ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

государственное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» МИИТ

Одобрено кафедрой «Физика и химия»

ФИЗИКА

Задания на контрольные работы № 1, №2, №3 с методическими указаниями для студентов 1 курса

направления: 210700.62 Инфокоммуникационные системы и технологии (все профили)

(сокращенные сроки обучения)

Составители: док. физ.-мат.. наук, проф. Прибылов Н.Н., к.ф.-м.н., доцент, Карелин Б.В., к.ф.-м.н., доцент,Прибылова Е.И,

док. физ.-мат. наук, доц. Шулиманова З.Л.

ОБЩИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ

- 1. В процессе изучения физики студент должен выполнить контрольные работы (по две в каждом семестре). Решение задач в контрольных работах является проверкой степени усвоения студентом теоретического курса, а рецензии на работу помогают доработать и правильно освоить различные разделы курса физики.
- 2. Перед выполнением контрольной работы студенту необходимо ознакомиться примерами решения данной внимательно c задач ПО контрольной работе, уравнениями И формулами, приведенными методических указаниях.
- 3. Выбор задач производится по таблице вариантов, приведенных в каждом разделе: первые четыре задачи выбираются по варианту, номер которого совпадает с последней цифрой учебного шифра, а пятую и шестую задачи с предпоследней цифрой шифра. Например, при шифре 1110—ИСТ-52319 первые четыре задачи берут по варианту 9, а пятую и шестую задачи из варианта 1.
- 4. Правила оформления контрольных работ и решения задач:
- 3.1. Условия всех задач студенты переписывают полностью без сокращений.
- 3.2. Все значения величин, заданных в условии и привлекаемых из справочных таблиц, записывают для наглядности сокращенно (столбиком) в тех же единицах, которые заданы, а затем рядом осуществляют перевод в единицы СИ.
- 3.3. Все задачи следует решать в СИ.

- 3.4. В большей части задач необходимо выполнять чертежи или графики с обозначением всех величин. Рисунки надо выполнять аккуратно, используя чертежные инструменты; объяснение решения должно согласоваться с обозначениями на рисунках.
- 3.5. Необходимо указать физические законы, которые использованы для решения данной задачи.
- 3.6. С помощью этих законов, учитывая условие задачи, получить необходимые расчетные формулы.
- 3.7. Вывод формул и решение задач следует сопровождать краткими, но исчерпывающими пояснениями.
- 3.8. Использованные в формулах буквенные обозначения должны быть согласованы с обозначениями, приведенными в условии задачи и на приведенном рисунке. Дополнительные буквенные обозначения следует сопровождать соответствующими объяснениями.
- 3.9. Получив расчетную формулу, необходимо проверить ее размерность. *Пример проверки размерности*:

$$[\mathbf{v}] = [GM/R]^{1/2} = \{[\mathbf{m}^3 \cdot \mathbf{k} \Gamma^{\text{-}1} \cdot \mathbf{c}^{\text{-}2}] \cdot [\mathbf{k} \Gamma] \cdot [\mathbf{m}^{\text{-}1}]\}^{1/2} = (\mathbf{m}^2/\mathbf{c}^2)^{1/2} = \mathbf{m}/\mathbf{c}.$$

- 3.10. Основные физические законы, которыми следует пользоваться при решении задач (вывод расчетных формул), приведены в каждом из разделов. Там же приведены некоторые формулы, которыми можно пользоваться без вывода.
- 3.11. После проверки размерности полученных формул проводится численное решение задачи.
- 3.12. Вычисления следует производить по правилам приближенных вычислений с точностью, соответствующей точности исходных числовых данных условия задачи. Числа следует записывать в нормализованном виде, используя множитель 10, например не 0,000347, а 3,47·10⁻⁴.
- 3.13. Каждая последующая задача должна начинаться с новой страницы.
- 3.14. В конце контрольной работы необходимо указать учебные пособия, учебники, использованные при ее выполнении, и дату сдачи работы.

- 3.15. Если контрольная работа не допущена к зачету, то все необходимые дополнения и исправления сдают вместе с незачтенной работой. Исправления в тексте незачтенной работы не допускаются.
- 3.16. Допущенные к зачету контрольные работы с внесенными уточнениями предъявляются преподавателю на зачете. Студент должен быть готов дать во время зачета пояснения по решению всех выполненных задач.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Яворский А.А., Детлаф Б.М. Курс физики. М.; Высшая школа, 2002.
- 2. Т. И. Трофимова. Курс физики: Учебное пособие. М.: Академия,, 2007.
- 3. Т. И. Трофимова. Краткий курс физики. М.: Высшая школа, 2001.
- 4. В. Ф. Дмитриева, В. Ф. Прокофьев. Основы физики. М.: Высшая школа, 2002.
- 5. Е.В. Корчагин. Физика. Учебное пособие. М., 2001.
- 6. Т.И. Трофимова. Сборник задач по курсу физики с решениями М.: Высшая школа. 2003.
- 7. Т.И. Трофимова. Физика.. 500 основных законов и формул. М., Высшая школа, 2003.
- 8. В.М. Гладской. Физика. Сборник задач с решениями. М., Дрофа, 2004.
- 9. С.Е. Мельханов. Общая физика. Конспект леций, СПб, 2001.
- 10. В.Н. Недостаев. Курс физики в 2-х томах, М., РГОТУПС, 2005.
- 11. Дмитриева Е.И., Иевлева Л.Д., Костюченко Л.С. Физика в примерах и задачах: учеб. пособие.- М.: ФОРУМ: ИНФРА-М, 2008.- 512 с.: ил. (Профессиональное образование).
- 12. Яворский А.А., Детлаф Б.М. Справочник по физике., М., Наука, Физматлит, 2002.
- 13. Под ред. Х.Штёкера Справочник по физике. Формулы, таблицы, схемы. Москва: Техносфера, 2009.

Задания на контрольные работы

Контрольная работа №1

Таблица 1

						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Вариант	Номера задач					
_	1	2	3	4	5	6
0	100	110	120	130	140	150
1	101	111	121	131	141	151
2	102	112	122	132	142	152
3	103	113	123	133	143	153
4	104	114	124	134	144	154
5	105	115	125	135	145	155
6	106	116	126	136	146	156
7	107	117	127	137	147	157
8	108	118	128	138	148	158
9	109	119	129	139	149	159

1. ОСНОВНЫЕ ФОРМУЛЫ, НЕОБХОДИМЫЕ ДЛЯ РЕШЕНИЯ

1. Скорость движения материальной точки

$$\vec{v} = \frac{d\vec{r}}{dt} = \vec{i} \frac{dx}{dt} + \vec{j} \frac{dy}{dt} + \vec{k} \frac{dz}{dt} \quad ,$$

где \vec{r} — радиус—вектор, x, y, z — координаты точки, \vec{i} , \vec{j} , \vec{k} - единичные векторы.

Модуль мгновенной скорости

$$v = \frac{dS(t)}{dt}$$
,

где S(t) – зависимость пути, пройденного точкой от времени.

2. Ускорение движения материальной точки

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}.$$

Нормальная и тангенциальная составляющие ускорения

$$a_n = \frac{v^2}{R}, \quad a_\tau = \frac{dv}{dt}.$$

Модуль ускорения

$$a = \sqrt{a_n^2 + a_\tau^2} \ .$$

3. Путь, пройденный материальной точкой с момента времени t_1 до момента t_2

$$S = \int_{t_l}^{t_2} v(t) dt.$$

4. Угловая скорость и угловое ускорение вращательного движения твердого тела

$$\omega = \frac{d\varphi}{dt}$$
 , $\varepsilon = \frac{d\omega}{dt} = \frac{d^2\varphi}{dt^2}$.

5. Связь между линейными и угловыми величинами при вращении тела

$$v = \omega R$$
, $a_n = \omega^2 R$, $a_\tau = \varepsilon R$.

6. Основное уравнение динамики материальной точки и поступательного движения твердого тела

$$m\vec{a} = \frac{d\vec{P}}{dt} = \sum_{i=1}^{n} \vec{F}_{i} ,$$

где $\sum_{i=1}^{n} \vec{F}_{i}$ — равнодействующая всех сил, приложенных к телу, $\vec{P} = m\vec{v} -$ импульс.

7. Работа и мощность переменной силы

$$A = \int_{S}^{S_2} F_S dS$$
, $N = \frac{dA}{dt} = (\vec{F}, \vec{v})$.

8. Связь между потенциальной энергией частицы и силой со стороны поля

$$\vec{F} = -\left(\vec{i}\frac{\partial U}{\partial x} + \vec{j}\frac{\partial U}{\partial y} + \vec{k}\frac{\partial U}{\partial z}\right).$$

9. Основное уравнение динамики вращательного движения твердого тела

$$\vec{M} = \frac{d\vec{L}}{dt} \,, \quad M_z = J\varepsilon_z \,,$$

где J — момент инерции тела, $L = J\omega$ — момент импульса, M — момент внешних сил.

10. Момент инерции твердого тела

$$J = \int r^2 dm$$

Момент инерции тел правильной геометрической формы относительно неподвижной оси вращения

Форма тела	Ось вращения	Момент
		инерции
1.Однородный шар радиусом	Проходит через центр масс	0.4mR^2
R и массой m		
2.Однородный сплошной	Проходит через центр масс	0.5mR^2
цилиндр или диск радиусом R	перпендикулярно плоскости	
и массой т	основания	
3. Тонкий обруч или кольцо	Проходит через центр масс	mR^2
радиусом R и массой m	перпендикулярно плоскости	
	обруча	
4. Однородный тонкий	Проходит через центр масс	$mL^2/12$
стержень длиной L и массой	перпендикулярно стержню	
m		
5. Однородный тонкий	Проходит перпендикулярно	$mL^2/3$
стержень длиной L и массой	стержню через его конец	
m		

Теорема Штейнера

$$J = J_0 + ma^2,$$

где J — момент инерции тела массой m относительно произвольной оси; J_0 — момент инерции тела относительно оси, проходящей через центр инерции тела параллельно заданной оси; a — расстояние между осями.

11. Модуль момента силы

$$M = Fl$$
,

где $l = r \sin \alpha$ - кратчайшее расстояние между линией действия силы и осью вращения.

12. Кинетическая энергия и работа внешних сил при вращении твердого тела вокруг неподвижной оси

$$T = \frac{J\omega^2}{2}$$
, $A = \int_{\varphi_1}^{\varphi_2} M_z d\varphi$

13. Кинетическая энергия тела, катящегося по плоскости без скольжения

$$W_k = \frac{mv_c^2}{2} + \frac{J\omega^2}{2},$$

где m – масса тела, v_c – скорость центра масс тела, J – момент инерции тела относительно оси, проходящей через центр масс, ω - угловая скорость вращения тела.

14. Аналогия между формулами поступательного и вращательного движения.

Поступательное Вращательное движение

движение
$$v = v_0 + at$$
 $\omega = \omega_0 + \varepsilon t$ $S = v_0 t + \frac{at^2}{2}$ $\varphi = \omega_0 t + \frac{\varepsilon t^2}{2}$ $\vec{F} = m\vec{a}$ $\vec{M} = J\vec{\varepsilon}$ $\vec{L} = J\vec{\omega}$ $\vec{L} = J\vec{\omega}$ $\vec{L} = J\vec{\omega}$ $\vec{L} = \vec{M}$ $T = \frac{mv^2}{2}$ $T = \frac{J\omega^2}{2}$ $\vec{L} = \vec{M}$ $\vec{L} = \vec{$

- 15. Условия равновесия тела: векторные суммы всех сил и моментов сил, действующих на тело равны нулю $\sum_{i=1}^{n} \vec{F}_{i} = 0$, $\sum_{i=1}^{n} \vec{M}_{i} = 0$.
- 16. Гидростатическое давление столба жидкости высотой $h: P = \rho g h$, где ρ плотность жидкости.
 - 17. Уравнение Бернулли для ламинарного течения идеальной жидкости

$$\frac{\rho V^2}{2} + \rho g h + P = const,$$

где P — статическое давление жидкости в заданном сечении трубы, V — скорость жидкости в этом сечении.

18. Сила сопротивления среды с вязкостью η шару радиуса r движущемуся со скоростью V

$$F = -6\pi\eta rV$$
.

19. Релятивистское замедление хода часов:

$$t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}},$$

- t промежуток времени между событиями, отсчитанное покоящимися часами; t' промежуток времени между событиями, отсчитанное часами, движущимися вместе с телом со скоростью v, c —скорость света.
 - 20. Релятивистское сокращение длины:

$$l = l_0 \sqrt{1 - \frac{v^2}{c^2}},$$

где l_0 собственная длина тела в покоящейся системе координат, l - длина тела, измеренная в направлении движения в системе отсчёта, относительно которой он движется со скоростью v.

21. Масса релятивистской частицы, имеющей массу покоя m_0 :

$$m = \frac{m_0}{\sqrt{I - \frac{v^2}{c^2}}}.$$

22. Энергия покоя частицы:

$$W_0 = mc^2$$
.

23. Полная энергия частицы:

$$W = mc^2 = m_0 c^2 + W_k.$$

24. Кинетическая энергия частицы:

$$W_k = m_0 c^2 \left(\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} - 1 \right).$$

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Кинематическое уравнение движения материальной точки по прямой (ось x) имеет вид $x = A + B t + C t^3$, где A = 4 м, B = 2 м/с, C = -0.5 м/с². Для момента времени $t_1 = 2$ с определить: 1) координату x_1 точки; 2) мгновенную скорость V_1 ; 3) мгновенное ускорение a_1 .

Решение. Найдем координату точки, для которой известно кинематическое уравнение движения, подставив в уравнение движения вместо t заданное значение t_1 :

$$x_1 = A + B t_1 + C t_1^3;$$
 $x_1 = 4 M.$

Мгновенную скорость V в произвольный момент времени t найдем, продифференцировав координату x по времени:

$$V = dx/dt = B + 3Ct^2.$$

Тогда в заданный момент времени мгновенная скорость:

$$V_1 = B + 3Ct^2_1$$
; $V_1 = -4 \text{ m/c}$.

Знак минус указывает на то, что в момент времени $t_1=2$ с точка движется в отрицательном направлении координатной оси.

Мгновенное ускорение в произвольный момент времени найдем, взяв вторую производную от координаты по времени:

$$a = d^2x/dt^2 = 6Ct$$

Мгновенное ускорение в заданный момент времени равно: $a_1 = 6Ct_1$; $a_1 = -6 \text{ m/c}^2$.

Знак минус указывает на то, что направление вектора ускорения совпадает с отрицательным направлением координатной оси.

Задача 2. Тело вращается вокруг неподвижной оси по закону, выражаемому формулой $\varphi = 10 + 20 \text{ t} - 2 \text{ t}^2$ (рис. 1). Найдите по величине и направлению полное ускорение точки, находящейся на расстоянии R = 0,1 м от оси вращения, для момента времени $t_1 = 4$ с.

Условие:

 $\varphi = 10 + 20t - 2t^2$;

R=0,1 m;

 $t_1 = 4 c;$

 $a - ? \alpha - ?$

нормального ускорения:

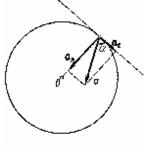


Рис. 1

Решение. Точка вращающегося тела описывает окружность. Полное ускорение точки определяется геометрической суммой тангенциального и

$$a = (a_t^2 + a_p^2)^{1/2}. (1)$$

Тангенциальное и нормальное ускорения точки вращающегося тела выражаются формулами:

$$a_t = \varepsilon R;$$
 (2)

$$a_n = \omega^2 R, \tag{3}$$

где ω - угловая скорость тела; ϵ - его угловое ускорение; R - расстояние от оси вращения.

Подставляя выражения a_t и a_n в формулу (1) находим:

$$a = R(\varepsilon^2 + \omega^4)^{1/2}$$
. (4)

Угловая скорость вращающегося тела равна первой производной от угла поворота по времени

$$\omega = d\phi/dt = 20 - 4t$$
.

В момент времени t = 4 с угловая скорость $\omega = 4$ с⁻¹.

Угловое ускорение вращающегося тела равно первой производной от угловой скорости по времени: $\epsilon = d\omega/dt = -4 \ c^{-2}$.

Подставляя найденные и заданное значения в формулу (4) получим: $a = 1,65 \text{ m/c}^2$.

Направление полного ускорения можно определить, если найти углы, которые векторы ускорения составляют с касательной к траектории или нормалью к ней:

$$\cos \alpha = a_t/a. \tag{5}$$

По формулам (2) и (3) найдем значения a_t и a_n:

$$a_t = -0.4 /c^2;$$
 $a_n = 1.6 /c^2.$

Подставив эти значения и значения полного ускорения в формулу (5), получим:

$$\cos \alpha = 0.242; \ \alpha = 76^{\circ}.$$

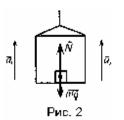
Задача 3. На горизонтальной платформе шахтной клети стоит человек массой m = 60 кг. Определить силу давления человека на платформу: 1) при ее подъеме с ускорением

 $a_1 = 3 \text{ m/c}^2$; 2) при равномерном подъеме и спуске; 3) при спуске с ускорением $a_3 = 9.8 \text{ m/c}^2$.

Условие:

m=60 kg;

$$a_1$$
=3 m/c²;
 v_2 =const, a_2 =0;
 a_3 =9,8 m/c;
 F_1 -? F_2 -? F_3 -?



Решение. На человека, стоящего на платформе шахтной клети действуют две силы: сила тяжести \mathbf{mg} и сила реакции опоры \mathbf{N} . Согласно второму закону Ньютона:

$$m\mathbf{a} = m\mathbf{g} + \mathbf{N}. \tag{6}$$

Согласно третьему закону Ньютона сила давления человека на платформу равна силе реакции опоры:

$$\mathbf{N} = -\mathbf{F} \qquad \mathbf{N} = \mathbf{F} \tag{7}$$

1. Согласно рис. 2 запишем уравнение (6) в проекции на ось У $ma_1 = N_1 - mg$

Учитывая (7) в (8) получим

$$F_1 = N_1 = m (g + a_1), F_1 = 783 H.$$

- 2. При равномерном движении шахтной клети $a_2 = 0$ и, следовательно, сила давления человека на платформу равна силе тяжести: $F_2 = N_2 = mg$.
- 3. При спуске платформы с ускорением, направленным вниз уравнение движения платформы имеет вид $ma_3 = mg N_3$.

Откуда сила давления человека на платформу: $F_3 = N_3 = = m(g - a_3)$.

Учитывая, что $a_3 = g$ имеем $F_3 = 0$. Следовательно, человек не давит на платформу.

Задача 4. Каким был бы период обращения ИСЗ на круговой орбите, если бы он был удален от поверхности Земли на расстояние, равное земному радиусу (R = 6400 км).

Условие: h = R = 6370 км;

Решение. Период обращения ИСЗ по круговой орбите

$$T = 2\pi(R + h)/V = 4\pi R/V.$$

Для определения скорости спутника учтем, что при его движении по круговой орбите на спутник действует только сила притяжения Земли F_t , сообщающая ему нормальное ускорение:

$$F_t = F_n$$
; $GmM/(R+h)^2 = mV^2/(R+h)$,

где G – гравитационная постоянная, m – масса спутника, М – масса Земли.

Отсюда скорость спутника равна

$$V = (GM/(R + h)^{1/2} = (GM/2R)^{1/2}.$$

Учитывая, что

$$GmM/R^2 = mg$$
,

где g – ускорение силы тяжести на поверхности Земли, получаем

$$V = (gR/2)^{1/2}$$
.

Подставляя это значение скорости в формулу периода, найдем, что

$$T = 4 (2R/g)^{1/2} = 14360 c = 3 ч 59 мин.$$

Задача 5. Стальная проволока сечением $S=3~\text{мm}^2$ под действием растягивающей силы, равной $F=4\cdot 10^4~\text{H}$ имеет длину $L_1=2~\text{м}$. Определить абсолютное удлинение проволоки при увеличении растягивающей силы на $F_1=10^4~\text{H}$. Модуль Юнга стали $E=2\cdot 10^{11}~\text{Пa}$.

Условие:

E =
$$2 \cdot 10^{11}$$
 Πa;
S= $3 \text{ mm}^2 = 3 \cdot 10^{-6} \text{ m}^2$;
 $L_1 = 2 \text{ m}$;
 $F = 4 \cdot 10^4$ H;
 $F_1 = 1.0 \cdot 10^4$ H;
 $\Delta L_2 - ?$

Решение. Для того чтобы найти абсолютное удлинение проволоки при увеличенной растягивающей силе, необходимо узнать ее первоначальную длину L. Из закона Гука

$$F = \varepsilon E = E(L_1 - L)S/L$$

находим $L = EL_1S/(F + ES)$.

При увеличении растягивающей силы на величину F_1

$$F + F_1 = E\Delta L_2 S/L.$$

Откуда $\Delta L_2 = (F + F_1)L/ES$.

Заменив L выражением, записанным выше, получаем

$$\Delta L_2 = (F + F_1)L_1/(F + ES).$$

Подставив данные, находим: $\Delta L_2 = 0$, 16 м.

Задача 6. Маховик, массу которого m=5 кг можно считать распределенной по ободу радиуса r=20 см, свободно вращается вокруг горизонтальной оси, проходящей через его центр с частотой n=720 мин¹. При торможении маховик останавливается через $\Delta t=20$ с. Найти тормозящий момент M и число оборотов N, которое сделает маховик до полной остановки.

Условие:

m = 5 KG

 $r = 20c_M = 0.20 M$

 $n = 720 \text{ мин}^{-1} = 12 \text{ c}^{-1}$

 $\Delta t = 20 c$

M - ? N - ?

Решение. Если тормозящий момент постоянен, то движение маховика равнозамедленное, и основное уравнение динамики вращательного движения можно записать в виде:

$$J\Delta \mathbf{\omega} = \mathbf{M} \Delta t, \tag{9}$$

где $\Delta \omega = \omega - \omega_0$ - изменение угловой скорости за интервал времени $\Delta t; M$ - искомый тормозящий момент.

Число оборотов N может быть найдено как кинематически, так и по изменению кинетической энергии, равному работе совершаемой тормозящей силой.

Векторному уравнению (9) соответствует скалярное уравнение

$$J\Delta\omega = M\Delta t, \tag{10}$$

где $\Delta\omega$, M - модули соответствующих векторов.

Из условия задачи следует, что

$$\Delta \omega = |\omega - \omega_0| = \omega_0 = 2\pi n \tag{11}$$

Поскольку масса маховика распределена по ободу, момент инерции

$$J = mr^2 \tag{12}$$

Подставляя выражения (11), (12) в (10) получим

$$mr^2 2\pi n = M\Delta t$$
.

Откуда $M = 2\pi nmr^2/\Delta t = 0,75 \text{ Hm}.$

Векторы \mathbf{M} , $\Delta \boldsymbol{\omega}$ направлены в сторону противоположную вектору $\boldsymbol{\omega}_0$.

Угловое перемещение, пройденное маховиком до остановки

$$\varphi = \omega_0 \Delta t - \varepsilon \Delta t^2 / 2. \tag{13}$$

Учитывая, что $\omega = \omega_o$ - $\epsilon \Delta t = 0$ преобразуем выражение (13)

$$\varphi = \omega_0 \Delta t/2$$
.

Так как $\varphi = 2\pi N$, $\omega = 2\pi n$,

где N - число оборотов, которое делает маховик до полной остановки, окончательно получим

$$N = nt/2 = 120$$
 of.

Задача 7. На скамье Жуковского сидит человек и держит в вытянутых руках гири массой m =10 кг каждая. Расстояние от каждой

гири до оси вращения скамьи $l_1=50$ см. Скамья вращается с частотой $n_1=1,0$ с⁻¹. Как изменится частота вращения скамьи и какую работу А произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до $l_2=20$ см. Суммарный момент инерции человека и скамьи относительно оси вращения J=2,5 кг·м². Ось вращения проходит через центр масс человека и скамьи.

Условие:

$$m = 10 \text{ кг};$$
 $l_1 = 50 \text{ cm} = 0.5 \text{ m};$
 $n_1 = 1.0 \text{ c}^{-1};$
 $l_2 = 20 \text{ cm} = 0.2 \text{ m};$
 $J = 2.5 \text{ кг} \cdot \text{m}^2.$
 $n_2 - ? \text{ A} - ?$

Решение. Частота вращения скамьи Жуковского изменится в результате действий, производимых человеком при сближении гирь. В системе тел скамья — человек — гири все силы, кроме сил реакции опоры, являются внутренними и не изменяют момента импульса системы. Однако моменты сил реакции опоры относительно вертикальной оси равны нулю. (Для скамьи Жуковского силы трения в оси можно считать отсутствующими.) Следовательно, момент импульса этой системы остается постоянным:

$$\mathbf{L}_1 = \mathbf{L}_2; \quad \mathbf{J}_1 \mathbf{\omega}_1 = \mathbf{J}_2 \mathbf{\omega}_2, \tag{14}$$

где $J_1\omega_1,\ J_2\omega_2$ - моменты импульса системы соответственно до и после сближения гирь.

Перепишем векторное уравнение (14) в скалярном виде:

$$J_1\omega_1 = J_2\omega_2. \tag{15}$$

До сближения гирь момент инерции всей системы

$$J_1 = J_0 + 2m l_1^2$$
.

После сближения

$$J_2 = J_0 + 2ml_2^2$$

где т - масса каждой гири.

Выражая угловую скорость через частоту вращения по формуле $\omega = 2\pi n$ и подставляя ее в уравнение (15) получаем

$$(J_0 + 2ml_1^2)n_1 = (J_0 + 2ml_2^2)n_2.$$

Откуда

$$n_2 = n_1(J_{0+} 2ml_1^2)/(J_0 + 2ml_2^2) = 2.3 c^{-1}.$$

Все внешние силы не создают вращающего момента относительно оси и, следовательно, не совершают работы. Поэтому изменение кинетической энергии системы равно работе, совершенной человеком:

$$A = W_2 - W_1 = J_2 \omega_2^2 / 2 - J_1 \omega_1^2 / 2$$
.

Учитывая, что $\omega_2 = J_1 \omega_1/J_2$, получаем работу, совершаемую человеком:

$$A = J_1(J_1 - J_2)\omega_1^2/2J_2 = (J_0 + 2ml_1^2) 2\pi^2 n_1^2(l_1^2 - l_2^2)/(J_0 + 2ml_2^2) = 190 \text{ Дж.}$$

Задача 8. Автомобиль массой m=2000 кг движется вверх по наклонной плоскости с уклоном $\alpha=0,05$, развивая на пути S=100 м скорость $v_{\kappa}=36$ км/ч. Найти среднюю и максимальную мощность двигателя автомобиля при разгоне.

Условие:

$$m$$
 = 2000 кг; S = 100 м; α = 0,05; V_0 = 0; $V_{\rm K}$ = 36 км/ч = 10 м/с; $\langle P \rangle$ - ? $P_{\rm max}$ - ?

Решение. Автомобиль движется равноускоренно, причем начальная скорость равна нулю $V_0 = 0$ (рис. 3).

Средняя мощность равна: $\langle P \rangle = A/t$, где A – работа двигателя на пути S.

Работу найдём как разность значений полной механической энергии начального и конечного состояний.

$$A = E_2 - E_1$$

Полная механическая энергия складывается из потенциальной энергии

$$E_{{\scriptscriptstyle \Pi}} = mgh$$
 и кинетической энергии $E_{{\scriptscriptstyle K}} = \frac{mV_{{\scriptscriptstyle k}}^2}{2}$.

В начале пути h = 0 и $V_0 = 0$, следовательно, $E_1 = 0$,

В процессе движения полная механическая энергия равна

$$E_2 = mgh + m V_k^2/2$$
,

работа $A = E_2$, т.е. $A = m(gh + v_k^2/2)$,

где $h = S \sin \alpha$ высота, на которую поднялся автомобиль. При малых углах наклона $\sin \alpha \approx \alpha$, тогда $h = S \alpha$ и работа $A = m(g S \alpha + {V_k}^2/2)$,

Время подъёма можно найти из формул пути и скорости при равноускоренном движении:

$$a = (V_k^2 - V_0^2)/(2S) = V_k^2/(2S),$$

 $t = (V_k - V_0)/a = 2S/V_k$

Таким образом, средняя мощность равна:

$$\langle P \rangle = m(g S \alpha + V_k^2/2) V_k/(2S).$$

Максимальная мощность автомобиля достигается в тот момент, когда скорость максимальна:

$$P_{max} = F \cdot V_k.$$

При равноускоренном движении скорость и, следовательно, мощность линейно зависят от времени, поэтому:

$$P_{\text{max}} = 2 \langle P \rangle$$

Проверка размерности:

$$[\langle P \rangle] = \frac{\kappa c \cdot M^2 \cdot M}{c^2 \cdot c \cdot M} = \frac{H \cdot M}{c} = \frac{\mathcal{A} \mathcal{H}}{c} = B_T.$$

Произведём расчёт:

$$\langle P \rangle = 2000 \cdot 10 \ (9.81 \ 100 \cdot 0.05 + 10^2 / 2) / 100 \ (B_T)$$

$$\langle P \rangle = 20 \cdot 10^3 \ B_T,$$

$$P_{\text{max}} = 40 \cdot 10^3 \text{ BT.}$$

Otbet: $\langle P \rangle = 20 \cdot 10^3 \text{ Bt}, \ P_{\text{max}} = 40 \cdot 10^3 \text{ Bt}.$

Задача 9. Деревянный стержень массой M=6,0 кг и длиной l=2,0 м может вращаться в вертикальной плоскости относительно горизонтальной оси, проходящей через точку О (рис. 4). В конец стержня попадает пуля массой m=10 г, летящая со скоростью $V_0=1,0\cdot 10^3$ м/с, направленной перпендикулярно стержню и застревает в нем. Определить кинетическую энергию стержня после удара.

Условие:
$$M = 6.0 \text{ k}\Gamma;$$
 $1 = 2.0 \text{ m};$ $m = 10 \text{ }\Gamma = 1.0 \cdot 10^{-2};$ $v_0 = 1.0 \cdot 10^3 \text{ m/c};$ $m = \sqrt{2}$ Puc. 4

Решение. Физическая система образована из двух тел: стержня и пули. Пулю можно считать за материальную точку, стержень примем за твердое тело. Пуля до взаимодействия двигалась прямолинейно, а после взаимодействия вместе со стержнем вращается вокруг неподвижной оси. Применим закон сохранения момента импульса относительно этой оси. Условия применимости этого закона – замкнутость системы выполнены.

По закону сохранения момента импульса:

$$L_1 = L_2 \tag{16},$$

где $L_1 = mv_0l$ – момент импульса пули относительно оси вращения до удара; $L_2 = J\omega$ – момент инерции стержня и пуль относительно оси вращения;

$$J = J_1 + J_2,$$

где $J_1 = Ml^2/3$ — момент инерции стержня; $J_2 = ml^2$ — момент инерции пули.

Учитывая вышеизложенное в (16), получим

$$mv_0l = (M/3 + m)l^2\omega$$

Так как т << М, можно приближенно считать, что

$$mV_0l = Ml^2\omega/3$$
,

откуда $\omega = 3 \text{mv}_0/\text{Ml}$.

Кинетическая энергия стержня

$$W_{\kappa} = J\omega^2/2 = 3 \text{ m}^2 \text{V}^2/2\text{M} = 25 \text{ Дж}.$$

Задача 10. Определить релятивистский импульс р и кинетическую энергию электрона, движущегося со скоростью V=0,9 с (где с – скорость света в вакууме).

Условие:

$$V = 0.9 c;$$

 $m_0 = 9.1 \cdot 10^{-31}$ κΓ;
 $p - ? W_{\kappa} - ?$

Решение. Релятивистский импульс $p=m_0V/(1-V^2/c^2)^{1/2}==5,6\cdot 10^{-22}$ кг·м/с.

В релятивистской механике кинетическая энергия определяется как разность между полной энергией W и энергией покоя W_0

$$W_{\kappa} = W - W_0 = mc^2 - m_0c^2 = (m - m_0)c^2$$

Получим

$$W_{\kappa} = m_0 c^2 \left(\frac{1}{\sqrt{1 - v^2/c^2}} - 1 \right) = 0,66 \text{ M}_{2}B.$$

$$Q_{23} = i (p_2 V_2 - p V_2) = -1050 Дж.$$

Контрольная работа № 1

- **100.** Тело, падающее свободно без начальной скорости, пролетает вторую половину пути за t=2 с. С какой высоты оно падало?
- 101. Камень бросили с крутого берега реки вверх под углом 30° к горизонту

со скоростью v_0 =10 м/с. С какой скоростью он упал в воду, если время полета t=2,5 с ?

- **102.** Материальная точка движется прямолинейно. Уравнение движения имеет вид $x = At + Bt^3$, где A = 3 м/с, B = 0.06 м/с³. Найти скорость и ускорение точки в моменты времени t=0 и t=3 с. Каковы средние значения скорости и ускорения за первые 3 с движения?
- **103.** Кинематические уравнения движения двух материальных точек имеют вид $x_1 = A_1 + B_1 t^2 + C_1 t^3$ и $x_2 = A_2 + B_2 t^2 + C_2 t^3$, где $B_1 = 4$ м/с²; $C_1 = -3$ м/с³; $B_2 = -2$ м/с²; $C_2 = 1$ м/с³. Определить момент времени, для которого ускорения этих точек будут равны.
- 104. Две материальные точки движутся согласно уравнениям

$$x_1 = A_1 + B_1 t + C_1 t^2$$
 u $x_2 = A_2 + C_2 t^2$,

где A_1 =10 м, B_1 = 32 м/с, C_1 = - 3 м/с2, A_2 = 5 м, C_2 = 5 м/с². В какой момент времени скорости этих точек одинаковы? Чему равны скорости и ускорения точек в этот момент?

- **105.** Движение материальной точки задано уравнениями: $x = 8 t^2 + 4$, (м); $y = 6 t^2 3$, (м); z = 0. Определить модули скорости и ускорение точки в момент времени t = 10 с. Изобразите на рисунке их направления.
- **106.** Даны уравнения движения тела: $x = V_x t$ и $y = y_0 + V_y t$. Записать уравнение траектории и построить ее графически, если $V_x = 25$ см/с, $V_y = 1$ м/с, $y_0 = 0,2$ м.
- **107.** Тело падает без начальной скорости с высоты H=45 м. Определите среднюю скорость <V> на второй половине пути.
- 108. Точка движется по прямой согласно уравнению

$$x = At + Bt^3$$
,

где A=6 м/с, B=0,125 м/с³ . Определить среднюю скорость точки в интервале времени от $t_1=2$ с до $t_2=6$ с.

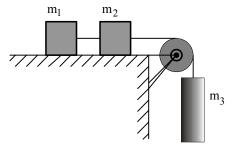
109. Движение материальной точки задано уравнением

$$x = At + Bt^2$$

где A = 4 м/с, B = -0.05 м/с². Определить момент времени, в который скорость точки равна нулю. Найти координату и ускорение в этот момент.

110. Точка движется по окружности радиусом r=15 см с постоянным тангенциальным ускорением a_t . К концу четвертого оборота после начала движения линейная скорость точки стала равна 15 см/с. Определить нормальное ускорение a_n точки через t=16 с после начала движения.

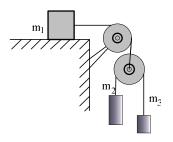
- 111. Найти, во сколько раз нормальное ускорение точки, лежащей на ободе вращающегося колеса, больше ее тангенциального ускорения для того момента, когда вектор полного ускорения этой точки составляет угол 30° с вектором ее линейной скорости.
- **112.** Точка движется по окружности радиусом 2 м согласно уравнению $S=At^3$, где A=2 м/ c^3 . В какой момент времени нормальное ускорение точки будет равно тангенциальному? Определить полное ускорение в этот момент.
- **113.** Ротор электродвигателя, имеющий частоту вращения n = 955 об/мин, после выключения остановился через t = 10 с. Считая вращение равнозамедленным, определить угловое ускорение ротора после выключения электродвигателя. Сколько оборотов сделал ротор до остановки?
- **114.** Колесо, вращаясь равнозамедленно, за время t = 1 мин уменьшило свою частоту с v_1 =600 об./мин. до v_2 =280 об./мин. Определить угловое ускорение ε и число оборотов N колеса за это время.
- **115.** Вентилятор вращается с частотой v=600 об./мин. После выключения вентилятор, вращаясь равнозамедленно, сделал до остановки N=125 оборотов. Какое время t прошло c момента выключения вентилятора до его полной остановки?
- **116.**Колесо радиусом R = 0.4 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением $\varphi = A + Bt^2 + Ct^3$, где B = 2 рад/ c^2 , C = 1 рад/ c^3 . Для точек, лежащих на ободе колеса, найти через время t = 1 с после начала движения: а) угловую скорость ω ; б) линейную скорость V; в) угловое ускорение ε ; центростремительное ускорение a_n
- **117.** Твердое тело начинает вращаться вокруг неподвижной оси с угловым ускорением $\varepsilon = Bt^3$, где B = 0.02 рад/с 3 . Через сколько времени после начала вращения вектор полного ускорения произвольной точки тела будет составлять угол 60° с ее вектором скорости?
- **118.** Зависимость пути, пройденного точкой по окружности радиусом R=2 м, от времени выражено уравнением $S=At^2+Bt$. Определите нормальное a_n , тангенциальное a_t и полное ускорение точки через t=0.5 с после начала движения, если A=3 м/с 2 , B=1 м/с.
- **119.** Твердое тело вращается вокруг неподвижной оси по закону $\varphi = At Bt^3$, где A = 6,0 рад/с, B = 2,0 рад/с³. Найти средние значения угловой скорости и углового ускорения за промежуток времени от начала движения до остановки. Определить угловое ускорение в момент остановки тела.



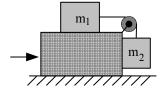
120. В установке, показанной на рисунке массы тел равны m_1 =1,5 кг, m_2 =2,5 кг и m_3 =1,5 кг, масса блока пренебрежимо мала и трения в блоке нет. Найти ускорение, с которым опускается тело m_3 , и силу натяжения нити, связывающей тела m_1 и m_2 , если коэффициент трения между этими телами и горизонтальной

поверхностью равен k=0,05.

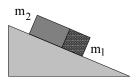
- **121.** Катер массой $m=2\tau$ с двигателем мощностью N=80 кВт развивает максимальную скорость v=24 м/с. Определить время, в течение которого катер после выключения двигателя потеряет половину своей скорости. Принять, что сила сопротивления движению катера изменяется пропорционально квадрату скорости.
- **122.** Автомобиль движется вверх по наклонной плоскости с начальной скоростью $v_0 = 10$ м/с. Определить путь S, пройденный автомобилем до остановки и время t его движения, если коэффициент трения $\mu = 0.5$, а угол наклона $\alpha = 10^0$.
- **123.** В системе, показанной на рисунке массы тел равны m_1 =1,5 кг, m_1 =2,5 кг, m_2 =1,5 кг , трения нет, массы блоков пренебрежимо малы. Найти ускорение тела m_1 .



- **124.** Мальчик съезжает на санках без начальной скорости с горки высотой 7 м по кратчайшему пути и приобретает у подножия горки скорость v=7 м/с. Какую минимальную работу необходимо затратить, чтобы втащить санки массой m=7 кг на горку от ее подножия, прикладывая силу вдоль плоской поверхности горки? Горка имеет вид наклонной плоскости.
- **125.** С каким минимальным ускорением следует перемещать в горизонтальном направлении брусок, чтобы тела 1 и 2 не двигались относительно него? Массы тел m_1 =2 кг и m_2 =1 кг, коэффициент трения между бруском и обоими телами k =0,05. Массой блока пренебречь.



- **126.** Поезд массой m=1300 т едет со скоростью $V_0=72$ км/ч и при торможении останавливается, пройдя путь S=400 м. Какова сила торможения F_{τ} ? Какой должна быть сила торможения $F_{\tau 2}$, чтобы поезд остановился, пройдя в 2 раза меньший путь?
- **127.** Если к телу приложить силу F = 120 H под углом $\alpha = 60^{\circ}$ к горизонту, то тело будет двигаться равномерно. С каким ускорением а будет двигаться тело, если ту же силу приложить под углом $\beta = 30^{\circ}$ к горизонту? Масса тела m = 25 кг.
- **128.** На наклонную плоскость, составляющую угол 23° с горизонтом, поместили два соприкасающихся бруска массами m_1 =1 кг и m_2 =2 кг, коэффициенты трения у брусков равны k_1 =0,05 и k_2 =0,02. Найти ускорение, с которым движутся бруски, и силу, с которой они давят друг на друга.



- **129.** На концах нити, перекинутой через неподвижный блок, подвешены два тела массой m=240 г каждое. С какой массой $m_{\rm Д}$ надо положить добавочный груз на одно из тел, чтобы каждое из них прошло за t=4 с путь S=160 см?
- **130.** На рельсах стоит платформа с песком массой $m_1 = 10$ т. Снаряд массой $m_2 = 50$ кг, летящий со скоростью $v_2 = 600$ м/с, попадает в платформу и не взрывается. Снаряд летел вдоль рельсов под углом $\alpha = 30^0$ к горизонту. Найдите скорость v_1 платформы после попадания снаряда и расстояние, пройденное платформой до остановки, если коэффициент трения $\mu = 0,1$
- **131.** На покоящийся шар налетает со скоростью v=4м/с другой шар одинаковой с ним массы. В результате столкновения шар изменил направление движения на угол 30°. Определить скорости шаров после удара. Удар считать абсолютно упругим.
- **132.** Тело массой 990 г лежит на горизонтальной поверхности. В него попадает пуля массой 10 г и застревает в нем. Скорость пули 700 м/с и направлена горизонтально. Какой путь пройдет тело до остановки? Коэффициент трения между телом и поверхностью 0.05.
- **133.** Снаряд, летевший горизонтально со скоростью V = 100 м/с, разрывается на две равные части на высоте H = 40 м. Одна часть падает через t = 1 с на землю под местом взрыва. Определить величину V_2 и направление скорости второй части сразу после взрыва.

- **134.** В тело массой M = 990 г, лежащее на горизонтальной поверхности, попадает горизонтально летящая со скоростью V = 700 м/с пуля массой m = 10 г. Пуля пробивает тело и имеет на вылете скорость V_2 , равную 100 м/с. Какой путь S пройдет тело до остановки, если коэффициент трения между телом и поверхностью μ =0,03?
- **135.** Какова средняя сила давления $\langle F \rangle$ на плечо при стрельбе из автомата, если масса пули m=10 г. а скорость пули при вылете из канала ствола V=300 м/с. Автомат делает N=300 выстрелов в минуту.
- **136.** Подъемник элеватора поднимает груз массой m=2 т. Определить работу A, совершенную в первые t=5 с подъема, и среднюю мощность <P>, развиваемую подъемником за это время, если считать, что подъем производится равноускоренно с ускорением a=1 м/ c^2 . Силы трения не учитывать.
- **137.** Тело массой 990 г лежит на горизонтальной поверхности. В него попадает пуля массой 10 г и застревает в нем. Скорость пули 700 м/с и направлена горизонтально. Какой путь пройдет тело до остановки? Коэффициент трения между телом и поверхностью 0.05.
- **138.** Тело массой m=0,2кг начинает двигаться под действием силы $\vec{F} = 2t\vec{i} + 3t^2\vec{j}$ (H). Найти мощность, развиваемую силой в момент времени t = 4c.
- **139.** Какая работа A совершается при сжатии буферной пружины железнодорожного вагона на $x_1 = 3$ см, если для сжатия пружины на $x_2 = 1$ см требуется сила F = 35 кH?
- **140.** Чему равен момент инерции J тонкого прямого стержня длиной L=0.5 м и массой m=0.2 кг относительно оси, перпендикулярной к его длине и проходящей через точку стержня, которая удалена на l=0.15 м от одного из его концов.
- **141.** На барабан радиусом r = 10 см намотана нить, к концу которой привязан груз массой m = 0.50 кг. Найдите момент инерции барабана J, если груз опускается с ускорением a = 1.0 м/с².
- **142.** Маховик, представляющий собой диск массой m=10 кг и радиусом r=10 см, свободно вращается вокруг оси, которая проходит через его центр, с частотой v=6 с⁻¹. При торможении маховик останавливается через t=5 с. Определить тормозящий момент M.

- **143.** Однородный стержень длиной l = 1 м и массой m = 0.5 кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня. С каким угловым ускорением ε вращается стержень, если на него действует момент сил $M=98.1 \text{ H}^2\text{-}\text{M}$?
- **144.** Маховик. момент инерции которого J = 63,6 кг.м², вращается с угловой скоростью $\omega = 31,4$ рад/с. Найти момент сил торможения М под действием которого маховик останавливается через время t = 20 с. Маховик считать однородным диском.
- **145.** Человек массой $m_1 = 60$ кг прыгает на край платформы массой $m_2 = 120$ кг, имеющей форму диска радиусом R = 2 м, и вращающейся вокруг вертикальной оси, проходящей через ее центр, с частотой v = 5 с⁻¹. С какой угловой скоростью ω будет вращаться платформа с человеком, если он прыгал со скоростью v = 5 м/с по касательной против движения платформы?
- **146.** Горизонтальная платформа массой $m_1 = 100$ кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой $n_1 = 10$ об/мин. Человек массой $m_2 = 60$ кг стоит при этом на оси. С какой частотой n_2 начнет вращаться платформа, если человек перейдет от центра к краю платформы? Считать платформу однородным диском, а человека точечной массой.
- **147.** Человек массой $m_1 = 60$ кг находится на неподвижной платформе массой m_2 =100 кг. С какой угловой скоростью ω будет вращаться платформа, если человек будет двигаться по окружности радиусом $R_1 = 5$ м вокруг оси вращения? Скорость движения человека относительно платформы v = 3.6 км/ ч. Радиус платформы R_2 = 10 м. Считать платформу однородным диском, а человека точечной массой.
- **148.** Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек массой $m_1 = 60$ кг. На какой угол ф повернется платформа, если человек пойдет вдоль края платформы и, обойдя его, вернется в исходную точку на платформе? Масса платформы $m_2 = 240$ кг. Момент инерции человека рассчитывать как для материальной точки
- **149.** Горизонтальная платформа массой m=80 кг и радиусом R=1 м вращается с угловой частотой $\nu_1=20$ об/мин. В центре платформы стоит человек и держит в расставленных руках гири. С какой частотой ν_2 будет вращаться платформа, если человек, опустив руки, уменьшит свой момент инерции от $J_1=2,94$ до $J_2=0.98$ кгм 2 ? Считать платформу однородным диском.

- **150.** Найти с какой скоростью течет по трубе углекислый газ, если известно, что за время t = 0.5 часа через поперечное сечение трубы протекает m = 0.51 кг. Плотность газа принять равной $\rho = 7$ кг/м³. Диаметр трубы равен d = 2 см.
- **151.** В дне цилиндрического сосуда имеется круглое отверстие диаметром d=1 см. Диаметр сосуда D=0.5 м. Найдите зависимость скорости v понижения уровня воды в сосуде от высоты h. Определите численное значение этой скорости для высоты h=0.2 м.
- **152.** В сосуд льется вода, причем за t = 1 с наливается V = 0,2 л воды. Каков должен быть диаметр d отверстия в дне сосуда, чтобы вода в нем держалась на постоянном уровне, равном h = 8,3 см?
- **153.** Шарик всплывает с постоянной скоростью в жидкости, плотность которой в 4 раза больше плотности материала шарика. Во сколько раз сила трения, действующая на всплывающий шарик, больше силы тяжести шарика?
- **154.** Стальной шарик диаметром d=1 мм падает с постоянной скоростью v=0,185 см/с в большом сосуде, наполненном маслом. Определите коэффициент динамической вязкости масла. Плотность стали равна $\rho_c=8600$ кг/м³, касторового масла $\rho_\kappa=900$ кг/м³.
- **155.** Пробковый шарик радиусом г 5 см всплывает в сосуде, наполненном касторовым маслом. Определите коэффициент динамической вязкости касторового масла, если шарик всплывает с постоянной скоростью v=3,5 см/с. Плотность пробки равна $\rho_{\pi}=200$ кг/м³, касторового масла $\rho_{\kappa}=900$ кг/м³
- **156.** Стальной канат, могущий выдержать вес неподвижной кабины лифта, имеет диаметр d=12 мм. Какой диаметр должен иметь канат, если кабина лифта может иметь ускорение до 9g. Предел прочности стали σ_{Π} =500 МПа.
- **157.** К вертикальной проволоке длиной L=5 м и площадью поперечного сечения S=2 мм 2 подвешен груз массой m=5,1 кг. В результате проволока удлинилась на x=0,6 мм. Найдите модуль Юнга материала проволоки.
- **158.** Найдите удлинение стальной проволоки диаметром d=1 мм и длиной l=7 м, если она растягивается под действием груза массой m=10 кг. Модуль Юнга для стали E=200 ГПа.
- **159.** Какой диаметр d должен иметь стальной трос подъемного крана, если максимальная масса поднимаемого груза m=10 т? Предел прочности стали $\sigma_n = 500$ МПа, запас прочности должен быть равен k=6.

КОТРОЛЬНАЯ РАБОТА № 2

Таблица вариантов

Таблица 2

Ропионт	Номера задач					
Вариант	1	2	3	4	5	6
0	160	170	180	190	200	210
1	161	171	181	191	201	211
2	152	172	182	192	202	212
3	163	173	183	193	203	213
4	164	174	184	194	204	214
5	165	175	185	195	205	215
6	166	176	186	196	206	216
7	167	177	187	197	207	217
8	168	178	188	198	208	218
9	169	179	189	199	209	219

ОСНОВНЫЕ ФОРМУЛЫ, НЕОБХОДИМЫЕ ДЛЯ РЕШЕНИЯ І. ЭЛЕКТРОСТАТИКА

1. Закон сохранения электрических зарядов

В замкнутой системе:

$$Q = \sum_{i=1}^{n} Q_i = const.$$

2. Дискретность электрических зарядов:

$$Q = ne$$

где $n = 1, 2...; e = \pm 1,6 \cdot 10^{-19} \text{ Кл} - элементарный электрический заряд$

3. Закон Кулона

в векторной форме:

$$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^3} \vec{r} ,$$

в скалярной форме:

$$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2},$$

где F_{12} - сила взаимодействия двух точечных (сферических) зарядов в вакууме; r - расстояние между зарядами или центрами сфер; $\epsilon_0 = 8,85\cdot 10^{-12}$ $\Phi\cdot/_{M}$ - электрическая постоянная.

4. Линейная плотность зарядов:

$$\tau = \frac{dQ}{dl}$$
. $[\tau] = \frac{K\pi}{M}$.

5. Поверхностная плотность зарядов:

$$\sigma = \frac{dQ}{ds}$$
. $[\tau] = \frac{K\pi}{M^2}$.

6. Объемная плотность зарядов:

$$\rho = \frac{dQ}{dV} \cdot \left[\rho\right] = \frac{K_{\pi}}{M^3}.$$

7. Напряженность электростатического поля:

$$\vec{E} = \frac{\vec{F}}{Q_0}, \quad [E] = \frac{H}{K\pi} = \frac{B}{M},$$

где \vec{F} - сила, действующая на точечный положительный заряд Q_0 , помещенный в данную точку поля.

8. Потенциал электростатического поля:

$$\varphi = \frac{W_n}{Q_0}; \varphi = \frac{A_\infty}{Q_0}, \ [\varphi] = \frac{\mathcal{A}_{\mathcal{H}}}{K_{\mathcal{H}}} = B,$$

где W_n - потенциальная энергия заряда Q_0 ; A_∞ - работа перемещения заряда из данной точки поля за его пределы.

9. Принцип суперпозиции:

Напряженность и потенциал результирующего поля, создаваемого системой точечных зарядов, равны соответственно:

$$\vec{E} = \sum_{i=1}^{n} \vec{E}_i, \quad \varphi = \sum_{i=1}^{n} \varphi_i,$$

где E_1 и ϕ_i - напряженность и потенциал, создаваемый в данной точке поля зарядом Q_i .

10. Разность потенциалов между двумя точками электростатического поля:

$$\varphi_1 - \varphi_2 = \frac{A_{12}}{Q_0} \,,$$

где A_{12} – работа поля по перемещению заряда между точками 1 и 2.

11. Связь между напряженностью и потенциалом электростатического поля:

$$\vec{E} = -grad\varphi$$
,

$$\varphi_1 - \varphi_2 = \int_1^2 \vec{E} d\vec{l} = \int_1^2 \text{Edlcos}\alpha = \int_1^2 E_1 dl$$

где $\int_{1}^{2} \vec{E} d\vec{l} =$ - линейный интеграл напряженности электростатического поля.

12. Связь между напряженностью и потенциалом однородного поля:

$$E = \frac{\varphi_2 - \varphi_1}{d}$$
; $\Delta \varphi = \text{Ed}$.

13. Циркуляция вектора напряженности электростатического поля:

$$\oint \vec{E}d\vec{l} = \oint \text{Edl}\cos\alpha = \oint E_1 dl = 0,$$

где E_1 - проекция вектора E на направление элементарного перемещения dl. Интегрирование производится по любому замкнутому контуру.

14. Работа, совершаемая силами электростатического поля при перемещении заряда из точки 1 в точку 2:

$$A_{12}=Q_0(\varphi_1-\varphi_2),$$

$$A_{12} = Q_0 \int_{1}^{2} \vec{E} d\vec{l} = Q_0 \int_{1}^{2} E_1 dl.$$

15. Работа по перемещению точечного заряда $\,Q\,$ в поле точечного заряда $\,Q_0$:

$$A_{12} = \frac{QQ_0}{4\pi\varepsilon_0 r_1} - \frac{QQ_0}{4\pi\varepsilon_0 r_2}.$$

16. Работа по перемещению заряда в однородном электростатическом поле:

$$A_{12} = QEl \cos \alpha$$
.

17. Поток вектора напряженности электростатического поля через элементарную площадку:

$$dN = \vec{E}d\vec{S},$$

$$dN = EdS\cos\alpha = E_n dS,$$

где $d\vec{S} = \vec{n}dS$ - вектор, модуль которого равен dS , а направление совпадает с нормалью \vec{n} к площадке; $E_n = \text{Ecos}\ \alpha$ - составляющая вектора \vec{E} по направлению нормали к площади

18. Поток вектора напряженности электростатического поля через произвольную поверхность:

$$N_E = \int_S \vec{E} d\vec{S} = \int_S E dS \cos \alpha = \int_S E_n dS$$
.

19. Теорема Гаусса для электростатического поля в вакууме:

$$N_E = \oint_S \vec{E} d\vec{S} = \oint_S E_n dS = \sum_{i=1}^n Q_i / \varepsilon_0$$
,

в случае непрерывного распределения зарядов

$$N_{\rm E} = \oint_{S} \vec{E} d\vec{S} = \frac{1}{\varepsilon_0} \int_{V} \rho dV,$$

где ϵ_0 — электрическая постоянная, Q_i - алгебраическая сумма зарядов внутри поверхности; n-число зарядов; ρ - объемная плотность зарядов.

20. Применение теоремы Гаусса к расчету электрических полей.

Система зарядов	Напряженность поля	Потенциал	
Точечный заряд Q	$E = Q/4\pi\epsilon_0 r^2$	$arphi = rac{Q}{4\piarepsilon_0 r}$ $arphi_\infty = 0$	
Равномерно заряженная бесконечная плоскость с	$E = \sigma/2\varepsilon_0$	r > 0: r < 0:	

	1	1
поверхностной плотностью		
зарядов σ		
Две равномерно разноименно	$r \le 0, r \ge d$: $E = 0$	$r \leq 0$: $\qquad \qquad \qquad$
заряженные бесконечные	$0 < r < d$: $E = \sigma/\epsilon_0$	$0 < r < d : \varphi = \left\{ \varphi_0 - Er \right\}$
плоскости, расположенные на		$r \ge d$: $\phi_0 - Ed$
расстоянии d		
Равномерно заряженная сфера	0 < r < R: $E = 0$	Q
радиусом R	$r = R$: $E = Q/4\pi\epsilon_0 R^2$	$0 < r \le R: \ \varphi = \frac{Q}{\pi \varepsilon_0 R}$
	$r > R$: $E = Q/4\pi\epsilon_0 r^2$	$r > R$: $\varphi = \frac{Q}{R}$
		$r > R$: $\varphi = \frac{Q}{R}$
		$\pi \varepsilon_0 r$
Равномерно объемно заряженный	$0 < r < R: E = Qr/4\pi\epsilon_0 R^3$	$0 \le r \le R$:
шар, радиусом R		$Q = Q(R^2 - r^2)$
	$r > R$: $E = Q/4\pi\epsilon_0 r^2$	$\varphi = \frac{Q}{4\pi\varepsilon_0 R} - \frac{Q(R^2 - r^2)}{8\pi\varepsilon_0 R^3}$
		$r = R$: $\varphi = Q/4\pi\epsilon_0 R$
		$r > R$: $\varphi = Q/4\pi\epsilon_0 r$
Равномерно заряженный	r < R: $E = 0$	
бесконечный цилиндр радиуса R	$r = R$: $E = \tau/2\pi\epsilon_0 R$;	$r < R$: $\varphi = \frac{\tau}{2\varepsilon_0 \cdot \pi}$
(нить) с линейной плотностью	$r > R$: $E = \tau/2\pi\epsilon_0 r$	$r > R$: $\varphi = \frac{\tau \ln(r/R)}{2\pi\varepsilon_0}$
заряда т		$r > R$: $\varphi = \frac{\iota \operatorname{Im}(r/R)}{2}$
		$2\pi\varepsilon_0$

21. Электроемкость уединенного проводника:

$$C = \frac{Q}{\varphi}, \ [C] = \frac{K\pi}{B} = \Phi,$$

где Q-заряд, сообщенный проводнику, ф - потенциал проводника.

Электроемкость проводника, помещенного в диэлектрик:

$$C = \varepsilon C_0$$
.

22. Электроемкость шарового проводника:

$$C = 4\pi\epsilon_0 \epsilon R$$
,

где R-радиус шара; є - диэлектрическая проницаемость среды.

23. Электроемкость конденсатора:

$$C = \frac{Q}{\Delta \varphi} ,$$

где Q — заряд, сообщенный одной из обкладок; $\Delta \phi$ - разность потенциалов между обкладками.

24. Емкость плоского конденсатора:

$$C = \frac{\varepsilon \varepsilon S}{d}$$
,

где S - площадь каждой пластины конденсатора; d – расстояние между пластинами.

25. Емкость системы конденсаторов:

последовательное соединение:

$$1/C = \sum_{i=1}^{n} 1/C_{i};$$

параллельное соединение:

$$C = \sum_{i=1}^{n} C_i$$

где C_i - емкость i-го конденсатора, n - число конденсаторов в батарее.

26. Энергия взаимодействия системы точечных зарядов:

$$W_{\Pi} = \sum_{i=1}^{n} \frac{Q_i \varphi_i}{2} ,$$

где φ_i - потенциал, создаваемый всеми зарядами, кроме і—го в той точке, где находится заряд Q_i .

27. Энергия уединенного заряженного проводника:

$$W_{\rm II} = \frac{C^2}{2\varphi} = \frac{Q\varphi}{2} = \frac{Q^2}{2C},$$

где $\,{
m Q}\,{
m -}\,$ заряд; $\,{
m C}\,{
m -}\,$ электроемкость, $\,\varphi\,$ – потенциал проводника

28. Энергия заряженного конденсатора:

$$W_{\rm m} = \frac{C^2}{2\Delta\varphi} = \frac{Q\Delta\varphi}{2} = \frac{Q^2}{2C},$$

где $\Delta \varphi$ - разность потенциалов между обкладками.

29. Энергия электростатического поля плоского конденсатора (однородное поле):

$$W_{\rm m} = \frac{\varepsilon_0 \varepsilon E^2}{2} V,$$

где S- площадь одной из пластин; V = Sd - объем конденсатора

30. Объемная плотность энергии:

$$\mathbf{W} = \frac{W_n}{V} = \varepsilon \varepsilon_0 E^2 / 2; \ [w] = \frac{\mathcal{L} \mathcal{H}}{M^3}.$$

II. ПОСТОЯННЫЙ ТОК

1. Сила и плотность электрического тока:

$$I = \frac{dQ}{dt}$$
, $j = \frac{dl}{dS}$, $[I] = \frac{K\pi}{c} = A$, $[j] = \frac{A}{M^2}$,

где dQ — заряд, прошедший через поперечное сечение проводника за время dt.

2. Сопротивление R и проводимость G проводника:

$$G = \frac{1}{R}, \quad R = \rho \frac{\ell}{S}, \quad G = \gamma \frac{S}{\ell},$$

где ρ – удельное сопротивление; ℓ - длина проводника; γ – удельная проводимость; S – площадь поперечного сечения проводника.

- 3. Сопротивление системы проводников:
- а) $R = \sum_{i=1}^{n} R_{i}$ при последовательном соединении,
- б) $\frac{1}{R} = \sum_{i=1}^{n} \frac{1}{R_i}$ при параллельном соединении,

где R_i – сопротивление i-того проводника.

4. Законы Ома:

а)
$$I = \frac{\varphi_1 - \varphi_2}{R} = \frac{U}{R}$$
 - для участка цепи, не содержащего ЭДС,

где $\phi_1 - \phi_2 = U -$ разность потенциалов (напряжение) на концах участка цепи; R -сопротивление участка;

б)
$$I = \frac{(\varphi_1 - \varphi_2) \pm E}{R}$$
 - для участка цепи, содержащего ЭДС,

где E – ЭДС источника тока, R – полное сопротивление участка (сумма внешних и внутренних сопротивлений);

в)
$$I = \frac{E}{R + R_i}$$
 - для замкнутой (полной) цепи,

где R — внешнее сопротивление цепи, $R_{\rm i}$ — внутреннее сопротивление цепи.

5. Плотность тока в металле:

$$j = env_{cp}$$
,

где v_{cp} — средняя скорость направленного движения носителей; $n-ux\ концентрация\ (число\ носителей\ в\ единице\ объема).\ [n]=\frac{1}{M^3}$

6. Закон Джоуля-Ленца (количество тепла Q, выделившегося на сопротивлении R за время dt при прохождении через него электрического тока):

$$dQ = I^2 R dt = \frac{U^2}{R} dt = U I dt.$$

7. Полная мощность, развиваемая источником:

$$P = I E$$

8. Полезная мощность P_R , выделяемая на внешнем сопротивлении R:

$$P_R = I U = I^2 R = \frac{U^2}{R}$$
.

9. КПД источника тока:

$$\eta = \frac{P_R}{P}.$$

Ш. МАГНЕТИЗМ

1. Связь магнитной индукции \vec{B} с напряженностью \vec{H} магнитного поля:

$$\vec{B} = \mu \mu_o \vec{H}$$
, $[B] = \frac{H}{A \cdot M} = T\pi$, $[H] = \frac{A}{M}$,

где μ - магнитная проницаемость изотропной среды; μ_o - магнитная постоянная ($\mu_o = 4\pi \cdot 10^{-7}~\Gamma$ н/м). В вакууме $\mu = I$ и тогда магнитная индукция в вакууме:

$$\vec{B} = \mu_o \vec{H}$$
.

2. Закон Био – Савара – Лапласа:

$$d\vec{B} = \frac{\mu\mu_o}{4\pi} \left[d\vec{l} \, \vec{r} \, \right]_{r}^{I}$$
 , или $dB = \frac{\mu\mu_o I \sin \alpha}{4\pi r^2} dl$,

где dB - магнитная индукция поля, создаваемого элементом проводника длиной dl с током I; \vec{r} - радиус-вектор, направленный от элемента

проводника к точке, в которой магнитная индукция вычисляется; α - угол между радиусом — вектором и направлением тока в элементе проводника.

3. Магнитная индукция в центре кругового тока:

$$B = \frac{\mu \mu_o I}{2R},$$

где R - радиус кругового витка.

4. Магнитная индукция на оси кругового тока:

$$B = \frac{\mu \mu_o}{4\pi} \cdot \frac{2\pi R^2 I}{\left(R^2 + h^2\right)^{3/2}},$$

где h — расстояние от центра витка до точки, в которой вычисляется магнитная индукция.

5. Магнитная индукция поля прямого тока:

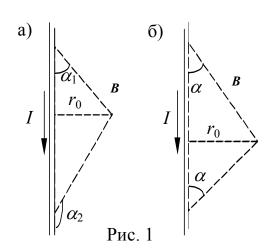
$$B = \frac{\mu \mu_o I}{2\pi r_o},$$

где r_o - расстояние от оси проводника до точки, в которой вычисляется магнитная индукция.

6. Магнитная индукция поля, создаваемого отрезком провода с током (рис. 1, a):

$$B = \frac{\mu\mu_o}{4\pi} \frac{I}{r_o} (\cos\alpha_1 - \cos\alpha_2).$$

Обозначения поясняются рисунком. Направление вектора магнитной индукции \vec{B} обозначено точкой — это значит, что \vec{B} направлен перпендикулярно плоскости чертежа к нам.



При симметричном расположении провода относительно точки, в которой определяется магнитная индукция (рис.1,б) $\cos\alpha_2 = -\cos\alpha_1 = \cos\alpha$, тогда $R = \frac{\mu\mu_0}{1} \frac{I}{\cos\alpha}$

$$B = \frac{\mu\mu_0}{2\pi} \frac{I}{r_0} \cos \alpha .$$

7. Магнитная индукция поля соленоида:

$$B = \mu \mu_0 nI$$
,

где n — число витков соленоида, приходящееся на единицу длины.

8. Сила, действующая на проводник с током в магнитном поле (закон Ампера):

$$\vec{F} = I [\vec{l} \, \vec{B}]$$
, или $F = I \cdot B \cdot l \cdot \sin \alpha$,

где ℓ - длина проводника; α - угол между направлением тока в проводнике и вектором магнитной индукции \vec{B} . Это выражение справедливо для однородного магнитного поля и прямого отрезка проводника. Если поле неоднородно и проводник не является прямым, то закон Ампера можно применять к каждому элементу проводника в отдельности:

$$d\vec{F} = I \Big[d\vec{l} \, \vec{B} \Big].$$

9. Сила взаимодействия параллельных проводников с током:

$$F = \frac{\mu \mu_0 I_1 I_2}{2\pi d} l,$$

где d - расстояние между проводами.

10. Магнитный момент, создаваемый током:

$$\vec{P}_m = I \cdot \vec{S} \,,$$

где I - сила тока, протекающего по контуру, S - площадь контура, вектор \vec{S} численно равен площади S контура и совпадает по направлению с вектором нормали к плоскости контура.

11. Механический (вращательный) момент, действующий на контур с током, помещенный в однородное магнитное поле:

$$\vec{M} = \left[\vec{P}_m \vec{B} \right]$$
, или $M = P \cdot B \cdot \sin \alpha$,

где lpha - угол между векторами $ec{P}_{\scriptscriptstyle m}$ и $ec{B}$.

12. Потенциальная энергия контура с током в магнитном поле:

$$\varPi = -\vec{P}_m \vec{B}$$
 , или $\varPi = -P_m B \cos lpha$.

За нулевое значение потенциальной энергии контура с током в магнитном поле принято расположение контура, при котором вектор \vec{P}_m перпендикулярен вектору \vec{B} .

13. Отношение магнитного момента P_m к механическому L (моменту импульса) заряженной частицы, движущейся по круговой орбите:

$$\frac{P_m}{L} = \frac{1}{2} \frac{Q}{m},$$

где Q - заряд частицы, m - масса частицы.

14. Сила Лоренца (если частица находится одновременно в электрическом и магнитном полях), то под силой Лоренца понимают выражение

$$\vec{F} = Q\vec{E} + Q[\vec{V} \cdot \vec{B}],$$

при отсутствии электрического поля:

$$F = Q[\vec{V} \cdot \vec{B}]$$
 или $F = Q \cdot V \cdot B \cdot \sin \alpha$,

где \vec{V} - скорость заряженной частицы, α - угол между векторами \vec{V} и \vec{B} .

- 15. Магнитный поток:
- а) в случае однородного магнитного поля и плоской поверхности

$$\Phi = B \cdot S \cdot \cos \alpha$$
 , или $\Phi = B_n \cdot S$,

где S - площадь контура; α - угол между нормалью к плоскости контура и вектором магнитной индукции;

б) в случае неоднородного поля и произвольной поверхности

$$\Phi = \int_{S} B_n dS , \ [\Phi] = T\pi \cdot M^2 = B\delta ,$$

интегрирование ведется по всей поверхности.

16. Потокосцепление (полный поток):

$$\Psi = N\Phi$$
.

Эта формула справедлива для соленоида и тороида с равномерной намоткой плотно прилегающих друг к другу N витков.

17. Работа по перемещению замкнутого контура в магнитном поле:

$$A = I \Lambda \Phi$$
.

18. Э.Д.С. индукции (закон Фарадея-Максвелла):

$$E_i = -\frac{d\Psi}{dt}$$
.

19. Разность потенциалов на концах проводника, движущегося со скоростью \vec{V} в магнитном поле:

$$U = B \cdot l \cdot V \cdot \sin \alpha$$
,

где l - длина проводника; lpha - угол между векторами $ec{V}$ и $ec{B}$.

20. Заряд, протекающий по замкнутому контуру при изменении магнитного потока, пронизывающего этот контур:

$$Q = \frac{\Delta\Phi}{r}$$
, или $Q = \frac{N\Delta\Phi}{r} = \frac{\Delta\Psi}{r}$,

где r - сопротивление контура.

21. Индуктивность контура:

$$L = \frac{\Psi}{I}, [L] = \frac{B \cdot c}{A} = \Gamma_H.$$

22. Э.Д.С. самоиндукции:

$$E_s = -L \frac{dI}{dt}$$
.

23. Индуктивность соленоида:

$$L = \mu \mu_0 n^2 V,$$

где n - число витков, приходящееся на единицу длины соленоида; V - объём соленоида.

- 24. Мгновенное значение силы тока в цепи, обладающей сопротивлением r и индуктивностью L:
- а) при замыкании цепи:

$$I = \frac{E}{r} \left(1 - e^{-\frac{r}{L}t} \right),$$

где Е - Э.Д.С. источника тока; t - время, прошедшее после замыкания цепи; б) при размыкании цепи:

$$I = I_0 e^{-\frac{r}{L}t},$$

где I_0 - значение силы тока цепи при $t=0;\,t$ - время, прошедшее с момента размыкания цепи.

25. Энергия магнитного поля:

$$W = \frac{LI^2}{2}.$$

26. Объёмная плотность энергии магнитного поля (энергия, заключенная в единице объёма):

$$\omega = \frac{1}{2} \, BH$$
 , или $\omega = \frac{1}{2} \, \frac{B^2}{\mu \mu_0}$; или $\omega = \frac{1}{2} \, \mu \mu_0 H^2$; $[\omega] = \frac{\mathcal{J} \mathcal{H}}{\mathcal{M}^3}$.

ПРИМЕРЫ РЕШЕНИЯ И ОФОРМЛЕНИЯ ЗАДАЧ

Задача 1. В вершинах квадрата находятся одинаковые по величине одноименные заряды (рис. 2). Определить величину заряда q_0 , который надо поместить в центр квадрата, чтобы система зарядов находилась в равновесии. Будет ли это равновесие устойчивым?

Условие:

$$q_1 = q_2 = q_3 = q_4 = q;$$

 $q_0 - ?$

Решение. Рассмотрим силы, действующие на любой из зарядов в вершинах, например на заряд q_2 (рис. 2). Со стороны зарядов q_1 , q_2 , q_3 на него действуют силы F_1 , F_3 , F_4 соответственно, причем $F_1 = F_3 = k \frac{q^2}{a^2}$, где a —

сторона квадрата, $F_2 = k \frac{q^2}{\left(\sqrt{2}a\right)^2} = k \frac{q^2}{2a^3}$. Сила, действующая на заряд \mathbf{q}_2 со

стороны заряда q_0 равна $F_0 = k \frac{qq_0}{\left(\sqrt{2}a/2\right)^2} = k \frac{2qq_0}{a^2}$. Условие равновесия заряда

имеет вид:

$$\vec{F}_1 + \vec{F}_3 + \vec{F}_4 + \vec{F}_0 = 0,$$

В проекции на ось х это уравнение запишется

$$F_1 + F_4 \cos \alpha - F_0 \cos \alpha = 0$$
,

ИЛИ
$$\frac{kq^2}{a^2} + \frac{\sqrt{2}kq^2}{4a^2} - \frac{\sqrt{2}kqq_0}{a^2} = 0$$
.

Откуда:

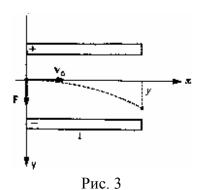
$$q_0 = q(1 + \frac{\sqrt{2}}{4})/\sqrt{2} = 0.95 \text{ q}.$$

Следует иметь ввиду, что согласно теореме Ирншоу, система неподвижных точечных зарядов, находящихся на конечном расстоянии друг от друга, не может находиться в состоянии устойчивого равновесия лишь под действием кулоновских сил.

Задача 2. Электрон влетает в плоский воздушный конденсатор параллельно пластинам со скоростью $v_0 = 1,0\cdot 10^6$ м/с. Длина конденсатора L=1,0 см, напряженность электрического поля в нем E =5,0·10³ В/м. Найти скорость v электрона при вылете из конденсатора, его смещение y, отклонение от первоначального направления.

Условие:

$$\upsilon_0 = 1,0 \cdot 10^6 \text{ M/c};$$
 $L = 1,0 \text{ cm} = 0,01 \text{ m};$
 $E = 5,0 \cdot 10^3 \text{ B/m};$
 $e = 1,6 \cdot 10^{-19} \text{ Кл};$
 $m = 9,1 \cdot 10^{-31} \text{кг};$
 $\upsilon - ? \text{ v} - ?$



Решение. Сила тяжести, действующая на электрон, равна $F_T = mg = 9.1 \cdot 10^{-30} \, \text{H}.$

Кулоновская сила равна $F = eE = 8 \cdot 10^{-16} \text{ H}$, т. е. кулоновская сила много больше, чем сила тяжести. Поэтому можно считать, что движение электрона происходит только под действием кулоновской силы.

Запишем для электрона второй закон Ньютона

$$m\vec{a} = \vec{F}$$
, где $\vec{F} = e\vec{E}$.

Направление осей координат показано на рис. 3. Движение электрона вдоль оси x – равномерное со скоростью υ_0 , так как проекция силы F на ось x равна нулю, следовательно, время, в течении которого электрон пролетает между пластинами конденсатора $t = L/v_0$.

Движение электрона вдоль оси у - равноускоренное под действием силы F, направленной вдоль этой оси. Ускорение a_y =a=eE/m. Начальная скорость и смещение электрона вдоль оси у равны:

$$v_y = 0$$
; $y = \frac{at^2}{2} = \frac{eEL^2}{2mv_0^2}$

Размерность:
$$[y] = \frac{K\pi \cdot B / M \cdot M^2}{\kappa_z \cdot M^2 / c^2} = \frac{K\pi \cdot B}{\kappa_z \cdot M / c^2} = \frac{\mathcal{J} \mathcal{K}}{H} = \frac{H \cdot M}{H} = M$$

Вычисления:
$$y = \frac{1.6 \cdot 10^{-19} \cdot 5 \cdot 10^{-3} \cdot 10^{-4}}{9.1 \cdot 10^{-31} \cdot 10^{12}} = 4.4 \cdot 10^{-2} \,\mathrm{M}$$

Скорость электрона в момент вылета υ , направленная по касательной к траектории его движения равна $\upsilon=\sqrt{\upsilon_x^2+\upsilon_y^2}$, где $v_x=v_0$, $v_y=at=\frac{e\cdot E\cdot t}{m}=\frac{e\cdot E\cdot L}{m\upsilon_0}$

Окончательно:

$$\upsilon = \sqrt{\upsilon_0^2 + (\frac{eEL}{m\upsilon_0})^2}$$

Размерность:
$$[\upsilon] = \frac{K_{\pi} \cdot B_{M} \cdot M}{\kappa_{\mathcal{E}} \cdot M_{C}} = \frac{K_{\pi} \cdot B}{\kappa_{\mathcal{E}} \cdot M_{C}} = \frac{\mathcal{J}_{\mathcal{H}_{C}}}{\kappa_{\mathcal{E}} \cdot M_{C}} = \frac{H \cdot M}{\kappa_{\mathcal{E}} \cdot M_{C}} = \frac{H \cdot C}{\kappa_{\mathcal{E}}} = \frac{\kappa_{\mathcal{E}} \cdot M_{C}}{\kappa_{\mathcal{E}}} = \frac{M}{\kappa_{\mathcal{E}}}$$

Вычисления:
$$\upsilon = \sqrt{10^{12} + (\frac{1.6 \cdot 10^{-19} \cdot 5 \cdot 10^{-3} \cdot 10^{-2}}{9.1 \cdot 10^{-31} \cdot 10^{-6}})^2} = 8.7 \cdot 10^6 \, \text{M/c}$$

Задача 3. Определить ускоряющую разность потенциалов $\Delta \varphi$, которую должен пройти в электрическом поле электрон, чтобы его скорость возросла от υ_1 = 1,0 Mm/c до υ_2 = 5,0 Mm/c.

Условие:

$$\upsilon_1 = 1.0 \text{ Mm/c} = 1.0 \cdot 10^6 \text{ m/c};$$
 $\upsilon_2 = 5.0 \text{ Mm/c} = 5.0 \cdot 10^6 \text{ m/c};$
 $e = 1.6 \cdot 10^{-19} \text{ Кл};$
 $m = 9.1 \cdot 10^{-31} \text{ кг};$
 $\Delta \omega - ?$

Решение. Работа, совершаемая силами электростатического поля при перемещении заряда из точки 1 в точку 2

$$A = e \Delta \varphi. \tag{1}$$

С другой стороны, она равна изменению кинетической энергии электрона

$$A = W_2 - W_1 = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}.$$
 (2)

Приравняв выражения (1) и (2), найдем ускоряющую разность потенциалов

$$\Delta \varphi = \frac{m(\upsilon_2^2 - \upsilon_1^2)}{2e}$$

Размерность:
$$[\Delta \varphi] = \frac{\kappa 2 \cdot M^2 / c^2}{K \pi} = \frac{H \cdot M}{K \pi} = \frac{\mathcal{J} \mathcal{H}}{K \pi} = \frac{B \cdot K \pi}{K \pi} = B$$

Вычисления:
$$\Delta \varphi = \frac{9.1 \cdot 10^{-31} \cdot (25 \cdot 10^{12} - 10^{12})}{2 \cdot 16 \cdot 10^{-19}} = 68.3B$$

Задача 4. К пластинам плоского воздушного конденсатора приложена разность потенциалов $\Delta \phi_1 = 1,5$ кВ. Площадь пластин S = 150 см² и расстояние между ними d = 5,0 мм. После отключения конденсатора от источника напряжения в пространство между пластинами внесли стекло ($\epsilon = 7$). Определить: 1) разность потенциалов

между пластинами после внесения диэлектрика; 2) емкость конденсатора C_1 и C_2 до и после внесения диэлектрика; 3) поверхностную плотность заряда σ на пластинах до и после внесения диэлектрика.

Условие:

$$\Delta \phi_1 = 1.5 \text{ kB} = 1.5 \cdot 10^3 \text{ B};$$
 $S = 150 \text{cm}^2 = 1.5 \cdot 10^{-2} \text{ m}^2;$
 $d = 5 \text{ mm} = 5 \cdot 10^{-3} \text{ m};$
 $\epsilon_1 = 1, \epsilon_2 = 7;$
 $\Delta \phi_2 - ? C_1 - ? C_2 - ?$
 $\sigma_1 - ?, \sigma_2 - ?$

Решение. Так как $E_1 = \Delta \phi_1/d = \frac{\sigma}{\epsilon_1 \epsilon_0}$ до внесения диэлектрика и $E_2 =$

 $\Delta \phi_2/d = \frac{\sigma}{\epsilon_2 \epsilon_0}$ после внесения диэлектрика, то

$$\frac{\Delta \varphi_1}{\Delta \varphi_2} = \frac{\varepsilon_1}{\varepsilon_2}$$

И

$$\Delta\phi_2=\epsilon_1\Delta\phi_1/\epsilon_2.$$

Емкость конденсатора до и после внесения диэлектрика

$$C_1 = \frac{\varepsilon_1 \varepsilon_0 S}{d}, \ C_2 = \frac{\varepsilon_2 \varepsilon_0 S}{d}.$$

Заряд пластин после отключения от источника напряжения не меняется, t.e. Q = const. Поэтому поверхностная плотность заряда на пластинах до и после внесения диэлектрика

$$\sigma_1=\sigma_2=\frac{Q}{S}=\frac{C_1\Delta\varphi_1}{S}=\frac{C_2\Delta\varphi_2}{S}\;.$$
 Вычисления: $\Delta\varphi_2=\frac{1\cdot 8,85\cdot 10^{-12}}{7}=214\,B$. $C_1=\frac{1\cdot 8,85\cdot 10^{-12}\cdot 1,5\cdot 10^{-7}}{5\cdot 10^{-3}}=26,5\,n\Phi\;;$
$$C_2=\frac{7\cdot 8,85\cdot 10^{-12}\cdot 1,5\cdot 10^{-7}}{5\cdot 10^{-3}}=186\,n\Phi\;.$$

3ada4a 5. Найти сопротивление R железного стержня диаметром d=1 см, если масса стержня m=1 кг.

Условие:

$$d = 1 \text{ cm} = 0.01 \text{ m};$$

 $m = 1 \text{ кг};$
 $\rho = 0.087 \text{ мкОм·м} = 8.7.10^{-8} \text{ Ом·м};$
 $\rho_{\infty} = 7.7.10^3 \text{ кг/м}^3;$
 $R = 7.7.10^3 \text{ Kr/m}^3;$

Решение:

Сопротивление стержня определяется по формуле

$$R = \rho \frac{l}{S}$$
,

где ρ - удельное сопротивление железа, ℓ , S - длина стержня и площадь поперечного сечения.

Масса проволоки

$$m = \rho_{\mathcal{K}} V = \rho_{\mathcal{K}} Sl,$$

где V - объем стержня, $\rho_{\mbox{\tiny {\it MC}}}$ - плотность стали.

Откуда длина стержня равна:

$$l = \frac{m}{S\rho_{sc}} = \frac{4m}{\pi d^2 \rho_{sc}},$$

поскольку площадь поперечного сечения стержня $S = \frac{\pi d^2}{4}$.

Окончательно, сопротивление стержня равно:

$$R = \rho \frac{16m}{\pi^2 d^4 \rho_{\text{oc}}}.$$

Размерность:
$$[R] = \frac{OM \cdot M \cdot \kappa z}{M^4 \kappa z / M^3} = OM$$

Вычисления:
$$R = \frac{16 \cdot 8,7 \cdot 10^{-8}}{\pi^2 \cdot 10^{-8} \cdot 7,7 \cdot 10^3} = 1,8 \text{ мОм}$$

Задача 6. Ток I = 20 А, протекая по кольцу из медной проволоки сечением $S = 1 \text{ мм}^2$, создает в центре кольца напряженность H = 178 А/м. Какая разность потенциалов U приложена к концам проволки. образующей кольцо?

Условие:

I=20A;

$$S = 1 \text{ mm}^2 = 10^{-6} \text{ m}^2$$
;
 $H = 178 \text{ A/m}$;
 $\rho = 0.017 \text{ mkOm·m} = 1,7 \cdot 10^{-8} \text{ Om·m}$;
U-?

Решение:

Напряженность в центре кругового тока

$$H = \frac{I}{2r},\tag{1}$$

Откуда радиус витка равен
$$r = \frac{I}{2H}$$
. (2)

К концам проволоки приложено напряжение U = IR, (3)

где сопротивление проволоки равно $R = \rho \frac{l}{S} = \rho^2 \pi r / S$.

Подставив полученные значения R в (3), получим:

$$U = \frac{\pi \rho I^2}{HS} = 0.12B.$$

Размерность:
$$[U] = \frac{OM \cdot M \cdot A^2}{A/M \cdot M^2} = OM \cdot A = B$$

Вычисления:
$$U = \frac{\pi \cdot 1,7 \cdot 10^{-8} \cdot 400}{178 \cdot 10^{-6}} = 0,12 B$$

Задача 7. Заряженная частица движется в магнитном поле по окружности со скоростью $\upsilon=10^6$ м/с. Индукция магнитного поля В =0,3 Тл. Радиус окружности R = 4 см. Найти заряд q частицы, если известно, что ее энергия W=12 кэВ.

Условие:

$$\nu$$
=10⁶ м/c;
B = 0,3 Тл;
R = 4 см = 0,04 м;
W=12кэВ= 1,92·10⁻¹⁴Дж;
q-?

Решение:

В магнитном поле на частицу действует сила Лоренца: $\vec{F} = q[\vec{\upsilon}, \vec{B}]$. Поскольку частица движется по окружности, $F = q \upsilon B$.

Сила Лоренца сообщает частице ускорение $a_n = \frac{v^2}{R}$.

Следовательно:
$$q \upsilon B = \frac{m \upsilon^2}{R}$$
. (1)

Энергия частицы:
$$W = \frac{mv^2}{2}$$
, отсюда $mv^2 = 2W$. (2)

Подставляя (2) в (1), получим:

$$q \upsilon B = \frac{2W}{R}$$
.

Из этого уравнения найдем заряд частицы:

$$q = \frac{2W}{\nu BR} = 3.2 \cdot 10^{-19} \,\mathrm{Km} \,.$$

Размерность:
$$[q] = \frac{\mathcal{Д}\mathcal{H}c}{\mathcal{M}/c \cdot T_{\mathcal{I}} \cdot \mathcal{M}} = \frac{\mathcal{J}\mathcal{H}c \cdot c}{T_{\mathcal{I}} \cdot \mathcal{M}^2} = \frac{H \cdot \mathcal{M} \cdot c}{H / A \cdot \mathcal{M} \cdot \mathcal{M}^2} = A \cdot c = K_{\mathcal{I}}$$
.

Вычисления:
$$q = \frac{2 \cdot 1,92 \cdot 10^{-14}}{10^6 \cdot 0.3 \cdot 0.04} = 3,2 \cdot 10^{-19} \ K\pi$$
.

Задача 8. В однородном магнитном поле индукция которого B=0.8~Tл. равномерно вращается рамка с угловой скоростью $\omega=15~pag/c.$ Площадь рамки $S=150~cm^2.$ Ось вращения находится в плоскости рамки и составляет угол $\alpha=30^0~c$ направлением магнитного поля. Найти максимальное значение ЭДС индукции E_0 во вращающейся рамке.

Условие:

$$B = 0.8 \text{ Тл};$$

 $\omega = 15 \text{ рад/c};$
 $S = 150 \text{ cm}^2 = 1.5.10^{-2} \text{ m}^2;$
 $\alpha = 30^0;$
 $E_0 - ?$

Решение:

Мгновенное значение ЭДС индукции определяется законом Фарадея

$$E = -\frac{d\Phi}{dt} \,. \tag{1}$$

При вращении рамки магнитный поток через рамку изменяется по закону:

$$\Phi = BS \sin \alpha \cos \omega t \,. \tag{2}$$

Подставив (2) в (1) и продифференцировав по времени, найдем мгновенное значение ЭДС индукции

 $E = BS\omega \sin \alpha \sin \omega t.$

Максимального значения ЭДС достигнет при $\sin \omega t = 1$. Отсюда

$$E_0 = BS\omega\sin\alpha$$
.

Вычисления: $E_0 = 0.8 \cdot 1.5 \cdot 10^{-2} \cdot 15 \cdot 0.5 = 0.09 \text{ B}$

Задача 9. Соленоид с сердечником из магнитного материала содержит N=1200 витков провода, прилегающих друг к другу. При силе тока I=4 А магнитный поток $\Phi=6$ мкВб. Определить индуктивность L соленоида и энергию W магнитного поля соленоида.

Условие:

N = 1200;
I = 4A;

$$\Phi = 6 \text{ MKB} \delta = 6 \cdot 10^{-6} \text{B} \delta$$
;
L = 2 W = 2

Решение: Индуктивность L связана с потокосцеплением Ψ и силой тока I соотношением:

$$\Psi = L \cdot I. \tag{1}$$

Потокосцепление в свою очередь может быть выражено через поток и число витков N (при условии, что витки плотно прилегают друг к другу):

$$\Psi = N \cdot \Phi. \tag{2}$$

Из выражений (1) и (2) находим интересующую нас индуктивность соленоида:

$$L = \frac{N \cdot \Phi}{I} \,. \tag{3}$$

Энергия W магнитного поля соленоида с индуктивностью L при силе тока I, протекающего по его обмотке, может быть вычислена по формуле:

$$W = \frac{1}{2} \cdot L \cdot I^2.$$

Подставив в эту формулу полученное ранее выражение индуктивности (3), получим:

$$W = \frac{1}{2} \cdot N \cdot \Phi \cdot I \,;$$
 Вычисления: $L = \frac{1,2 \cdot 10^3 \cdot 6 \cdot 10^{-6}}{4} = 1,8 \, \text{м}\Gamma\text{h}$

$$W = \frac{1}{2} \cdot 1, 2 \cdot 10^3 \cdot 6 \cdot 10^{-6} \cdot 4 = 14, 4$$
мДж

ЗАДАЧИ

- **160.** Имеются лежащие на одной прямой тонкий стержень длиной 1м и отстоящий от него на 0,5м маленький шарик. Стержень и шарик обладают зарядами по 10⁻⁶ Кл каждый. Определить силу их электростатического взаимодействия.
- **161.** В вершинах квадрата со стороной 0,5 м расположены заряды одинаковой величины. В случае, когда два соседних заряда положительные, а два других отрицательные, напряженность поля в центре квадрата равна 144 В/м. Определить величины зарядов.
- **162.** В вершинах квадрата со стороной 0,1 м помещены заряды по 0,1 нКл. Определить напряженность и потенциал поля в центре квадрата, если один из зарядов отличается по знаку от остальных.
- **164.** Если в центр квадрата, в вершинах которого находятся заряды по +2 нКл, поместить отрицательный заряд, то результирующая сила, действующая

- на каждый заряд, будет равна нулю. Вычислить величину отрицательного заряда.
- **165.** Заряды по 1 нКл помещены в вершинах равностороннего треугольника со стороной 0,2 м. Равнодействующая сил, действующих на четвертый заряд, помещенный на середине одной из сторон треугольника, равна 0,6 мкН. Определить величину этого заряда, напряженность и потенциал поля в точке его расположения.
- **166.** Два одинаковых заряда находятся в воздухе на расстоянии 0,1 м друг от друга. Напряженность поля в точке, удаленной на расстоянии 0,06 м от одного и 0,08 м от другого заряда, равна 10 кВ/м. Определить потенциал поля в этой точке и величины зарядов.
- **167.** Равномерно заряженный шар радиусом 10 см создает на расстоянии 20 см от его поверхности электрическое поле напряженностью 20 В/м. Определить объемную плотность заряда шара, а также напряженность поля на расстоянии 5 см от его центра.
- **168.** На бесконечном тонкостенном цилиндре диаметром d=20 см равномерно распределен заряд с поверхностной плотностью $\sigma=4$ мкКл/м². Определить напряженность поля в точке, отстоящей от поверхности цилиндра на расстоянии 15 см.
- **169.** Поверхностная плотность заряда бесконечной равномерно заряженной плоскости равна 30 нКл/м². Определить поток вектора напряженности через поверхность сферы диаметром 15 см, рассекаемой этой плоскостью пополам.
- **170.** В поле бесконечной равномерно заряженной плоскости с поверхностной плотностью заряда 10 мкКл/м² перемещается заряд из точки, находящейся на расстоянии 0,1 м от плоскости, в точку на расстоянии 0,5 м от нее. Определить заряд, если при этом совершается работа 1 мДж
- **171.** Заряд 1 нКл переносится из бесконечности в точку, находящуюся на расстоянии 0,1 м от поверхности металлической сферы радиусом 0,1 м, заряженной с поверхностной плотностью 10^{-5} Кл/м². Определить работу перемещения заряда.
- **172.** Найти объемную плотность энергии электрического поля, создаваемого заряженной металлической сферой радиусом 5 см на расстоянии 5 см от ее поверхности, если поверхностная плотность заряда на ней 2 мкКл/м².
- **173.** Заряд 1 нКл притянулся к бесконечной плоскости, равномерно заряженной с поверхностной плотностью 0,2 мкКл/м². На каком расстоянии

- от плоскости находился заряд, если работа сил поля по его перемещению равна 1 мкДж.
- **174.** Заряд 1 нКл находится на расстоянии 0,2 м от бесконечно длинной равномерно заряженной нити. Под действием поля нити заряд перемещается на 0,1 м. Определить линейную плотность заряда нити, если работа сил поля равна 0,1 мкДж.
- 175. Заряд на каждом из двух последовательно соединенных конденсаторов емкостью 20 и 10 пкФ равен 0,1 нКл. Определить напряжение: а) на батарее конденсаторов; б) на каждом конденсаторе.
- **176.** Конденсатор емкостью 3мкф зарядили до разности потенциалов 300В, а конденсатор емкостью 2 мкФ до 200В. После зарядки конденсаторы соединили параллельно. Найти разность потенциалов на обкладках конденсаторов после их соединения.
- **177.** Батарею из двух конденсаторов емкостями по $3 \cdot 10^{-10}$ Ф и $4.5 \cdot 10^{-10}$ Ф, соединенных последовательно, включили в сеть с напряжением 220В. Потом батарею отключили от сети, а конденсаторы соединили параллельно. Каково напряжение на зажимах полученной батареи?
- **178.** . К пластинам плоского воздушного конденсатора приложена разность потенциалов U = 500B. Площадь пластин $S = 200 \text{cm}^2$, расстояние между ними $d_1 = 1,5 \text{мм}$. Пластины раздвинули до расстояния $d_2 = 1,5 \text{см}$. Найти энергию W_1 и W_2 конденсатора до и после раздвижения пластин, если источник напряжения перед раздвижением: 1) отключался; 2) не отключался.
- **179.** Воздушный конденсатор емкостью 10^{-2} мкФ заряжен до разности потенциалов 20кВ. Предполагая, что при разрядке конденсатора разрядником 20% энергии рассеивается в виде звуковых и электромагнитных волн, определить количество теплоты, выделяемой в разряднике.
- **180.** Участок электрической цепи составлен из трех кусков провода одинаковой длины, изготовленных из одного и того же материала, соединенных последовательно. Сечения кусков провода равны $S_1 = 1 \text{мm}^2$, $S_2 = 2 \text{мm}^2$ и $S_3 = 3 \text{мm}^2$. Разность потенциалов на концах участка U = 12B. Найти разность потенциалов на каждом куске провода.
- **181.** Нихромовую проволоку длиной 20м включили последовательно с лампой мощностью 40Вт, для того, чтобы лампа, рассчитанная на напряжение 120В, давала нормальный накал при напряжении в сети 220В. Найти диаметр этой проволоки.

- **182.** Сопротивление вольфрамовой нити электрической лампочки при 20°C равно 35,8 Ом. Какова будет температура нити лампочки, если при включении в сеть напряжением в 120В по нити идет ток 0,33А? Температурный коэффициент сопротивления вольфрама равен 4,6·10⁻³ град⁻¹.
- **183.** Имеется 120 вольтовая лампочка мощностью 40Вт. Какое добавочное сопротивление надо включить последовательно с лампочкой, чтобы она давала нормальный накал при напряжении в сети 220В? Сколько метров нихромовой проволоки диаметром 3мм надо взять, чтобы получить такое сопротивление?
- **184.** К гальванометру с сопротивлением г = 290 Ом присоединили шунт, понижающий чувствительность гальванометра в 10 раз. Какой резистор надо включить последовательно с шунтированным гальванометром, чтобы общее сопротивление осталось неизменным.
- **185.** Найти внутреннее сопротивление и ЭДС источника E , если при силе тока $I_1 = 30$ А мощность во внешней цепи $P_1 = 180$ Вт, а при силе тока $I_2 = 10$ А эта мощность равна $P_2 = 200$ Вт.
- **186.** Элемент замыкают сначала на внешнее сопротивление $R_1 = 2~0$ м, а затем на внешнее сопротивление $R_2 = 0.5~0$ м. Найти э.д.с. элемента и его внутреннее сопротивление, если известно, что в каждом из этих случаев, мощность, выделяемая во внешней цепи, одинакова и равна 2,54 Вт.
- **187.** ЭДС батареи E = 16B, внутреннее сопротивление $R_1 = 3$ Ом. Найти сопротивление внешней цепи, если известно, что в ней выделяется мощность $N = 16B\tau$. Определить КПД батареи.
- **188.** Источник тока, имеющий ЭДС 15В и внутреннее сопротивление 0,4 Ом, питает током 10 ламп сопротивлением по 240 Ом и 5 ламп сопротивлением 145 Ом каждая. Лампы соединены параллельно, сопротивление подводящих проводов 2,5 Ом. Найти напряжение, под которым работают лампы.
- **189.** Найти внутреннее сопротивление аккумулятора г,если при увеличении внешнего сопротивления с $R_1 = 3$ Ом до $R_2 = 10,5$ Ом КПД схемы увеличился вдвое.
- **190.** Трамвайный вагон потребляет ток 100A при напряжении 600B и развивает силу тяги 3000H. Определить скорость движения трамвая на горизонтальном участке пути, если КПД электродвигателя трамвая 80 %.
- **191.** Двигатели электропоезда при движении со скоростью V = 54 км/ч потребляют мощность P = 900 кВт. Коэффициент полезного действия

- двигателей и передающих механизмов вместе составляет $\eta = 0.8$. Определить силу F тяги, развиваемую двигателем.
- **192.** Сила тока в проводнике изменяется со временем по закону $I = I_0 \sin \omega t$. Найти заряд Q, проходящий через поперечное сечение проводника за время t, равное половине периода T, если начальная сила тока $I_0 = 10$ A, циклическая частота $\omega = 50\pi$ c⁻¹.
- **193.** Сила тока в проводнике изменяется со временем по закону $I = I_0 e^{-\alpha}$, где $I_0 = 20 A$, $\alpha = 10^2 \ c^{-1}$. Определить количество теплоты, выделившееся в проводнике за время $t = 10^2 \ c$. Сопротивление проводника $R = 100 \ Om$.
- **194.** Сила тока в цепи изменяется со временем по закону $I = I_0 e^{-\alpha t}$. Определить количество теплоты, которое выделится в проводнике сопротивлением R = 20 Ом за время, в течение которого ток уменьшится в е раз. Коэффициент α принять равным $2 \cdot 10^{-2} \, c^{-1}$, $I_0 = 10 A$.
- **195.** Сила тока в проводнике сопротивлением R = 12 Ом равномерно убывает от $I_1 = 5$ А до $I_2 = 0$ в течение t = 10с. Определить теплоту Q, выделившуюся в этом проводнике за указанный промежуток времени.
- **196.** За время t = 8c при равномерно возраставшей силе тока в проводнике сопротивлением R = 8 Ом выделилось количество теплоты Q = 500Дж. Определить заряд q, прошедший в проводнике, если сила тока в начальный момент времени равна нулю.
- **197.** Сила тока в проводнике равномерно увеличивается от нуля до некоторого максимального значения в течение времени t = 10c. За это время в проводнике выделилась теплота $Q = 1 \kappa Дж$. Определить скорость нарастания тока в проводнике, если сопротивление его R = 3 Ом.
- **198.** Сила тока в проводнике сопротивлением R = 10 Ом за время t = 50с равномерно нарастает от $I_1 = 5$ А до $I_2 = 10$ А. Определить количество теплоты Q, выделившееся за это время в проводнике.
- 199. По проводнику сопротивлением R=3 Ом течет равномерно возрастающий ток. За время t=8c в проводнике выделилась теплота Q=200Дж. Определить заряд q, протекающий за это время по проводнику. В момент времени, принятый за начальный, ток в проводнике был равен нулю.
- **200.** Проволочный виток радиусом R=25 см расположен в плоскости магнитного меридиана. В центре расположена небольшая магнитная стрелка, способная вращаться вокруг вертикальной оси. На какой угол α отклонится стрелка, если по витку пустить ток силой I=15 A? Горизонтальную составляющую магнитного поля Земли принять равной $B=20\cdot10^{-3}$ Тл.

- **201.** Магнитная стрелка помещена в центре кругового витка, плоскость которого расположена вертикально и составляет угол $\varphi = 30^{\circ}$ с плоскостью магнитного меридиана. Радиус витка R=20см. Определить угол α , на который повернётся магнитная стрелка, если по проводнику пойдёт ток силой I=25 А. Горизонтальную составляющую индукцию магнитного поля Земли принять равной $B=20\cdot 10^{-3}$ Tn.
- **202.** Два бесконечно длинных проводника скрещены под прямым углом. По проводникам текут токи силой $I_1 = 100A$ и $I_2 = 50A$. Расстояние между двумя проводниками d = 20 см. Определить индукцию В магнитного поля в точке, лежащей на середине общего перпендикуляра к проводникам.
- **203.** По контуру в виде равностороннего треугольника течёт ток силой I = 50 A. Сторона треугольника a = 20 cm. Определить напряжённость и магнитную индукцию \vec{B} в точке пересечения высот.
- **204.** По проводнику, согнутому в виде прямоугольника со сторонами a = 8 cm и e = 12 cm течёт ток силой I = 50 A. Определить напряжённость H и индукцию магнитного поля в точке пересечения диагоналей.
- **205.** По двум параллельным проводам длиной l = 10 M текут одинаковые токи силой I = 100 A. Расстояние между проводами d = 10 c M. Определить силу взаимодействия проводников.
- **206.** По трём длинным параллельным прямым проводам, находящимся на одинаковом расстоянии d = 10 *см* друг от друга, текут токи одинаковой силы I = 100 A. В двух проводах направления токов совпадают. Вычислить силу F, действующую на единицу длины каждого провода.
- **207.** Плоская круглая рамка диаметром 10 *см* находится в однородном магнитном поле. По рамке протекает ток 20 A. На сколько изменится вращающий момент, действующий на рамку, при повороте плоскости рамки на угол 60° к направлению поля? (До поворота плоскость рамки совпадала с направлением поля). Напряжённость поля $20 \, A/M$, среда воздух.
- **208.** Виток радиусом R = 20 *см*, по которому течёт ток силой I = 50 A, свободно установился в однородном магнитном поле напряжённостью $H = 10^3$ A/m. Виток повернули вокруг диаметра на угол $\varphi = 30^\circ$. Определить совершённую работу A.
- **209.** Нормаль к плоскости рамки, по которой течёт ток 1 *A*, составляет угол 30° с направлением однородного магнитного поля. На какой угол повернулась рамка по отношению к полю, если вращающий момент,

действующий на рамку, уменьшился в 10 раз. Сделать пояснительный рисунок

- **210.** В магнитном поле, образованном в вакууме, перпендикулярно линиям индукции влетел электрон с энергией $1,6\cdot 10^{-19}$ Дж. Напряжённость поля 10^3 A/м. Вычислить силу Лоренца и радиус траектории движения электрона
- **211.** Два иона с одинаковыми зарядами, пройдя одну и ту же ускоряющую разность потенциалов, влетели в однородное магнитное поле перпендикулярно линиям индукции. Один ион, масса которого $m_1 = 12a.e.m.$, описал дугу окружности радиусом $R_1 = 2$ см. Определить массу m_2 другого иона, который описал дугу окружности радиусом $R_2 = 2,31$ см. (1 $a.e.m. = 1,66\cdot10^{-27}$ κ 2).
- **212.** Протон и α частица, ускоренные одинаковой разностью потенциалов, влетают в однородное поле. Во сколько раз радиус R кривизны траектории протона больше радиуса кривизны траектории α частицы?
- **213.** Магнитный поток Φ через сечение соленоида равен $50 \cdot 10^{-6} \, Bб$. Длина соленоида $l = 50 \, cm$. Найти магнитный момент P_m соленоида, если его витки плотно прилегают друг к другу.
- **214.** Силу тока в катушке равномерно увеличивают при помощи реостата на $\Delta I = 0.6A$ в секунду. Найти среднее значение ЭДС самоиндукции, если индуктивность катушки $L = 5 \, M \Gamma H$.
- **215.** Цепь состоит из катушки индуктивностью L = 0,1 Γh и источника тока. Источник тока отключили, не разрывая цепи. Время, по истечении которого сила тока уменьшится до 0,001 первоначального значения, равно t = 0,07 c. Определить сопротивление катушки.
- **216.** В электрической цепи, содержащей сопротивление r=20~Om и индуктивность $L=0,6~\Gamma h$, течёт ток силой I=20~A. Определить силу тока в цепи через $\Delta t=0,2~mc$ после её размыкания.
- **217.** Источник тока замкнули на катушку сопротивлением r=200Oм. По истечении времени t = 0,1 c сила тока замыкания достигла 0,95 предельного значения. Определить индуктивность катушки
- **218.** Магнитный поток в соленоиде, содержащем N= 1000 витков, равен 0,2 $m\kappa B\delta$. Определить энергию магнитного поля соленоида, если сила тока, протекающего по виткам соленоида I= 1 A. Сердечник отсутствует. Магнитное поле во всём объёме соленоида считать однородным.

219. Соленоид имеет длину l=0.6~m и сечение $S=10~cm^2$. При некоторой силе тока, протекающего по обмотке, в соленоиде создаётся магнитный поток $\Phi=0.1~mB\delta$. Чему равна энергия магнитного поля соленоида? Сердечник выполнен из немагнитного материала, а магнитное поле во всём объёме однородно.

КОНТРОЛЬНАЯ РАБОТА № 3

Таблица вариантов

Таблица 3

Рорионт	Номера задач					
Вариант	1	2	3	4	5	6
0	220	230	240	250	260	270
1	221	231	241	251	261	271
2	222	232	242	252	262	272
3	223	233	243	253	263	273
4	224	234	244	254	264	274
5	225	235	245	255	265	275
6	226	236	246	256	266	276
7	227	237	247	257	267	277
8	228	238	248	258	268	278
9	229	239	249	259	269	279

Тематика задач

- 220 229 механические колебания и волны;
- 230 239 интерференция, дифракция и поляризация световых волн;
- 240 249 законы теплового излучения, фотоэффект и эффект Комптона;
- 250 259 законы идеального газа, уравнение состояния идеального газа;
- 260 269 первое начало термодинамики, цикл Карно;
- 270 279 ядерные реакции, энергия связи и дефект масс.

ОСНОВНЫЕ ФОРМУЛЫ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ № 3

Механические колебания и волны

• Уравнение гармонических колебаний

$$x = A\sin(\omega t + \varphi_0)$$
,

где A — амплитуда колебаний, ω -циклическая частота, t- время, φ_0 -начальная фаза колебаний, $(\omega t + \varphi_0)$ - фаза колебаний;

• Циклическая частота

$$\omega = 2\pi v$$
, $\omega = \frac{2\pi}{T}$, $T = \frac{1}{v}$ - период колебаний;

• Скорость точки, совершающей гармонические колебания

$$V = \frac{dx}{dt} = A\omega\cos(\omega t + \varphi_0);$$

$$V_{\text{max}} = A\omega$$

• Ускорение точки, совершающей гармонические колебания

$$a = \frac{dV}{dt} = -A\omega^2 \sin(\omega t + \varphi_0) = -\omega^2 x;$$

$$|a_{\text{max}}| = A\omega^2$$

- При сложении колебаний одного направления и одинаковой частоты
 - результирующая амплитуда колебаний находится по формуле:

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1^2 A_2^2 \cos(\varphi_{02} - \varphi_{01})}$$

- начальная фаза результирующего колебания

$$tg\varphi_0 = \frac{A_1 \sin \varphi_{01} + A_2 \sin \varphi_{02}}{A_1 \cos \varphi_{01} + A_2 \cos \varphi_{02}};$$

• Дифференциальное уравнение колебаний материальной точки

$$\frac{d^2x}{dt^2} + \omega^2 x = 0;$$

• Период колебаний пружинного маятника

$$T=2\pi\sqrt{\frac{m}{k}}\;;$$

где т- масса груза, k -коэффициент упругости пружины

• Период колебаний математического маятника

$$T=2\pi\sqrt{\frac{l}{g}}\;,$$

где g – ускорение свободного падения, l - длина нити маятника;

• Период колебаний физического маятника

$$T = 2\pi \sqrt{\frac{L}{g}} = 2\pi \sqrt{\frac{J}{mgl}} \quad ,$$

где L – приведённая длина физического маятника, J- момент инерции, *l* - расстояние от точки подвеса до центра масс маятника;

• Полная энергия гармонических колебаний

$$E = \frac{mA^2\omega^2}{2};$$

• Уравнение плоской волны

$$y(x,t) = A\cos(\omega t - kx),$$

где $k = \frac{\omega}{V}$ - волновое число, V - модуль скорости распространения волны;

$$k=rac{2\pi}{\lambda}\,,\;\;\;\lambda$$
 - длина волны, $V=rac{\lambda}{T}=\lambda\, v$;

• Разность фаз колебаний точек, отстоящих друг от друга на расстоянии Δx

$$\Delta \varphi = \frac{2\pi \Delta x}{\lambda} = \frac{2\pi (x_2 - x_1)}{\lambda};$$

• Эффект Доплера для звуковых волн

$$v = \frac{V_{36} \pm U_{np}}{V_{36} \mp U_{ucm}} V_0,$$

где v - частота звуковых колебаний, воспринимаемая движущимся приемником, v_0 - частота звуковых колебаний, испускаемых источником;

Оптика

• Скорость света в среде

$$V=\frac{c}{n}\,,$$

где $c = 3 \cdot 10^8 \, \text{м/c}$ -скорость света в вакууме, п — абсолютный показатель преломления;

- Закон отражения света угол падения равен углу отражения
- Закон преломления света

$$\frac{\sin i}{\sin \beta} = \frac{n_2}{n_1} = n_{12} ,$$

где i - угол падения, β - угол преломления. $n_{12} = \frac{n_2}{n_1}$ - относительный показатель преломления второй среды относительно первой;

• Условие образования максимума освещенности при интерференции световых волн

$$\Delta = \pm m\lambda$$
,

где $m = 0, 1, 2, \ldots$ -номер максимума, Δ -оптическая разность хода, λ - длина волны.

• Условие образования минимума освещенности при интерференции световых волн

$$\Delta = \pm (2m+1)\frac{\lambda}{2},$$

где λ - длина волны, $(2m+1)=0,1,2,\ldots$ -номер минимума, Δ -оптическая разность хода;

• Условие образования максимума освещенности при дифракции световых волн

$$d\sin\varphi = \pm m\lambda$$
,

где d - постоянная решетки, $m = 0, 1, 2, \ldots$ -номер максимума, $\Delta = d \sin \varphi$ - оптическая разность хода;

• Условие образования главных минимумов освещенности при дифракции световых волн

$$a\sin\varphi=\pm m\lambda$$
,

где a - ширина щели решётки, m =0,1,2,.....-номер минимума, $\Delta = a \sin \varphi$ - оптическая разность хода;

• Условие образования дополнительных минимумов освещенности при дифракции световых волн

$$d\sin\varphi=\pm(2m+1)\lambda/2$$
,

где d - постоянная решетки, $(2m+1)=0,1,2,\ldots$ -номер минимума, $\Delta=d\sin\varphi$ - оптическая разность хода;

• Закон Малюса (интенсивность плоскополяризованного света)

$$I = I_0 \cos^2 \alpha$$
,

где I - интенсивность света, прошедшего через анализатор, I_0 - интенсивность света, падающего на поляризатор;

• Закон Брюстера

$$tgi_B = \frac{n_2}{n_1} = n_{12};$$

где $i_{\it B}$ - угол, при котором отраженный луч полностью поляризован;

Квантовая оптика

• Закон Стефана-Больцмана (закон теплового излучения)

$$R_{\lambda} = \sigma T^4$$
.

где R_{λ} - энергетическая светимость чёрного тела, T – абсолютная температура, $\sigma = 5,67 \cdot 10^{-8} \, Bm \, / \, m^2 \cdot K^4$ - постоянная;

• Закон смещения Вина (закон теплового излучения)

$$\lambda_{\text{max}} = \frac{b}{T}, b = 2.9 \cdot 10^{-3} \,\text{M} \cdot K$$
;

• Закон Вина (закон теплового излучения)

$$(r_{\lambda,T})_{\max} = CT^5,$$

где $(r_{\lambda,T})_{\text{max}}$ - максимальная спектральная плотность энергетической светимости, $C = 1,30 \cdot 10^{-5} \, Bm \, / \, m^2 \cdot K^5$ - постоянная;

• Закон внешнего фотоэффекта (формула Эйнштейна)

$$hv = A_{\text{\tiny GBLX}} + \frac{mV_{\text{max}}^2}{2},$$

где $A_{\text{вых}}$ - работа выхода электрона из металла, $\varepsilon = h v = \frac{hc}{\lambda}$ - энергия фотона;

• Красная граница фотоэффекта (максимальная длина волны или минимальная частота, при которой ещё возможен фотоэффект)

$$\lambda_0 = \frac{hc}{A_{\scriptscriptstyle GBLX}}\,, \qquad \qquad \nu_0 = \frac{A_{\scriptscriptstyle GBLX}}{h}\,;$$

• Эффект Комптона

$$\lambda' - \lambda = 2 \frac{h}{m_{0e}c} \sin^2 \frac{\theta}{2}, \quad \lambda' - \lambda = \lambda_C (1 - \cos \theta), \quad \lambda_C = \frac{h}{m_{0e}c},$$

где λ' -длина волны рассеянного фотона, λ - длина волны падающего фотона, m_{0e} - масса покоя электрона, с — скорость света, λ_C - комптоновская длина волны;

Молекулярная физика и термодинамика

• Законы идеального газа:

- изотермический (T=const) , $\frac{V_1}{V_2} = \frac{P_2}{P_1}$;

- изобарический (P=const) , $\frac{V_1}{V_2} = \frac{T_1}{T_2}$;

- изохорический (V=const) , $\frac{T_1}{T_2} = \frac{P_1}{P_2}$;

- адиабатический ($\delta\!Q=0$) , $\frac{P_1}{P_2} = \left(\frac{V_2}{V_1}\right)^{\gamma}$, $\gamma = C_P/C_V$ - показатель адиабаты.

• Уравнение состояния идеального газа

$$PV = \frac{m}{\mu}RT ,$$

где m, μ - соответственно, масса газа и молярная масса газа, $R = 8{,}31 \, \mathcal{Д}ж/моль \cdot K$ - универсальная газовая const, T- абсолютная температура;

• Первое начало термодинамики

$$\delta Q = dU \pm \delta A, Q = \Delta U \pm A,$$

где Q-количество теплоты, ΔU — изменение внутренней энергии, A- работа газа (над газом);

- Применение первого начала к изопроцессам:
 - изотермический (T=const) $\Delta U=0$, $Q = A = \frac{m}{\mu} RT \ln \frac{V_2}{V_1}$;
 - изобарический (P=const) $A = P\Delta V = P(V_2 V_1) = \frac{m}{\mu} R\Delta T$,

$$Q = \frac{m}{\mu} C_P \Delta T, \quad \Delta U = \frac{m}{\mu} C_V \Delta T ;$$

- изохорический (V=const) A=0, $\Delta U = Q = \frac{m}{\mu} C_V \Delta T$,
- адиабатический ($\delta Q = 0$) $\Delta U = -A = -\frac{m}{\mu} C_V \Delta T$,

где $C_V = \frac{i}{2}R$, $C_P = \frac{i+2}{2}R$ - удельные теплоемкости при постоянном объёме и давлении, i - число степеней свободы молекулы; для одноатомной молекулы i=3, для двухатомной - i=5, для трёхатомной и многоатомной - i=6.

Цикл Карно – замкнутый цикл, состоящий из двух изотерм и двух адиабат.
 Коэффициент полезного действия цикла Карно

$$\eta = \frac{Q_1 - Q_2}{Q_1}, \quad \eta = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1},$$

где Q_1 - полученная теплота от нагревателя, Q_2 - теплота, переданная холодильнику, T_1 - температура нагревателя, T_2 - температура холодильника.

Атомное ядро. Ядерные реакции

- Ядро обозначается символом ${}_Z^A X$, где z- зарядовое число (число протонов в ядре), A массовое число (число нейтронов и протонов в ядре); число нейтронов в ядре N=A-Z.
- Закон радиоактивно распада

$$N = N_0 \exp(-\lambda t) ,$$

где $\,{
m N}-{
m число}\,$ нераспавшихся ядер за время ${
m t}$, $\,N_{\scriptscriptstyle 0}\,$ - начальное число ядер,

$$\lambda$$
 - постоянная распада, $\lambda = \frac{\ln 2}{T_{\frac{1}{2}}}$, $T_{\frac{1}{2}}$ - период полураспада (время, за

которое распадается половина исходного числа ядер);

• Активность изотопа

$$A = A_0 \exp(-\lambda t)$$
;

• Дефект массы Δm ядра (разность между суммой масс свободных нейтронов и протонов и массой, образовавшегося из них ядра)

$$\Delta m = (Zm_P + Nm_n) - m_g;$$

• Энергия связи ядра

$$E_{ce} = \Delta mc^2$$
,

Если энергия выражена в мегаэлектрон-вольтах (МэВ), а масса в атомных единицах (а.е.м.), то $c^2 = 931,4$ МэВ/а.е.м.

• Энергия ядерной реакции

$$Q = c^{2}[(m_{1} + m_{2}) - (m_{3} + m_{4})],$$

где m_1, m_2 - массы покоя ядра мишени и бомбардирующей частицы; $m_3 + m_4$ - сумма масс покоя ядер продуктов реакции.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Контрольная работа №2

Задача 1. Материальная точка совершает гармонические колебания с амплитудой A=2см и периодом T=4с. Написать уравнение движения точки, если её движение начинается из положения $X_0=4$ см.

Задача 2. Определить наибольший порядок спектра, который может образовать дифракционная решётка, имеющая 500 штрихов на 1мм, если длина волны падающего света 500 нм. Какую наибольшую длину волны можно наблюдать в спектре этой решётки?

Дано:	Решение		
	Запишем условие образования дифракционных		
$N_0 = 5 \cdot 10^5 \text{m}^{-1}$	максимумов $d \sin \varphi = m\lambda$, где $d = \frac{1}{N}$ - постоянная решётки,		
$\lambda = 5 \cdot 10^{-7} \mathrm{M}$	т - номер максимума (порядок спектра).		
	Из условия максимума найдем $m = \frac{d \sin \varphi}{\lambda} = \frac{\sin \varphi}{\lambda N_0}$ (1).		
$m_{\text{max}} - ? \lambda_{\text{max}} - ?$	Из формулы (1) следует, что при заданных N_0 и λ		

наибольший порядок спектра будет при $\sin \varphi_{\max} = 1$, тогда

$$m_{\max} = \frac{1}{\lambda N_0} \,. \quad \mbox{Наибольшая длина волны определяется из}$$

$$\lambda_{\max} = \frac{d\sin\phi_{\max}}{m_{\max}} = \frac{1}{m_{\max}N_0} \,.$$

$$m_{\text{max}} = \frac{1}{5 \cdot 10^{-7} \cdot 5 \cdot 10^{5}} \approx 3,$$
 $\lambda_{\text{max}} = \frac{1}{3 \cdot 5 \cdot 10^{5}} = 6.67 \cdot 10^{-7} (\text{M})$

Otbet: $m_{\text{max}} \approx 3$, $\lambda_{\text{max}} = 6.67 \cdot 10^{-7} \,\text{M}$.

Задача 3. Фотон с длиной волны $\lambda = 11 n_M$ рассеялся на свободном электроне. Длина волны рассеянного фотона $\lambda = 12n_M$. Определить угол θ рассеяния.

Дано: Решение Согласно эффекту Комптона $\lambda = 11n = 11 \cdot 10^{-12} \, \text{м} \qquad \Delta \lambda = \lambda^{'} - \lambda = \lambda_{C} (1 - \cos \theta) \, , \, \text{где } \lambda_{C} = \frac{h}{m_{e} c} \, \text{- комптоновская}$ $\lambda' = 12nM = 12 \cdot 10^{-12} \, M$ длина волны. Если фотон рассеян на электроне, то $\lambda_C = 2,436 \cdot 10^{-12} \, M \, .$ $\Delta \lambda = \lambda_C - \lambda_C cos \, \theta, \qquad \lambda_C - \Delta \lambda = \lambda_C cos \, \theta, \qquad cos \, \theta = 1 - \frac{\Delta \lambda}{\lambda_C} \, ,$

 $\theta = \arccos\left(1 - \frac{\Delta\lambda}{\lambda_0}\right).$ Искомое выражение

Вычисления
$$\theta = \arccos\left(1 - \frac{10^{-12}}{2,436 \cdot 10^{-12}}\right) = \arccos 0,41 = 65,8^{\circ}$$

OTBET: $\theta = 65.8^{\circ}$.

Задача 4. Определить красную границу λ_0 фотоэффекта для цезия, если при облучении его поверхности фиолетовым светом с длиной волны $\lambda = 400$ нм максимальная скорость фотоэлектронов равна 0,65 Мм/с.

 $\lambda = 400$ нм = $4 \cdot 10^{-7}$ м Красная граница — это максимальная длина световой $V_{\rm max} = 0.65 \cdot 10^6 \, {\rm M/c}$ волны, при которой возможен фотоэффект. $h=6,62\cdot 10^{-34}$ Дж $c\cdot c$ По определению $\lambda_0=\frac{hc}{A}$. Работу выхода $m_e = 9,11 \cdot 10^{-31} \kappa c$ определяем из уравнения Эйнштейна

$$\lambda_0 - ?$$

$$h \,
u = rac{hc}{\lambda} = A_{\scriptscriptstyle GbLX} + rac{m V_{\scriptscriptstyle
m max}^2}{2} \,, \quad rac{hc}{\lambda} - rac{m V_{\scriptscriptstyle
m max}^2}{2} = A_{\scriptscriptstyle GbLX} \,.$$

Проверка **размерности**
$$[\lambda_0] = \frac{\cancel{\square} \mathcal{H} \cdot c \cdot M}{c \cdot \cancel{\square} \mathcal{H}} = M$$

$$A_{\text{вых}} = \frac{6,62 \cdot 10^{-34} \cdot 3 \cdot 10^8}{4 \cdot 10^{-7}} - \frac{9,11 \cdot 10^{-31} \cdot 0,65^2 \cdot 10^{12}}{2} = 3,05 \cdot 10^{-19} (\text{Дж}),$$

$$\lambda_0 = \frac{6,62 \cdot 10^{-34} \cdot 3 \cdot 10^8}{3,05 \cdot 10^{-19}} = 6,51 \cdot 10^{-7} (M)$$

Ответ:

$$\lambda_0 = 6.51 \cdot 10^{-7} \,\mathrm{M}$$
.

Задача 5. Определить плотность смеси состоящей из 4 г водорода и 32г кислорода, при температуре 7°C и давлении 93кПа.

Дано:

 $m_2 = 0.032 \kappa z$

 $P = 93 \cdot 10^{3} \Pi a$

 $\mu_1 = 10^{-3} \, \kappa z \, / \,$ моль

 $\mu_2 = 32 \cdot 10^{-3} \, \kappa z \, / \,$ моль

T = 280K

Решение

По определению $\rho = \frac{m}{V}$, где $m = m_1 + m_2$ -масса смеси газов, V- объём сосуда. Найдём объём, занимаемый смесью. $m_1 = 0.004 \kappa 2$

По закону Дальтона давление смеси газов

 $P = P_1 + P_2$. По условию задачи $V_1 = V_2 = V; T_1 = T_2 = T$; Запишем уравнение состояния для каждого из газов

$$P_1V=\frac{m_1}{\mu_1}RT,$$

 $P_2V = \frac{m_2}{u_2}RT$. Складываем левые и правые части

уравнений состояния, получаем

$$(P_1 + P_2)V = \left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right)RT \Rightarrow V = \left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right)\frac{RT}{P}$$

Для плотности получаем

$$\rho = \frac{(m_1 + m_2)P}{\left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right)RT}.$$

Проверяем размерность

$$[\rho] = \frac{\kappa \mathcal{E} \cdot H \cdot \text{моль} \cdot K}{M^2 \cdot H \cdot M \cdot K \cdot M \circ \pi b} = \frac{\kappa \mathcal{E}}{M^3}.$$

Вычисления

$$\rho = \frac{(0,004 + 0,032)93 \cdot 10^3}{\left(\frac{0,004}{0,002} + \frac{0,032}{0,032}\right)8,31 \cdot 280} = 0,43(\kappa \epsilon / m^3).$$

Otbet: $\rho = 0.43 \kappa z / M^3$.

Ответ:

Задача 6. Водород массой 6,5г, находящийся при температуре Т=300К, расширяется вдвое при постоянном давлении за счёт притока тепла извне. Определить: 1) количество теплоты, сообщенное газу; 2) работу расширения; 3) изменение внутренней энергии газа.

Дано: Решение Процесс изобарический P = const, $\frac{V_2}{V_1} = \frac{T_2}{T_1}$, откуда находим T_2 . $T_2 = \frac{V_2}{V_1} T_1 = 2T_1$ (1). По определению при P = const: P = const $A = \frac{m}{\mu} R \Delta T = \frac{m}{\mu} R (T_2 - T_1), \quad Q = \frac{m}{\mu} C_P \Delta T = \frac{m}{\mu} \frac{i+2}{2} R (T_2 - T_1),$ $m = 0.0065 \kappa z$ $\Delta U = \frac{m}{\mu} C_V \Delta T = \frac{m}{\mu} \frac{i}{2} R(T_2 - T_1),$ $T_1 = 300K$ $\mu = 0{,}002\kappa z /$ моль где i — число степеней свободы молекулы водорода. $\frac{V_2}{V_1} = 2$ Молекула водорода двухатомная, следовательно i=5. R = 8.31Джс / моль $\cdot R$ Вычисления $\overline{Q-?,A-?,\Delta U-?}$ $A = \frac{0,0065}{0.002} 8,31 \cdot 300 = 8102 (\mathcal{J} \mathcal{H}),$ $Q = \frac{0,0065}{0.002} 8,31 \cdot 300 \cdot \frac{7}{2} = 28357 (\text{DHz}), \quad \Delta U = \frac{0,0065}{0.002} 8,31 \cdot 300 \cdot \frac{5}{2} = 20255 (\text{DHz}),$

Задача 7. Температура пара, поступающего в паровую машину, T_1 =400K, Температура конденсатора T_2 =320K. Какова теоретически возможная максимальная работа A машины при затрате количества теплоты Q =6кДж.

 $A = 8102 \, \text{Дж}, \quad Q = 28357 \, \text{Дж}, \quad \Delta U = 20255 \, \text{Дж}.$

$$T_2$$
=320К тепловой машины $\eta = \frac{A}{Q}$, $\eta = \frac{T_1 - T_2}{T_1}$. Поэтому
$$Q = 6000 \text{Дж} \qquad \qquad \frac{A}{Q} = \frac{T_1 - T_2}{T_1} \text{ , откуда} \qquad A = \frac{T_1 - T_2}{T_1} Q \text{ .}$$

Проверяем размерность

A -?

$$[A] = \frac{K}{K} \mathcal{L} \mathcal{H} = \mathcal{L} \mathcal{H}$$

Вычисления
$$A = \frac{400 - 320}{400} 6000 = 1200 (Джс)$$

Ответ: A = 1200 Дж.

Задача 8. В ядерной реакции ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n$ выделяется энергия $\Delta E = 3.27 M \ni B$. Определить массу атома ${}_{2}^{3} He$, если масса ${}_{1}^{2} H$ равна 2,01410а.е.м.

Дано: Решение $_{1}^{2}H+_{1}^{2}H\rightarrow_{2}^{3}He+_{0}^{1}n$ Энергия, выделяющаяся при данной реакции определяется $\Delta E = \Delta mc^2$, где Δm - дефект массы; $\Delta m = \frac{\Delta E}{c^2}$. $\Delta E = 3,27 M \ni B$ Запишем реакцию в виде $m_H = 2,01410a.e.m.$ $m_{He} - ?$ $m_{He} = 2m_H - m_n - \frac{\Delta E}{c^2}$. Когда энергия выражена в МэВ $c^2 = 931,4 M$ эB/a.e.m. Вычисления $m_{He} = 2 \cdot 2,01410 - 1,00867 - \frac{3,27}{9314} = 3,01603(a.e.m.)$.

Ответ: $m_{He} = 3,01603 a.e.m.$

ЗАДАЧИ

220. Груз массой 500 г, подвешенный к пружине, совершает свободные колебания с амплитудой 10 см. Жесткость пружины 100 Н/м. Найти полную механическую энергию системы и наибольшую скорость движения груза.

- **221.** Груз массой 2 кг, подвешенный к пружине, совершает гармонические колебания с амплитудой 5 см. Жесткость пружины 50 H/м. Написать уравнение колебательного движения груза x = x(t), если в момент времени t = 0 груз находился в крайнем нижнем положении.
- **222.** Координата груза маятника изменяется согласно формуле $x = 0.8\cos(2\pi t \frac{\pi}{2})$. Изобразить графически колебания этого маятника и определить период и частоту колебаний.
- **223.** На каком расстоянии друг от друга находятся две соседние точки, колеблющиеся в противофазе, если длина волны 16 м?
- **224.** Гармоническое колебание материальной точки задано уравнением $x = 0.2 \sin(10\pi t + \pi/4)$ м. Определить момент времени, при котором точка будет находиться в положении равновесия и максимальную скорость колебания.
- **225.** Определить на какой частоте работает генератор электромагнитных волн, если кратчайшее расстояние между точками волны, колеблющимися в противофазе, равно 0,25 м.
- **226.** Расстояние от источника звука до точек А и В в воде соответственно равны 80 м и 105 м. Источник испускает волны частотой 28 Гц. Определите разность фаз звуковой волны в точках А и В. Скорость звука в воде 1400м/с.
- **227.** Ёмкость конденсатора в колебательном контуре радиоприёмника плавно меняется от 10 до 100пФ, индуктивность катушки в контуре 50 мкГн. В каком диапазоне длин волн может работать радиоприёмник?
- **228.** Измеряя глубину моря под кораблём с помощью эхолота, обнаружили, что моменты отправления и приёма ультразвукового сигнала разделены промежутками времени 1,0c. Какова глубина моря под кораблём, если скорость звука в воде 1435 м/с?
- **229.** Изменение силы тока в зависимости от времени задано уравнением $i = 20\cos 100\pi$. Найти частоту и период колебаний, амплитуду силы тока, а также значение силы тока при фазе $\frac{\pi}{4}$.
- **230.** Два когерентных источника S_1 и S_2 излучают монохроматический свет с длиной волны 600 нм. Определить на каком расстоянии будет первый максимум освещенности, если расстояние между источниками d=1 мм и расстояние от источников до экрана l=4 м.

- **231.** Дифракционная решётка содержит 120 штрихов на 1 мм. Найти длину волны монохроматического света, падающего на решетку, если угол между двумя главными максимумами первого порядка равен 8°.
- **232.** Луч света проходит из глицерина в стекло так, что пучок, отражённый от границ этих сред, оказывается максимально поляризованным. Определить угол γ между падающим и преломлённым лучами.
- **233.** Расстояние на экране между двумя первыми максимумами освещенности равно 1.2 мм. Определить длину волны света, излучаемого когерентными источниками S_1 и S_2 , если расстояние между источниками d=1 мм и расстояние от источников до экрана 2 м.
- **234.** На дифракционную решетку нормально падает пучок света от разрядной трубки. Чему должна быть равна постоянная дифракционной решетки, чтобы в направлении под углом 41°к оси пучка совпали максимумы двух линий с длиной волны 656,3 мм и 410,2 мм?
- **235.** На сколько процентов уменьшается интенсивность света после прохождения через призму Николя, если потери света составляют 10%.
- **236.** Определить угол дифракции для спектра второго порядка света натрия с длиной волны 589 мкм, если на 1 мм дифракционной решётки приходится пять штрихов.
- **237.** На мыльную плёнку с показателем преломления 1,33 падает белый свет под углом 45° . При какой наименьшей толщине плёнки отражённые лучи будут окрашены в жёлтый цвет с длиной волны $6\cdot10^{-5}$ см?
- **238.** На дифракционную решётку нормально падает фиолетовый свет с длиной волны 0,45 мкм. Период дифракционной решётки 2 мкм. Чему равен наибольший порядок спектра, который можно наблюдать с помощью этой дифракционной решетки?
- **239.** Луч света последовательно проходит через два николя, плоскости пропускания которых образуют угол $\varphi = 38^{\circ}$. Принимая коэффициент поглощения каждого николя k = 0,12, найти, во сколько раз луч света, выходящий из второго николя, ослаблен по сравнению с лучом, падающим на первый николь.
- **240.** Температура Т верхних слоёв звезды Сириус равна 10 кК. Определить поток энергии Φ_e , излучаемый с поверхности S = 1 км² этой звезды.

- **241.** Красная граница фотоэффекта для металла $3 \cdot 10^{14} \, \Gamma$ ц. Определить работу выхода для этого металла и кинетическую энергию фотоэлектронов, если на металл падает свет частотой $3 \cdot 10^{14} \, \Gamma$ ц.
- **242.** Максимум спектральной плотности энергетической светимости яркой звезды Арктур приходится на длину волны $\lambda_{\max} = 580$ нм. Принимая. Что звезда излучает как абсолютно чёрное тело, определить температуру Т поверхности звезды.
- **243.** На цинковую пластинку падает монохроматический свет с длиной волны 220 нм. Определить максимальную скорость $V_{\rm max}$ фотоэлектронов.
- **244.** Вследствие изменения температуры чёрного тела максимум спектральной плотности сместился с $\lambda_{\max} = 2,4$ мкм на $\lambda_{\max} = 0,8$ мкм. Как и во сколько раз изменилась энергетическая светимость тела и максимальная спектральная плотность энергетической светимости?
- **245.** Рентгеновское излучение длиной волны 55,8 пм рассеивается плиткой графита (комптон-эффект). Определить длину волны λ' излучения, рассеянного под углом $\theta = 60^{\circ}$ к направлению падающего излучения.
- **246.** Работа выхода для вольфрама $7,7 \cdot 10^{-19}$ Дж. Какую частоту должен иметь свет, чтобы при его падении на вольфрамовую пластинку средняя скорость фотоэлектронов была равна 2000км/с?
- **247.** Фотон с энергией $\varepsilon = 0.25\,\mathrm{M}$ эВ рассеялся на свободном электроне. Энергия ε' рассеянного фотона равна $0.2\,\mathrm{M}$ эВ. Определить угол рассеяния θ .
- **248.** На поверхность лития падает монохроматический свет с длиной волны 310 нм. Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов U не менее 1,7 В. Определить работу выхода.
- **249.** Какая доля энергии фотона при эффекте Комптона приходится на электрон отдачи, если фотон претерпел рассеяние на угол $\theta = 180^{\circ}$? Энергия фотона ε до рассеяния равна 0,255 МэВ.
- **250.** Метеорологический шар, заполненный водородом, поднялся на высоту, где температура воздуха 0° С. Давление внутри шара $1,5 \cdot 10^{\circ}$ Па. Определить плотность водорода внутри шара.
- **251.** Какое число молекул находится в сосуде объёмом 5 м 3 при температуре 300 K, если давление газа 10^{-12} Па?

- **252.** В сосуде объёмом 1 м 3 под давлением 10^5 Па находится газ, количество вещества которого 2 моль. Какова средняя кинетическая энергия молекул этого газа?
- **253.** Давление в камере автомобильной шины при температуре 275 К равно 4,4·10⁵ Па. При движении автомобиля температура воздуха в камере повысилась до 300 К. На сколько при этом изменилось давление воздуха? Считать объём шины постоянным.
- **254.** В цилиндре дизельного двигателя в начале такта сжатия температура воздуха была равна 290 К. Определить температуру воздуха в конце такта сжатия, если объём уменьшился в 8 раз, а давление возросло в 32 раза.
- **255.** Баллон объёмом 0,02 м³ содержит сжатый кислород при температуре 300 К давлении 7,5 МПа. В процессе газосварки давление в баллоне понизилось до 5,9·10⁶Па, а температура стала равной 295 К. Определить массу кислорода израсходованную при газосварке.
- **256.** На сколько понизилось давление кислорода, находящегося в сосуде объёмом 0,2 м³ при температуре 280 K, если выпущено 0,08 кг газа?
- **257.** Сосуд вместимостью V =0,02 м³ содержит азот массой m_1 = 5 г и водород массой m_2 = 2 г при температуре T = 320K. Определить давление р смеси газов.
- **258.** В сосуде находятся m_1 =10 г кислорода и m_2 = 6 г углекислого газа при температуре $t^0 = 17^0 C$ и давлении P = 1,5 МПа. Найти молярную массу смеси газов и объём сосуда.
- **259.** В объёме 4 л находится газ массой 12 г при температуре 450 К. При какой температуре плотность этого газа станет равной 6 кг/м 3 , если давление возрастёт в 1,2 раза?
- **260.** Газ находится в сосуде под давлением $2.5 \cdot 10^4$ па. При сообщении газу $6 \cdot 10^4$ Дж теплоты он изобарно расширился и объём его увеличился на 2 м³. Определить изменение внутренней энергии и температуры.
- **261.** Какое количество тепла газ отдает холодильнику, если при совершении им работы в 100 Дж коэффициент полезного действия 25%.
- **262.** В цилиндре заключено 1,6 кг кислорода при температуре 17° С. До какой температуры нужно изобарно нагреть кислород, чтобы работа по расширению была равна $4\cdot10^{4}$ Дж?

- **263.** В ходе цикла Карно рабочее вещество получает от нагревателя 300кДж тепла. Температуры нагревателя 400 К, холодильника 200 К. Определить работу, совершаемую рабочим веществом за цикл.
- **264.** Для изобарного нагревания 800 моль газа на 500 К ему сообщили количество теплоты 9,4 МДж. Определить работу, совершаемую газом при расширении и приращение его внутренней энергии.
- **265.** В идеальном тепловом двигателе рабочее тело получив от нагревателя 40 кДж количества теплоты, совершило работу 27 кДж. Во сколько раз температура нагревателя выше температуры холодильника?
- **266.** В сосуде находятся 20 г азота и 32 г кислорода. Найти изменение внутренней энергии смеси этих газов при её охлаждении на 28 К.
- **267.** Азот, начальное давление которого $10^5 \Pi a$ и объём 10 л, расширяется изотермически, увеличивая свой объём в два раза. Найти работу совершаемую газом.
- **268.** В идеальной тепловой машине количество теплоты, полученное от нагревателя, равно 6,3 Дж. 80% этой теплоты передаётся холодильнику. Найти КПД машины и работу за один цикл.
- **269.** При расширении одноатомного газа от 0,2 м³ до 0,5 м³ его давление возросло от 404 кПа до 808 кПа. Найти работу газа, количество подведённой к газу теплоты и изменение его внутренней энергии.
- **270.** Вычислите удельную энергию связи для нуклонов в ядре кислорода $^{16}_{8}O$.
- **271.** За 4 дня активность радиоактивного элемента уменьшилась в 2 раза. Определить период полураспада этого элемента.
- **272**. Какая энергия выделяется при ядерной реакции ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{1}^{3}H + {}_{1}^{1}H$?
- **273.** При бомбардировке алюминия $^{27}_{13}Al$ может захватить α частицу, испустив при этом протон. Написать уравнение реакции и вычислить энергию, выделяющуюся при этой реакции.
- **274.** За какое время t распадается $\frac{1}{4}$ начального количества ядер радиоактивного изотопа, если период его полураспада $T_{\frac{1}{2}} = 24$ ч?

- **275.** Энергия связи E_{CB} ядра, состоящего из двух протонов и одного нейтрона, равна 7,72 МэВ. Определить массу m_a нейтрального атома, имеющего это ядро.
- **276.** Определить энергию ядерной реакции ${}_{3}^{7}Li + {}_{1}^{1}H \rightarrow {}_{4}^{7}Be + {}_{0}^{1}n$.
- **277.** Определить длину волны де Бройля λ электрона, если его кинетическая энергия E_K =1 кэВ.
- **278.** Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы длина волны де Бройля была равна 0,1 нм?
- **279.** Приняв, что минимальная энергия Е нуклона в ядре равна 10 МэВ. Оценить, исходя из соотношения неопределённостей, линейные размеры ядра.

ПРИЛОЖЕНИЕ

1. Основные физические постоянные

Физические постоянные	Обозначения	Значения
Ускорение свободного падения	g	9,81 m/c ²
Гравитационная постоянная	G	$6,67\cdot10^{-11}$ м 3 /кг·с 2
Постоянная Авогадро	$N_{\scriptscriptstyle A}$	$6,62 \cdot 10^{23}$ моль $^{-1}$
Молярная газовая постоянная	R	8,31Дж/моль·K
Постоянная Больцмана	k	1,38·10 -23 Дж/К
Элементарный заряд (заряд электрона)	e	1,6·10 ⁻¹⁹ Кл
Скорость света в вакууме	c	3·10 ⁸ м/с
Постоянная Стефана-Больцмана	σ	$5,67\cdot10^{-8}\mathrm{BT/M^2\cdot K^4}$
Постоянная закона смещения Вина	b	2,9·10 ⁻³ м·К
Постоянная Планка	h	6,62·10 ⁻³⁴ Дж·с
Комптоновская длина волны электрона	λ_{C}	$2,43\cdot10^{-12}\mathrm{M}$
Атомная единица массы	а.е.м.	1,66·10 −27 кг
Электрическая постоянная	\mathcal{E}_0	$8,85\cdot10^{-12}\Phi/M$
Магнитная постоянная	μ_0	$4\pi \cdot 10^{-7} \Gamma$ H/M

2. Масса и энергия покоя некоторых частиц

Частица	m_0		E_0	
	КГ	а.е.м.	Дж	МэВ
Электрон	$9,11\cdot10^{-31}$	0,00055	8.16.10	0,511
Протон	1,672·10 ⁻²⁷	1,00728	1,5·10 ⁻¹⁰	938
Нейтрон	$1,675\cdot10^{-27}$	1,00867	$1,51\cdot 10^{-10}$	939

3,35·10 ⁻²⁷	2,01355	3,00.10-10	1876
$6,64\cdot10^{-27}$	4,00149	5,96·10 ⁻¹⁰	3733
$2,41\cdot10^{-27}$	0,14498	$2,16\cdot10^{-10}$	135

3. Массы некоторых нейтральных атомов в а.е.м.

Элемент	Изотоп	Macca	Элемент	Изотоп	Macca
Водород	H_1^1	1,00783	Алюминий	$^{27}_{13}Al$	26,98153
Водород	H_{1}^{2}	2,01410	Магний	$^{24}_{12}Mg$	23,98504
Водород	H_1^3	3,01605	Серебро	$^{107}_{47}Ag$	107,868
Гелий	⁴ ₂ He	4,00260	Бериллий	⁹ ₄ Be	9,01505
Гелий	$_{2}^{3}He$	3,01603	Уран	$^{235}_{92}U$	235,11750
Углерод	¹² ₆ C	12,00380			
Литий	$_{3}^{7}Li$	7,01601			
Кислород	¹⁷ ₈ O	17,00456			

Множители и приставки для образования десятичных кратных и дольных единиц и их наименования

Приставка			Приставка		
Наименован	Обозначен	Множите	Наименован	Обозначен	Множител
ие	ие	ЛЬ	ие	ие	Ь
экса	Э	10^{18}	деци	Д	10 ⁻¹
пэта	П	10^{15}	санти	c	10^{-2}
тера	T	10^{12}	МИЛЛИ	M	10^{-3}
гига	Γ	10^{9}	микро	МК	10^{-6}
мега	M	10^{6}	нано	Н	10 ⁻⁹
кило	К	10^{3}	пико	П	10^{-12}
гекто	Γ	10^{2}	фемто	ф	10^{-15}
дека	да	10^{1}	атто	a	10 ⁻¹⁸

Греческий алфавит

Обозначения букв	Названия букв	Обозначения букв	Названия букв
Α,α	альфа	N,v	ню (ни)
В,β	бета	Ξ,ξ	кси

Γ,γ	гамма	O,o	омикрон
Δ,δ	дельта	Π,π	ПИ
Е,ε	эпсилон	Р,р	Po
Z , ζ	дзета	Σ,σ	сигма
Н,η	эта	Т,τ	тау
Θ,θ	тета	<i>Y</i> ,υ	ипсилон
I,t	йота	Ф,ф	фи
K,ĸ	каппа	X,χ	ХИ
Λ,λ	лямбда	Ψ,ψ	пси
M,µ	ми (мю)	Ω , ω	омега