 + (-1 + 2)^2} = \sqrt{1 + 4 + 1} = \sqrt{6} \quad (e\delta)$$

2. Найти угол между ребрами A_1A_2 и A_1A_4 .

$$\overline{A_1 A_2} \cdot \overline{A_1 A_4} = \left| \overline{A_1 A_2} \right| \cdot \left| \overline{A_1 A_4} \right| \cdot \cos \left(\overline{A_1 A_2}, \overline{A_1 A_4} \right), \text{ отсюда}$$

$$\cos \varphi = \frac{m_1 \cdot p_1 + m_2 \cdot p_2 + m_3 \cdot p_3}{\sqrt{m_1^2 + m_2^2 + m_3^2} \cdot \sqrt{p_1^2 + p_2^2 + p_3^2}},$$

$$\text{где } \overline{A_1 A_2} = \left(m_1; m_2; m_3 \right) \text{ м } \overline{A_1 A_4} = \left(p_1; p_2; p_3 \right).$$

$$\overline{A_1 A_2} = \left(1 - 0; 0 - 2; -1 - (-2) \right) = \left(1; -2; 1 \right) \text{ м } \overline{A_1 A_4} = \left(0 - 0; 2 - 2; 1 - (-2) \right) = \left(0; 0; 3 \right),$$

$$\cos \varphi = \frac{1 \cdot 0 + \left(-2 \right) \cdot 0 + 1 \cdot 3}{\sqrt{1^2 + \left(-2 \right)^2 + 1^2} \cdot \sqrt{0^2 + 0^2 + 3^2}} = \frac{3}{\sqrt{6} \cdot \sqrt{9}} = \frac{3}{3\sqrt{6}} = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{6},$$

$$2 \varphi = \arccos \frac{\sqrt{6}}{6}.$$

3. Найти площадь грани $A_1 A_2 A_3$.

Найдем векторное произведение векторов $\overrightarrow{A_1A_2} = (1;-2;1)$ и $\overrightarrow{A_1A_3} = (0;3;1)$.

$$S_{\text{параллелограмма}} = \begin{vmatrix} \vec{c} \\ \vec{c} \end{vmatrix}, \ \vec{c} = \begin{bmatrix} \overline{A_1 A_2}, \overline{A_1 A_3} \\ 0 & 3 & 1 \end{vmatrix} = \overline{A_1 A_2} \times \overline{A_1 A_3} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 1 \\ 0 & 3 & 1 \end{vmatrix} = (-2 \cdot 1 - 1 \cdot 3) \cdot \vec{i} - (1 \cdot 1 - 1 \cdot 0) \cdot \vec{j} + (1 \cdot 3 - (-2) \cdot 0) \cdot \vec{k} = -5 \cdot \vec{i} - 1 \cdot \vec{j} + 3 \cdot \vec{k}$$

$$\vec{c} = (-5; -1; 3)$$

Площадь треугольника равна половине площади параллелограмма, т.е. $S_{
m rpe}$

_{угольника} =
$$\frac{1}{2} |\vec{c}| = \frac{1}{2} \sqrt{(-5)^2 + (-1)^2 + 3^2} = \frac{\sqrt{35}}{2} (e \partial^2).$$

4. Найти объем пирамиды $A_1 A_2 A_3 A_4$.

Объем пирамиды равен одной шестой модуля смешанного произведения трех векторов, т.е.

$$\begin{split} &V_{nupamu\partial bi} = \frac{1}{6} \bmod \left(\overrightarrow{A_1 A_2} \cdot \overrightarrow{A_1 A_3} \cdot \overrightarrow{A_1 A_4} \right) = \frac{1}{6} \bmod \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}, \\ &\overrightarrow{A_1 A_2} = (1;-2;1), \ \overrightarrow{A_1 A_3} = (0;3;1) \ \text{if} \ \overrightarrow{A_1 A_4} = (0;0;3). \\ &V_{nupamu\partial bi} = \frac{1}{6} \bmod \left(\overrightarrow{A_1 A_2} \cdot \overrightarrow{A_1 A_3} \cdot \overrightarrow{A_1 A_4} \right) = \frac{1}{6} \bmod \begin{vmatrix} 1 & -2 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{vmatrix} = \\ &= \frac{1}{6} \bmod (1 \cdot 3 \cdot 3 + 0 \cdot 0 \cdot 1 + (-2) \cdot 1 \cdot 0 - 1 \cdot 3 \cdot 0 - 0 \cdot 1 \cdot 1 - 0 \cdot (-2) \cdot 3) = \\ &= \frac{1}{6} \bmod (9 + 0 + 0 - 0 - 0 - 0) = \frac{1}{6} \cdot 9 = \frac{3}{2} (e \partial^3) \end{split}$$

5. Составить уравнение прямой $A_1 A_2$.

 $\overrightarrow{A_1A_2} = (1;-2;1)$ - направляющий вектор прямой (A_1A_2) , точка $A_1(0;2;-2)$ лежит на прямой. Тогда каноническое уравнение прямой (A_1A_2) имеет вид: $\frac{x-0}{1} = \frac{y-2}{-2} = \frac{z+2}{1}, \ \frac{x}{1} = \frac{y-2}{-2} = \frac{z+2}{1}.$

Тема 3. Введение в математический анализ

1. Функция, ее предел. Основные теоремы о пределах

Литература. [2], Гл. I, § 6-9, Гл. II, § 1-7, 11; [3], Гл. IV, § 1-3 задачи 15-38, 43-60, 62-71, 73-212, 213-222, 234-281, 329-376.

Можно использовать также [6], Гл. V, § 14, 16, 17.; [7], Гл. VI, § 1, 4 задачи 6.1.1., 6.1.28., 6.1.39.; [7], Гл. VI, § 3 задачи 6.4.1., 6.4.14., 6.4.37, 6.4.46.; [5], Гл. VI, § 4 задачи 640-654.

Рекомендуется также разобрать примеры из [3], Гл. IV, \S 1, разобрать примеры 1-4, \S 2, разобрать примеры 1-8.

2. Непрерывность функции

Литература. [2], Гл. II, § 10; [3], Гл. IV, § 1-3 задачи 224-233. Можно использовать также [6], Гл. V, § 19.; [7], Гл. VI, § 5 задачи 6.5.4., 6.5.6., 6.5.11.

Примеры решения типовых задач

№ 3. Вычислить:

1) Примеры и решение пределов с использованием теорем о пределах:

•
$$\lim_{x \to \infty} (1 + \frac{2}{x}) = 1 + 0 = 1;$$

•
$$\lim_{x \to 1} (4x^3 - x + 2) = \lim_{x \to 1} 4x^3 - \lim_{x \to 1} x + \lim_{x \to 1} 2 = 4(\lim_{x \to 1} x)^3 - \lim_{x \to 1} x + \lim_{x \to 1} 2 = 4 + 1 - 1 + 2 = 5.$$

2) Примеры и решение пределов с использованием методов раскрытия неопределенностей, а также теорем о пределах:

•
$$\lim_{x \to 2} \frac{x^2 + 14x - 32}{x^2 - 6x + 8} = [\lim_{x \to 2} (x^2 - 6x + 8) = 0, \lim_{x \to 2} (x^2 + 14x - 32) = 0] =$$

$$= \left[\frac{0}{0} \right] =$$

Для того чтобы раскрыть неопределенность вида $\left[\frac{0}{0}\right]$ надо под знаком предела

числитель и знаменатель разложить на множители и сократить их далее на общий множитель.

$$= \lim_{x \to 2} \frac{(x-2)(x+16)}{(x-2)(x-4)} = \lim_{x \to 2} \frac{(x+16)}{(x-4)} = \frac{2+16}{2-4} = -9.$$

•
$$\lim_{x \to 1} \frac{\sqrt{x+8}-3}{x-1} =$$

Здесь мы также имеем неопределенность вида $\left[\frac{0}{0}\right]$. Домножим числитель и знаменатель дроби на выражение, сопряженное числителю (избавляемся от иррациональности в числителе):

$$= \lim_{x \to 1} \frac{\left(\sqrt{x+8} - 3\right)\left(\sqrt{x+8} + 3\right)}{(x-1)\left(\sqrt{x+8} + 3\right)} = \lim_{x \to 1} \frac{\left(\sqrt{x+8}\right)^2 - 3^2}{(x-1)\left(\sqrt{x+8} + 3\right)} = \lim_{x \to 1} \frac{x+8-9}{(x-1)\left(\sqrt{x+8} + 3\right)} = \lim_{x \to 1} \frac{x-1}{(x-1)\left(\sqrt{x+8} + 3\right)} =$$

$$= \lim_{x \to 1} \frac{1}{(x-1)(\sqrt{x+8}+3)} = = \frac{1}{(\sqrt{1+8}+3)} = \frac{1}{6}.$$
•
$$\lim_{x \to 2} \frac{\sqrt[3]{x-1}-1}{x-2} =$$

Здесь мы также имеем неопределенность вида $\left\lceil \frac{0}{0} \right\rceil$. Домножим числитель и

знаменатель дроби на неполный квадрат суммы выражений $\sqrt[3]{x-1}$ и 1, чтобы получить разность кубов в числителе:

$$= \lim_{x \to 2} \frac{\left(\sqrt[3]{x-1}-1\right)\left(\sqrt[3]{(x-1)^2} + \sqrt[3]{x-1} \cdot 1 + 1^2\right)}{\left(x-2\right)\left(\sqrt[3]{(x-1)^2} + \sqrt[3]{x-1} \cdot 1 + 1^2\right)} = \lim_{x \to 2} \frac{\left(\sqrt[3]{x-1}\right)^3 - 1^3}{\left(x-2\right)\left(\sqrt[3]{(x-1)^2} + \sqrt[3]{x-1} + 1\right)} = \lim_{x \to 2} \frac{x-1}{\left(x-2\right)\left(\sqrt[3]{(x-1)^2} + \sqrt[3]{x-1} + 1\right)} = \lim_{x \to 2} \frac{x-2}{\left(x-2\right)\left(\sqrt[3]{(x-1)^2} + \sqrt[3]{x-1} + 1\right)} = \lim_{x \to 2} \frac{1}{\left(\sqrt[3]{(x-1)^2} + \sqrt[3]{x-1} + 1\right)} = \lim_{x \to 2} \frac{1}{\sqrt[3]{(x-1)^2} + \sqrt[3]{x-1} + 1} = \frac{1}{1+1+1} = \frac{1}{3}.$$

3) Вычислить:

•
$$\lim_{x \to \infty} \frac{-x^2 + x + 1}{2x^2 + 3x} = \left[\frac{\infty}{\infty}\right] =$$

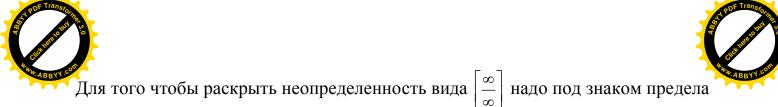
Для того чтобы раскрыть неопределенность вида $\left\lceil \frac{\infty}{\infty} \right\rceil$ надо под знаком предела

числитель и знаменатель дроби разделить на переменную x с наивысшим показателем.

$$= \lim_{x \to \infty} \frac{\frac{-x^2}{x^2} + \frac{x}{x^2} + \frac{1}{x^2}}{\frac{2x^2}{x^2} + \frac{3x}{x^2}} = \lim_{x \to \infty} \frac{-1 + \frac{1}{x} + \frac{1}{x^2}}{2 + \frac{3}{x}} =$$

Осталось воспользоваться теоремами о пределах, а также тем, что функции $\frac{1}{x}$, $\frac{3}{x}$ и $\frac{1}{x^2}$ - бесконечно малые при $x \to \infty$. $= \frac{-1+0+0}{2+0} = \frac{-1}{2}.$

$$\bullet \quad \lim_{x \to \infty} \quad \frac{-x^4 + x - 1}{2x^2 - x} = \left[\frac{\infty}{\infty}\right] =$$



числитель и знаменатель дроби разделить на переменную x с наивысшим показателем.

$$= \lim_{x \to \infty} \frac{\frac{-x^4}{x^4} + \frac{x}{x^4} - \frac{1}{x^4}}{\frac{2x^2}{x^4} - \frac{x}{x^4}} = \lim_{x \to \infty} \frac{\frac{-1 + \frac{1}{x^3} - \frac{1}{x^4}}{\frac{2}{x^2} - \frac{1}{x^3}}}{\frac{2}{x^2} - \frac{1}{x^3}} =$$

Осталось воспользоваться теоремами о пределах, а также тем, что функции $\frac{1}{x^3}$, $\frac{1}{x^4}$ и $\frac{2}{x^2}$ - бесконечно малые при $x \to \infty$. $= \frac{-1+0-0}{0-0} = \frac{-1}{0} = \infty$.

•
$$\lim_{x \to \infty} \frac{-x+1}{2x^4-x} = \left[\frac{\infty}{\infty}\right] =$$

Для того чтобы раскрыть неопределенность вида $\left[\frac{\infty}{\infty}\right]$ надо под знаком предела

числитель и знаменатель дроби разделить на переменную x с наивысшим показателем.

$$= \lim_{x \to \infty} \frac{\frac{-x}{4} + \frac{1}{4}}{\frac{2x^4}{4} - \frac{x}{4}} = \lim_{x \to \infty} \frac{-\frac{1}{x^3} + \frac{1}{x^4}}{2 - \frac{1}{x^3}} =$$

Осталось воспользоваться теоремами о пределах, а также тем, что функции $\frac{1}{x^3}$ и $\frac{1}{x^4}$ - бесконечно малые при $x\to\infty$. $=\frac{-0+0}{2-0}=\frac{0}{2}=0\,.$

4) Примеры и решение пределов с помощью замечательных пределов:

•
$$\lim_{x \to 0} \frac{\sin 3x}{x} =$$

Домножим числитель и знаменатель дроби на «3» и получим:

$$= \lim_{x \to 0} \frac{3\sin 3x}{3x} =$$

Используя теоремы о пределах и первый замечательный предел, получаем:

$$= 3 \lim_{x \to 0} \frac{\sin 3x}{3x} = 3.$$

•
$$\lim_{x\to 0} \frac{\sin 2x}{\sin 5x} =$$

Поделим числитель и знаменатель дроби под знаком предела на x, после чего воспользуемся предыдущим примером, получим:

$$= \lim_{x \to 0} \frac{\frac{2\sin 2x}{2x}}{\frac{5\sin 5x}{5x}} = \frac{2}{5}.$$

$$\bullet \quad \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{2x - \pi} =$$

Сведем данный предел к первому замечательному пределу, для этого сделаем замену $y=x-\frac{\pi}{2}$. Тогда $y\to 0$ при $x\to \frac{\pi}{2}$, а $x=y+\frac{\pi}{2}$, откуда

$$= \lim_{y \to 0} \frac{\cos\left(y + \frac{\pi}{2}\right)}{2\left(y + \frac{\pi}{2}\right) - \pi} =$$

В числителе дроби используем формулу приведения, тогда

$$= \lim_{y \to 0} \frac{-\sin y}{2y} = -\frac{1}{2} \lim_{y \to 0} \frac{\sin y}{y} = -\frac{1}{2}.$$

•
$$\lim_{x\to\infty} (1+\frac{2}{x})^x =$$

В данном случае неопределенность вида $[1^{\infty}]$, для ее раскрытия сделаем замену $y = \frac{x}{2}$. Тогда $y \to \infty$ при $x \to \infty$ и исходный предел сводится ко второму замечательному пределу:

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\left(\frac{x}{2}\right)} \right)^{\frac{x}{2} \cdot 2} = \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{2y} = \left(\lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{y} \right)^{2} = e^{2}.$$

$$\bullet \quad \lim_{x \to \infty} \ \left(\frac{x-2}{x-1}\right)^x =$$

Поделив числитель и знаменатель дроби на x, сведем данный предел ко второму замечательному пределу, т.е.

$$\lim_{x \to \infty} \left(\frac{1 - \frac{2}{x}}{1 - \frac{1}{x}} \right)^x = \frac{\lim_{x \to \infty} \left(I + \frac{I}{\left(-\frac{x}{2} \right)} \right)}{\lim_{x \to \infty} \left(I + \frac{I}{\left(-x \right)} \right)^x} =$$

В числителе дроби сделаем замену $y = -\frac{x}{2}$, а в знаменателе дроби t = -x.

Тогда $y \to \infty$ и $t \to \infty$ при $x \to \infty$ и исходный предел сводится ко второму замечательному пределу:

$$= \frac{\lim_{y \to \infty} \left(I + \frac{1}{y} \right)^{-2y}}{\lim_{t \to \infty} \left(I + \frac{1}{y} \right)^{-t}} = \frac{\left(\lim_{y \to \infty} \left(I + \frac{1}{y} \right)^{y} \right)^{-2}}{\left(\lim_{t \to \infty} \left(I + \frac{1}{t} \right)^{t} \right)^{-1}} = \frac{e^{-2}}{e^{-1}} = \frac{1}{e}.$$

5) Вычислить предел по правилу Лопиталя.

•
$$\lim_{x \to 1} \frac{x^2 - 1 + \ln x}{e^x - e} = \left[\frac{0}{0}\right] = \lim_{x \to 1} \frac{\left(x^2 - 1 + \ln x\right)'}{\left(e^x - e\right)'} = \lim_{x \to 1} \frac{2x + \frac{1}{x}}{e^x} = \frac{3}{e}.$$

•
$$\lim_{x \to +\infty} \frac{e^x}{x^2} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to +\infty} \frac{\left(e^x\right)'}{\left(x^2\right)'} = \lim_{x \to +\infty} \frac{e^x}{2x} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to +\infty} \frac{\left(e^x\right)'}{\left(2x\right)'} = \lim_{x \to +\infty} \frac{e^x}{2} = +\infty$$

Тема 4. Дифференциальное исчисление функции одной переменной

1. Производная функции

Литература. [2], Гл. III, § 1-10; [3], Гл. V, § 1-2 задачи 1-138. Можно использовать также [6], Гл. V, § 20; [7], Гл. VII, § 1, задачи 7.1.1., 7.1.6., 7.1.27., 7.1.78; [5], Гл. VII, § 1 задачи 736-738, 745-766.

2. Дифференцирование неявных функций. Логарифмическое дифференцирование

Литература. [2], Гл. III, § 11-12, 16, 18; [3], Гл. V, § 5-3 задачи 206-211. Можно использовать также [6], Гл. V, § 21, 22; [7], Гл. VII, § 1, задачи 7.1.58., 7.1.65., 7.1. 72.; [5], Гл. VII, § 1 задачи 768-770, 896-897, 908.

3. Производная высших порядков

Литература. [2], Гл. III, § 22; [3], Гл. V, § 4 задачи 162-191. Можно использовать также [6], Гл. V, § 23; [7], Гл. VII, § 1, задачи 7.1.83.; [5], Гл. VII, § 1 задачи 945-949.

4. Дифференциал функции

Литература. [2], Гл. III, § 20, 23; [3], Гл. V, § 3-4 задачи 146-161, 198-205. Можно использовать также [6], Гл. V, § 24; [7], Гл. VII, § 2, задачи 7.2.1., 7.2.9., 7.2.13.; [5], Гл. VII, § 1 задачи 975-981; [3], Гл. V, § 3, 4., разобрать примеры 1-2, 3.

5. Исследование функций при помощи производных

Литература. [2], Гл. V, § 1-12; [3], Гл. V, § 7 задачи 297-352. Можно использовать также [6], Гл. V, § 25; [7], Гл. VII, § 4, задачи 7.4.1., 7.4.4., 7.4.7., 7.4.10., 7.4.13.; [4], Гл. VII, § 2 задачи 996-998, 1050-1054, 1081, 1087, 1096.

При вычислении производных используется таблица производных элементарных функций, применяются правила дифференцирования суммы, разности, произведения и частного функций, а также правило дифференцирования сложной функции.

Примеры решения типовых задач

№ 4. Найти производную сложной функции:

1)
$$y = \ln^2 x$$

$$y' = (\ln^2 x)' = 2 \ln x \cdot (\ln x)' = 2 \ln x \cdot \frac{1}{x}$$

2)
$$y = \sqrt{x^2 - 10x}$$

$$y' = \left(\sqrt{x^2 - 10x}\right)' = \frac{\left(x^2 - 10x\right)'}{2\sqrt{x^2 - 10x}} = \frac{2x - 10}{2\sqrt{x^2 - 10x}} = \frac{x - 5}{\sqrt{x^2 - 10x}}.$$

$$3) y = arctg(x^3)$$

$$y' = \left(arctg(x^3)\right)' = \frac{\left(x^3\right)'}{1 + \left(x^3\right)^2} = \frac{3x^2}{1 + x^6}.$$

№ 5.

1) Исследовать функцию $y = \frac{x}{1-x^2}$ и построить ее график.

Решение

- 1. Функция терпит разрыв при x = 1 и x = -1. При всех других значениях аргумента она непрерывна. Область ее определения состоит из трех интервалов $(-\infty; -1) \bigcup (-1; 1) \bigcup (1; +\infty)$, а график из трех ветвей.
- 2. Функция является нечетной, так как y(-x) = -y(x), т.е.

$$y(-x) = \frac{-x}{1-(-x)^2} = \frac{-x}{1-x^2} = -\frac{x}{1-x^2} = -y(x).$$

Следовательно, график ее симметричен относительно начала координат.

3. Найдем интервалы возрастания и убывания функции. Так как

$$y' = \left(\frac{x}{1-x^2}\right)' = \frac{1(1-x^2)-x(-2x)}{(1-x^2)^2} = \frac{x^2+1}{(1-x^2)^2}$$
, To

f' > 0 в области определения, и функция является возрастающей на каждом интервале области определения.

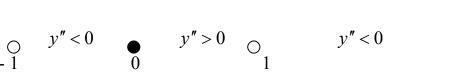
4. Исследуем функцию на экстремум. Так как $y' = \frac{x^2 + 1}{\left(1 - x^2\right)^2}$, то крити-

ческими точками являются точки x = 1 и x = -1 (y' не существует), но они не принадлежат области определения функции. Функция экстремумов не имеет.

5. Исследуем функцию на выпуклость. Найдем y'':

$$y'' = \left(\frac{x^2 + 1}{\left(1 - x^2\right)^2}\right)' = \frac{2x \cdot \left(1 - x^2\right) - \left(x^2 + 1\right) \cdot 2 \cdot \left(1 - x^2\right) \cdot \left(-2x\right)}{\left(1 - x^2\right)^4} = \frac{2x \cdot \left(x^2 + 3\right)}{\left(1 - x^2\right)^3}.$$

Вторая производная равна нулю или не существует в точках x = 0, x = 1 и x = -1.



 \boldsymbol{x}

Точка O(0; 0) – точка перегиба графика функции.

График выпуклый вверх на интервале (-1; 0) и $(1;+\infty)$; выпуклый вниз на интервалах $(-\infty;-1)$ и (0; 1).

6. Определим асимптоты графика функции. Прямые x=1 и x=-1 являются вертикальными асимптотами. Используя соответствующие формулы, выясним вопрос о наличии наклонной асимптоты:

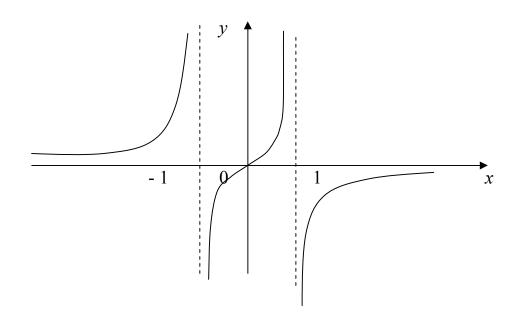
$$k = \lim_{x \to \infty} \left[\frac{x}{1 - x^2} \right] = \lim_{x \to \infty} \left[\frac{1}{1 - x^2} \right] = 0$$

$$(k = 0 \text{ при } x \to +\infty \text{ и при } x \to -\infty),$$

$$b = \lim_{x \to \infty} \left[\frac{x}{1 - x^2} - 0 \cdot x \right] = \lim_{x \to \infty} \left[\frac{x}{1 - x^2} \right] = 0.$$

Следовательно, есть горизонтальная асимптота, ее уравнение y = 0.

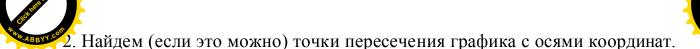
7. Строим график:



2) Исследовать функцию $y = x^3 - 2x^2 + 2x - 1$ и построить ее график.

Решение

1. Область определения функции: $D(f) = (-\infty; +\infty)$. Функция непрерывна и определена при всех значениях x.



Точки пересечения с осью ординат находим, подставив значение x=0 в функцию

$$y = x^3 - 2x^2 + 2x - 1$$
:

$$y(0) = 0^3 - 2*0^2 + 2*0 - 1 = -1$$
, откуда получаем $y = -1$.

Точки пересечения с осью абсцисс находим из уравнения x^3 - $2x^2 + 2x - 1 = 0$:

Решим кубическое уравнение, для этого найдем один из корней.

При x = 1, получаем верное равенство, т.е. $1^3 - 2 \cdot 1^2 + 2 \cdot 1 - 1 = 0$.

$$x^3 - 2x^2 + 2x - 1 = (x - 1)(x^2 - x + 1).$$

Решим уравнение $(x - 1)(x^2 - x + 1) = 0$.

$$x - 1 = 0$$
 или $x^2 - x + 1 = 0$

$$x = 1$$
 $D = -3 < 0$

Итак, функция проходит через точки (0; -1) и (1; 0).

3. Исследуем функцию на четность, изменив знак аргумента на противоположный:

$$y(-x)=(-x)^3-2(-x)^2+2(-x)-1=-x^3-2x^2-2x-1=-(x^3+2x^2+2x+1)\neq \pm y(x).$$

Получили совсем другую функцию, значит, исходная функция является функцией общего вида.

4. Функция является непрерывной, значит, нет вертикальных асимптот. Проверим, есть ли наклонная асимптота вида y = kx + b. Для этого найдем угловой коэффициент прямой: $k = \lim_{x \to \infty} \frac{y(x)}{x} = \lim_{x \to \infty} \frac{y(x)}{x}$

$$= \lim_{x \to \infty} \frac{x^3 - 2x^2 + 2x - 1}{x} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to \infty} \frac{1 - \frac{2}{x} + \frac{2}{x^2} - \frac{1}{x^3}}{\frac{1}{x^2}} = \left[\frac{1}{0}\right] = \infty, \text{ отсюда следует,}$$

что наклонной асимптоты нет.

5. Найдем интервалы монотонности. Вычислим производную и приравняем ее к нулю:

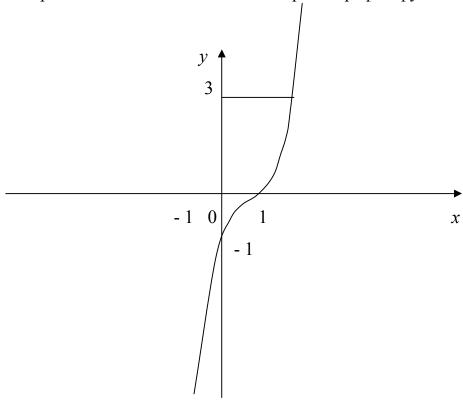
$$y' = (x^3 - 2x^2 + 2x - 1)' = 3x^2 - 4x + 2 = 0$$
. Из уравнения $3x^2 - 4x + 2 = 0$ найдем критические точки: $D = -8 < 0$. Критических точек нет, функция монотонно возрастает на всей области определения.

- 6. Точек экстремума нет.
- 7. Найдем интервалы выпуклости и точки перегиба графика функции, если они есть. Вычислим вторую производную и приравняем ее к нулю:

$$y'' = (3x^2 - 4x + 2)^{/} = 6x - 4 = 0$$
. Из уравнения $6x - 4 = 0$ найдем точки, подозрительные на перегиб: $x = \frac{2}{3}$.

x	$\left(-\infty; \frac{2}{3}\right)$	$\left(\frac{2}{3}; +\infty\right)$
<i>y</i> "	_	+
У		

8. На основании проведенного исследования построим график функции.



Тема 5. Теория функции комплексного переменного

1. Понятие и представление комплексных чисел

Литература. [2], Гл. VII, § 1; [3], Гл. IX задачи 13. Можно использовать также [6], Гл. VI, § 27; [7], Гл. X, § 1, задачи 10.1.1.

2. Действия над комплексными числами

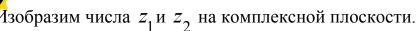
Литература. [2], Гл. VII, § 2-5; [3], Гл. IX задачи 1-12, 14-52. Можно использовать также [6], Гл. VI, § 28; [7], Гл. X, § 2, задачи 10.2.1., 10.2.2., 10.2.11.

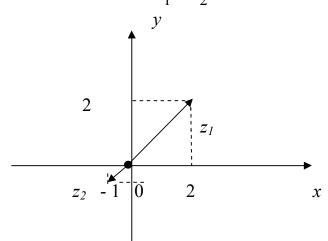
Примеры решения типовых задач

№ 6. Записать комплексные числа z_1 и z_2 в тригонометрической и показательной форме. Найти:

- 1) $z_1 \cdot z_2$ и $\frac{z_1}{z_2}$ в тригонометрической и показательной форме;
- 2) $z_1^{\ 3}$ в тригонометрической форме;
- 3) $\sqrt{z_2}$ в тригонометрической форме.

$$z_1 = 2 + 2i$$
, $z_2 = -1 - i$.





Запишем комплексные числа z_1 и z_2 в тригонометрической и показательной форме.

Тригонометрическая форма записи комплексного числа: $z = r (\cos \varphi + i \sin \varphi)$.

Показательная форма записи комплексного числа: $\mathbf{z} = r \; e^{\; i \boldsymbol{\varphi}}$.

Для того чтобы перейти от алгебраической формы к тригонометрической и показательной необходимо найти:

- модуль комплексного числа $r = \sqrt{x^2 + y^2}$;
- аргумент комплексного числа Arg z или φ :

Запишем число $z_1 = 2 + 2i$ в тригонометрической и показательной форме.

 $r = \sqrt{2^2 + 2^2} = 2\sqrt{2}$, комплексное число z_1 находится в первой четверти, значит аргумент комплексного числа будет равен $arg\ z_1 = arctg\ \frac{y}{x} = arctg\ 1 = \frac{\pi}{4}$.

Тригонометрическая форма записи комплексного числа:

$$z_1 = 2\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right).$$

Показательная форма записи комплексного числа:

$$z_1 = 2\sqrt{2} \cdot e^{\frac{\pi}{4}i}.$$

Запишем число $z_2^{} = -1 - i$ в тригонометрической и показательной форме: $r = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$, комплексное число z_2 находится в третьей четверти, значит, аргумент комплексного числа будет равен $\arg z_2 = \pi + arctg \frac{y}{y} =$ $=\pi + \frac{\pi}{4} = \frac{5\pi}{4}$.

Тригонометрическая форма записи комплексного числа:

$$z_2 = \sqrt{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right)$$

Показательная форма записи комплексного числа:

$$z_1 = \sqrt{2} \cdot e^{\frac{5\pi}{4}i}$$

1) Найдем $z_1 \cdot z_2$, $\frac{z_1}{z}$ в тригонометрической и показательной форме.

Запишем основные формулы:

• Произведение комплексных чисел в тригонометрической форме:

$$z_1 \cdot z_2 = r_1 \cdot r_2 \Big(\cos \Big(\varphi_1 + \varphi_2 \Big) + i \sin \Big(\varphi_1 + \varphi_2 \Big) \Big).$$

Деление комплексных чисел в тригонометрической форме:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos \left(\varphi_1 - \varphi_2 \right) + i \sin \left(\varphi_1 - \varphi_2 \right) \right).$$

Произведение комплексных чисел в показательной форме: $z_1 \cdot z_2 = r_1 \cdot r_2 e^{i\left(\phi_1 + \phi_2\right)}.$

$$z_1 \cdot z_2 = r_1 \cdot r_2 e^{i(\varphi_1 + \varphi_2)}.$$

Деление комплексных чисел в показательной форме:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}.$$

$$z_{1} \cdot z_{2} = 2\sqrt{2} \cdot \sqrt{2} \left(\cos \left(\frac{\pi}{4} + \frac{5\pi}{4} \right) + i \sin \left(\frac{\pi}{4} + \frac{5\pi}{4} \right) \right) = 4 \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right).$$

$$\frac{z_1}{z_2} = \frac{2\sqrt{2}}{\sqrt{2}} \left(\cos\left(\frac{\pi}{4} - \frac{5\pi}{4}\right) + i\sin\left(\frac{\pi}{4} - \frac{5\pi}{4}\right) \right) = 4\left(\cos(-\pi) + i\sin(-\pi)\right) = 4\left(\cos\pi - i\sin\pi\right)$$

$$z_1 \cdot z_2 = 2\sqrt{2} \cdot \sqrt{2}e^{i\left(\frac{\pi}{4} + \frac{5\pi}{4}\right)} = 4e^{\frac{3\pi}{2}i}$$
.

$$\frac{z_1}{z_2} = \frac{2\sqrt{2}}{\sqrt{2}} e^{i\left(\frac{\pi}{4} - \frac{5\pi}{4}\right)} = 2e^{-\pi i}.$$

2) Для возведения к.ч. $z_1 = r_1 \cdot (cos\phi_1 + isin\phi_1)$ в *n*-ю степень используется формула, которая называется формулой Муавра:

$$z_1^n = r_1^n \cdot (\cos(n\varphi_1) + i\sin(n\varphi_1)).$$

Найдем z_1^3 .

$$z_1^3 = \left(2\sqrt{2}\right)^3 \cdot \left(\cos\left(3\cdot\frac{\pi}{4}\right) + i\sin\left(3\cdot\frac{\pi}{4}\right)\right) = 16\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right).$$

3) Пусть комплексное число задано в тригонометрической форме $z=r\cdot(cos\varphi+isin\varphi)$. Тогда

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2k\pi}{n} + i\sin \frac{\varphi + 2k\pi}{n} \right),$$

где k = 0, 1, 2, ..., n - 1.

Найдем $\sqrt{z_2}$ в тригонометрической форме.

$$\sqrt{z_2} = \sqrt{\sqrt{2}} \cdot \left(\cos \frac{\frac{5\pi}{4} + 2\pi k}{2} + i \sin \frac{\frac{5\pi}{4} + 2\pi k}{2} \right), \ k = 0, \ 1.$$

При k=0 получаем,

$$\sqrt{z_{2}} = \sqrt{\sqrt{2}} \cdot \left(\cos \frac{\frac{5\pi}{4} + 2\pi \cdot 0}{2} + i \sin \frac{\frac{5\pi}{4} + 2\pi \cdot 0}{2} \right) = \sqrt[4]{2} \left(\cos \frac{5\pi}{8} + i \sin \frac{5\pi}{8} \right).$$

При k=1 получаем,

$$\sqrt{z_2} = \sqrt{\sqrt{2}} \cdot \left(\cos \frac{\frac{5\pi}{4} + 2\pi \cdot 1}{2} + i \sin \frac{\frac{5\pi}{4} + 2\pi \cdot 1}{2} \right) = \sqrt[4]{2} \left(\cos \frac{13\pi}{8} + i \sin \frac{13\pi}{8} \right).$$

Тема 6. Интегральное исчисление функции одной переменной

1. Неопределенный интеграл. Основные методы интегрирования *Литература.* [2], Гл. X, § 1-6; [3], Гл. VI, § 1-2 задачи 2-135. Можно использовать также [6], Гл. VII, § 29, 30; [7], Гл. VIII, § 1-2, задачи 8.1.1., 8.1.8., 8.1.15., 8.1.22., 8.2.1., 8.2.10., 8.2.15, 8.2.20., 8.2.30.

2. Интегрирование рациональных, тригонометрических и иррациональных функций

Литература. [2], Гл. X, § 7-14; [3], Гл. VI, § 3 задачи 230-253; 17-25, [2], Гл. X, задачи 102-126, 127-146, 152-169, 170-188, 189-216. Можно использовать также [6], Гл. VII, § 31-33; [7], Гл. VIII, § 3-5, задачи 8.3.1., 8.3.12., 8.4.1., 8.4.4., 8.4.7., 8.4.9., 8.5.1., 8.5.4., 8.5.7., 8.5.10, 8.5.13., 8.5.16.

3. Определенный интеграл

Литература. [2], Гл. XI, § 1-6; [3], Гл. VI, § 4 задачи 254-289. Можно использовать также [6], Гл. VIII, § 35-39; [7], Гл. IX, § 1, задачи 9.1.1., 9.1.2., 9.1.12., 9.1.20., 9.1.46., 9.1.51., 9.1.59, 9.1.61., 9.1.86., 9.1.95.

4. Несобственные интегралы

Литература. [2], Гл. XI, § 7; [3], Гл. VI, § 6 задачи 355-382. Можно использовать также [6], Гл. VIII, § 40; [7], Гл. IX, § 2, задачи 9.2.1., 9.2.6., 9.2.8., 9.2.10., 9.2.12.

5. Геометрические и физические приложения определенного интеграла. *Литература.* [2], Гл. XII, § 1-5; [3], Гл. VI, § 5 задачи 290-306, 307-317, 318-334. Можно использовать также [6], Гл. VIII, § 41; [7], Гл. IX, § 3, задачи 9.3.1., 9.3.5., 9.3.13., 9.3.18., 9.3.25., 9.3.26., 9.3.85., 9.3.92., 9.3.101., 9.3.165., 9.3.166.

Примеры решения типовых задач

№ 7.

1)

• Вычислить интеграл $\int e^{\sin x} \cos x dx$.

Решение

Данный интеграл вычисляется методом замены переменной. Имеем:

$$\int e^{\sin x} \cos x dx = \begin{vmatrix} \sin x = t \\ \cos x dx = dt \end{vmatrix} = \int e^{t} dt = e^{-t} + C = e^{\sin x} + C.$$

Проверка

Если интеграл вычислен верно, то производная $e^{SinX}+C$ должна равняться подынтегральной функции $e^{SinX}cosx$.

$$(e^{sinx} + C)' = (e^{sinx})' + (C)' = e^{sinx} \cdot cosx + 0 = e^{sinx} \cdot cosx.$$

• Вычислить интеграл
$$\int \frac{x^2 dx}{\sqrt[7]{(x^3+4)^6}}$$
.

Решение

Данный интеграл вычисляется методом замены переменной. Имеем:

$$\int \frac{x^2 dx}{\sqrt[7]{(x^3+4)^6}} = \begin{vmatrix} x^3 + 4 = t \\ 3x^2 dx = dt \\ x^2 dx = \frac{dt}{3} \end{vmatrix} = \int \frac{dt}{3 \cdot \sqrt[7]{t^6}} = \frac{1}{3} \cdot \int t^{-\frac{6}{7}} dt = \frac{1}{3} \cdot \frac{7 \cdot t^{\frac{7}{7}}}{1} + C = \frac{7}{3} \cdot \sqrt[7]{(x^3+4)} + C.$$

Проверка

Если интеграл вычислен верно, то производная $\frac{7}{3} \cdot \sqrt[7]{(x^3+4)} + C$ должна рав-

няться подынтегральной функции $\frac{x^2}{\sqrt[7]{(x^3+4)^6}}$.

$$\left(\frac{7}{3} \cdot \sqrt[7]{(x^3 + 4)} + C\right)' = \frac{7}{3} \cdot \frac{1}{7} \cdot \left(x^3 + 4\right)^{-\frac{6}{7}} \cdot 3x^2 = \frac{x^2}{\sqrt[7]{(x^3 + 4)^6}}.$$

2) Вычислить интеграл $\int x^2 e^x dx$.

Решение

При вычислении данного интеграла применим метод по частям:

$$\int u \cdot dv = u \cdot v - \int v \cdot du.$$

$$\int x^2 e^x dx = \begin{vmatrix} u = x^2 & \Rightarrow du = 2x dx \\ dv = e^x dx \Rightarrow v = e^x \end{vmatrix} = x^2 e^x - 2 \int x \cdot e^x dx =$$
(для вычисления)

интеграла $\int x \cdot e^x dx$ снова применим метод интегрирования по частям) =

$$= \begin{vmatrix} u = x & \Rightarrow du = dx \\ dv = e^x dx \Rightarrow v = e^x \end{vmatrix} = x^2 e^x - 2 \left(x \cdot e^x - \int e^x dx \right) =$$

$$= x^2 e^x - 2 \left(x \cdot e^x - e^x + C \right).$$

Проверка

Найдем производную выражения $x^2e^x - 2(x \cdot e^x - e^x + C)$.

$$\left(x^{2}e^{x} - 2\left(x \cdot e^{x} - e^{x} + C\right)\right)' = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot \left(e^{x} + x \cdot e^{x} - e^{x}\right) = 2x \cdot e^{x} + x^{2} \cdot e^{$$

$$=2x \cdot e^{x} + x^{2} \cdot e^{x} - 2 \cdot e^{x} - 2x \cdot e^{x} + 2e^{x} = x^{2} \cdot e^{x}$$

Интеграл найден верно, так как производная первообразной равна подынтегральной функции.

3) Вычислить интеграл
$$\int \frac{x^3 + 4x^2 + 4}{x^2 + 2x} dx$$
.

Решение

Под знаком интеграла неправильная дробь; выделим целую часть путем деления числителя на знаменатель.

$$\int \frac{x^3 + 4x^2 + 4}{x^2 + 2x} dx = \int \left(x + 2 + \frac{-4x + 4}{x^2 + 2x}\right) dx$$

(разложим правильную рациональную дробь на простейшие дроби)

$$\frac{-4x+4}{x^2+2x} = \frac{-4x+4}{x(x+2)} = \frac{A}{x} + \frac{B}{x+2},$$

$$-4x+4 \equiv A(x+2)+B(x)$$
, т.е.

$$-4x+4 \equiv (A+B)x+2A.$$

Отсюда следует, что

$$\begin{cases} A+B=-4, \Rightarrow \begin{cases} A=2, \\ B=-6. \end{cases}$$

$$\frac{-4x+4}{x^2+2x} = \frac{2}{x} - \frac{6}{x+2} \quad \text{и} \quad \int \left(x+2+\frac{-4x+4}{x^2+2x}\right) dx = \int \left(x+2+\frac{2}{x}-\frac{6}{x+2}\right) = \frac{x^2}{2} + 2x + 2\ell n|x| - 6\ell n(x+2) + C.$$

Проверка

Найдем производную выражения $\frac{x^2}{2} + 2x + 2\ell n|x| - 6\ell n(x+2) + C$.

$$\left(\frac{x^2}{2} + 2x + 2\ell n|x| - 6\ell n(x+2) + C\right)' = x + 2 + \frac{2}{x} - \frac{6}{x+2} =$$

$$=\frac{(x+2)\cdot(x+2)\cdot x+2\cdot(x+2)-6x}{(x+2)\cdot x}=\frac{x^3+4x^2+4}{x^2+2x}$$

Интеграл вычислен правильно, так как производная первообразной равна подынтегральной функции.

№ 8. Вычислить интеграл $\int_{0}^{9} \frac{dx}{\sqrt{x}-5}.$

Решение

При вычислении определенных интегралов используются такие же методы, что и при вычислении неопределенных интегралов, но не стоит забывать о пределах интегрирования.

$$\int_{0}^{9} \frac{dx}{\sqrt{x} - 5} = \begin{vmatrix} \sqrt{x} = t \\ x = t^{2} \\ dx = 2tdt \\ t = 0, & npu \quad x = 0 \\ t = 3, & npu \quad x = 9 \end{vmatrix} = \int_{0}^{3} \frac{2tdt}{t - 5} = 2\int_{0}^{3} \frac{(t - 5) + 5}{t - 5} dt = 2\int_{0}^{3} \frac{dt}{t - 5} = 2\int_{0}^{3} \frac{dt}{t -$$

$$= 2t \Big|_{0}^{3} + 10 \cdot \ln|t - 5|\Big|_{0}^{3} = 6 + 10(\ln|-2| - \ln|-5|) = 6 + 10(\ln 2 - \ln 5) = 6 + 10\ln\frac{2}{5}.$$

№ 9. Вычислить несобственный интеграл или установить его расходимость:

1)
$$\int_{-\infty}^{0} \cos x \, dx$$

Решение

$$\int_{-\infty}^{0} \cos x \, dx = \lim_{a \to -\infty} \int_{a}^{0} \cos x \, dx = \lim_{a \to -\infty} \sin x \Big|_{a}^{0} = 0 - \lim_{a \to -\infty} \sin a.$$

Интеграл расходится, так как при $a \to -\infty$ предел ℓim sin a не существует.

2)
$$\int_{e}^{\infty} \frac{dx}{x \cdot \ell n^{2} x} =$$

$$= \lim_{b \to \infty} \int_{e}^{b} \frac{dx}{x \cdot \ell n^{2} x} = \begin{bmatrix} \ell nx = t \\ \frac{dx}{x} = dt \\ t_{H} = 1 \\ t_{e} = \ell nb \end{bmatrix} = \lim_{b \to \infty} \int_{1}^{b} \frac{dt}{t^{2}} = -1 \lim_{b \to \infty} \frac{1}{t} \Big|_{1}^{b} = -1 \lim_{b \to \infty} \left(\frac{1}{b} - 1\right) = 1$$

Интеграл сходится.

Тема 7. Функции нескольких переменных 1. Функции двух переменных

2. Производные и дифференциалы функции двух переменных *Литература.* [1], Гл. VIII, § 5-12; [7], Гл. XII, § 1-4 задачи 1-19, 23-32, 34-45, 59-66, 75-78, 81-92; [3], Гл. IX, § 44; [4], Гл. 11, § 3-4 задачи 11.3.9-11..53, 11.4.1-11.4.26.

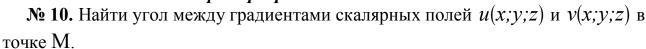
3. Касательная плоскость и нормаль к поверхности

Литература. [6], Гл. XII, § 4; [7], Гл. XII, § 5 задачи 94-103; [6], Гл. IX, § 45; [4], Гл. 11, § 4 задачи 11.4.27-11.4.32.

4. Экстремум функции двух переменных

Литература. [6], Гл. XII, § 8; [1], Гл. VIII, § 17; [7], Гл. XII, § 6 задачи 109-118; [1], Гл. VIII задачи 47-50; [6], Гл. IX, § 46; [4], Гл. 11, § 7 задачи 11.7.8-11.7.12.

Примеры решения типовых задач



$$U = x^3 + y^3 + z^3$$
, $V = x^2 - y^2 + z^2$, $M(1; -1; 1)$.

Решение.

а) Вычислим градиент скалярного поля $U = x^3 + y^3 + z^3$ в точке M(1;-1;1). Для этого найдем частные производные $\frac{\partial U}{\partial x}; \frac{\partial U}{\partial y}; \frac{\partial U}{\partial z}$ и вычислим их значе-

ния в точке M(1;-1;1).

$$\frac{\partial U}{\partial x} = 3x^{2}; \qquad \frac{\partial U}{\partial y} = 3y^{2}; \qquad \frac{\partial U}{\partial z} = 3z^{2}.$$

$$\left(\frac{\partial U}{\partial x}\right)_{M} = 3, \qquad \left(\frac{\partial U}{\partial y}\right)_{M} = 3, \qquad \left(\frac{\partial U}{\partial z}\right)_{M} = 3.$$

Следовательно, gradU = (3,3,3).

б) Вычислим градиент скалярного поля $V = x^2 - y^2 + z^2$ в точке M(1;-1;1). Найдем частные производные $\frac{\partial V}{\partial x}; \frac{\partial V}{\partial y}; \frac{\partial V}{\partial z}$ и вычислим их значения в точке M(1;-1;1).

$$\frac{\partial V}{\partial x} = 2x; \qquad \frac{\partial V}{\partial y} = -2y; \qquad \frac{\partial V}{\partial z} = 2z.$$

$$\left(\frac{\partial V}{\partial x}\right)_{M} = 2, \qquad \left(\frac{\partial V}{\partial y}\right)_{M} = 2, \qquad \left(\frac{\partial V}{\partial z}\right)_{M} = 2.$$

Значит, gradV = (2;2;2).

в) Так как градиент – это вектор, то угол между градиентами скалярных полей

найдем по формуле:
$$\cos \varphi = \frac{\overrightarrow{a} \overrightarrow{b}}{\left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right|}$$
, т.е. $\cos \varphi = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \sqrt{b_x^2 + b_y^2 + b_z^2}}$.

Обозначим через φ искомый угол. Тогда $\cos \varphi = \frac{6+6+6}{\sqrt{9+9+9} \cdot \sqrt{4+4+4}} = 1$. Следовательно, $\varphi = 0$.

Тема 8. Дифференциальные уравнения

1. Общие сведения о дифференциальных уравнениях

Литература. [2], Гл. XIII, § 1-2, Гл. XIII, задачи 1-8; [7], Гл. XIV, § 1 задачи 1-9; [3], Гл. X, § 47.

2. Дифференциальные уравнения первого порядка

Литература. [2], Гл. XIII, § 3-14, 20, Гл. XV, § 1, Гл. XIII, задачи 9-24, 39-50, 57-80, 89-98; [7], Гл. XIV, § 1 задачи 20-77; [3], Гл. X, § 48; [5], Гл. 2, § 1-3.

3. Дифференциальные уравнения второго порядка

Литература. [2], Гл. XIII, § 16-18, 21, 23, 24, Гл. XIII, задачи 122-137, 148-157, 167-178; [6], Гл. XV, § 2-4; [7], Гл. XIV, § 2 задачи 84-117; [3], Гл. X, § 49-51; [5], Гл. 2, § 6-7.

Примеры решения типовых задач

№ 11. Решить дифференциальные уравнения:

1)
$$y' + 3y = e^{2x}$$
.

Данное дифференциальное уравнение является линейным, поэтому для нахождения его общего решения воспользуемся соответствующим алгоритмом.

- 1. Искомую функцию y, будем искать в виде: $y = u \cdot v$, где $u = u(x), \ v = v(x)$.
 - 2. Тогда y' = u'v + uv'.
 - 3. Подставим y и y' в исходное уравнение:

$$u'v + uv' + 3uv = e^{2x}$$
.

4. Вынесем из 2 и 3 слагаемого функцию u за скобки как общий множитель:

$$u'v + u(v' + 3v) = e^{2x}$$
.

5. Составим систему двух дифференциальных уравнений. Для этого, выражение, стоящее в скобках, будем считать равным нулю:

$$\begin{cases} v' + 3v = 0 \\ u'v = e^{2x} \end{cases}$$

6. Решим первое уравнение системы.

$$v'+3v=0;$$

$$v'=-3v;$$

$$\frac{dv}{dx}=-3v;$$

$$\frac{dv}{v}=-3dx;$$

$$\int \frac{dv}{v}=-3\int dx;$$

$$\ln|v|=-3x+C, C=0;$$

$$v=e^{-3x}.$$

7. Подставим найденную функцию $v = e^{-3x}$ во второе уравнение системы и найдем его решение:

$$u'e^{-3x} = e^{2x};$$

$$u' = e^{5x};$$

$$du = e^{5x} dx;$$

$$\int du = \int e^{5x} dx;$$

$$u = \frac{1}{5} e^{5x} + C.$$

8. Запишем общее решение исходного дифференциального уравнения:

$$y = e^{-3x} \left(\frac{1}{5} e^{5x} + C \right).$$

2) Найти общее решение дифференциального уравнения

$$xy' - y + xe^{\frac{y}{x}} = 0.$$

Заданное уравнение является однородным дифференциальным уравнением. Поэтому преобразуем его к виду: $y' = f\left(\frac{y}{x}\right)$. Для этого разделим обе части на x и получим уравнение:

$$y' - \frac{y}{x} + e^{\frac{y}{x}} = 0.$$

Далее сделаем подстановку $\frac{y}{x} = u$, т.е. $y = u \cdot x$, получим

$$u'x+u-u+e^u=0$$
, или
$$\frac{du}{e^u}+\frac{dx}{x}=0$$
.

Интегрируя, имеем: $\int e^{-u} du = -\int \frac{dx}{x}$,

т.е.

$$-e^{u} = -ln|x| - ln|C|, \qquad C \neq 0.$$

Отсюда

$$ln|Cx| = e^{-u},$$

т.е.

$$-u = lnln|Cx|, \quad C \neq 0.$$

Учитывая, что $\frac{y}{x} = u$, получаем общее решение заданного уравнения

$$y = -x \ln \ln |Cx|, \quad C \neq 0.$$

3) Найти общее решение дифференциального уравнения

$$y'' - 7y' = 5xe^x$$
.

Это уравнение является линейным неоднородным дифференци альным уравнением второго порядка с постоянными коэффициентами. Его общее решение будем искать методом неопределенных коэффициентов.

Составим соответствующее ему линейное однородное уравнение:

$$y'' - 7y' = 0$$
.

Запишем его характеристическое уравнение:

$$k^2 - 7k = 0$$
.

Это уравнение имеет два действительных корня $k_1 = 0$ и $k_2 = 7$, поэтому общее решение однородного уравнения имеет вид: $y_{oo} = C_1 + C_2 e^{7x}$. Правая часть неоднородного уравнения имеет вид: $f(x) = P_1(x)e^{kx}$, где $P_1(x) = 5x$ - многочлен первой степени, а k = 1 - не является корнем характеристического уравнения.

Значит, частное решение ищем в таком же виде: $y_{q} = (Ax + B)e^{x}$. $((Ax + B) = Q_{1}(x)$ - многочлен первой степени с неизвестными коэффи-

циентами).

Для определения коэффициентов A и B находим

$$y'_{u} = Ae^{x} + (Ax + B)e^{x} = (A + Ax + B)e^{x},$$

 $y''_{u} = (2A + Ax + B)e^{x},$

после чего подставляем выражения для $y_{\boldsymbol{q}}$, $y'_{\boldsymbol{q}}$ и $y''_{\boldsymbol{q}}$ в исходное дифференциальное уравнение:

$$(2A + Ax + B)e^x - 7(A + Ax + B)e^x = 5xe^x$$
.

После сокращения обеих частей на e^x и приравнивая коэффициентов при соответствующих степенях x в левой и правой части полученного равенства приходим к системе уравнений относительно неизвестных A и B:

$$\begin{cases} A - 7A = 5 \\ 2A + B - 7A - 7B = 0 \end{cases}$$

т.е.

$$\begin{cases}
-6A = 5 \\
-5A - 6B = 0
\end{cases}$$

Отсюда $A = -\frac{5}{6}$, $B = \frac{25}{36}$, а $y_q = \left(-\frac{5}{6}x + \frac{25}{36}\right)e^x$. Тогда общее реше-

ние исходного уравнения имеет вид:

$$y = C_1 + C_2 e^{7x} + \left(-\frac{5}{6}x + \frac{25}{36}\right)e^x$$
.

1-25. Решить систему трех линейных уравнений с тремя неизвестными методом Крамера.

1.
$$\begin{cases} -x_1 + 2x_2 + x_3 = 5, \\ 2x_1 - 3x_2 + 3x_3 = 1, \\ x_2 - 5x_3 = -9. \end{cases}$$
$$[-3x_1 + x_2 + 3x_3 = 10,$$

3.
$$\begin{cases} 2x_2 - x_3 = -4, \\ 2x_1 - x_2 + 3x_3 = 3. \end{cases}$$

5.
$$\begin{cases} 2x_1 - x_2 - 6x_3 = -15, \\ 3x_1 - x_2 + x_3 = -2, \\ -x_1 + 3x_3 = 7. \end{cases}$$

7.
$$\begin{cases} 2x_1 - x_2 + x_3 = -1, \\ -x_1 + 3x_3 = 7, \\ x_1 + x_2 + 3x_3 = 6. \end{cases}$$

9.
$$\begin{cases} x_1 - 3x_2 + x_3 = -2, \\ x_1 - 2x_2 - 4x_3 = -11, \\ 2x_1 - x_2 = 1. \end{cases}$$

11.
$$\begin{cases} 4x_1 + 7x_2 - 3x_3 = -10, \\ 2x_1 + 9x_2 - x_3 = 8, \\ -x_1 + 6x_2 - 3x_3 = 3. \end{cases}$$

13.
$$\begin{cases} 2x_1 + 4x_2 - 3x_3 = -10, \\ -x_1 + 5x_2 - 2x_3 = 5, \\ 3x_1 - 2x_2 + 4x_3 = 3. \end{cases}$$

15.
$$\begin{cases}
-3x_1 + 5x_2 - 6x_3 = -5, \\
2x_1 - 3x_2 + 5x_3 = 8, \\
x_1 + 4x_2 - x_3 = 1.
\end{cases}$$

2.
$$\begin{cases}
-2x_2 - 5x_3 = -12, \\
-2x_1 - x_2 + 3x_3 = 7, \\
-x_1 + x_2 + x_3 = 4.
\end{cases}$$
4.
$$\begin{cases}
-x_1 + 2x_3 = 5, \\
2x_1 + 2x_2 + 5x_3 = 10, \\
3x_1 - 2x_2 + 2x_3 = -1.
\end{cases}$$

6.
$$\begin{cases}
-x_1 + x_2 - x_3 = 0, \\
3x_1 - 4x_2 + 3x_3 = -1, \\
-2x_2 - 3x_3 = -8.
\end{cases}$$

8.
$$\begin{cases} 3x_1 - 2x_2 = -5, \\ x_1 - 2x_2 + x_3 = -1, \\ x_1 + 3x_2 - x_3 = 0. \end{cases}$$

10.
$$\begin{cases}
-x_1 + 3x_2 = 4, \\
3x_1 - 2x_2 + x_3 = -3, \\
2x_1 + x_2 - x_3 = -3.
\end{cases}$$

12.
$$\begin{cases} x_1 - 5x_2 + 3x_3 = -1, \\ 2x_1 + 4x_2 + x_3 = 6, \\ -3x_1 + 3x_2 - 7x_3 = -13. \end{cases}$$

14.
$$\begin{cases}
-2x_1 + 5x_2 - 6x_3 = -8, \\
x_1 + 7x_2 - 5x_3 = -9, \\
4x_1 + 2x_2 - x_3 = -12.
\end{cases}$$

16.
$$\begin{cases} 3x_1 - 9x_2 + 8x_3 = 5, \\ 2x_1 - 5x_2 + 5x_3 = 4, \\ 2x_1 - x_2 + x_3 = -4. \end{cases}$$

17.
$$\begin{cases} x_1 + 3x_2 - 2x_3 = -5, \\ x_1 + 9x_2 - 4x_3 = -1, \\ -2x_1 + 6x_2 - 3x_3 = 6. \end{cases}$$

19.
$$\begin{cases} -2x_1 + x_2 - 3x_3 = -4, \\ 4x_1 + 7x_2 - 2x_3 = -6, \\ x_1 - 8x_2 + 5x_3 = 1. \end{cases}$$

21.
$$\begin{cases} 2x_1 + x_2 - 3x_3 = -5, \\ x_1 - 2x_2 + 2x_3 = 17, \\ x_1 + x_2 + 3x_3 = 4. \end{cases}$$

23.
$$\begin{cases} 2x_1 - 7x_2 + x_3 = -4, \\ 3x_1 + x_2 - x_3 = 17, \\ x_1 - x_2 + 3x_3 = 3. \end{cases}$$

25.
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 3, \\ 5x_1 - 2x_2 - 2x_3 = 3, \\ x_1 + x_2 - x_3 = -2. \end{cases}$$

18.
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 4, \\ 4x_1 - x_2 + 5x_3 = 6, \\ x_1 - 2x_2 + 4x_3 = 9. \end{cases}$$

20.
$$\begin{cases} x_1 + 7x_2 - 2x_3 = 3, \\ 3x_1 + 5x_2 + x_3 = 5, \\ -2x_1 + 5x_2 - 5x_3 = -4. \end{cases}$$
$$\begin{cases} 5x_1 + 8x_2 + x_3 = 2, \end{cases}$$

22.
$$\begin{cases} 3x_1 - 2x_2 + 6x_3 = -7, \\ 2x_1 + x_2 - x_3 = -5. \end{cases}$$

24.
$$\begin{cases} 2x_1 - 3x_2 + x_3 = -7, \\ x_1 + 4x_2 + 2x_3 = -1, \\ x_1 - 4x_2 = -5. \end{cases}$$

26 - 50. Даны координаты вершин пирамиды $A_1A_2A_3A_4$.

Найти:

- 1) длину ребра $A_1 A_2$;
- 2) угол между ребрами A_1A_2 и A_1A_4 ;
- 3) площадь грани $A_1A_2A_3$;
- 4) объем пирамиды;
- 5) уравнение прямой A_1A_2 .

26.
$$A_1(-1; 2; 1)$$
, $A_2(-2; 2; 5)$, $A_3(-3; 3; 1)$, $A_4(-1; 4; 3)$.

27.
$$A_1(7; 7; 3), A_2(6; 5; 8), A_3(3; 5; 8), A_4(8; 4; 1).$$

28.
$$A_1(4; 2; 5), A_2(0; 7; 2), A_3(0; 2; 7), A_4(1; 5; 0).$$

30.
$$A_1(-2; 1; -1), A_2(-3; 1; 3), A_3(-4; 2; -1), A_4(-2; 3; 1).$$

31.
$$A_1(1; 1; 2), A_2(0; 1; 6), A_3(-1; 2; 2), A_4(1; 3; 4).$$

32.
$$A_1(-1; -2; 1), A_2(-2; -2; 5), A_3(-3; -1; 1), A_4(-1; 0; 3).$$

- 33. $A_1(2; -1; 1), A_2(1; -1; 5), A_3(0; 0; 1), A_4(2; 1; 3).$
- 34. $A_1(-1; 1; -2), A_2(-2; 1; 2), A_3(-3; 2; -2), A_4(-1; 3; 0).$
- 35. $A_1(4; 6; 5), A_2(6; 9; 4), A_3(2; 10; 10), A_4(7; 5; 9).$
- 36. *A*₁(3; 5; 4), *A*₂(8; 7; 4), *A*₃(5; 10; 4), *A*₄(4; 7; 8).
- 37. $A_1(10; 6; 6), A_2(-2; 8; 2), A_3(6; 8; 9), A_4(7; 10; 3).$
- 38. *A*₁(1; 8; 2), *A*₂(5; 2; 6), *A*₃(5; 7; 4), *A*₄(4; 10; 9).
- 39. *A*₁(6; 6; 5), *A*₂(4; 9; 5), *A*₃(4; 6; 11), *A*₄(6; 9; 3).
- 40. $A_1(7; 2; 2), A_2(5; 7; 7), A_3(5; 3; 1), A_4(2; 3; 7).$
- 41. *A*₁(8; 6; 4), *A*₂(10; 5; 5), *A*₃(5; 6; 8), *A*₄(8; 10; 7).
- 42. $A_1(1; 2; 1), A_2(0; 2; 5), A_3(-1; 3; 1), A_4(1; 4; 3).$
- 43. $A_1(-2; -1; 1), A_2(-3; -1; 5), A_3(-4; 0; 1), A_4(-2; 1; 3).$
- 44. $A_1(1; -1; 2), A_2(0; -1; 6), A_3(-1; 0; 2), A_4(1; 1; 4).$
- 45. $A_1(1; -2; 1), A_2(0; -2; 5), A_3(-1; -1; 1), A_4(1; 0; 3).$
- 46. $A_1(0; 3; 2), A_2(-1; 3; 6), A_3(-2; 4; 2), A_4(0; 5; 4).$
- 47. $A_1(-1; 2; 0), A_2(-2; 2; 4), A_3(-3; 3; 0), A_4(-1; 4; 2).$
- 48. *A*₁(2; 2; 3), *A*₂(1; 2; 7), *A*₃(0; 3; 3), *A*₄(2; 4; 5).
- 49. $A_1(0; -1; 2), A_2(-1; -1; 6), A_3(-2; 0; 2), A_4(0; 1; 4).$
- 50. $A_1(3; 0; 2), A_2(2; 0; 6), A_3(1; 1; 2), A_4(3; 2; 4).$

51 – **75.** Вычислить пределы функций а), б), г), не пользуясь правилом Лопиталя. Предел функции в) вычислить по правилу Лопиталя.

51. a)
$$\lim_{x \to \infty} \frac{3x^3 - 5x}{-5x^2 + x - 1}$$
;

52.

B)
$$\lim_{x\to 0} \frac{\ln(1+\sin^2 x)}{e^{x^2}-1}$$
;

a)
$$\lim_{x \to \infty} \frac{-2x^2 + 7x + 2}{x^4 - 5x}$$
;

B)
$$\lim_{x\to 4} \frac{\arcsin (4-x)}{\ln (x-3)};$$

6)
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{3x}$$
;

$$\Gamma) \lim_{x \to -7} (15 + 2x)^{\frac{5}{x+7}}.$$

6)
$$\lim_{x \to 7} \frac{\sqrt{2+x} - 3}{x - 7}$$
;

$$\Gamma) \lim_{x \to 0} (1 + 3x^2)^{\frac{1}{2x^2}}.$$

53. a)
$$\lim_{x \to \infty} \frac{-4x^2 - x}{3x^2 + 7x - 1}$$
;

B)
$$\lim_{x \to -1} \frac{tg\left(\frac{\pi}{4} + \frac{\pi x}{4}\right)}{e^{x+1} - 1}$$
,

54. a)
$$\lim_{x \to \infty} \frac{2x^{12} - 2x + 5}{-5x^2 + 3x}$$
;

B)
$$\lim_{x\to 0} \frac{\ln(1-\sin^2 x)}{x^2}$$
;

55. a)
$$\lim_{x \to \infty} \frac{-x^2 - x}{2x^{32} + 3x + 2}$$
;

B)
$$\lim_{x \to \frac{\pi}{3}} \frac{tg^2(\pi - 3x)}{(3x - \pi)^2}$$
;

56. a)
$$\lim_{x \to \infty} \frac{-3x^2 + 5x + 2}{x^2 + 4x}$$
;

B)
$$\lim_{x\to 1} \frac{\cos\frac{\pi x}{2}}{1-x}$$
;

57. a)
$$\lim_{x \to \infty} \frac{-3x^4 + 5x}{x^2 + 4x + 3}$$
;

B)
$$\lim_{x\to 0} \frac{1-\cos^2 x}{5x^2}$$
;

58. a)
$$\lim_{x \to \infty} \frac{5x^2 + 6x - 1}{-2x^5 + 3x};$$

B)
$$\lim_{x \to \frac{\pi}{4}} \frac{1 - tgx}{\sin\left(\frac{\pi}{4} - x\right)};$$

59. a)
$$\lim_{x \to \infty} \frac{-7x^2 + 4x}{3x^2 - x + 2}$$
;

$$6) \lim_{x \to 1} \frac{x - \sqrt{x}}{x^2 - x};$$

$$\Gamma$$
) $\lim_{x\to 4} (5-x)^{-\frac{2}{x-4}}$.

6)
$$\lim_{x\to 0} \frac{x}{\sqrt{1+3x-1}}$$
;

$$\Gamma$$
) $\lim_{x \to -3} (7 + 2x)^{\frac{4}{x+3}}$.

6)
$$\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2}$$
;

$$\Gamma \lim_{x \to 2} (2x - 3)^{-\frac{3}{4 - 2x}}.$$

6)
$$\lim_{x\to 0} \frac{\sqrt{1+3x}-\sqrt{1-2x}}{x+x^2}$$
;

$$\Gamma$$
) $\lim_{x\to 0} (1-5x^2)^{-\frac{3}{x^2}}$.

6)
$$\lim_{x\to 0} \frac{\sqrt{1+3x^2}-1}{x^3+x^2}$$
;

$$\sin \left(\frac{6}{1 + 2x} \right)^{\frac{6}{x+4}}$$

6)
$$\lim_{x\to 3} \frac{\sqrt{2x-1}-\sqrt{5}}{x-3}$$
;

$$\Gamma$$
) $\lim_{x \to -2} (-3 - 2x)^{-\frac{2}{x+2}}$.

6)
$$\lim_{x\to 5} \frac{\sqrt{1+3x} - \sqrt{2x+6}}{x^2 - 5x}$$
;

STOR Transcolled Annual Bry College

B)
$$\lim_{x \to -2} \frac{2x+4}{\arcsin(x+2)}$$
;

$$\Gamma \lim_{x \to 1} (2 - x)^{-\frac{3}{x - 1}}.$$

60. a)
$$\lim_{x \to \infty} \frac{6x^7 - 3x - 1}{-4x^2 + 2x}$$
;

6)
$$\lim_{x \to 2} \frac{x-2}{\sqrt{2x}-2}$$
;

B)
$$\lim_{x\to 0} \frac{1-\cos 6x}{e^{-x^2}}$$
;

$$\Gamma) \lim_{x \to 3} (4 - x)^{\frac{1}{6 - 2x}}.$$

61. a)
$$\lim_{x \to \infty} \frac{x^2 - 4}{3x^8 - 3x + 2}$$
;

$$6) \lim_{x \to \infty} (\sqrt{x+1} - \sqrt{x});$$

$$ctg\frac{\pi x}{2}$$
B)
$$\lim_{x\to 1} \frac{-2}{x-1}$$
;

$$\Gamma$$
) $\lim_{x\to 4} (5-x)^{\frac{2}{x-4}}$.

62. a)
$$\lim_{x \to \infty} \frac{5x^2 - 3x + 1}{2x^2 - 2x + 7}$$
;

6)
$$\lim_{x \to \infty} (x - \sqrt{x^2 - 4})$$
;

B)
$$\lim_{x\to 0} \frac{\sin 7x}{\sqrt{x+1}-1}$$
;

$$\Gamma) \lim_{x \to -3} (7 + 2x)^{\frac{-4}{x+3}}.$$

63. a)
$$\lim_{x\to\infty} \frac{2x^6 - x - 4}{4x^2 + 3x + 2}$$
;

6)
$$\lim_{x \to \infty} (\sqrt{9x^2 + 1} - 3x)$$
;

B)
$$\lim_{x\to 0}\frac{arcsin3x}{5x};$$

$$\Gamma) \lim_{x \to \infty} \left(\frac{x+3}{x-2} \right)^x.$$

64. a)
$$\lim_{x \to \infty} \frac{4x^3 + 3x^2 - 2}{x^{13} - x - 6}$$
;

6)
$$\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$$
;

B)
$$\lim_{x\to 0} \frac{5x}{arctgx}$$
;

$$\Gamma) \lim_{x \to \infty} \left(\frac{2x-1}{2x+1} \right)^x.$$

65. a)
$$\lim_{x \to \infty} \frac{8x^3 + 11}{7x^3 - 5x^2 + x}$$
;

6)
$$\lim_{x\to\infty} (\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3})$$

$$\text{B) } \lim_{x\to 0} \frac{1-\cos 2x}{x\cdot\sin x};$$

$$\Gamma \lim_{x\to\infty} \left(\frac{4x+1}{4x}\right)^{2x}.$$

66. a)
$$\lim_{x \to \infty} \frac{4x^8 - 2x^2 + x11}{3x^3 + 5x - 10}$$
;

6)
$$\lim_{x\to\infty} (\sqrt{x^2+x+1} - \sqrt{x^2-x+1});$$

B)
$$\lim_{x\to 0} \frac{1-\cos 3x}{5x^2}$$
;

$$\Gamma \lim_{x\to\infty} (5+2x)^{\frac{1}{x+2}}.$$

67. a)
$$\lim_{x \to \infty} \frac{x^2 + 3x - 8}{3x^6 - 5x - 2}$$
;

6)
$$\lim_{x \to -1} \frac{\sqrt{4 + x + x^2} - 2}{x + 1}$$
;

$$\mathrm{B)} \lim_{x\to 0}\frac{\cos x-\cos^3 x}{x^2};$$

$$\Gamma) \lim_{x\to\infty} \left(\frac{4x-2}{4x}\right)^{2x}.$$

68. a)
$$\lim_{x\to\infty} \frac{x^2 + 3x - 8}{3x^2 - 5x - 2}$$
;

6)
$$\lim_{x \to -1} \frac{\sqrt{1+x+x^2} - \sqrt{2+2x+x^2}}{x+1}$$
;

$$\text{B) } \lim_{x\to 0} \frac{1-\cos 6x}{1-\cos 2x},$$

$$\Gamma) \lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^{x+1}.$$

69. a)
$$\lim_{x \to \infty} \frac{14x^8 + 9x + 17}{21x^3 + 10x - 2};$$

6)
$$\lim_{x\to 4} \frac{\sqrt{x-1} - \sqrt{7-x}}{x-4}$$
;

B)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
;

$$\Gamma) \lim_{x\to\infty} \left(\frac{6x+3}{6x+1}\right)^{x+1}.$$

70. a)
$$\lim_{x\to\infty} \frac{4x^3 + 9x^2 + 2x}{3x^{11} - 8x + 4}$$
;

6)
$$\lim_{x\to 2} \frac{x-2}{\sqrt{x+2}-\sqrt{6-x}}$$
;

$$\mathrm{B)}\,\lim_{x\to 0}\frac{1-\cos 4x}{2xtg2x};$$

$$\Gamma \lim_{x\to\infty} \left(\frac{x-1}{x+3}\right)^{x+2}.$$

71. a)
$$\lim_{x \to \infty} \frac{6x^2 - 5x + 1}{2x^2 - 3x + 1}$$
;

6)
$$\lim_{x\to 5} \frac{\sqrt{x-1} - \sqrt{9-x}}{x-5}$$
;

$$\text{B) } \lim_{x \to 0} \frac{3x+1}{arct gx};$$

$$\Gamma) \lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2} \right)^{x^2}.$$

72. a)
$$\lim_{x \to \infty} \frac{6x^{12} + 15x - 1}{x^2 - 3x + 1}$$
;

6)
$$\lim_{x\to 2} \frac{x-2}{\sqrt{x+3}-\sqrt{7-x}}$$
;

B)
$$\lim_{x\to 0} \frac{5x}{arctgx}$$
;

$$\Gamma \lim_{x \to \infty} \left(\frac{x^3 - 1}{x^3} \right)^{x^3}.$$

73. a)
$$\lim_{x \to \infty} \frac{3x^2 - 14x + 8}{2x^{52} - 7x - 4}$$
;

6)
$$\lim_{x \to -2} \frac{\sqrt{x+7} - \sqrt{3-x}}{x+2}$$
;

$$\text{B) } \lim_{x\to 0}\frac{3\sin 7x}{\sin 2x};$$

$$\Gamma \lim_{x\to\infty} \left(\frac{10x-3}{10x-1}\right)^{5x};$$

74. a)
$$\lim_{x \to \infty} \frac{3x^2 + 11x + 10}{2x^2 + 5x + 2}$$
;

6)
$$\lim_{x\to 2} \frac{\sqrt{x+4} - \sqrt{8-x}}{x-2}$$
;

B)
$$\lim_{x\to 0} \frac{x^2 + 3x}{\sin 3x}$$
;

$$\Gamma) \lim_{x \to \infty} \left(\frac{x+5}{x-7} \right)^{\frac{x}{2}}.$$

75. a)
$$\lim_{x \to \infty} \frac{4x^{22} - 25x + 25}{2x^2 - 15x + 25}$$
;

6)
$$\lim_{x \to -1} \frac{x+1}{\sqrt{x+5} - \sqrt{3-x}}$$
;

B)
$$\lim_{x\to 0} \frac{x^3}{\cos^3 x - \cos x}$$
;

$$\Gamma) \lim_{x\to\infty} \left(\frac{x+3}{x+4}\right)^{x+4}.$$

76 – 100. Найти производную функции:

76.
$$y = \ln(1 + \cos x)$$
.

77.
$$y = ctg^4x$$
.

$$78. y = e^{\sqrt{x}}.$$

79.
$$y = \arcsin \sqrt{x}$$
.

80.
$$y = arctg \frac{1}{x}$$
.

81.
$$y = tg(\cos x)$$
.

82.
$$y = \sqrt{\cos x - 2}$$
.

83.
$$y = 5^{\arccos x}$$
.

84.
$$y = \sqrt[3]{x^2 - 2x}$$
.

85.
$$y = \frac{1}{2}(x^2 - 4)^2$$
.

86.
$$y = \lg(1-x^3)$$
.

$$87. y = \sqrt{e^{x+1}}.$$

88.
$$y = \arcsin(6^x)$$
.

89.
$$y = \ln(tgx + x).$$

90.
$$y = \sqrt{3ctgx}$$
.

91.
$$y = \ln^3 x$$
.

92.
$$y = \sqrt[3]{x^2 - 8}$$
.

93.
$$y = tg(\sqrt[7]{x})$$
.

94.
$$y = \log_2 \frac{x^2}{2}$$
.

95.
$$y = \sqrt{x^3 - x + 2}$$
.

96.
$$y = \arcsin \frac{x^2}{\sqrt{3}}$$
.

97.
$$y = arcctgx^4$$
.

98.
$$y = \sqrt{\ln x - 4}$$
.

99.
$$y = \sqrt[5]{5^x}$$
.

$$100. y = \cos \sqrt[3]{x} .$$

101 – 125. Исследовать функцию средствами дифференциального исчисления и, используя результаты исследования, построить график.

101.
$$y = \frac{3x^2 - 7}{2x + 1}$$
.

102.
$$y = \frac{17 - x^2}{4x - 5}$$
.

103.
$$y = \frac{21 - x^2}{7x + 9}$$
.

104.
$$y = \frac{2x^2 - 6}{x - 2}$$
.

105.
$$y = \frac{x^2 - 11}{4x - 3}$$
.

106.
$$y = \frac{x^2 - 6x + 4}{3x - 2}$$
.

107.
$$y = \frac{x^2 + 2x - 1}{2x + 1}.$$

108.
$$y = \frac{x^2 + 6x + 9}{x + 4}$$
.

109.
$$y = \frac{x^3 - 4}{x^2}$$
.

110
$$y = \frac{x^3 - 32}{x^2}$$
.

111.
$$y = \frac{1+x^2}{1+x}$$
.

112.
$$y = \frac{3x^2 - 10}{3 - 2x}$$
.

113.
$$y = \frac{9 - 10x^2}{4x - 1}.$$

114.
$$y = \frac{x^2 - x + 1}{x - 1}$$
.

115.
$$y = \frac{x^2 - 3x + 2}{x + 1}.$$

116.
$$y = \frac{3x-2}{x^3}$$
.

117.
$$y = \frac{4x+1}{x^2}$$
.

118.
$$y = \frac{1 - 2x^3}{x^2}$$
.

119.
$$y = \frac{2x+1}{2+x}.$$

120.
$$y = \frac{2x^3 + 1}{x^2}$$
.

$$121. y = \frac{4x}{x-2}.$$

122.
$$y = \frac{x^3}{1+x}$$
.

123.
$$y = \frac{2x^2}{x+1}$$
.

124.
$$y = \frac{x^3 - 4}{x^2}$$
.

125.
$$y = \frac{4x}{x^3 - 8}$$
.

126 – **150.** Записать комплексные числа z_1 и z_2 в тригонометрической и показательной форме. Найти:

- 1) $z_1 \cdot z_2$ и $\frac{z_1}{z_2}$ в тригонометрической и показательной форме;
- 2) $z_1^{\ 3}$ в тригонометрической форме;
- 3) $\sqrt{z_2}$ в тригонометрической форме.

126.
$$z_1 = 3 - 3i$$
, $z_2 = -1 - i$.

127.
$$z_1 = 3i$$
, $z_2 = -1 + i$.

128.
$$z_1 = -2 - 2\sqrt{3} i$$
, $z_2 = -1 - i$.

129.
$$z_1 = -3 + 3i$$
, $z_2 = 2 - 2i$.

130.
$$z_1 = -2i$$
, $z_2 = -\sqrt{3} - i$.

131.
$$z_1 = -5 + 5i$$
, $z_2 = -2i$.

132.
$$z_1 = 6 + 6i$$
, $z_2 = -\sqrt{3} + i$. 133. $z_1 = 2 - 2\sqrt{3}i$, $z_2 = 1 - i$.

133.
$$z_1 = 2 - 2\sqrt{3} i$$
, $z_2 = 1 - i$.

134.
$$z_1 = -4 + 4i$$
, $z_2 = 2 + 2i$.

135.
$$z_1 = 2i$$
, $z_2 = 2 - 2i$.

136.
$$z_1 = 5i$$
, $z_2 = \sqrt{3} - i$.

137.
$$z_1 = 7 - 7i, z_2 = -i$$
.

138.
$$z_1 = 1 - i$$
, $z_2 = \sqrt{3} - i$.

139.
$$z_1 = 3 - 3\sqrt{3} i$$
, $z_2 = 3i$

140. $z_1 = 4i, z_2 = 2 - 2i.$

141.
$$z_1 = 2 - 2i$$
, $z_2 = 1 + \sqrt{3}i$.

BUT BETT COLOR

142. $z_1 = 2 + 2i$, $z_2 = -2 + 2i$.

143.
$$z_1 = -5i$$
, $z_2 = \sqrt{3} + i$.

144.
$$z_1 = -7 + 7i$$
, $z_2 = 7i$.

145.
$$z_1 = 1 + i$$
, $z_2 = -3 + \sqrt{3} i$.

146.
$$z_1 = -3 + 3\sqrt{3} i$$
, $z_2 = -7i$.

147.
$$z_1 = -4i$$
, $z_2 = -2 - 2i$

148.
$$z_1 = -4 - 4i$$
, $z_1 = 1 - \sqrt{3}i$.

149.
$$z_1 = -8 + 8i$$
, $z_2 = 1 - i$.

150.
$$z_1 = 6i$$
, $z_2 = 2 + 2i$.

151 – 175. Вычислить:

- а) неопределенный интеграл;
- б) неопределенный интеграл;
- в) определенный интеграл;
- г) несобственный интеграл или установить его расходимость.

151. a)
$$\int (1-6x) \cdot e^{2x} dx$$

$$6) \int \frac{x^2 dx}{x^2 - 2x + 4};$$

$$\mathbf{B}) \int_{2}^{7} \frac{\sqrt{x+2} dx}{x};$$

$$\Gamma$$
) $\int_{0}^{8} \frac{3x+2}{\sqrt[3]{x}} dx$.

152. a)
$$(4+3x) \cdot e^{3x} dx$$
;

6)
$$\int \frac{2x^2 - 3x + 1}{x^3 - 1} dx$$
;

B)
$$\int_{-3/4}^{0} \frac{3xdx}{\sqrt{(x+1)^3}}$$
;

$$\Gamma) \int_{0}^{\infty} x e^{-x^2} dx.$$

153. a)
$$\int (4-16x) \cdot \sin 4x dx$$
;

6)
$$\int \frac{3x-7}{x^3+4x^2+4x+16} dx$$
;

$$\mathrm{B)} \int\limits_{0}^{1} \frac{\sqrt{x} dx}{4-x};$$

$$\Gamma) \int_{-3}^{5} \frac{dx}{\sqrt[3]{x+3}}.$$

154. a)
$$\int (5x-2) \cdot e^{3x} dx$$
;

6)
$$\int \frac{dx}{x^3 + x^2 + 2x + 2}$$
;

B)
$$\int_{-8}^{0} \frac{dx}{5 - \sqrt[3]{x^2}}$$
;

$$\Gamma) \int_{e}^{\infty} \frac{dx}{x \ell n^2 x}.$$

155. a) $\int (4x-2) \cdot \cos 2x dx$;

B)
$$\int_{0}^{4} \frac{dx}{\sqrt{x} - 3}$$
;

156. a) $\int (2-4x) \cdot \sin 2x dx$;

B)
$$\int_{-4}^{1} \frac{x dx}{\sqrt{(5-x)^3}}$$
;

157. a) $\int (4x-3)e^{-2x}dx$;

B)
$$\int_{-3/4}^{0} \frac{dx}{2 - \sqrt{x+1}}$$
;

158. a) $\int (2-9x) \cdot e^{-3x} dx$;

B);
$$\int_{-1}^{0} \frac{dx}{8 + \sqrt[3]{x^2}}$$

159. a) $(5x+6) \cdot \cos 2x dx$;

B)
$$\int_{-1/4}^{0} \frac{dx}{1 + \sqrt{3x+1}}$$
;

160. a) $\int (3x-2) \cdot \cos 5x dx$;

B)
$$\int_{-1}^{0} \frac{dx}{4 + \sqrt[3]{x^2}}$$
;

161. a) $\int (x\sqrt{2}-3) \cdot \cos 2x dx;$

$$B) \int_{0}^{4} \frac{\sqrt{x} dx}{4+x};$$

162. a) $\int x \cdot 3^x dx$;

$$6) \int \frac{x^2 dx}{x^3 + 0.5x^2 + 8x + 4} ;$$

$$\Gamma) \int_{4}^{5} \frac{dx}{(x-4)^2}.$$

6)
$$\int \frac{x+3}{x^3+x^2-2x} dx$$
;

$$\Gamma) \int_{1}^{2} \frac{x dx}{x - 1}.$$

6)
$$\int \frac{(x^2-3)dx}{x^4+5x^2+6}$$
;

$$\Gamma) \int_{-\pi/2}^{0} tg \, x \, dx.$$

6)
$$\int \frac{x-4}{x^2-5x+6} dx$$
;

$$\Gamma) \int_0^{\pi/4} \frac{\cos x \, dx}{\sin^2 x}.$$

6)
$$\int \frac{(x^2-x+1)dx}{x^4+2x^2-3}$$
;

r)
$$\int_{0}^{\infty} \frac{dx}{x^2 + 2x + 5}$$
.

6)
$$\int \frac{(6x+5)dx}{x^2+4x}$$
;

$$\Gamma) \int_{-1}^{0} \frac{dx}{\sqrt{(x+1)^3}}.$$

6)
$$\int \frac{3x^2 + 2x - 3}{x \cdot (x - 1) \cdot (x + 1)} dx$$
;

$$\Gamma) \int_{0}^{\pi/2} ctg \ x \ dx.$$

6)
$$\int \frac{2x+3}{x^2+3x-10} dx$$
;

$$\mathbf{B}) \int_{3}^{6} \frac{\sqrt{x-3}dx}{x};$$

163. a)
$$(4x+7) \cdot \cos 3x dx$$
;

$$\mathbf{B}) \int_{0}^{3} \frac{\left(x^{2} + \sqrt{x+1}\right) dx}{\sqrt{x+1}}$$

6)
$$\int \frac{x^2 dx}{x^4 - 81}$$
;

 $\Gamma) \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}.$

$$\Gamma) \int_{0}^{\infty} \frac{dx}{9x^2 + 1}.$$

164. a)
$$\int (2x-5) \cdot \cos 4x dx$$
;

B)
$$\int_{2}^{6} \frac{\sqrt{x-2} dx}{1+\sqrt{x-2}}$$
;

$$6) \int \frac{dx}{x^3 + 1};$$

$$\Gamma) \int_{0}^{\infty} e^{-5x} dx.$$

165. a)
$$\int (8-3x) \cdot \cos 5x dx$$
;

B)
$$\int_{25}^{49} \frac{\sqrt{x} dx}{x - 6}$$

6)
$$\int \frac{(x^3-6)dx}{x^4+6x^2+8}$$
;

$$\Gamma) \int_{0}^{e^{-2}} \frac{dx}{x \ell n^{3} x}.$$

166. a)
$$(5+x) \cdot \sin 3x dx$$
;

B)
$$\int_{0}^{1} \frac{x dx}{\sqrt{2x+7}}$$
;

6)
$$\int \frac{5x+2}{x^2+2x+10} dx$$
;

$$\Gamma) \int_{e}^{\infty} \frac{dx}{x \ell n \, x}.$$

167. a)
$$\int x \cdot \ell n \, x dx$$
;

B)
$$\int_{-8}^{0} \frac{\sqrt[3]{x^2} dx}{3 + \sqrt[3]{x^2}}$$
;

$$6) \int \frac{\left(x^3+1\right) dx}{x^3-5x^2+6x};$$

$$\Gamma) \int_{-\infty}^{0} x e^{-x^2} dx.$$

168. a)
$$\int x \cdot \cos x dx$$
;

B)
$$\int_{4}^{9} \frac{dx}{\sqrt{x(x-1)}}$$
;

$$6) \int \frac{x dx}{x^3 + 1};$$

$$\Gamma) \int_{0}^{\infty} \frac{dx}{4x^2 + 1}.$$

169. a)
$$\int x \cdot \sin x dx$$
;

$$6) \int \frac{dx}{x^4 - 1};$$

B)
$$\int_{1}^{2} \frac{dx}{2 + \sqrt[4]{x - 1}}$$
;

170. a)
$$\int (2-3x) \cdot \sin 2x dx$$
;

B)
$$\int_{0}^{4} \frac{dx}{\sqrt{x} + 5}$$
;

171. a)
$$\int (4x+3) \cdot \sin 5x dx$$
;

B)
$$\int_{0}^{1} \frac{x dx}{1 + x^4}$$
;

172. a)
$$(7x-10) \cdot \sin 4x dx$$
;

$$\mathbf{B}) \int_{1}^{3} \frac{dx}{(1+x)\sqrt{x}};$$

173. a)
$$\int (2+x) \cdot \cos x dx$$
;

B)
$$\int_{0}^{1} \frac{x dx}{1 + \sqrt[3]{x}}$$

174. a)
$$\int \left(\sqrt{2} - 8x\right) \cdot \sin 3x dx;$$

B)
$$\int_{0}^{1} \frac{dx}{e^{x} + e^{-x}}$$
;

175. a)
$$\int (4x^3 + 6x - 7) \cdot \ell n \, x dx$$
;

$$\mathrm{B)}\,\int\limits_{1}^{4}\frac{e^{\sqrt{x}}dx}{\sqrt{x}};$$

$$\Gamma) \int_{-5}^{-4} \frac{dx}{\sqrt[3]{(x+5)^4}} \, .$$

$$6) \int \frac{3x+1}{x \cdot (x^2+1)} dx;$$

$$\Gamma) \int_{14}^{\infty} \frac{dx}{\sqrt[4]{(x+2)}}.$$

$$6) \int \frac{(x^3+1)dx}{x^2-3x+2};$$

$$\Gamma) \int_{0}^{\pi/4} \frac{dx}{\sin^2 x}.$$

6)
$$\int \frac{3x+5}{x^2+2x+2} dx$$
;

$$\Gamma$$
) $\int_{0}^{1} \frac{x^2 dx}{\sqrt{1-x^3}}$.

6)
$$\int \frac{(x^3+6)dx}{x^2+5x-6}$$
;

$$\Gamma) \int_{2}^{6} \frac{x}{\sqrt{(4-x^{2})^{2}}} dx.$$

6)
$$\int \frac{x^3-4}{x^2-x-6} dx$$
;

$$\Gamma) \int_{0}^{1} \frac{dx}{\sqrt{x}}.$$

6)
$$\int \frac{x^3+2}{x^2-x-2} dx$$
;

$$\Gamma) \int_{1}^{\infty} \frac{dx}{x^2 + x + 1}.$$

u(x;y;z) и v(x;y;z)

в точке
$$M$$
.

176.
$$u = \frac{1}{xyz}$$
, $v = x^2 + 9y^2 + 6z^2$, $M\left(1; \frac{1}{3}; \frac{1}{\sqrt{6}}\right)$.

177.
$$u = \frac{1}{xy^2z}$$
, $v = \sqrt{2}x^2 - \frac{3y^2}{\sqrt{2}} - 6\sqrt{2}z^2$, $M\left(\sqrt{2};\sqrt{2};\frac{\sqrt{3}}{2}\right)$.

178.
$$u = \frac{x^2}{v^2 z^3}$$
, $v = \frac{x^3}{\sqrt{2}} - \frac{y^3}{\sqrt{2}} - \frac{8z^3}{\sqrt{3}}$, $M\left(\sqrt{2}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$.

179.
$$u = \frac{x^3 y^2}{z}$$
, $v = \frac{3}{x} + \frac{4}{y} - \frac{1}{\sqrt{6}z}$, $M\left(1; 2; \frac{1}{\sqrt{6}}\right)$.

180.
$$u = \frac{xz^2}{y}$$
, $v = 6\sqrt{6}x^3 - 6\sqrt{6}y^3 + 2z^3$, $M\left(\frac{1}{\sqrt{6}}; \frac{1}{\sqrt{6}}; 1\right)$.

181.
$$u = \frac{xz}{y}$$
, $v = \sqrt{6}x^3 + \sqrt{6}y^3 + z^3$, $M\left(\frac{1}{\sqrt{6}}; \frac{1}{\sqrt{6}}; -1\right)$.

182.
$$u = \frac{yz^2}{x}$$
, $v = \frac{\sqrt{6}}{2x} - \frac{\sqrt{6}}{2y} + \frac{2}{3z}$, $M\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}\right)$.

183.
$$u = \frac{xy^2}{z^2}$$
, $v = 3\sqrt{2}x^2 - \frac{y^2}{\sqrt{2}} - 3\sqrt{2}z^2$, $M\left(\frac{1}{3}; 2; \frac{\sqrt{2}}{\sqrt{3}}\right)$.

184.
$$u = \frac{1}{x^2 vz}$$
, $v = \frac{4\sqrt{2}}{x} + \frac{\sqrt{2}}{9v} + \frac{1}{\sqrt{3}z}$, $M\left(2; \frac{1}{3}; \frac{1}{\sqrt{6}}\right)$.

185.
$$u = \frac{x^2}{v^2 z^3}$$
, $v = \frac{6}{x} + \frac{2}{y} - \frac{3\sqrt{3}}{2\sqrt{2}z}$, $M\left(\sqrt{2};\sqrt{2};\frac{\sqrt{3}}{2}\right)$.

186.
$$u = \frac{y^3}{x^2 z}$$
, $v = \frac{2}{x} + \frac{3}{2y} - \frac{\sqrt{6}}{4z}$, $M\left(\frac{\sqrt{2}}{\sqrt{3}}; \frac{\sqrt{3}}{\sqrt{2}}; \frac{1}{2}\right)$.

187.
$$u = xyz$$
, $v = x^2 + 9y^2 + 6z^2$, $M\left(1; \frac{1}{3}; \frac{1}{\sqrt{6}}\right)$.

188.
$$u = \frac{yz^2}{x}$$
, $v = x^2 - y^2 - 3z^2$, $M\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}\right)$.

189.
$$u = \frac{y}{xz^2}$$
, $v = 6\sqrt{6}x^3 - 6\sqrt{6}y^3 + 2z^3$, $M\left(\frac{1}{\sqrt{6}}; \frac{1}{\sqrt{6}}; \frac{1}{2}\right)$.

190.
$$u = \frac{y^2 z^3}{x}$$
, $v = \frac{1}{\sqrt{2}x} - \frac{2\sqrt{2}}{y} - \frac{3\sqrt{3}}{2z}$, $M\left(\frac{1}{\sqrt{2}}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$.

191.
$$u = \frac{y^2 z^3}{x^2}$$
, $v = \frac{6}{x} + \frac{2}{y} + \frac{3\sqrt{3}}{2\sqrt{2}z}$, $M\left(\sqrt{2}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$.

192.
$$u = xy^2z$$
, $v = \sqrt{2}x^2 - \frac{3y^2}{\sqrt{2}} - 6\sqrt{2}z^2$, $M\left(1; \frac{2}{3}; \frac{1}{\sqrt{6}}\right)$.

193.
$$u = \frac{x}{vz^2}$$
, $v = \frac{\sqrt{6}}{2x} + \frac{\sqrt{6}}{2y} - \frac{2}{3z}$, $M\left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}\right)$.

194.
$$u = \frac{z^2}{x^2 y^2}$$
, $v = \frac{3x^2}{\sqrt{2}} - \frac{y^2}{\sqrt{2}} + \sqrt{2}z^2$, $M\left(\frac{1}{\sqrt{2}}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$.

195.
$$u = x^2 y z^3$$
, $v = \frac{3}{2} x^2 + 3y^2 - 2z^2$, $M\left(2; \frac{1}{3}; \frac{\sqrt{3}}{\sqrt{2}}\right)$.

196.
$$u = \frac{z^2}{x^2 y^2}$$
, $v = 9\sqrt{2}x^3 - \frac{y^3}{2\sqrt{2}} - \frac{4z^3}{\sqrt{3}}$, $M\left(\frac{1}{3}; 2; \frac{\sqrt{3}}{\sqrt{2}}\right)$.

197.
$$u = \frac{x}{v^2 z^3}$$
, $v = \frac{1}{\sqrt{2}x} - \frac{2\sqrt{2}}{y} - \frac{3\sqrt{3}}{2z}$, $M\left(\frac{1}{\sqrt{2}}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$.

198.
$$u = x^2 yz$$
, $v = -\frac{4\sqrt{2}}{x} + \frac{\sqrt{2}}{9y} + \frac{1}{\sqrt{3}z}$, $M\left(2; \frac{1}{3}; \frac{\sqrt{3}}{\sqrt{2}}\right)$.

199.
$$u = \frac{y^2 z^3}{x}$$
, $v = \frac{x^3}{\sqrt{2}} - \frac{y^3}{\sqrt{2}} - \frac{8z^3}{\sqrt{3}}$, $M\left(\sqrt{2}; \sqrt{2}; \frac{\sqrt{3}}{2}\right)$.

200.
$$u = \frac{x^2 z}{y^2}$$
, $v = -\frac{3x^3}{\sqrt{2}} + \frac{2\sqrt{2}y^3}{3} + 8\sqrt{3}z^3$, $M\left(\frac{\sqrt{2}}{\sqrt{3}}; \frac{\sqrt{3}}{\sqrt{2}}; \frac{1}{2}\right)$.

201 -225. Найти общее решение дифференциальных уравнений:

201. a)
$$y' - y = e^x$$
;

6)
$$(x^2 - 2y^2) dx + 2xy dy = 0$$
;

B)
$$y'' + 2y' + y = 0$$
.

202. a)
$$2xy' - y = 1$$
;

6)
$$x(x+2y) dx + (x^2 - y^2) dy = 0$$
;

B)
$$y'' + y' - 2y = 0$$
.

203. a) xy' + y = -x;

б)
$$\left(x^2 - y^2\right) dx + 2xy dy = 0$$
;

B)
$$y'' - 3y' + 2y = 0$$
.

204. a)
$$y' - 2x \cdot y = e^{x^2}$$
;

6)
$$y' = \frac{x+3y}{2x}$$
;

B)
$$y'' + 3y' = 0$$
.

205. a)
$$y' + x^2y = x^2$$
;

6)
$$(2x+y) dx - 2x dy = 0$$
;

B)
$$v'' - 2v = 0$$
.

206. a)
$$y' = x + y$$
;

$$6) \ 2(xy+y) \ dx = x \ dy;$$

B)
$$y'' - 4y = 0$$
.

207. a)
$$y' + y = x$$
;

6)
$$y' = \frac{x+2y}{-x}$$
;

B)
$$y'' - 5y' + 6y = 0$$
.

208. a)
$$y' = x - xy$$
;

б)
$$xdy - ydx = ydy$$
;

B)
$$y'' + y' + 2.5y = 0$$
.

209. a)
$$xy' + y = e^x$$
;

б)
$$\left(x^2 + 2xy\right) dx + xy dy = 0$$
;

B)
$$y'' + 4y = 0$$
.

210. a)
$$xy' + y = 3$$
;

6)
$$y' = \frac{y}{x} + \sin \frac{y}{x}$$
;

B)
$$y'' + 4y = 0$$
.

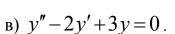
211. a)
$$x^2y' = 1 + xy$$
;

$$6) \frac{dx}{v+x} = \frac{dy}{v-x};$$

B)
$$y'' + y = 0$$
.

212. a)
$$xy' + 2y = x^5$$
;

$$6) y' = \frac{y}{x+y};$$



213. a)
$$y' + 2x \cdot y = 2xe^{-x^2}$$
;

6)
$$y - xy' = \sqrt{x^2 + y^2}$$
;

B)
$$y'' - 3y' - 10y = 0$$
.

214. a)
$$y' - \frac{3y}{x} = x$$
;

6)
$$vdx + (x - v)dv = 0$$
;

B)
$$y'' - 3y' + 2y = 0$$
.

215. a)
$$xy' + y = \ell n x$$
;

$$6) y' = \frac{x - y}{x - 2y};$$

B)
$$y'' - 2y' + 2y = 0$$
.

216. a)
$$y' + xy = x$$
;

6)
$$y' = \frac{xy^2 - yx^2}{x^3}$$
;

B)
$$y'' - 4y = 0$$
.

217. a)
$$y' + y = e^x$$
;

$$6) xy' = y + x \cdot \sin \frac{y}{x};$$

B)
$$y'' + y = 0$$
.

218. a)
$$xy' + y - 3x^2 = 0$$
;

6)
$$y = xy' - xe^{x}$$
;

B)
$$y'' - 2y' + y = 0$$
.

219. a)
$$y' - 2xy = 3x$$
;

$$6) y' = \frac{y + 2\sqrt{yx}}{x};$$

B)
$$y'' - 6y' + 8y = 0$$
.

220. a)
$$y' + 2xy = 2x$$
;

6)
$$x^2 + y^2 = x_* y_* y'$$
;

B)
$$y'' + 2y' - 3y = 0$$
.

221. a)
$$xy' + y = \ell n x + 1$$
;

6)
$$xy' + xtg \frac{y}{x} = y$$
;

B)
$$y'' + 3y' + 2y = 0$$
.

222. a)
$$y' + \frac{1}{x}y = 3x$$
;

6)
$$y^2 + x^2 y' = x_* y_* y'$$
;

B)
$$y'' + 3y' + 2y = 0$$
.

223. a)
$$y' + \frac{y}{x} = x^2$$
;

6)
$$y' = \frac{x+y}{x-y}$$
;

B)
$$y'' + y' + y = 0$$
.

224. a)
$$y' + \frac{3y}{x} = \frac{2}{x^3}$$
;

6)
$$y'-1=e^{\frac{y}{x}}+\frac{y}{x}$$
;

B)
$$y'' + y' = 0$$
.

225. a)
$$xy' = x + \frac{1}{2}y$$
;

6)
$$(x-y)y dx - x^2 dy = 0$$
;

B)
$$y'' - 3y' = x^2 + 2$$
.

Основные формулы

1.
$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$
 - модуль вектора

2. Формулы деления отрезка в данном отношении:

$$x_{\kappa} = \frac{x_A + \lambda \cdot x_C}{1 + \lambda}$$
, $y_{\kappa} = \frac{y_A + \lambda \cdot y_C}{1 + \lambda}$, где λ - отношение $\frac{AK}{KC}$.

3. Линейные операции над векторами в координатной форме:

$$\vec{a} = (a_x, a_y, a_z) \text{ M } \vec{b} = (b_x; b_y; b_z)$$

•
$$\vec{a} \pm \vec{b} = (a_x \pm b_x; a_y \pm b_y; a_z \pm b_z).$$

•
$$\lambda \vec{a} = (\lambda a_x; \lambda a_y; \lambda a_z).$$

$$\bullet \quad \vec{a} = \vec{b} \iff \begin{cases} a_x = e_x \\ a_y = e_y \\ a_z = e_z \end{cases}$$

- коллинеарность векторов: $\lambda = \frac{a_X}{b_X} = \frac{a_Y}{b_Y} = \frac{a_Z}{b_Z}$.
- **4.** Формула скалярного произведения $\vec{a} \vec{b} = |\vec{a}| * |\vec{b}| \cos{(\vec{a}, \vec{b})}$, где $\varphi = (\overrightarrow{a, b})$
- **5**.Скалярное произведение в координатной форме $\vec{a} \ \vec{b} = a_x b_x + a_y b_y + a_z b_z$.
- **6.** Формула для нахождения угла между векторами $cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$
- 7 .Векторное произведение в координатной форме

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

8.
$$\vec{a} \parallel \vec{b} \iff \vec{a} \times \vec{b} = \vec{0}$$
 (и наоборот), т.е. $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{0} \iff$

$$\frac{a_{\chi}}{e_{\chi}} = \frac{a_{y}}{e_{y}} = \frac{a_{z}}{e_{z}}$$

9.
$$S_{nap} = |\vec{a} \times \vec{b}|, S_{mp} = \frac{1}{2} |\vec{a} \times \vec{b}|.$$

10. Смешанное произведения векторов в координатной форме

$$\vec{a} \vec{b} \vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

11.
$$\vec{a} \ \vec{b} \ \vec{c} = 0 \Leftrightarrow \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = 0 \Leftrightarrow$$
 векторы \vec{a} , \vec{b} , \vec{c} компланарны.

12. Объем параллелепипеда: $V = |\vec{a} \vec{b} \vec{c}|$.

Объем треугольной пирамиды: $V = \frac{1}{6} |\vec{a} \vec{b} \vec{c}|$.

- **13.** Ax + By + C = 0 общее уравнение прямой, где A, B, C произвольные числа.
- **14.** Уравнение прямой, проходящей через данную точку $M_o(x_o; y_o)$ с направляющим вектором (c; d)

$$\frac{x-x_0}{c} = \frac{y-y_0}{d}$$

15. Уравнение прямой, проходящей через две точки $M_1(x_1; y_1)$ и $M_2(x_2; y_2)$

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

- **16.** $A(x x_0) + B(y y_0) = 0$ уравнение прямой, проходящей через заданную точку перпендикулярно заданному вектору, где (A; B) координаты нормального вектора прямой, $(x_0; y_0)$ координаты текущей точки, а x и y переменные.
- **17.** Формула для нахождения расстояния от точки $(x_1; y_1)$ до прямой Ax + By + C = 0: $d = \frac{\left|A \cdot x_1 + B \cdot y_1 + C\right|}{\sqrt{A^2 + B^2}}$.
- **18.** $(x + x_0)^2 + (y + y_0)^2 = r^2$ каноническое уравнение окружности с центром в точке $(x_0; y_0)$, радиусом r.
- **19.** $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ каноническим уравнением эллипса.
- **20.** $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ каноническое уравнение гиперболы.
- **21.** Канонические уравнения парабол: $y^2 = 2px$, $y^2 = -2px$, $x^2 = 2py$, $x^2 = -2py$ (p > 0)

22. Основные теоремы о пределах:

- $\lim_{x \to x} f(x) = A$, то он единственный.
- $\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = A \pm B$
- $\lim_{x \to x_0} (f(x) * g(x)) = \lim_{x \to x_0} f(x) * \lim_{x \to x_0} g(x) = A * B$
- $\lim_{x \to x} Cf(x) = C \lim_{x \to x} f(x)$
- $\lim_{x \to x} (f(x))^n = (\lim_{x \to x} f(x))^n = A^n$
- $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{A}{B} \left(\lim_{x \to x_0} g(x) \neq 0 \right)$

23. Первый замечательный предел:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$
; $\lim_{x \to 0} \frac{x}{\sin(x)} = 1$; $\lim_{x \to 0} \frac{tg(x)}{x} = 1$

24. Второй замечательный предел:

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e; \lim_{x \to \infty} (1+\frac{1}{x})^x = e$$

25. Производной функции f(x) в точке x_0 :

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = f'(x_0)$$

26.
$$y = f(x_0) + f'(x_0)(x - x_0)$$
 - уравнение касательной.

27.
$$y = f(x_0) - \frac{1}{f'(x_0)}(x - x_0)$$
 - уравнение нормали.

28.
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

29.
$$(f(x) * g(x))' = f'(x)g(x) + f(x)g'(x)$$

30.
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

31. производной сложной функции: $y_x' = f_u'(u) \cdot \varphi'(x)$.

32. Производная функции, заданная параметрически: $y'_x = \frac{y'_t}{x'_t}$, $y''_{xx} = \frac{\left(y'_x\right)'_t}{x'_t}$.

33. Формулы дифференцирования

№	Производная простой функции	Производная сложной функции
п/п		
1	2	3
1	(c)' = 0	
2	(x)'=1	
3	$\left(x^n\right) = nx^{n-1}$	$\left(u^n\right)' = nu^{n-1}u'$
4	$\left(\sqrt{x}\right) = \frac{I}{2\sqrt{z}}$	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$
5	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	$(u^n)' = nu^{n-1}u'$ $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$ $(\frac{1}{u})' = -\frac{u'}{u^2}$ $(a^u)' = a^u lna * u'$ $(e^u)' = e^u u'$ $(log_a u)' = \frac{u'}{u lna}$ $(lnu)' = \frac{u'}{u}$
6	$\left(a^{x}\right)' = a^{x}lna$	$\left(a^{u}\right)' = a^{u} lna * u'$
7	$\left(e^{x}\right)'=e^{x}$	$\left(e^{u}\right)'=e^{u}u'$
8	$(log_a x)' = \frac{1}{x lna}$ $(lnx)' = \frac{1}{x}$	$(log_a u)' = \frac{u'}{ulna}$
9	$(lnx)' = \frac{1}{x}$	$(lnu)' = \frac{u'}{u}$
10	(sinx)' = cosx	(sinu)' = cosu * u'
11	(cosx)' = -sinx	$(\cos u)' = -\sin u \cdot u'$
12	$(tgx)' = \frac{1}{\cos^2 x}$	$(tgu)' = \frac{u'}{\cos^2 u}$ $(ctgu)' = -\frac{u'}{\sin^2 u}$
13	$(ctgx)' = -\frac{1}{\sin^2 x}$	$\left(ctgu\right)' = -\frac{u'}{\sin^2 u}$
14	$(arcsinx)' = \frac{1}{\sqrt{1-x^2}}$	$(arcsinu)' = \frac{u}{\sqrt{1-u^2}}$
15	$(arcsinx)' = \frac{1}{\sqrt{1-x^2}}$ $(arccosx)' = -\frac{1}{\sqrt{1-x^2}}$ $(arctgx)' = \frac{1}{x^2+1}$	$(arccosu)' = -\frac{u'}{\sqrt{1 - u^2}}$
16	$(arctgx)' = \frac{1}{x^2 + 1}$	$(arctgu)' = \frac{u'}{u^2 + 1}$

$$(arcctgx)' = -\frac{1}{x^2 + 1}$$

$$(arcctgu)' = -\frac{u'}{u^2 + 1}$$

34. Формула дифференциала функции: $dy = f'(x_0) dx$

35.
$$d(f \pm g) = df(x_0) \pm dg(x_0)$$

36.
$$d(f \cdot g) = df(x_0) \cdot g(x_0) + f(x_0) \cdot dg(x_0)$$

37.
$$d\left(\frac{f}{g}\right) = \frac{df(x_0)g(x_0) - f(x_0)dg(x_0)}{g^2(x_0)}$$
.

38.

- $d^2y = f''(x)dx^2$
- $d^3y = d(d^2y) = d(f''(x)dx^2) = f'''(x)(dx)^3$ $d^n = y^{(n)}dx^n$

ВЫСШАЯ МАТЕМАТИКА

О.В. Бараховская Г.В. Ваганова.

Методические указания и варианты контрольной работы № 1 для слушателей факультета заочного обучения по направлению подготовки 280705 Пожарная безопасность. 1 год обучения.

Корректура

Бруева М.И.

Подписано в печать Формат . Тираж Объем усл.печ.л. Печать ризография. Бумага писчая.

Отпечатано в копировально-множительном бюро Уральского института ГПС МЧС России

Екатеринбург, ул. Мира, 22