МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

ФИЗИКА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

М. А. Красненков, Ю. И. Туснов, Ю. К. Фетисов, Н. А. Экономов. Ю.В. Коробкин. Физика. Методические указания и контрольные задания. /Моск. гос. ин-т радиотехники, электроники и автоматики (технический университет/ -М., 2000.

ISBN 5-7339-0027-X

Учебное пособие предназначено для студентов-заочников, изучающих курс общей физики. Пособие содержит программу курса, список рекомендуемой литературы, указания по решению задач, около 300 задач для контрольных заданий и справочную таблицу. Учебный материал соответствует программе курса общей физики, изучаемого в технических вузах.

Табл. 7. Ил. 1. Библиогр.: 10 назв.

Печатается по решению редакционно-издательского совета Московского государственного института радиотехники, электроники и автоматики (технический университет).

ISBN 5-7339-0027-X

Московский государственный институт радиотехники, электроники и автоматики (технический университет), 2000.__

ВВЕДЕНИЕ

Московский государственный институт радиотехники, электроники и автоматики (технический университет) готовит инженеров - специалистов широкого профиля в области проектирования и эксплуатации автоматизированных систем управления, радиотехнических и электроакустических систем и устройств, оптико-электронных систем, средств вычислительной и микропроцессорной техники и их математического обеспечения, электронных и микроэлектронных приборов.

В основу принятой в МИРЭА системы обучения положена фундаментальная подготовка студентов на младших курсах в сочетании с производственным обучением на старших курсах. При этом одной из важнейших дисциплин в теоретической и практической подготовке современного инженера является курс физики. Студенты всех специальностей изучают физику в расширенном объеме при углубленном преподавании специальных разделов.

Предлагаемое учебно-методическое пособие по курсу физики предназначено для студентов всех специальностей, обучающихся на заочном отделении МИРЭА.

Необходимость переиздания данного пособия продиктована Во-первых, обстоятельствами. важными учебное пособие, в отличие от пособия "Методические указания и контрольные задания для студентов-заочников" под редакцией А. Г. Чертова, учитывает специфику преподавания курса общей физики при подготовке специалистов по наиболее наукоемким именно, современной отраслям техники, a ПО кибернетике оптоэлектронике, И вычислительной осуществляемой в МИРЭА. Во-вторых, со времени первого издания настоящего учебного пособия прошло уже несколько лет и, фактически, оно стало библиографической редкостью, что затрудняет в последнее время организационно-методическую и преподавательскую работу на заочном отделении. Кроме того, во втором издании исправлены замеченные ошибки и опечатки.

Материал пособия в соответствии с учебными планами разбит на три части. Содержание первой части - физические основы механики, молекулярная физика и термодинамика; второй части - электричество и магнетизм; третьей части волновая и квантовая оптика, атомная и ядерная физика. В каждом разделе содержится рабочая программа соответствующей курса физики, основные формулы с необходимыми комментариями и контрольные задания. Кроме того, пособие включает информацию организации учебной работы со об студентами-заочниками на кафедре физики МИРЭА, требования к оформлению контрольных работ, пример решения задачи, физические справочную таблицу, содержащую основные константы, необходимые для самостоятельного решения задач, и рекомендуемую учебную литературу.

При составлении и подборе задач для контрольных работ специальностей, vчтена специфика ПО которым ведется МИРЭА. Наиболее существенной инженеров В переработке подверглись контрольные задания по третьей части курса физики, как содержащей учебный материал по наиболее современным и наукоемким разделам курса физики. При этом оригинальные использовали как свои, авторы составленные в результате многолетней работы на кафедре физики МИРЭА, так и наиболее удачные задачи из ряда учебнометодических пособий и сборников задач, таких, например, как: Чертов А. Г., Воробьев А. А. Задачник по физике. -М.: Высшая школа, 1988; Иродов И. Е. Задачи по общей физике. -М.: Наука, 1988; Физика. Методические указания и контрольные задания /Под ред. Чертова А. Г. -М.: Высшая школа, 1987; Волькенштейн задач по общему курсу физики. -М.: Высшая В. С. Сборник Сборник задач по общему курсу 1978: школа, Термодинамика и молекулярная физика /Под ред. Сивухина Д. В. -М.: Наука, 1976; Сборник задач по общему курсу физики. Электричество и магнетизм /Под ред. Яковлева И. А., -М.: Наука, 1977; Савельев И. В. Сборник вопросов и задач по общей физике. -М.: Наука, 1982; Иродов И. Е. Сборник задач по атомной и ядерной физике. -М.: Атомиздат, 1976; Богомолова Л. Д., Горяга Г. И. и др. Задачи по курсу атомной физики /МГУ. -М., 1979.

Авторы пособия выражают глубокую благодарность преподавателям кафедры физики МИРЭА, принявшим участие в анализе задач и сделавшим ценные замечания при прочтении рукописи.

ОРГАНИЗАЦИЯ ИЗУЧЕНИЯ КУРСА ФИЗИКИ НА ЗАОЧНОМ ОТДЕЛЕНИИ МИРЭА

На заочном отделении МИРЭА курс общей физики преподается в течение трех семестров:

Физика - часть I: Механика. Молекулярная физика.

Физика - часть II: Электричество. Магнетизм.

Физика - часть III: Оптика. Физика атома и атомного ядра.

При изучении каждой части физики предусматриваются следующие виды работ:

- 1. Теоретическое изучение курса.
- 2. Выполнение лабораторных работ.
- 3. Выполнение контрольных работ.
- 4. Консультации.
- 5. Сдача зачетов и экзаменов по курсу.

На заочном отделении МИРЭА существуют два вида обучения - групповой и индивидуальный.

Групповой метод обучения

- 1. Теоретическое изучение курса осуществляется на лекциях и практических занятиях по расписанию, составленному учебной частью. Посещение лекций и практических занятий студентами обязательно.
- 2. Лабораторные работы выполняются в лаборатории кафедры физики согласно расписанию, составленному учебной

частью. Студенты в каждом семестре выполняют 4 лабораторные часов). График выполнения описания предоставляются лаборатории. студентам В Описания лабораторных работ можно также получить В библиотеке МИРЭА. Выполненная практически, полностью оформленная и лабораторная работа отмечается защищенная подписью преподавателя, проводившего занятия, И регистрируется журнале. Если занятие в лабораторном практикуме пропущено по уважительной причине, то отработка лабораторной произведена в дни дополнительных должна быть заочного отделения. Расписание этих дополнительных занятий, проводимых в конце каждого семестра, имеется на кафедре и вывешивается на доске объявлений.

- 3. Контрольные работы по каждой части курса студенты выполняют 2 контрольные работы по данному методическому пособию. Контрольные работы проводятся лектором аудиторно. Рецензирование контрольных работ осуществляет ведущий лектор. В случае незачета контрольной работы студент должен исправить или решить заново задачи, отмеченные преподавателем, и сдать работу на повторное рецензирование.
- 4. Консультации проводятся ведущим лектором по расписанию, согласованному с учебной частью.
- 5. Зачеты и экзамены по каждой части физики студенты сдают в период сессии, по расписанию составленному учебной частью. Студенты допускаются к зачетам только при наличии двух зачтенных контрольных работ и полностью выполненных лабораторных работ. Сдача экзамена возможна только после получения зачета. В случае неявки по уважительной причине или получения неудовлетворительной оценки, зачеты и экзамены могут быть сданы в дни пересдач по расписанию учебной части и, в исключительных случаях, по направлению, подписанному деканом факультета. Экзамены у студентов, обучающихся по форме, групповой ΜΟΓΥΤ быть приняты учебнона консультационном пункте кафедры физики - УКП.

Индивидуальный метод обучения

- 1. Теоретическое изучение курса физики осуществляется по литературе, указанной ниже. При изучении курса необходимо руководствоваться программой приведенной в данном пособии.
- 2. Лабораторные работы выполняются в лаборатории кафедры физики. График выполнения и описания лабораторных предоставляются студентам непосредственно лаборатории. Работа считается полностью выполненной при наличии подписи преподавателя в тетради и соответствующей отметки в журнале. Для того, чтобы выполнить полный объём лабораторных работ по соответствующей части курса физики, должен внимательно ознакомиться с расписанием выполнения лабораторных работ заочного отделения (заочные деканаты), выбрать группу, которая выполняет практикум по данной части в дни удобные для студента, явиться на первое занятие к 18.00 часам и заявить о своём желании работать с данной группой преподавателю, ведущему занятия. После записи журнале студент может приступать К выполнению лабораторных работ.
- 3. Контрольные работы по каждой части курса физики, руководствуясь таблицами пособия, данного студентамисдано две контрольные работы. заочниками должно быть контрольные работы должны быть сданы Выполненные контрольной случае незачета В работы, деканат. после устранения ошибок, работа сдается на повторное рецензирование также в деканат.
 - 5. Консультации проводятся на УКП кафедры физики.
- 6. Зачеты и экзамены студенты-заочники сдают на УКП в период экзаменационной сессии. Задолженности по направлению, подписанному деканом, можно сдать в течение семестра. Для допуска к сдаче зачета необходимо представить три полностью выполненные лабораторные работы по соответствующей части курса и две зачтенные контрольные работы. Для допуска к сдаче экзамена необходимо иметь зачет по соответствующей части курса физики.

<u>Примечание</u>: дубликаты зачетных и экзаменационных карточек оформляются на УКП или заведующим кафедрой в часы приема.

Указания по выполнению и оформлению контрольных работ

К выполнению контрольных работ по курсу общей физики следует приступать только после изучения теоретического материала, соответсвующего данному разделу программы, внимательного ознакомления с правилами оформления и решения задач и примером решения задачи, приведенными в данном пособии.

- 1. За время изучения курса общей физики студент-заочник должен выполнить и сдать шесть контрольных работ.
- 2. В каждой контрольной работе студент-заочник должен решить 5 задач того варианта, номер которого совпадает с последней цифрой его шифра. Номера задач, входящих в контрольную работу, определяются по таблицам вариантов для соответствующей части курса физики, приведенным в пособии.
- 3. Контрольные работы выполняются чернилами, каждая в отдельной школьной тетради (12 или 24 листа), на обложке которой приводятся сведения по следующему образцу:

Контрольная работа по физике № 2 студента ф-та АП Андреева В. П. шифр 257320

Адрес: г. Тьмускорпионь, ул. Светлая, 5-73.

4. При групповом методе обучения контрольные работы сдаются на проверку лектору, ведущему занятия.

При индивидуальном методе обучения контрольные работы сдаются на проверку в деканат соответствующего заочного факультета либо высылаются по почте в адрес факультета.

Сдавать на проверку следует одновременно не более одной работы. Во избежание одних и тех же ошибок очередную работу следует сдавать на проверку только после получения предыдущей работы.

- 5. Если контрольная работа при проверке не зачтена, то необходимо ответить на замечания, исправить ошибки, отмеченные преподавателем, и дать правильное решение задачи. Письменные ответы на замечания и правильное решение задачи следует привести в той же тетради, отдельно после всех задач, указав при этом только номер соответствующей задачи (условия задачи переписывать не надо). После этого исправленную контрольную работу следует повторно сдать на проверку.
- 6. Зачтенные контрольные работы предъявляются экзаменатору. Студент должен быть готов во время сдачи зачета или экзамена дать пояснения по существу решения задач, входящих в выполненную контрольную работу.

Указания по решению и оформлению задач

Контрольные работы студентов-заочников проверяются преподавателем института в отсутствии студента, выполнившего работу. Поэтому, каждая задача должна быть аккуратно оформлена, необходимые И содержать пояснения, все демонстрирующие глубину понимания студентом изучаемого раздела физики.

При решении и оформлении задач необходимо придерживаться следующего плана:

- 1. Решение каждой задачи должно начинаться с новой страницы тетради. Для замечаний преподавателя необходимо оставить поля на страницах тетради.
- 2. Укажите номер задачи из настоящего пособия и полностью без сокращений перепишите условия задачи в тетрадь.

- 3. Сделайте чертеж, поясняющий содержание задачи (в тех случаях когда это возможно). Выполнять чертеж надо аккуратно с использованием чертежных принадлежностей.
- 4. Выпишите основные законы и формулы на которых базируется решение задачи. Дайте словесную формулировку этих законов, разъясните буквенные обозначения в формулах. Если при решении задачи применяется формула, полученная для частного случая и не выражающая какой-либо физический закон, или не являющаяся определением какой-либо физической величины, то эту формулу следует вывести в ходе решения задачи.
- 5. Сопровождайте каждый этап решения задачи короткими, но исчерпывающими пояснениями.
- 6. Получите решение задачи в общем виде, то есть в виде формулы, выражающей искомую величину через буквенные обозначения величин, заданных в условиях задачи. Находить численные значения промежуточных величин не надо.
- 7. Проведите проверку размерности полученной формулы. Для этого подставьте в правую часть полученной формулы вместо символов величин обозначения единиц в системе СИ. Проведите с ними необходимые действия и убедитесь в том, что получаемая при этом единица в системе СИ соответствует искомой величине (см. пример решения задачи).
- 8. Подставьте в формулу числовые значения величин, выраженные в единицах системы СИ. Проведите вычисления, руководствуясь правилами приближенных вычислений, запишите в ответе числовое значение и сокращенное наименование единицы рассчитанной величины.

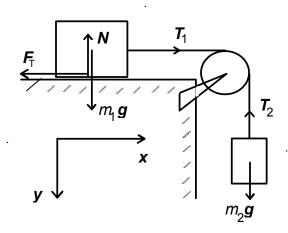
При подстановке чисел в формулу и при записи ответа числовые значения величин записывайте как произведение десятичной дроби с одной значащей цифрой перед запятой на соответствующую степень десяти. Например, вместо 3520 надо записать $3,52\ 10^3$, вместо 0,00129 надо записать $1,29\ 10^{-3}$ и т. д.

9. Оцените, где это возможно, правдоподобность полученного результата. Например, скорость света не может

быть больше скорости света в вакууме $3 \cdot 10^8$ м/с, коэффициент полезного действия тепловой машины не может быть больше единицы и т. д.

10. В конце каждой задачи необходимо написать слово "Ответ", привести буквенное и рассчитанное числовое значение искомой величины с указанием размерности. Например:

Ответ: V=10 м/c.


Пример решения задачи

Условие: На столе лежит брусок массой $m_1 = 4$ кг. К бруску привязан один конец нити, другой конец которой перекинут через блок, закрепленный на краю стола. К свободному концу нити подвешен груз массой $m_2=1$ кг. Коэффициент трения между бруском и столом равен k. Найти силу натяжения нити T и ускорение a, с которым будет двигаться брусок. Массой блока пренебречь, нить считать невесомой и нерастяжимой.

Решение: Геометрия задачи показана на рисунке.

Для решения задачи воспользуемся законами Ньютона, которые описывают движение тел под действием внешних сил. Прежде всего, выберем оси координат x и y как показано на рисунке и расставим силы, действующие на брусок и на груз. На брусок действуют сила тяжести $m_1 g$, сила реакции опоры N, сила со стороны нити T_1 и сила трения F_T . На груз действуют сила тяжести $m_2 g$ и сила со стороны нити T_2 .

Запишем второй закон Ньютона для каждого тела в отдельности. Для бруска имеем

$$m_1 \pmb{a} = \pmb{N} + m_1 \pmb{g} + \pmb{T}_1 + \pmb{F}_{\scriptscriptstyle \mathrm{T}} \,. \eqno(1)$$
Для груза имеем

$$m_2 \boldsymbol{a} = m_2 \boldsymbol{g} + \boldsymbol{T}_2 \ . \tag{2}$$

Из рисунка очевидно, что под действием силы тяжести груз будет опускаться, перемещаясь в положительном направлении оси y, а брусок будет при этом двигаться с ускорением вдоль оси x.

Чтобы решить систему уравнений (1)-(2), спроецируем уравнения на оси координат. Проекция уравнения (1) на ось x дает: $m_1 a = T_1 - F_{\scriptscriptstyle \rm T}$. (3)

Проекция уравнений (1) и (2) на ось y дает, соответственно:

$$0 = -N + m_1 g , (4)$$

$$m_2 a = m_2 g - T_2 . (5)$$

Уравнение (4) отражает тот факт, что брусок не перемещается вдоль оси y. Поскольку нить по условию задачи нерастяжима, то силы T_1 и T_2 равны по величине и противоположны по направлению. Обозначим $T_1 = T_2 = T$. Сила трения следующим образом выражается через силу реакции опоры $F_{\rm T} = kN$.

Таким образом, используя уравнения (3)-(5) и принятые обозначения, находим, что движение бруска и груза описывается следующей системой уравнений:

$$m_1 a = T - k m_1 g \quad , \tag{6}$$

$$m_2 a = m_2 g - T \quad . \tag{7}$$

Складывая уравнения (6) и (7), получаем искомую формулу для ускорения, с которым будет двигаться брусок

$$a = \frac{m_2 - km_1}{m_1 + m_2} g . (8)$$

Подставляя выражение (8) в уравнение (6), находим силу натяжения нити

$$T = \frac{m_1 m_2 (1+k)}{m_1 + m_2} g. (9)$$

Проверим размерность полученных величин:

$$a = \frac{[k..]}{([k...] + \{k..])}[.../c^2] = [.../c^2]$$
 (ускорение),
$$T = \frac{[k..][k..]}{[k..] + [k..]}[.../c^2] = [k..../c^2] = [H]$$
 (сила).

Найдем численные значения ускорения бруска и силы натяжения нити, подставив в (8) и (9) массы в [к ϵ] и ускорение в [м/c²]:

$$a = \frac{1 - 0.1 * 4}{4 + 1} * 9.8 = 1,176..[\text{M}/\text{c}^2], \sim T = \frac{4 * 1 * (1 + 0.1)}{4 + 1} * 9.8 = 8,624..[\text{H}]$$

Otbet: $a=1,176 \text{ m/c}^2$, T=8,624 H.

ЧАСТЬ І. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ Ч.1

Физические основы механики

ВВЕДЕНИЕ. КИНЕМАТИКА МАТЕРИАЛЬНОЙ ТОЧКИ. Механическое движение. Системы отсчета. Материальная точка. Траектория. Перемещение и путь. Скорость и ускорение. Тангенциальное и нормальное ускорения. Движение материальной точки по окружности. Связь между линейными и угловыми характеристиками движения.

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ. Первый закон Ньютона. Инерциальные системы отсчета. Взаимодействие тел. Сила, масса. Второй закон Ньютона. Импульс. Третий закон Ньютона. Изолированная система материальных тел. Закон сохранения импульса. Преобразования Галилея. Границы применения классической механики.

Работа. Работа переменной силы. Мощность. Консервативные и неконсервативные силы. Потенциальная энергия. Связь между силой и потенциальной энергией. Энергия упруго деформированного тела. Кинетическая энергия. Закон сохранения энергии в механике.

ДИНАМИКА ТВЕРДОГО ТЕЛА. Понятие абсолютно твердого тела. Поступательное и вращательное движение тела. Момент силы. Момент импульса. Момент инерции. Вычисление момента инерции простейших тел (шар, диск, стержень). Основной закон динамики вращательного движения. Закон сохранения момента импульса. Кинетическая энергия тела, вращающегося вокруг неподвижной оси.

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ. Периодические Квазиупругие Гармонические колебания. движения. Уравнение Гармонический осциллятор. гармонических колебаний. Основные характеристики колебательного движения: частота, период. Сложение амплитуда, фаза, колебаний. Математический физический маятники. Кинетическая, потенциальная и полная энергия гармонического колебания. Затухающие колебания. Вынужденные колебания. Резонанс.

Молекулярная физика и термодинамика

ТЕРМОДИНАМИЧЕСКИЕ СИСТЕМЫ. ИДЕАЛЬНЫЙ ГАЗ. Молекулярно-кинетический и термодинамический методы изучения макроскопических явлений. Тепловое движение молекул. Броуновское движение. Взаимодействие молекул. Параметры системы. Равновесные и неравновесные процессы.

ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ.

Идеальный газ как молекулярно-кинетическая реальных газов. Давление идеального газа. Средняя кинетическая энергия поступательного движения одноатомной молекулы и её температурой. Основное уравнение молекулярнотеории кинетической газов И его следствия. Уравнение Менделеева-Клапейрона. Уравнения изопроцессов.

Дальтона. Распределение молекул газа по скоростям. Функция распределения. Распределение Максвелла. График распределения Максвелла. Наиболее вероятная, средняя арифметическая и средняя квадратичная скорости молекул. Столкновение между молекулами. Средняя длина свободного пробега.

ОСНОВЫ ТЕРМОДИНАМИКИ. Число степеней свободы и средняя энергия многоатомной молекулы. Внутренняя энергия идеального газа. Первое начало термодинамики. Работа газа при изменении объема. Работа газа при различных изопроцессах. Теплоёмкость. Теплоёмкость идеального газа при постоянном объеме и при постоянном давлении. Уравнение Майера. Адиабатический процесс. Уравнение Пуассона. Второе начало термодинамики. Тепловой двигатель. Круговые процессы. Цикл Карно, к.п.д. цикла Карно.

РЕАЛЬНЫЕ ГАЗЫ. Отступления от законов идеального газа. Взаимодействие молекул. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса. Сравнение изотерм Ван-дер-Ваальса с изотермами, полученными экспериментально.

ОСНОВНЫЕ ФОРМУЛЫ ПО ФИЗИКЕ Ч.1

• Кинематическое уравнение движения материальной точки вдоль оси x:

$$x = f(t)$$
,

где f(t) - некоторая функция времени.

• Средняя скорость:

$$\langle v_x \rangle = \frac{\Delta x}{\Delta t}$$
.

• Средняя путевая скорость:

$$v = \frac{\Delta s}{\Delta t} .$$

где Δs - путь, пройденный точкой за интервал Δt .

• Мгновенная скорость:

$$v_x = \frac{dx}{dt}$$
.

• Среднее ускорение:

$$\langle a_x \rangle = \frac{\Delta v_x}{\Delta t}$$
.

• Мгновенное ускорение:

$$a_x = \frac{dv_x}{dt}.$$

• Кинематическое уравнение движение материальной точки по окружности:

$$\varphi = f(t); \quad r = R = \text{const.}$$

• Угловая скорость:

$$\omega = \frac{d\varphi}{dt}.$$

• Угловое ускорение:

$$\varepsilon = \frac{d\omega}{dt}.$$

• Связь между линейными и угловыми величинами, характери-зующими движение точки по окружности:

$$v = \omega R$$
; $a_{\tau} = \varepsilon R$; $a_n = \omega^2 R$,

где v - линейная скорость; a_{τ} и a_n -тангенциальное и нормальное ускорения; ω - угловая скорость; ε - угловое ускорение; R - радиус окружности.

• Полное ускорение:

$$a = \sqrt{a_n^2 + a_\tau^2}$$
 ИЛИ $a = R\sqrt{\varepsilon^2 + \omega^4}$.

- Угол между полным ускорением a и нормальным a_n : $\alpha = \arccos(a_n/a)$.
- Кинематичкское уравнение гармонических колебаний матери-альной точки:

$$x = A\cos(\omega t + \varphi),$$

где x - смещение, A - амплитуда колебаний, ω - круговая или циклическая частота, φ - начальная фаза.

• Скорость материальной точки, совершающей гармонические колебания:

$$v = -A\omega Sin(\omega t + \varphi).$$

• Ускорение материальной точки, совершающей гармонические колебания:

$$a = -A\omega^2 Cos(\omega t + \varphi).$$

• Период колебаний математического маятника:

$$T=2\pi\sqrt{\frac{l}{g}} ,$$

где l - длина маятника, g - ускорение свободного падения.

• Период колебаний физического маятника:

$$T = 2\pi \sqrt{\frac{J}{mga}} ,$$

где J - момент инерции относительно оси вращения, m - масса тела, a - расстояние от оси вращения до центра масс тела.

• Импульс тела:

$$p = mv$$
,

где m - масса тела, v - скорость тела.

• Второй закон Ньютона:

$$a=\frac{F}{m}$$
,

где F - сила, действующая на тело, m - масса тела.

• Силы, рассматриваемые в механике:

а) сила упругости
$$F = -kx$$
,

где k - коэффициент упругости, x - абсолютная деформация;

б) сила тяжести

$$F = mg$$
,

в) сила трения

$$F = fN$$
,

где f - коэффициент трения, N - сила нормального давления.

• Закон сохранения импульса:

$$\sum_{i=1}^{N} p_i = const.$$

• Кинетическая энергия тела, движущегося поступательно:

$$T = \frac{mv^2}{2} \qquad \text{или} \qquad T = \frac{p^2}{2m}.$$

- Потенциальная энергия:
 - а) упругодеформированной пружины:

$$W=\frac{1}{2}kx^2,$$

б) тела, находящегося в однородном поле силы тяжести:

$$\Pi = mgh$$
,

где h - высота тела над уровнем, принятым за нулевой (формула справедлива при условии $h \le R$, где R - радиус Земли).

• Закон сохранения механической энергии:

$$E = T + \Pi = const.$$

• Основное уравнение вращательного движения относительно неподвижной оси:

$$M = J\varepsilon$$
,

где M - результирующий момент внешних сил, действующих на тело, ε - угловое ускорение, J - момент инерции тела относительно оси вращения.

- Моменты инерции некоторых тел массы *m* относительно оси, проходящей через центр масс:
- а) стержня длины l относительно оси, перпендикулярной к стержню:

$$J = \frac{1}{12} m l^2 \; ;$$

б) обруча (тонкостенного цилиндра) относительно оси, перпендикулярной к плоскости обруча (совпадающей с осью цилиндра):

$$J=mR^2$$

где R - радиус обруча (цилиндра);

в) диска радиусом R относительно оси, перпендикулярной к плоскости диска:

$$J=\frac{1}{2}\,mR^2\,.$$

• Момент инерции тела относительно произвольной оси (теорема Штейнера):

$$J=J_0+ma^2,$$

где J_0 - момент инерции тела относительно оси, проходящей через центр масс параллельно заданной оси; m - масса тела; a - расстояние между осями.

• Момент импульса тела, вращающегося относительно неподвижной оси:

$$L = J\omega$$
,

где ω - угловая скорость тела.

• Закон сохранения момента импульса системы тел, вращающихся вокруг неподвижной оси:

$$\sum_{i=1}^{N} J_i \omega_i = const.$$

• Кинетическая энергия тела, вращающегося вокруг неподвижной оси:

$$T = \frac{J\omega^2}{2}$$
.

• Количество вещества однородного газа (в молях):

$$v = \frac{N}{N_A}$$
 или $v = \frac{m}{\mu}$,

где N - число молекул газа; N_A - число Авогадро; m - масса газа; μ -молярная масса газа.

• Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа):

$$pV = \frac{m}{\mu}RT = vRT ,$$

где p - давление газа, V - объем газа, m - масса газа; μ - молярная масса газа, R - универсальная газовая постоянная, $v = m/\mu$ - количество вещества, T - термодинамическая температура Кельвина.

- Опытные газовые законы, являющиеся частными случаями уравнения Клапейрона-Мендлеева для изопроцессов:
- а) закон Бойля-Мариотта (изотермический процесс T=const, m=const):

$$pV = \text{const}$$
,

б) закон Гей-Люссака (изобарический процесс: p = const, m = const):

$$V/T = const,$$

в) закон Шарля (изохорический процесс: V=const, m=const):

$$p/T = \text{const.}$$

• Закон Дальтона, определяющий давление смеси газов:

$$p = p_1 + p_2 + \ldots + p_n,$$

где p_i - парциальные давления компонент смеси, n - число компонентов смеси.

• Концентрация молекул (число молекул в единице объёма):

$$n = \frac{N}{V} = \frac{N_A}{\mu} \rho \quad ,$$

где N - число молекул, содержащихся в данной системе, ρ - плотность вещества.

• Основное уравнение кинетической теории газов:

$$p = \frac{2}{3}n < w_n > ,$$

где $<\!\!w_n\!\!>$ - средняя кинетическая энергия поступательного движения молекулы.

• Средняя кинетическая энергия поступательного движения молекулы:

$$w_n = \frac{3}{2} kT \quad ,$$

где k - постоянная Больцмана.

• Средняя полная кинетическая энергия молекулы:

$$\langle w_i \rangle = \frac{i}{2} kT$$
,

где i - число степеней свободы молекулы.

• Зависимость давления газа от концентрации молекул и температуры:

$$p = nkT$$
.

• Скорости молекул:

а) средняя квадратичная
$$< v_{KB} > = \sqrt{\frac{3kT}{m_1}} = \sqrt{\frac{3RT}{\mu}}$$
,

б) средняя арифметическая
$$< v> = \sqrt{\frac{8kT}{\pi m_1}} = \sqrt{\frac{8RT}{\pi \mu}}$$
,

в) наиболее вероятная
$$= \sqrt{\frac{2kT}{m_1}} = \sqrt{\frac{2RT}{\mu}}$$
 ,

где m_1 - масса одной молекулы.

• Удельные теплоёмкости газа при постоянном объёме (c_v) и при постоянном давлении (c_n) :

$$c_{V} = \frac{i}{2} \frac{R}{\mu}, \qquad c_{p} = \frac{i+2}{2} \frac{R}{\mu}.$$

- Связь между удельной (c) и молярной (C) теплоёмкостями: $c = C/\mu$.
- Уравнение Роберта Майера: $C_n C_v = R$.
- Внутренняя энергия идеального газа: $U = \frac{m}{u} \frac{i}{2} RT = \frac{m}{u} C_{\nu} T .$
- Первое начало термодинамики: $Q = \Delta U + A,$

где Q - теплота, сообщенная системе (газу); ΔU - изменение внутренней энергии системы; A- работа совершенная системой против внешних сил.

• Работа расширения газа:

а) в общем случае:
$$A = \int_{V_1}^{V_2} p dV$$
,

б) при изобарическом процессе $A = p(V_2 - V_1)$,

в) при изотермическом процессе $A = \frac{m}{\mu} RT \ln \left(\frac{V_2}{V_1} \right)$,

c) при адиабатическом процессе $A = -\Delta U = -\frac{m}{\mu} C_{\nu} \Delta T \ ,$

или
$$A = \frac{RT_1}{\gamma - 1} \frac{m}{\mu} \left[1 - \left(\frac{V}{V_2} \right)^{\gamma - 1} \right],$$

где $\gamma = C_p/C_v$ - показатель адиабаты.

• Уравнения Пуассона, связывающие параметры идеального газа при адиабатическом процессе:

$$pV^{\gamma} = \text{const}, \quad \frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma - 1}, \quad \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{\gamma}, \quad \frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}}.$$

• Термический к.п.д. цикла:

$$\eta = \frac{Q_1 - Q_2}{Q_1} ,$$

где Q_1 - теплота, полученная телом от нагревателя; Q_2 - теплота, переданная рабочим телом охладителю.

• Термический к.п.д. цикла Карно:

$$\eta = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1} ,$$

где T_1 и T_2 - термодинамические температуры нагревателя и охладителя.

КОНТРОЛЬНАЯ РАБОТА № 1

Таблица1. Варианты к контрольной работе № 1.

Вариант		Номера	задач		
0	102	109	128	139	145
1	108	110	129	140	146
2	107	113	131	142	148
3	103	114	132	141	147
4	104	125	134	144	150
5	106	112	130	140	149
6	105	122	133	143	148
7	103	121	136	141	147

8	101	118	137	139	150
9	108	111	138	144	145

- **101**. Определить скорость v и полное ускорение a точки в момент времени t=2 с, если она движется по окружности радиусом R=1 м согласно уравнению $\xi=At+Bt^3$, где A=8 м/с; B=-1 м/с³; ξ криволинейная координата, отсчитанная от некоторой точки, принятой за начальную, вдоль окружности.
- **102.** Точка обращается по окружности радиусом R=1,2 м. Уравнение движения точки $j=At+Bt^3$, где A=0,5 рад/с; B=0,2 рад/с³. Определить тангенциальное a_t , нормальное a_n и полное a ускорения точки в момент времени t=4 с.
- **103**. Определить полное ускорение a в момент времени t=3 с точки, находящейся на ободе колеса радиусом R=0,5 м, вращающегося согласно уравнению ϕ =At+Bt³, где A=2 рад/с; B=0,2 рад/с³.
- **104**. Точка обращается по окружности радиусом R=8 м. В некоторый момент времени нормальное ускорение точки $a_n=4$ м/с², вектор полного ускорения \boldsymbol{a} образует в этот момент с вектором нормального ускорения \boldsymbol{a}_n угол $a=60^0$. Найти скорость v и тангенциальное ускорение a_t точки.
- **105.** По прямой линии движутся две материальные точки согласно уравнениям: $x_1 = A_1 + B_1 t + C_1 t^2$ и $x_2 = A_2 + B_2 t + C_2 t^2$, где $A_1 = 10$ м; $B_1 = 1$ м/с; $C_1 = -2$ м/с²; $A_2 = 3$ м; $B_2 = 2$ м/с; $C_2 = 0,2$ м/с². В какой момент времени t скорости этих точек будут одинаковы по величине? Найти ускорения a_1 и a_2 этих точек в момент t = 3 с.
- **106.** Диск радиусом R=0,2 м вращается согласно уравнению $\phi=A+Bt+Ct^3$, где A=3 рад; B=-1 рад/с; C=0,1 рад/с³. Определить тангенциальное a_t , нормальное a_n и полное a ускорения точек на окружности диска для момента времени t=10 с.
- **107.** Точка движется по прямой согласно уравнению $x=At+Bt^3$, где $A=6\,$ м/с; $B=\,$ -0,125 м/с 3 . Определить среднюю путевую скорость $<\!v\!>$ точки в интервале времени от $t=2c\,$ до t=6c.

- **108.** Материальная точка движется прямолинейно. Уравнение движения имеет вид $x=At+Bt^3$, где A=3 м/с; B=0,06 м/с³. Найти скорость v и ускорение a точки в моменты времени $t_1=0$ и $t_2=3$ с. Каковы средние значения скорости $< v_x >$ и ускорения $< a_x >$ за первые 3 секунды движения?
- **109.** В подвешенный на нити длиной l=1,8 м деревянный шар массой $m_1=8$ кг попадает горизонтально летящая пуля массой $m_2=4$ г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол $\alpha=3^{0}$? Размером шара пренебречь. Удар пули считать прямым, центральным.
- **110.** По небольшому куску мягкого железа, лежащему на наковальне массой m_1 =300 кг, ударяет молот массой m_2 =8 кг. Определить к.п.д. η удара, если удар неупругий. Полезной считать энергию, пошедшую на деформацию куска железа.
- 111. Шар массой m_1 =1 кг движется со скоростью v_1 =4 м/с и сталкивается с шаром массой m_2 =2 кг, движущегося навстречу ему со скоростью v_2 =3 м/с. Каковы скорости u_1 и u_2 шаров после удара? Удар считать абсолютно упругим, прямым, центральным.
- **112.** Шар массой m_1 =3 кг движется со скоростью v_1 =2 м/с и сталкивается с покоящимся шаром массой m_2 =5 кг. Какая работа будет совершена при деформации шаров? Удар считать абсолютно неупругим, прямым, центральным.
- **113.** Определить к.п.д. неупругого удара бойка массой m_1 =0,5 т, падающего на сваю массой m_2 =120 кг. Полезной считать энергию, пошедшую на вбивание сваи.
- **114.** Шар массой m_1 =4 кг движется со скоростью v_1 =5 м/с и сталкивается с шаром массой m_2 =6 кг, который движется ему навстречу со скоростью v_2 =2 м/с. Считая удар прямым, центральным, а шары абсолютно упругими, найти их скорости после удара.
- **115.** Вагон массой m=35 т движется на упор со скоростью v=0,2 м/с. При полном торможении вагона буферные пружины сжимаются на Δl =12 см. Определить максимальную силу F_{max} сжатия пружин.

- **116.** Шар массой m_1 =5 кг движется со скоростью v_1 =1 м/с и сталкивается с покоящимся шаром массой m_2 =2 кг. Определить скорости u_1 и u_2 шаров после удара. Шары считать абсолютно упругими, удар прямым, центральным.
- **117.** Из орудия массой m_1 =5 т вылетает снаряд массой m_2 =100 кг. Кинетическая энергия снаряда при выстреле T_1 =7,5 10^6 Дж. Какую кинетическую энергию получает орудие вследствие отдачи?
- 118. Два груза массами m_1 =10 кг и m_2 =15 кг подвешены на нитях длиной l=2 м так, что грузы соприкасаются между собой. Меньший груз был отклонен на угол φ =60 0 и отпущен. Определить высоту h, на которую поднимутся оба груза после удара. Удар считать неупругим.
- **119**. Определить работу растяжения двух соединенных последовательно пружин жесткостями k_1 =400 H/м и k_2 =250 H/м, если первая пружина при этом растянулась на Δl =2 см.
- **120.** Из ствола автоматического пистолета вылетела пуля массой m_1 =10 г со скоростью v=300 м/с. Затвор пистолета массой m_2 =200 г прижимается к стволу пружиной, жесткость которой k=25 кH/м. На какое расстояние отойдет затвор после выстрела?
- **121.** Акробат прыгает в сетку с высоты H_1 =8 м. На какой предельной высоте h_1 над полом надо натянуть сетку, чтобы акробат не ударился об пол при прыжке? Известно, что сетка прогибается на h_2 =0,5 м, если акробат прыгает в нее с высоты H_2 =1 м.
- **122**. Пружина жесткостью k=500 H/м сжата силой F=100 H. Определить работу A внешней силы, дополнительно сжимающей эту пружину еще на Δl =2 см.
- **123.** Две пружины жесткостью k_1 =0,5 кH/м и k_2 =1 кH/м скреплены параллельно. Определить потенциальную энергию Π данной системы при абсолютной деформации Δl =4 см.
- **124.** Какую нужно совершить работу A, чтобы пружину жесткостью k=800 H/м, сжатую на x=6 см, дополнительно сжать на Δx =8 см?

- **125.** Если на верхний конец вертикально расположенной пружины положить груз, то пружина сожмется на $\Delta l = 3$ мм. На сколько сожмет пружину тот же груз, упавший на ее конец с высоты h=8 см?
- **126.** Налетев на пружинный буфер, вагон массой m=16 т, двигавшийся со скоростью v=0,6 м/с, остановился сжав пружину на $\Delta l=8$ см. Найти жесткость пружины.
- **127.** Из пружинного пистолета с жесткостью пружины k=150 Н/м был произведен выстрел пулей массой m=8 г. Определить скорость пули при вылете из пистолета, если пружина была сжата на $\Delta x=4$ см.
- **128.** Определить скорость поступательного движения цилиндра, скатившегося с наклонной плоскости высотой h=20 см.
- **129.** На обод маховика диаметром D=60 см намотан шнур, к концу которого привязан груз массой m=2 кг. Определить момент инерции J маховика, если он, вращаясь равноускоренно под действием тяжести груза, за время t=3 с приобрел угловую скорость ω =9 рад/ с.
- **130.** Нить с привязанными к её концам грузами массой m_1 =50 г и m_2 =60 г перекинута через блок диаметром D=4 см. Определить момент инерции блока, если под действием силы тяжести грузов он получил угловое ускорение ε =1,5 рад/ ε ².
- **131.** Стержень вращается вокруг оси, проходящей через его середину согласно уравнению $\varphi = At + Bt^3$, где A = 2 рад/с; B = 0,2 рад/с³. Определить вращающий момент M, действующий на стержень в момент времени t = 2 с, если момент инерции стержня J = 0,048 кг м².
- **132.** По горизонтальной плоской поверхности катится диск со скоростью $v=8\,$ м/с. Определить коэффициент трения, если диск, будучи предоставленным самому себе, остановился, пройдя путь $s=18\,$ м.

- **133.** Карандаш, поставленный вертикально, падает на стол. Какую угловую ω и линейную v скорости будет иметь в конце падения верхний его конец? Длина карандаша l=15 см.
- **134.** Определить момент силы M, который необходимо приложить к блоку, вращающемуся с частотой n=12 с⁻¹, чтобы он остановился в течение времени $\Delta t=8$ с. Диаметр блока D=30 см. Массу блока m=6 кг считать равномерно распределенной по ободу.
- 135. На какой угол α надо отклонить однородный стержень, подвешенный на горизонтальной оси, проходящей через верхний конец стержня, чтобы нижний конец стержня при прохождении им положения равновесия имел скорость v=5 м/с? Длина стержня l=1 м.
- **136.** К ободу диска массою m=5 кг приложена постоянная касательная сила F=20 Н. Какую кинетическую энергию будет иметь диск через $\Delta t=5$ с после действия силы?
- **137.** Определить линейную скорость v центра шара, скатившегося с наклонной плоскости высотой h=1 м.
- **138.** По касательной к шкиву маховика в виде диска диаметром D=75 см и массой m=40 кг приложена сила F=1 кH. Определить угловое ускорение ε и частоту вращения n маховика через время t=10 с после начала действия силы, если радиус r шкива равен 12 см.
- **139.** На краю платформы в виде диска диаметром D=2 м, вращающейся по инерции вокруг вертикальной оси с частотой $n_1=8\,$ мин⁻¹, стоит человек массой $m_1=70\,$ кг. Когда человек перешел в центр платформы, она стала вращаться с частотой $n_2=10\,$ мин⁻¹. Определить массу m_2 платформы. Момент инерции человека рассчитывать как для материальной точки.
- **140.** На скамье Жуковского стоит человек и держит в руках стержень длиной l=2,4 м и массой m=8 кг, расположенный вертикально по оси вращения скамейки. Скамья с человеком вращается с частотой $n_1=1$ с⁻¹. С какой частотой n_2 будет вращаться скамья, если он повернет стержень в горизонтальное

положение? Суммарный момент инерции J человека и скамьи равен 6 кг м 2 .

- **141.** Человек стоит на скамье Жуковского и держит в руках стержень, расположенный вертикально вдоль оси скамейки. Стержень служит осью вращения колеса, расположенного на верхнем конце стержня. Скамья неподвижна, колесо вращается с частотой n_1 =10 с⁻¹. Радиус колеса R=20 см, его масса m=3 кг. Определить частоту вращения n_2 скамьи, если человек повернет стержень на угол 180^0 . Суммарный момент инерции J человека и скамьи равен 6 кг м². Массу колеса можно считать равномерно распределенной по ободу.
- **142.** Шарик массой m=60 г, привязанный к концу нити длиной l=1,2 м, вращается с частотой $n_1=2$ с⁻¹, опираясь на горизонтальную поверхность. Нить укорачивается, приближая шарик к оси вращения до расстояния $l_2=0,6$ м. С какой частотой n_2 при этом будет вращаться шарик? Какую работу A совершает внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.
- **143.** На краю неподвижной скамьи Жуковского диаметром D=0,8м и массой $m_1=6$ кг стоит человек массой $m_2=60$ кг. С какой угловой скоростью w начнет вращаться скамья, если человек поймает летящий на него мяч массой m=0,5 кг? Траектория мяча горизонтальна и проходит на расстоянии r=0,4 м от оси скамьи. Скорость мяча v=5 м/с.
- **144.** Платформа в виде диска диаметром D=3 м и массой m_1 =180 кг может вращаться вокруг вертикальной оси. С какой угловой скоростью ω будет вращаться эта платформа, если по её краю пойдет человек массой m_2 =80 кг со скоростью v=2,5 м/с относительно платформы?
- **145.** Определить период T колебаний стержня длиной l=30 см около оси, перпендикулярной стержню и проходящей через его конец.
- **146.** Определить период T колебаний диска радиусом R=40 см около горизонтальной оси проходящей через образующую диска.

- **147.** Однородный шарик подвешен на нити, длина которой равна радиусу шарика R. Определить период T колебаний этой системы.
- **148.** Определить период колебаний диска радиусом R=20 см около горизонтальной оси, проходящей через середину радиуса диска перпендикулярно его плоскости.
- **149.** Обруч диаметром D=60 см висит на гвозде, вбитом в стену, и совершает малые колебания в плоскости, параллельной стене. Найти период T этих колебаний.
- **150.** Определить максимальное ускорение a_{max} материальной точки совершающей гармонические колебания с амплитудой A=15 см, если наибольшая скорость точки $v_{max}=30$ см/с. Написать уравнение колебаний.

КОНТРОЛЬНАЯ РАБОТА № 2

Таблица 2. Варианты к контрольной работе № 2.

Вариант		Номера	Задач		
0	202	212	224	232	240
1	203	213	222	236	241
2	201	215	223	234	245
3	204	214	226	238	243
4	205	216	225	237	249
5	208	217	228	233	242
6	207	219	227	235	244
7	206	218	231	239	247
8	209	221	229	234	246
9	210	220	230	237	248

201. Баллон объёмом V=20 л заполнен азотом. Температура T азота равняется 400 К. Когда часть азота израсходовали, давление в баллоне уменьшилось на Δp =200 кПа. Определить массу m израсходованного азота. Процесс считать изотермическим.

- **202.** В баллоне объёмом V=15 л находится аргон под давлением $p_1=600$ кПа и температуре $T_1=300$ К. Когда из баллона было взято некоторое количество аргона, давление в баллоне понизилось до $p_2=400$ кПа, а температура установилась $T_2=260$ К. Определить массу m аргона, взятого из баллона.
- **203.** Два сосуда одинакового объёма содержат кислород. В одном сосуде давление p_1 =2 МПа и температура T_1 =800 K, в другом p_2 =2,5 МПа, T_2 =200 K. Сосуды соединили трубкой и охладили находящийся в них кислород до температуры T=200 K. Определить установившееся в сосудах давление.
- **204.** В сосуде V=40 л находится кислород. Температура кислорода равна T=300 К. Когда часть кислорода израсходовали, давление в сосуде понизилось на Δp =100 кПа. Определить массу израсходованного кислорода, если температура газа в баллоне осталась прежней.
- **205.** В баллоне объёмом V=22,4 л находится водород при нормальных условиях. После того как в баллон было введено некоторое количество гелия, давление в баллоне возросло до p=0,25 МПа, а температура не изменилась. Определить массу m гелия, введенного в баллон.
- **206.** Газ массой m=12 г занимает объём V=4 л при температуре T=280 К. После нагревания газа при постоянном давлении его плотность стала $\rho=0,6$ г/л. До какой температуры нагрели газ?
- **207.** В баллонах объёмом V_1 =20 л и V_2 =44 л содержится газ. Давление в первом баллоне p_1 =2,4 МПа, во втором p_2 =1,6 МПа. Определить общее давление p после соединения сосудов, если температура остается неизменной.
- **208.** Смесь водорода и азота общей массой m=290 г при температуре T=600 К и давлении p=2,46 МПа занимает объём V=30 л. Определить массу m_1 водорода и массу m_2 азота.
- **209.** Один баллон объёмом V_1 =10 л содержит кислород под давлением p_1 =1,5 МПа, другой баллон объёмом 22 л содержит азот под давлением p_2 =0,6 МПа. Оба баллона были соединены

между собой. Найти давление p смеси, если температура смеси не изменилась.

- **210.** В запаянном сосуде находится вода, занимающая объём равный половине объёма сосуда. Найти давление p и плотность водяных паров r при температуре t=400 0 C, зная, что при этой температуре вся вода обращается в пар.
- **211.** В баллоне, объём которого V=0,25 м 3 , находится газ, состоящий из смеси углекислого газа и паров воды. Температура газа t=327 0 С Число молекул углекислого газа N_I =6,6*10 21 , число молекул паров воды N_2 =0,9 10 21 . Вычислить давление p и молекулярный вес m газовой смеси.
- **212.** Определить суммарную кинетическую энергию E_{κ} поступательного движения всех молекул газа, находящихся в сосуде объёмом V=3 л под давлением p=540 кПа.
- **213.** Количество вещества гелия n=1,5 моль, температура T=120К. Определить суммарную кинетическую энергию E_{κ} поступательного движения всех молекул этого газа.
- **214.** Молярная внутренняя энергия U_m некоторого двухатомного газа равна 6,02 кДж. Определить среднюю кинетическую энергию $< w_{\rm вp} >$ вращательного движения одной молекулы этого газа.
- **215.** Определить среднюю квадратичную скорость $v_{\text{кв}}$ молекулы газа, заключенного в сосуде объёмом V=2 л под давлением p=200 кПа. Масса газа m=0,3 г.
- **216.** Водород находится при температуре T=300 К. Найти среднюю кинетическую энергию $< w_{\rm вp} >$ вращательного движения одной молекулы, а также суммарную кинетическую энергию E_{κ} всех молекул газа. Количество вещества водорода n=0,5 моль.

- **217.** В азоте взвешены мельчайшие пылинки, которые движутся так, как если бы они были очень крупными молекулами. Масса m каждой пылинки равна 6 10^{-10} г. Газ находится при температуре T=400К. Определить средние квадратичные скорости $\langle v_{\rm kB} \rangle$, а также средние кинетические энергии $\langle w_{\rm noct} \rangle$ поступательного движения пылинки и молекулы азота.
- **218.** Чему равна энергия вращательного движения молекул $E_{\rm вp}$, содержащихся в азоте массой m=1 кг при температуре $T=300.{\rm K?}$
- **219.** Двухатомный газ массой m=1 кг находится под давлением p=80 кПа и имеет плотность $\rho=4$ кг/м³. Найти энергию теплового движения молекул при этих условиях.
- **220.** Чему равна энергия теплового движения молекул двухатомного газа, заключенного в сосуд объёмом V=2 л и находящегося под давлением p=150 кПа?
- **221.** Кинетическая энергия поступательного движения молекул азота, находящегося в сосуде объёмом V=20 л, равна $E_{\text{пост}}$ =5 кДж, а средняя квадратичная скорость его молекул $<v_{\text{кв}}>$ =2000 м/с. Найти давление p, под которым находится азот.
- **222.** В сосуде объёмом V=6 л находится при нормальных условиях двухатомный газ. Определить теплоемкость $C_{\rm v}$ этого газа при постоянном объёме.
- **223.** Определить показатель адиабаты γ идеального газа, который при температуре T=350 К и давлении p=0,4 МПа занимает объём V=300 л и имеет теплоёмкость C_v =857 Дж/К.
- **224.** Трехатомный газ под давлением p=240 кПа и температуре t=20 0 С занимает объём V=10 л. Определить теплоемкость $C_{\rm p}$ этого газа при постоянном давлении.
- **225.** Одноатомный газ при нормальных условиях занимает объём V=5 л. Вычислить теплоёмкость $C_{\rm v}$ этого газа при постоянном объёме.
- **226.** Чему равны удельные теплоемкости $c_{\rm p}$ и $c_{\rm v}$ некоторого двухатомного газа, если плотность этого газа при нормальных условиях ρ =1,43 кг/м³.

- **227.** Определить показатель адиабаты γ для газовой смеси, состоящей из m_1 =8 г гелия и m_2 =16 г кислорода.
- **228.** Найти удельную теплоёмкость $c_{\rm p}$ при постоянном давлении смеси, состоящей из трех молей неона и двух молей азота.
- **229.** Определить удельные теплоёмкости $c_{\rm v}$ и $c_{\rm p}$ водорода, в котором половина молекул распалась на атомы.
- **230.** В сосуде находится смесь двух газов кислорода массой m_1 =6 г и азота массой m_2 =3 г. Определить удельные теплоёмкости $c_{\rm v}$ и $c_{\rm p}$ смеси.

- **231.** Найти молярные теплоемкости C_v и C_p смеси кислорода массой m_1 =2,5 г и азота массой m_2 =1 г.
- **232.** При адиабатическом сжатии давление воздуха было увеличено от p_1 =50 кПа до p_2 =0,5 МПа. Затем при неизменном объёме температура была понижена до первоначальной. Определить давление p_3 в конце процесса.
- **233.** Кислород массой m=200 г занимает объём V_1 =100 л и находится под давлением p_1 =200 кПа. При нагревании газ расширился при постоянном давлении до объёма V_2 =300 л, а затем его давление возросло до p_3 =500 кПа при неизменном объёме. Найти изменение внутренней энергии ΔU газа, совершенную им работу A и теплоту Q, переданную газу. Построить график процесса.
- **234.** Водород массой m=40 г, имевший температуру T=300 К, адиабатически расширился, увеличив объём в n_1 =3 раза. Затем при изотермическом сжатии объём газа уменьшился в n_2 =2 раза. Определить полную работу A, совершенную газом, и конечную температуру T газа.
- **235.** Идеальный газ, занимающий объём V=5 л и находящийся под давлением p=200 кПа при температуре T=290 К, был нагрет при постоянном объёме и затем расширился изобарически. Работа расширения газа при этом оказалась равной A=200 Дж. Насколько нагрелся газ при изобарическом процессе?
- **236.** Газ, занимающий объём V=0,39 м³ при давлении p=155 кПа, изотермически расширяется до десятикратного объёма и затем изохорически нагревается так, что в конечном состоянии его давление равно первоначальному. При этом процессе газу сообщается количество тепла Q=1,5 Мдж. Вычислить значение γ = C_p/C_v для этого газа.
- **237.** Газ в количестве n=1 кмоль, находящийся при температуре T_1 =300 K, охлаждается изохорически, вследствие чего его давление уменьшается в n=2 раза. Затем газ изобарически расширяется так, что в конечном состоянии его температура равна первоначальной. Вычислить количество

поглощенного газом тепла Q, совершенную газом работу A, приращение внутренней энергии ΔU .

- **238.** Азот массой m=14 г адиабатически расширяется так, что давление уменьшается в n=5 раз, и затем изотермически сжимается до первоначального давления. Начальная температура азота $T_1=420$ К. Найти температуру газа T_2 в конце процесса, количество тепла Q, отданного газом, приращение внутренней энергии газа ΔU и совершенную газом работу A.
- **239.** В цилиндре под поршнем находится водород массой m=0,2 кг при температуре T_1 =300 К. Водород сначала расширился адиабатически, увеличив свой объём в n=5 раз, а затем был сжат изотермически, причём объём газа уменьшился в n=5 раз. Найти температуру T_2 в конце адиабатического расширения и полную работу A, совершенную газом. Изобразить процесс графически.
- **240.** Определить работу A_2 изотермического сжатия газа, совершающего цикл Карно, к.п.д. которого η =0,4, если работа изотермического расширения A_1 =8 Дж.
- **241.** Газ, совершающий цикл Карно, отдал охладителю теплоту Q_2 =14 кДж. Определить температуру T_1 нагревателя, если при температуре охладителя T_2 =280 К работа цикла A=6 кДж.
- **242.** Тепловая машина, работающая по циклу Карно, получает за каждый цикл от нагревателя Q_1 =600 Дж. Температура нагревателя T_1 =400 К, температура холодильника T_2 =300 К. Найти работу A, совершаемую за цикл, и количество тепла Q_2 , отдаваемое холодильнику за один цикл.
- **243.** Газ, являясь рабочим веществом в цикле Карно, получил от нагревателя теплоту Q_I =4,38 кДж и совершил работу A=2,4 кДж. Определить температуру нагревателя T_1 , если температура охладителя T_2 =273 К.
- **244.** Газ, совершающий цикл Карно, отдал охладителю 67% теплоты, полученной от нагревателя. Определить температуру T_2 охладителя, если температура нагревателя T_1 =430 К.

- **245.** Во сколько раз увеличится коэффициент полезного действия η цикла Карно при повышении температуры нагревателя от $T_1=380$ К до $T_1=560$ К? Температура охладителя $T_2=280$ К.
- **246.** Совершая цикл Карно, газ получил от нагревателя теплоту Q_1 =500 Дж и совершил работу A=100 Дж. Температура нагревателя T_1 =400 К. Определить температуру T_2 охладителя.
- **247.** Газ, совершающий цикл Карно, получает теплоту Q_1 =84 кДж. Какую работу A совершает газ, если температура нагревателя T_1 в три раза выше температуры T_2 охладителя?
- **248.** Идеальная тепловая машина работает по циклу Карно. Температура нагревателя T_1 =500 K, температура охладителя T_2 =250 K. Определить к.п.д. η цикла, а также работу A_1 , совершенную газом при изотермическом расширении, если при изотермическом сжатии совершена работа A_2 =70 Дж.
- **249.** Идеальная тепловая машина работает по циклу Карно. Определить к.п.д. η цикла, если известно, что за один цикл была произведена работа A=8 Дж и холодильнику было передано количество теплоты Q_2 =30 Дж.

ЧАСТЬ II. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ Ч.2

Электростатика. Постоянный ток.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ. Электрические Закон Элементарный заряд. свойства сохранения тел. электрического заряда. Закон Кулона. Электрическая постоянная. Электрическое поле. Напряженность поля. Принцип суперпозиции полей. Силовые линии поля. Поток напряженности. Теорема Гаусса. Вычисление напряженности поля различных заряженных тел.

Работа сил электрического поля при перемещении зарядов. Циркуляция вектора напряженности. Потенциал. Связь между напряженностью электрического поля и потенциалом. Потенциал поля точечного заряда. Электрическое поле внутри заряженного проводника. Распределение зарядов в проводниках.

ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ. ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. Проводники в электрическом поле. Электроемкость проводников. Конденсаторы. Соединение конденсаторов. Энергия системы зарядов. Энергия заряженного проводника. Энергия заряженного конденсатора. Энергия электростатического поля. Объемная плотность энергии.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ДИЭЛЕКТРИКАХ. Свободные и связанные заряды. Электрический диполь. Электрический момент диполя. Диполь в однородном электрическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность (вектор поляризации). Электрическое смещение.

ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК. Электрический ток. Сила тока. Плотность тока. Закон Ома для участка цепи. Сопротивление проводников. Источники тока. Электродвижущая сила (э.д.с.). Закон Ома для полной цепи. Закон Ома для участка цепи, содержащего э.д.с. Разветвленные цепи. Законы Кирхгофа. Работа и мощность тока. Закон Джоуля-Ленца.

Электромагнетизм. Электромагнитные колебания и волны.

МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ. Магнитное взаимодействие Магнитное Закон токов. поле. Ампера. Силовые Магнитная индукция. ЛИНИИ магнитного Магнитная постоянная. Магнитное поле движущихся зарядов. Сила Лоренца.

МАГНИТНОЕ ПОЛЕ ПОСТОЯННЫХ ТОКОВ. Закон Био-Савара-Лапласа для элемента тока. Поле прямолинейного и кругового токов. Магнитный момент кругового тока. Циркуляция вектора магнитной индукции. Магнитное поле соленоида. Магнитный поток. Работа перемещения контура с током в магнитном поле. Поведение магнитного момента в однородном магнитном поле.

ЧАСТИЦ ЗАРЯЖЕННЫХ ДВИЖЕНИЕ B ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ. Движение заряженных частиц в однородном магнитном поле. Эффект Холла. Отклонение движущихся заряженных частиц электрическим И магнитным полями. Масс-спектрометры. Ускорение заряженных частиц. Элементы электронной оптики.

МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ. Взаимодействие магнитного поля с веществом. Понятие об элементарных токах. Элементарный ток в магнитном поле. Намагничивание вещества. Намагниченность. Магнитная восприимчивость. Магнитная проницаемость. Напряженность магнитного поля.

МАГНЕТИКИ. Деление веществ на диамагнетики, парамагнетики и ферромагнетики. Диамагнетизм. Парамагнетизм. Зависимость магнитной восприимчивости от температуры. Ферромагнетизм. Домены. Гистерезис. Точка Кюри.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ. Возникновение электрического поля при изменении магнитного поля. Индукционный ток. Правило Ленца. Э.д.с. индукции. Закон электромагнитной индукции Фарадея. Явление самоиндукции. Индуктивность. Энергия магнитного поля соленоида. Плотность энергии магнитного поля.

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ. Переменный ток. Индуктивность и емкость в цепи переменного тока. Колебательный контур. Основное уравнение колебательного контура. Собственные колебания контура. Формула Томсона. Реактивное сопротивление в цепи переменного тока. Затухающие колебания. Уравнение для затухающих колебаний. Э.д.с. в колебательном контуре. Уравнение вынужденных колебаний. Явление резонанса.

УРАВНЕНИЯ МАКСВЕЛЛА. Основные физические законы, используемые при написании уравнений Максвелла. Уравнение Максвелла для стационарных полей. Обобщение закона электромагнитной индукции Фарадея. Ток смещения. Система уравнений Максвелла в интегральной форме для произвольных полей.

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. Волновое уравнение. Плоская электромагнитная волна. Скорость распространения электромагнитных волн. Энергия и импульс электромагнитного поля. Вектор Умова-Пойнтинга. Экспериментальное исследование электромагнитных волн. Шкала электромагнитных волн.

ЕДИНИЦЫ ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ И МАГНИТ-НЫХ ВЕЛИЧИН. Международная система единиц (СИ). Определение единицы силы тока в СИ. Электродинамические постоянные.

ОСНОВНЫЕ ФОРМУЛЫ ПО ФИЗИКЕ Ч.2

• Закон Кулона:

$$A = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{\varepsilon \cdot r^2} \,,$$

где F - сила взаимодействия точечных зарядов Q_1 и Q_2 , r - расстояние между зарядами, ϵ -диэлектрическая проницаемость, ϵ_0 - электрическая постоянная.

• Напряженность электрического поля и потенциал:

$$E = F/Q$$
, $\varphi = \Pi/Q$,

где Π - потенциальная энергия точечного положительного заряда Q, находящегося в данной точке поля (при условии, что потенциальная энергия заряда, удаленного в бесконечность, равна нулю).

Сила, действующая на точечный заряд, находящийся в электрическом поле, и потенциальная энергия этого заряда:

$$F = QE$$
, $\Pi = Q\varphi$.

Напряженность и потенциал поля, создаваемого системой точечных зарядов (принцип суперпозиции электрических полей):

$$\boldsymbol{E} = \sum_{i=1}^{N} \boldsymbol{E}_{i}, \qquad \varphi = \sum_{i=1}^{N} \varphi_{i},$$

где E_i , φ_i - напряженность и потенциал в данной точке поля, создаваемые і-м зарядом.

Напряженность и потенциал поля, создаваемого точечным зарядом:

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{\varepsilon \cdot r^2}, \qquad \varphi = \frac{1}{4\pi\varepsilon_0} \frac{Q}{\varepsilon \cdot r},$$

где r - расстояние от заряда Q до точки, в которой определяются напряженность и потенциал.

Напряженность И потенциал поля, создаваемого проводящей сферой радиусом R с зарядом Q на расстоянии r от центра сферы:

a)
$$E = 0$$
, $\varphi = \frac{Q}{4\pi\epsilon_0 \epsilon R}$ (при $r < R$).

a)
$$E=0,$$
 $\varphi=\frac{Q}{4\pi\epsilon_0\epsilon R}$ (при $r< R$),
б) $E=\frac{Q}{4\pi\epsilon_0\epsilon R^2},$ $\varphi=\frac{Q}{4\pi\epsilon_0\epsilon R}$ (при $r=R$),

B)
$$E = \frac{Q}{4\pi\epsilon_0\epsilon r^2}$$
, $\varphi = \frac{Q}{4\pi\epsilon_0\epsilon r}$ (при $r > R$),

Линейная плотность заряда: $\tau = Q/l$.

Поверхностная плотность заряда: $\sigma = O/S$.

• Напряженность поля, создаваемого бесконечной прямой равномерно заряженной линией или бесконечно длинным цилиндром:

$$E = \frac{1}{2\pi\varepsilon_0} \frac{\tau}{\varepsilon.r} ,$$

где r - расстояние от нити или оси цилиндра до точки, напряженность поля в которой вычисляется.

• Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью:

$$E = \frac{\sigma}{2\varepsilon\varepsilon_0} \ .$$

- Связь потенциала поля с напряженностью поля:
 - $E = -grad \varphi$.
- Электрический момент диполя:

$$p = |Q| l$$

где Q - заряд; \boldsymbol{l} - плечо диполя (векторная величина, направленная от отрицательного заряда к положительному и численно равная расстоянию между зарядами).

• Механический (вращательный) момент сил, действующий на диполь с электрическим моментом p, помещенный в однородное электрическое поле с напряженностью E:

$$M = [p, E]$$
 или $M = pE \sin \alpha$,

где α - угол между направлениями векторов p и E.

• Работа сил поля по перемещению заряда Q из точки поля с потенциалом ϕ_1 в точку с потенциалом ϕ_2 :

$$A_{12} = Q(\varphi_1 - \varphi_2).$$

• Электроемкость:

$$C = Q/ \varphi$$
 или $C = Q/ U$,

где ϕ – потенциал проводника (при условии, что в бесконечности потенциал проводника принимается равным нулю), U - разность потенциалов пластин конденсатора.

• Электроемкость уединенной проводящей сферы радиусом R:

$$C = 4\pi\varepsilon_0 \varepsilon R$$
.

• Электроемкость плоского конденсатора:

$$C = \varepsilon \varepsilon_0 S/d$$

где S - площадь пластины (одной) конденсатора, d - расстояние между пластинами.

- Электроемкость батареи конденсаторов:
 - а) $\frac{1}{C} = \sum_{i=1}^{N} \frac{1}{Ci}$ (при последовательном соединении);
 - б) $C = \sum_{i=1}^{N} C_{i}$ (при параллельном соединении).
- Энергия заряженного конденсатора:

$$W = \frac{CU^2}{2} = \frac{QU}{2} = \frac{Q^2}{2C}$$
.

• Связь поляризованности P с напряженностью E среднего макроскопического поля в диэлектрике:

$$P = \chi \varepsilon_0 E$$
,

 χ – диэлектрическая восприимчивость, ϵ_0 – электрическая постоянная.

• Связь между вектором индукции D и вектором напряженности E электрического поля в однородных диэлектриках:

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$
.

• Связь диэлектрической проницаемости ϵ с диэлектрической восприимчивостью χ :

$$\varepsilon = 1 + \chi$$

• Связь между поверхностной плотностью связанных зарядов σ' и нормальной составляющей вектора поляризованности P_n :

$$\sigma' = P_n$$
.

• Объемная плотность энергии электростатического поля:

$$\omega = ED/2$$
 или $\omega = \frac{\varepsilon \varepsilon_0 E^2}{2} = \frac{D^2}{2\varepsilon \varepsilon_0}$.

• Сила тока:

$$I = Q/t$$

где Q -заряд, прошедший через поперечное сечение проводника за время t.

• Плотность тока:

$$j = I/S = en < v >$$
,

где S - площадь поперечного сечения проводника, e - заряд частицы, n-концентрация частиц, v - скорость направленного движения частиц.

• Закон Ома для участка цепи, содержащей э.д.с. :

$$I=rac{(\phi_1-\phi_2)\pm\mathcal{E}}{R}$$
 ,

где ϕ_1 – ϕ_2 =U - разность потенциалов (напряжение) на концах участка цепи, \mathcal{E} - э.д.с. источника тока, R - полное сопротивление участка цепи.

- Законы Кирхгофа;
 - а) $\sum I_i = 0$ (первый закон),
 - б) $\sum I_i R_i = \sum \mathcal{E}_i$ (второй закон),

где $\sum I_i$ - алгебраическая сумма токов, сходящихся в узле; $\sum I_i R_i$ - алгебраическая сумма произведений сил токов на сопротивления участков, $\sum \mathcal{E}_i$ - алгебраическая сумма э.д.с.

• Сопротивление R и проводимость G проводника:

$$R = \rho l/S$$
, $G = \gamma S/l$,

где ρ — удельное сопротивление, γ — удельная проводимость, l — длина проводника, S — площадь поперечного сечения проводника.

- Сопротивление системы проводников:
 - а) $R = \sum R_i$ (при последовательном соединении),
 - б) $\frac{1}{R} = \sum \frac{1}{R_i}$ (при параллельном соединении),

где R_i - сопротивление i-го проводника.

• Работа тока:

$$A = IU t = I^2 R t = U^2 t / R.$$

• Мощность тока:

$$P = IU = I^2R = U^2/R$$
.

• Законы Ома и Джоуля-Ленца в дифференциальной форме:

$$\boldsymbol{j} = \gamma \boldsymbol{E}, \quad \omega = \gamma E^2,$$

где γ - удельная проводимость, \emph{E} - напряженность электрического поля, \emph{j} - плотность тока, ω - плотность мощности, выделяемой в проводнике.

• Связь магнитной индукции $\textbf{\textit{B}}$ с напряженностью $\textbf{\textit{H}}$ магнитного поля:

$$B = \mu \mu_0 H$$
,

где μ - магнитная проницаемость изотропной среды, μ_0 - магнитная постоянная. В вакууме μ =1, в парамагнетике μ >1, в диамагнетике μ <1, в ферромагнетике μ = μ (H).

• Закон Био-Савара-Лапласа:

$$d\mathbf{\textit{B}} = \frac{\mu\mu_0}{4\pi}[d\mathbf{\textit{l}},\mathbf{\textit{r}}]\frac{I}{r^3}$$
 или $dB = \frac{\mu\mu_0}{4\pi}\frac{I\sin\alpha}{r^2}\,\mathrm{d}l$,

где dB - индукция магнитного поля, создаваемого элементом проводника длиной dl с током I, r - радиус-вектор, направленный от элемента проводника к точке, в которой определяется индукция, α - угол между радиус-вектором и направлением тока в элементе проводника.

• Магнитная индукция на оси кругового тока:

$$B = \frac{\mu\mu_0}{4\pi} \frac{2\pi R^2 I}{(R^2 + h^2)^{3/2}} ,$$

где h - расстояние от центра витка до точки, в которой определяется магнитная индукция.

• Магнитная индукция поля, создаваемого отрезком провода с током:

$$B = \frac{\mu\mu_0}{4\pi} \frac{I}{r_0} (\cos\alpha_1 - \cos\alpha_2),$$

где r_0 -расстояние от оси проводника до точки, в которой определяется магнитная индукция; α_1 и α_2 - углы между направлением тока и радиус векторами, проведенными из концов проводника в точку наблюдения.

• Магнитная индукция поля длинного соленоида:

$$B = \mu \mu_0 nI$$
,

где n - отношение числа витков соленоида к его длине.

• Сила, действующая на проводник с током в магнитном поле (закон Ампера):

$$d\mathbf{F} = I[d\mathbf{l}, \mathbf{B}]$$
 или $dF = Ibdl\sin\alpha$,

где dl - длина элемента проводника, α - угол между направлением тока в проводнике и вектором магнитной индукции ${\it B}$.

• Магнитный момент плоского контура с током:

$$p_{\rm m} = nIS$$
,

где n - единичный вектор нормали (положительной) к плоскости контура, I - сила тока, проходящего по контуру; S - площадь контура.

• Механический (вращательный) момент, действующий на контур с током, помещенный в однородное магнитное поле:

$$\pmb{M} = [\pmb{p}_{\rm m}, \pmb{B}]$$
 или $M = p_{\rm m}B \sin \alpha$, где α - угол между векторами $\pmb{p}_{\rm m}$ и \pmb{B} .

• Потенциальная энергия (механическая) контура с током в магнитном поле:

$$\Pi_{\text{mex}} = -\boldsymbol{p}_{\text{m}}\boldsymbol{B}$$
 или $\Pi_{\text{mex}} = -\boldsymbol{p}_{\text{m}}\boldsymbol{B} \cos \alpha$.

• Отношение магнитного момента $p_{\rm m}$ к механическому L (моменту импульса) заряженной частицы, движущейся по круговой орбите:

$$\frac{p_m}{L} = \frac{1}{2} \frac{Q}{m},$$

где Q - заряд частицы, m - масса частицы.

• Сила Лоренца:

$$\boldsymbol{F} = Q\boldsymbol{E} + Q[\boldsymbol{v},\boldsymbol{B}],$$

где Q - заряд частицы. v - скорость частицы, E - вектор напряженности электрического поля, B - вектор магнитной индукции.

• Магнитный поток:

$$\Phi = \int_{S} B_n \, dS$$
 (интегрирование ведется по всей поверхности).

В случае однородного поля и плоской поверхности:

$$\Phi = BS \cos \alpha$$
 или $\Phi = B_n S$,

где S - площадь контура, α - угол между нормалью к плоскости контура и вектором магнитной индукции.

• Работа по перемещению замкнутого контура в магнитном поле:

$$A = I\Delta\Phi$$
.

Э.д.с. индукции:

$$\mathcal{E}_i = -\frac{\mathrm{d}\Psi}{\mathrm{d}t}$$

где Ψ – потокосцепление (полный поток через N контуров).

• Заряд, протекающий по замкнутому контуру при изменении магнитного потока, пронизывающего этот контур:

$$Q = \Delta \Phi / R$$
 или $Q = N\Delta \Phi / R = \Delta \Psi / R$,

где R - сопротивление проводника.

• Индуктивность контура:

$$L = \Psi / I$$
.

• Э.д.с. самоиндукции:

$$\mathbf{\mathcal{E}}_{s} = -L \frac{\mathrm{d}I}{\mathrm{dt}}.$$

• Индуктивность соленоида:

$$L = \mu \mu_0 n^2 V$$
,

где n - отношение числа витков соленоида к его длине, V - объем соленоида.

• Мгновенное значение силы тока в цепи, обладающей сопротивлением R и индуктивностью L:

a)
$$I = \frac{\mathcal{E}}{R}(1 - e^{-Rt/L})$$
 (при замыкании цепи),

где \mathcal{E} - э.д.с. источника тока, t - время, прошедшее после замыкания цепи;

б)
$$I = I_0 e^{-Rt/L}$$
 (при размыкании цепи),

где I_0 - сила тока в цепи при t=0, t - время, прошедшее с момента размыкания цепи.

• Энергия магнитного поля соленоида:

$$W = \frac{LI^2}{2} .$$

• Объемная плотность энергии магнитного поля (энергия магнитного поля, сосредоточенная в единице объема):

$$\omega = {\it BH}/2$$
 или $\omega = {\it B}^2 \over 2\mu\mu_0 = {\it \mu\mu_0 H^2 \over 2},$

где B - магнитная индукция, H - напряженность магнитного поля.

• Период собственных колебаний в контуре без активного сопротивления (формула Томсона):

$$T = 2\pi\sqrt{LC}$$
,

где L - индуктивность контура, C - электроемкость контура.

• Добротность колебательного контура в случае малого затухания $((R/2L)^2 << \omega_0^2$, где $\omega_0 = 1/\sqrt{LC}$ - собственная частота контура):

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} .$$

• Связь длины λ , периода T и частоты ω электромагнитной волны:

$$\lambda = cT$$
, $\lambda = 2\pi c/\omega$,

где c - скорость электромагнитной волны в вакууме (c=3 $^{\cdot}10^{8}$ м/с).

КОНТРОЛЬНАЯ РАБОТА № 3

Таблица 3. Варианты к контрольной работе № 3

Вариант		Номера	задач		
0	305	313	326	338	348
1	310	319	325	336	342
2	308	314	321	339	347
3	304	315	324	335	344
4	309	316	330	331	350
5	303	317	327	332	341
6	304	320	322	337	345
7	307	318	328	334	349
8	306	311	329	340	343
9	301	312	323	333	346

- **301.** Электрическое поле создано двумя точечными зарядами Q_1 =40 нКл и Q_2 = -10 нКл, находящимися на расстоянии d=10 см друг от друга. Определить напряженность E поля в точке, удаленной от первого заряда на r_1 =12 см и от второго на r_2 =6 см.
- **302.** Три одинаковых точечных заряда $Q_1=Q_2=Q_3=2$ нКл находятся в вершинах равностороннего треугольника со стороной a=10 см. Определить модуль и направление силы F, действующей на один из зарядов со стороны двух других.
- **303.** Расстояние d между двумя точечными положительными зарядами Q_1 =9Q и Q_2 =Q равно 8 см. На каком расстоянии r от первого заряда находится точка, в которой напряженность E поля зарядов равна нулю? Где находилась бы эта точка, если бы второй заряд был отрицательным?
- **304.** Два одинаковых заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол α . Шарики погружаются в масло. Какова плотность ρ_0 масла, если угол расхождения нитей при погружении шариков в масло остается неизменным? Плотность материала шариков ρ равна $1,5\cdot10^3$ кг/м³, диэлектрическая проницаемость масла $\epsilon = 2,2$.
- **305.** На тонком кольце равномерно распределен заряд с линейной плотностью заряда τ =0,2 нКл/см. Радиус кольца R=15 см. На срединном перпендикуляре к плоскости кольца находится точечный заряд Q=10 нКл. Определить силу F, действующую на точечный заряд со стороны заряженного кольца, если он удален от центра кольца на: 1) a_1 =20 см; 2) a_2 =10 м.
- **306.** Расстояние d между двумя длинными тонкими проволоками, расположенными параллельно друг другу, равно 16 см. Проволоки равномерно заряжены разноименными зарядами с линейной плотностью $|\tau|=150$ мкКл/м. Какова напряженность E поля в точке, удаленной на r=10 см как от первой, так и от второй проволоки?
- **307.** Определить напряженность E поля, создаваемого зарядом, равномерно распределенным по тонкому прямому

стержню с линейной плотностью заряда τ =200 нКл/м, в точке, лежащей на продолжении оси стержня на расстоянии a=20 см от ближайшего конца. Длина стержня l=40 см.

- **308.** По тонкому кольцу радиусом R=10 см равномерно распределен заряд Q_1 =20 нКл. Какова напряженность E поля в точке, находящейся на оси кольца на расстоянии a=20 см от центра кольца?
- **309.** Тонкий стержень длиной l=10 см заряжен с линейной плотностью τ =400 нКл/м. Найти напряженность E электрического поля в точке, расположенной на перпендикуляре к стержню, проведенном, через один из его концов, на расстоянии r=8 см от этого конца.
- **310.** Две одинаковые круглые пластины площадью S=400 см 2 каждая расположены параллельно друг другу. Заряд одной пластины Q_1 =400 нКл, другой Q_2 =-200 нКл. Определить силу F взаимного притяжения пластин, если расстояние между ними: а) r_1 =3мм; б) r_2 =10м.
- **311.** Плоский конденсатор состоит из двух пластин, разделенных стеклом. Какое давление производят пластины на стекло перед пробоем, если напряженность E электрического поля перед пробоем равна 30 МВ/м.
- **312.** На расстоянии a=10 см от бесконечной проводящей плоскости находится точечный заряд Q=20 нКл. Вычислить напряженность E электрического поля в точке, удаленной от плоскости на расстояние a и от заряда Q на расстояние 2a.
- **313.** Металлический шар имеет заряд Q_1 =0,1 мкКл. На расстоянии, равном радиусу шара, от его поверхности находится конец нити, вытянутой вдоль силовой линии. Нить несет равномерно распределенный по длине заряд Q_2 =10 нКл. Длина нити равна радиусу шара. Определить силу F, действующую на нить, если радиус шара R=10 см.
- **314.** К бесконечной равномерно заряженной вертикальной плоскости подвешен на нити одноименно заряженный шарик массой m=50 мг и зарядом Q=0,6 нКл. Сила натяжения нити, на

которой висит шарик, F=0,7 мН. Найти поверхностную плотность заряда σ плоскости.

- **315.** Электрическое поле создано точечным зарядом Q=0,1 мкКл. Определить поток $\Phi_{\rm E}$ вектора напряженности через круглую площадку радиусом R=30 см. Заряд равноудален от краев площадки и находится на расстоянии a=40 см от ее центра.
- **316.** Определить потенциал ϕ электрического поля в точке, удаленной от зарядов Q_1 =-0,2 мкКл и Q_2 =0,5 мкКл соответственно на r_1 =15 см и r_2 =25 см. Определить также минимальное и максимальное расстояния между зарядами, при которых возможно решение.
- **317.** Заряды Q_1 =1 мкКл и Q_2 =-1 мкКл находятся на расстоянии d=10 см. Определить напряженность E и потенциал ф поля в точке, удаленной на расстояние r=10 см от первого заряда и лежащей на линии, проходящей через первый заряд перпендикулярно направлению от Q_1 к Q_2 .
- **318.** Найти потенциальную энергию W системы трех точечных зарядов Q_1 =10 нКл, Q_2 =20 нКл, Q_3 =-30 нКл, расположенных в вершинах равностороннего треугольника со стороной длиной a=10см.
- **319.** По тонкому кольцу радиусом R=10 см равномерно распределен заряд с линейной плотностью τ =10 нКл/м. Определить потенциал ϕ в точке, лежащей на оси кольца, на расстоянии a=5 см от центра.
- **320.** Тонкий стержень длиной l=10 см несет равномерно распределенный заряд Q=1 нКл. Определить потенциал ϕ электрического поля в точке, лежащей на оси стержня на расстоянии a=20 см от ближайшего его конца.
- **321.** Определить потенциал ϕ , до которого можно зарядить уединенный металлический шар радиусом R=10 см, если напряженность E поля, при котором происходит пробой воздуха, равна 3 МВ/м. Найти также максимальную поверхностную плотность σ электрических зарядов перед пробоем.

- **322.** Две бесконечные параллельные плоскости находятся на расстоянии d=1 см друг от друга. Плоскости несут равномерно распределенные по поверхностям заряды с плотностями $\sigma_1=0,2$ мкКл/м² и $\sigma_2=0,5$ мкКл/м². Найти разность потенциалов U пластин.
- **323.** Сто одинаковых капель ртути, заряженных до потенциала ϕ =20.В, сливаются в одну большую каплю. Каков потенциал ϕ 1 образовавшейся капли?
- **324.** Напряженность E однородного электрического поля в некоторой точке равна 600 В/м. Вычислить разность потенциалов U между этой точкой и другой, лежащей на прямой, составляющей угол α =60 0 с направлением вектора напряженности. Расстояние Δr между точками равно 2 мм.
- **325.** Электрическое поле создано положительным точечным зарядом Потенциал φ поля в точке, удаленной от заряда на r=12 см, равен 24 В. Определить значение и направление градиента потенциала в этой точке.
- **326.** Бесконечная тонкая прямая нить несет равномерно распределенный по длине нити заряд с плотностью $\tau=1$ нКл/м. Каков градиент потенциала в точке, удаленной на расстояние r=10 см от нити? Указать направление градиента потенциала.
- **327.** Электрон, летевший горизонтально с постоянной скоростью v=1,6 Мм/с, влетел в однородное электрическое поле, направленное вертикально вверх, с напряженностью E=90 В/см. Какова будет по модулю и направлению скорость v электрона через 1 нс?
- **328.** Электрон с энергией T=400 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R=10 см. Определить минимальное расстояние a, на которое приблизится электрон к поверхности сферы, если заряд ее Q=-10 нКл.
- **329.** Электрон влетел в плоский конденсатор, имея скорость $v=10\,$ Мм/с, направленную параллельно пластинам. В момент вылета из конденсатора направление скорости электрона

- составляло угол α =35 0 с первоначальным направлением скорости. Определить разность потенциалов U между пластинами (поле считать однородным), если длина l пластин равна 10 см и расстояние d между ними равно 2 см.
- **330.** Электрон влетел в плоский конденсатор, находясь на одинаковом расстоянии от каждой пластины и имея скорость $v=10~\mathrm{Mm/c}$, направленную параллельно пластинам, расстояние d между которыми равно 2 см. Длина l каждой пластины равна $10~\mathrm{cm}$. Какую наименьшую разность потенциалов U нужно приложить к пластинам, чтобы электрон не вылетел из конденсатора.
- **331.** Два металлических шарика радиусами R_1 =5 см и R_2 =10 см имеют заряды Q_1 =40 нКл и Q_2 =-20 нКл, соответственно. Найти энергию W, которая выделится при разряде, если шары соединить проводником.
- **332.** Электроемкость C плоского конденсатора равна 1,5 мкФ. Расстояние d между пластинами равно 5 мм. Какова будет электроемкость C конденсатора, если на нижнюю пластину положить лист эбонита толщиной d_1 =3 мм с диэлектрической проницаемостью ε_{96} =3 ?
- **333.** Сила F притяжения между пластинами плоского воздушного конденсатора равна 50 мН. Площадь S каждой пластины равна 200cm^2 . Найти плотность энергии ω поля конденсатора.
- **334.** Пространство между пластинами плоского конденсатора заполнено диэлектриком (фарфор), объем V которого равен $100~{\rm cm}^3$. Поверхностная плотность заряда σ на пластинах конденсатора равна $8,85~{\rm hKn/m}^2$. Вычислить работу A, которую необходимо совершить для того, чтобы удалить диэлектрик из конденсатора. Трением диэлектрика о пластины конденсатора пренебречь. Конденсатор отключен от источника э.д.с.
- **335.** Уединенная металлическая сфера электроемкостью C=10 пФ заряжена до потенциала $\phi=3$ кВ. Определить энергию W поля, заключенного в сферическом слое, ограниченном сферой

и концентрической с ней сферической поверхностью, радиус которой в три раза больше радиуса сферы.

- **336.** Электрический момент диполя p равен 10^{-8} Кл⁻м. На продолжении оси диполя (ближе к положительному заряду) на расстоянии r=1 м от центра диполя находится заряд $Q=-10^{-10}$ Кл. Найти работу по перемещению заряда в точку, расположенную симметрично относительно центра диполя.
- **337.** Диполь с электрическим моментом p=100 пКл м свободно установился в однородном электрическом поле напряженностью E=10 кВ/м. Найти изменение потенциальной энергии $\Delta\Pi$ диполя при повороте его на угол $\alpha=60^{\circ}$.
- **338.** Диполь с электрическим моментом p=100 пКл м свободно установился в однородном электрическом поле напряженностью E=9 МВ/м. Диполь повернули на малый угол и предоставили самому себе. Определить частоту ν собственных колебаний диполя в электрическом поле. Момент инерции J диполя относительно оси, проходящей через центр диполя, равен $4\cdot10^{-12}$ кг м².
- **339.** Расстояние d между пластинами плоского конденсатора равно 2 мм, разность потенциалов U=1,8 кВ. Диэлектрик -стекло (ϵ =7). Определить диэлектрическую восприимчивость χ стекла и поверхностную плотность σ' поляризационных (связанных) зарядов на поверхности стекла.
- **340.** Пространство между пластинами плоского конденсатора заполнено двумя слоями диэлектрика: стекла толщиной d_1 =0,2 см и слоем парафина толщиной d_2 =0,3 см. Разность потенциалов между обкладками U=300 В. Определить напряженность E поля, электрическое смещение D поля и падение потенциала $\Delta \phi$ в каждом из слоев. Принять $\epsilon_{\rm cr}$ =7 и $\epsilon_{\rm nap}$ =2.
- **341.** Вычислить сопротивление R графитового проводника, изготовленного в виде прямого кругового усеченного конуса высотой h=20 см и радиусами оснований r_1 =12 мм и r_2 =8 мм. Температура t проводника равна 20^{0} С. Удельное сопротивление графита ρ =8 10^{-4} Ом см.

- **342.** Э.д.с. батареи \mathcal{E} =80 В, внутреннее сопротивление источника R_i =5 Ом. Внешняя цепь потребляет мощность P=100 Вт. Определить силу тока I в цепи , напряжение U, под которым находится внешняя цепь, и ее сопротивление R..
- **343.** Э.д.с. батареи \mathcal{E} =24 В. Наибольшая сила тока, которую может дать батарея, I_{max} =10 А. Определить максимальную мощность P_{max} , которая может выделиться во внешней цепи.
- **344.** Три батареи с э.д.с. \mathcal{E}_1 =12 В, \mathcal{E}_2 =5 В и \mathcal{E}_3 =10 В и одинаковыми внутренними сопротивлениями r, равными 1 Ом, соединены между собой одноименными полюсами, Сопротивление соединительных проводов ничтожно мало. Определить силы токов I, идущих через каждую батарею.
- **345.** Сила тока в проводнике сопротивлением R=100 Ом изменяется со временем по закону $I=I_0e^{-\alpha t}$, где $I_0=20$ A, $\alpha=10^2$ c⁻¹. Определить количество теплоты Q, выделившейся за это время в проводнике.
- **346.** Сила тока в проводнике сопротивлением R=15 Ом равномерно возрастает от I_0 =0 до некоторого максимального значения в течение времени τ =5 с. За это время в проводнике выделилось количество теплоты Q=10 кДж. Найти среднюю силу тока <I> в проводнике за этот промежуток времени.
- **347.** В медном проводнике длиной l=2 м и площадью S поперечного сечения, равной 0,4 мм², идет ток. Сколько электронов N проходит за 1 с через поперечное сечение этого проводника? Для меди ρ =1.72 10^{-8} Ом см.
- **348.** В медном проводнике объемом V=6 см³ при прохождении по нему постоянного электрического тока за время t=1 мин выделилось количество теплоты Q=200 Дж. Вычислить напряженность E электрического поля в проводнике. Для меди $\rho=1.72\ 10^{-8}$ Ом см.
- **349.** Медный диск радиусом R=0,5 м равномерно вращается с угловой скоростью ω = 10^4 рад/с относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Определить напряженность E поля, как функцию

расстояния r от центра диска, и разность потенциалов U между центром диска и его крайними точками.

350. Определить объемную плотность тепловой мощности w в металлическом проводнике, если плотность тока $j=10~\text{A/mm}^2$. Напряженность E электрического тока в проводнике равна 1~mB/m

КОНТРОЛЬНАЯ РАБОТА № 4

Таблица 4. Варианты к контрольной работе № 4

Вариант		Номера	задач		
0	409	412	426	440	442
1	404	418	427	431	446
2	407	413	430	436	447
3	405	420	425	434	450
4	406	419	428	438	441
5	410	414	423	439	444
6	401	411	421	432	449
7	402	417	424	435	445
8	408	416	422	437	448
9	403	415	429	433	443

- **401.** Магнитная стрелка помещена в центре кругового витка, плоскость которого расположена вертикально и составляет угол φ =30°. Радиус витка R=20 см. Определить угол α , на который повернется магнитная стрелка, если по проводнику пойдет ток силой I=25 A. (дать два ответа). Горизонтальную составляющую индукции земного магнитного поля B принять равной 20 мкТл.
- **402.** Проволочный виток радиусом R=25 см расположен в плоскости магнитного меридиана. В центре установлена небольшая магнитная стрелка, способная вращаться вокруг

- вертикальной оси. На какой угол α отклонится стрелка, если по витку пустить ток силой I=15 A? Горизонтальную составляющую индукции земного магнитного поля B принять равной 20 мкТл.
- **403.** По двум бесконечно длинным прямым параллельным проводам, расстояние между которыми d=20 см, текут токи I_1 =50 А и I_2 =100 А. Определить индукцию \boldsymbol{B} и напряженность \boldsymbol{H} магнитного поля в точке, находящейся на расстоянии r_1 =25 см от первого и на r_2 =40 см от второго провода, если токи текут: а) в одинаковом, б) в противоположных направлениях.
- **404.** Бесконечно длинный прямой провод согнут под прямым углом. По проводу течет ток I=100 А. Вычислить магнитную индукцию B в точках, лежащих на биссектрисе угла и удаленных от вершины его на расстояние a=10 см.
- **405.** По контуру в виде квадрата идет ток I=50 А. Длина a стороны квадрата равна 20 см. Определить магнитную индукцию B в точке пересечения диагоналей.
- **406.** При какой силе тока I, текущего по тонкому проводящему кольцу радиусом R=0,2 м, магнитная индукция B в точке, находящейся на расстоянии r=0,3 м от всех точек кольца, станет равной 20 мкТл?
- **407.** По контуру в виде равностороннего треугольника течет ток силой I=50 А. Сторона треугольника a=20 см. Определить магнитную индукцию B в точке пересечения высот.
- **408.** По тонкому проволочному кольцу течет ток. Не изменяя силы тока в проводнике, ему придали форму квадрата. Во сколько раз изменилась магнитная индукция в центре контура?
- **409.** Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи силой I=200 А. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится от него на расстоянии, равном ее длине.
- **410.** По трем параллельным прямым проводам, находящимся на одинаковом расстоянии d=20 см друг от друга,

- текут токи одинаковой силы I=400 А. В двух проводах направления токов совпадают. Вычислить для каждого из проводов отношение силы, действующей на него, к его длине.
- **411.** Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом r=53 пм. Вычислить силу эквивалентного кругового тока I и индукцию B магнитного поля в центре окружности.
- **412.** На расстоянии r=10 нм от траектории прямолинейно движущегося электрона максимальное значение магнитной индукции B_{max} =160 мкТл. Определить скорость v электрона.
- **413.** По тонкому стержню длиной l=20 см равномерно распределен заряд Q=240 нКл. Стержень приведен во вращение с постоянной угловой скоростью ω =10 рад/с относительно оси, перпендикулярной стержню и проходящей через его середину. Найти: 1) магнитный момент $p_{\rm m}$, обусловленный вращением заряженного стержня; 2) отношение магнитного момента к моменту импульса $(p_{\rm m}/L)$, если стержень имеет массу m=12 г.
- **414.** Тонкое кольцо радиусом R=10 см несет заряд Q=10 нКл. Кольцо равномерно вращается с частотой n=10 с⁻¹ относительно оси, перпендикулярной плоскости кольца и проходящей через ее центр. Определить: 1) магнитный момент $p_{\rm m}$ кругового тока, создаваемого кольцом; 2) отношение магнитного момента к моменту импульса $(p_{\rm m}/L)$, если масса кольца m=10 г.
- **415.** Диск радиусом R=10 см несет равномерно распределенный по поверхности заряд Q=0,2 мкКл. Диск равномерно вращается с частотой n=20 с⁻¹ относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Найти: 1) магнитный момент $p_{\rm m}$ кругового тока, создаваемого диском, 2) отношение магнитного момента к моменту импульса $(p_{\rm m}/L)$, если масса m диска равна 100 г.
- **416.** Тонкий провод в виде кольца массой m=5 г свободно подвешен на неупругой нити в однородном магнитном поле. По кольцу течет ток I=6 А. Период T малых крутильных колебаний относительно вертикальной оси равен 2,2 с. Найти индукцию B магнитного поля.

- **417.** Магнитный поток Φ через сечение соленоида равен 50 мкВб. Длина соленоида l=50 см. Найти магнитный момент $p_{\rm m}$ соленоида, если его витки плотно прилегают друг к другу.
- **418.** В средней части соленоида, содержащего n=8 витков/см, помещен круговой виток диаметром d=4 см. Плоскость витка расположена под углом $\phi=60^0$ к оси соленоида. Определить магнитный поток Φ , пронизывающий виток, если по обмотке соленоида течет ток силой I=1 A.
- **419.** Из тонкой проволоки массой m=4 г изготовлена квадратная рамка. Рамка свободно подвешена на неупругой нити и по ней пропущен ток силой I=8 А. Определить частоту ν малых колебаний рамки в магнитном поле с индукцией B=20 мТл.
- **420.** Виток радиусом R=20 см, по которому течет ток силой I=50A, свободно установился в однородном магнитном поле напряженностью H=10³ A/м. Определить работу по повороту витка на угол φ относительно диаметра в следующих случаях: 1) 30° ; 2) 60° ; 3)90°; 4) 180° .
- **421.** Виток диаметром d=10 см может вращаться около вертикальной оси, совпадающей с одним из диаметров витка. Виток установили в плоскости магнитного меридиана и пустили по нему ток силой I=40 А. Какой вращающий момент M нужно приложить к витку, чтобы удержать его в начальном положении ? Горизонтальная составляющая индукции магнитного поля Земли равна B_{Γ} =20 мкТл.
- **422.** Прямой бесконечный ток I_0 =5 A и квадратная рамка с I=3 A расположены в одной плоскости так, что сторона рамки a=1 м параллельна прямому току и отстоит от него на расстояние b=0,1a. Определить, какую работу необходимо совершить для того, чтобы повернуть рамку на 90^0 относительно оси 00° , параллельной прямому току и проходящей через середины противоположных сторон рамки.
- **423.** Квадратный контур со стороной a=10 см, в котором течет ток силой I=6 A, находится в магнитном поле с индукцией B=0,8 Тл под углом α =50 0 к линиям индукции. Какую работу A

нужно совершить, чтобы при неизменной силе тока в контуре изменить его форму на окружность?

- **424.** В однородном магнитном поле перпендикулярно линиям индукции расположен плоский контур площадью S=100 см². Поддерживая в контуре постоянную силу тока I=50 A, его переместили из поля в область пространства, где поле отсутствует. Определить индукцию B магнитного поля, если при перемещении контура была совершена работа A=0,4 Дж.
- **425.** По кольцу, сделанному из тонкого гибкого провода радиусом R=10 см, течет ток I=100 А. Перпендикулярно плоскости кольца приложено магнитное поле с индукцией B=0,1 Тл. Определить работу внешних сил, которые, действуя на провод, деформировали его и придали ему форму квадрата. Сила тока при этом поддерживалась неизменной. Работой против упругих сил пренебречь.
- **426.** Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией B=0,5 Тл. Определить момент импульса L, которым обладала частица при движении в магнитном поле, если ее траектория представляла дугу окружности радиусом R=0,2 см.
- **427.** Заряженная частица влетела перпендикулярно силовым линиям в однородное магнитное поле, созданное в среде. В результате взаимодействия с веществом частица, находясь в поле, потеряла половину своей первоначальной энергии. Во сколько раз будут отличаться радиусы кривизны R траектории начала и конца пути.
- **428.** Электрон движется в магнитном поле с индукцией B=0,02 Тл по окружности радиусом R=1 см. Определить кинетическую энергию T электрона (в джоулях и электронвольтах).
- **429.** Заряженная частица, прошедшая ускоряющую разность потенциалов U=2 кВ, движется в однородном магнитном поле с индукцией B=15,1 мТл по окружности радиусом R=1 см. Определить отношение $|\mathbf{e}|/\mathbf{m}$ заряда частицы к ее массе и скорость v частицы.

- **430.** В однородном магнитном поле с индукцией B=100 мкТл движется электрон по винтовой линии. Определить скорость v электрона, если шаг h винтовой линии равен 20 см, а радиус R=5 см.
- **431.** Заряженная частица с кинетической энергией T=2 кэВ движется в однородном магнитном поле по окружности радиусом R=4 мм. Определить силу Лоренца $F_{\rm n}$, действующую на частицу со стороны поля.
- 432. Заряженная частица прошла ускоряющую разность и влетела в скрещенные под прямым углом (E=400B/M)магнитное (B=0,2электрическое И Тл) поля. Определить ускоряющую разность потенциалов если, двигаясь перпендикулярно полям, частица не испытывает отклонений от прямолинейной траектории. Отношение заряда к массе частицы $e/m=9,64\cdot10^7$ Кл/кг.
- **433.** Перпендикулярно однородному магнитному полю (B=1 мТл) возбуждено однородное электрическое поле (E=1 кВ/м). Перпендикулярно полям влетает α -частица со скоростью ν =1 Мм/с. Определить нормальное a_n и тангенциальное a_{τ} ускорения α -частицы в момент вхождения ее в поле.
- **434.** Полупроводник в виде тонкой пластины шириной l=1 см и длиной L=10 см помещен в однородное магнитное поле с индукцией B=0,2.Тл. Вектор магнитной индукции перпендикулярен плоскости пластины. К концам пластины (по направлению L) приложено постоянное напряжение U=300 В. Определить холловскую разность потенциалов $U_{\rm H}$ на гранях пластины, если постоянная Холла $R_{\rm H}=0,1$ м³/Кл, удельное сопротивление $\rho=0,5$ Ом·м.
- **435.** Тонкая пластина из кремния шириной l=2 см помещена перпендикулярно линиям индукции однородного магнитного поля (B=0,5 Тл). При плотности тока j=2 мкА/мм², направленного вдоль пластины, холловская разность потенциалов $U_{\rm H}$ оказалась равной 2,8 В. Определить концентрацию n носителей заряда.
- **436.** Прямой провод длиной l=10 см помещен в однородное магнитное поле с индукцией B=1 Тл. Концы его замкнуты гибким

- проводом, находящемся вне поля. Сопротивление R всей цепи равно 0,4 Ом. Какая мощность P потребуется для того, чтобы двигать провод перпендикулярно линиям индукции со скоростью v=20 m/c?
- **437.** В однородном магнитном поле с индукцией B=0,4 Тл в плоскости, перпендикулярной линиям индукции поля, вращается стержень длиной l=10 см. Ось вращения проходит через один из концов стержня, Определить разность потенциалов U на концах стержня при частоте вращения n=16 c-1.
- **438.** В однородном магнитном поле с индукцией B=0,35 Тл равномерно с частотой n=480 мин⁻¹ вращается рамка, содержащая N=500 витков площадью S=50 см². Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Определить максимальную э.д.с индукции \mathcal{E}_{max} , возникающую в рамке.
- сопротивлением 439. R=0.01Рамка провода ИЗ однородном вращается магнитном равномерно В индукцией B=0.05 Тл. Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Площадь S рамки равна 100 cm^2 . Найти, какое количество электричества Q протечет через рамку за время поворота ее на угол $\alpha = 30^{0}$ в следующих случаях: 1) от $\alpha_0 = 0$ до $\alpha_1 = 30^{\circ}$; 2) от α_1 до $\alpha_2 = 60^{\circ}$ 3) от α_2 до $\alpha_3 = 90^{\circ}$.
- **440.** Тонкий медный провод массой m=5 г согнут в виде квадрата и концы его замкнуты. Квадрат помещен в однородное (B=0,2)магнитное поле Тл) что так, плоскость перпендикулярна линиям поля. Определить заряд Q, который пройдет проводнику, ПО если квадрат, потянув 3a противоположные вершины, вытянуть в линию.
- **441.** Индуктивность L катушки равна 2 мГн. Ток частотой v=50 Гц, протекающий по катушке, изменяется по синусоидальному закону. Определить среднюю э.д.с. самоиндукции $\langle \mathcal{E}_i \rangle$, возникающую за интервал времени Δt , в течение которого ток в катушке изменяется от минимального до максимального значения. Амплитуда силы тока равна $I_0=10$ A.

- **442.** Определить индуктивность L двухпроводной линии на участке длиной l=1 км. Радиус R провода равен 1 мм, расстояние d между осевыми линиями равно 0,4 м. Указание. Учесть только внутренний магнитный поток, т.е. поток, пронизывающий контур, ограниченный проводами.
- **443.** Соленоид содержит N=1000 витков. Площадь S сечения сердечника (из немагнитного материала) равна 10 см^2 . По обмотке течет ток, создающий поле с индукцией B=15 мТл. Найти среднее значение $\langle \mathcal{E}_s \rangle$ самоиндукции, возникающей на зажимах соленоида, если сила тока уменьшается практически до нуля за время $\Delta t=0.8 \text{ мс}$.
- **444.** Источник тока замкнули на катушку сопротивлением R=20 Ом. Через время t=0,1 с сила тока I замыкания достигла 0,95 предельного значения. Найти индуктивность L катушки.
- **445.** Цепь состоит из катушки индуктивностью L=0,1 Гн и источника тока. Источник тока отключили, не разрывая цепи. которое через тока уменьшится ДО 0,001 сила первоначального значения, равно t=0.05c. Определить сопротивление R катушки.
- **446.** Магнитный поток Φ в соленоиде, содержащем $N=10^3$ витков, равен 0,2 мВб. Определить энергию W магнитного поля соленоида, если сила тока, протекающего по виткам соленоида, I=1 А. Сердечник отсутствует. Магнитное поле внутри соленоида считать однородным.
- **447.** По проводнику, изогнутому в виде кольца радиусом R=20 см, содержащему N=500 витков, течет ток силой I=1 А. Определить объемную плотность w энергии магнитного поля в центре кольца.
- **448.** Колебательный контур имеет индуктивность L=1,6 м Γ н, электроемкость C=0,04 мк Φ и максимальное напряжение $U_{\rm max}$ на обкладках конденсатора, равное 200 В. Определить максимальную силу тока $I_{\rm max}$ в контуре. Сопротивление контура ничтожно мало.
- **449.** Активное сопротивление колебательного контура R=0,3 Ом. Какую мощность P потребляет контур при

поддержании в нем незатухающих колебаний с амплитудой тока $I_{\max} = 30 \text{ мA}$?

450. Индуктивность колебательного контура равна 0,5 мГн. Какова должна быть электроемкость контура, чтобы он резонировал на длину волны λ =300 м?

ЧАСТЬ III. ВОЛНОВАЯ И КВАНТОВАЯ ОПТИКА. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА.

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ Ч.3

Волновая и квантовая оптика

ЭЛЕКТРОМАГНИТНАЯ ПРИРОДА СВЕТА. ИНТЕРФЕРЕНЦИЯ СВЕТА. Когерентность и монохроматичность световых волн. Способы получения когерентных источников. Оптическая длина пути.

Расчет интерференционной картины от двух источников. Интерференция при отражении и преломлении в тонких пластинках. Полосы равной толщины и равного наклона. Кольца Ньютона. Просветление оптики. Интерферометры.

ДИФРАКЦИЯ СВЕТА. Условия наблюдения дифракции. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля от диска и круглого отверстия. Дифракция Фраунгофера. Дифракция в параллельных лучах от одной щели. Дифракционная решетка. Дифракционные спектры. Дисперсия и разрешающая способность оптических приборов. Дифракция рентгеновских лучей на пространственной решетке. Формула Вульфа-Брэгга.

ПОЛЯРИЗАЦИЯ СВЕТА. Естественный и поляризованный свет. Степень поляризации. Поляризация при отражении и преломлении. Закон Брюстера. Двойное лучепреломление. Поляроиды и поляризационные призмы. Закон Малюса. Оптическая активность. Вращение плоскости поляризации.

Пластинки в 1/4 и 1/2 длины волны. Искусственная анизотропия. Эффекты Керра и Фарадея.

СПЕЦИАЛЬНОЙ ЭЛЕМЕНТЫ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ. Принцип относительности Галилея. Постулаты сред. Эйнштейна. Оптика движущихся Преобразования Лоренца. Релятивистское изменение длин и Релятивистский времени. промежутков закон сложения скоростей. Релятивистская динамика. Связь массы и энергии

ВЗАИМОДЕЙСТВИЕ СВЕТА С ВЕЩЕСТВОМ. Дисперсия света. Электронная теория дисперсии. Нормальная и аномальная дисперсия. Связь дисперсии с поглощением. Фазовая и групповая скорости света. Закон Бугера. Излучение Вавилова-Черенкова.

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ. Испускательная и поглощательная способности. Закон Кирхгофа. Абсолютно черное тело. Закон Стефана-Больцмана. Распределение энергии в спектре абсолютно черного тела. Закон смещения Вина. Квантовая гипотеза и формула Планка.

КВАНТОВЫЕ СВОЙСТВА СВЕТА. Тормозное рентгеновское излучение. Коротковолновая граница сплошного рентгеновского спектра. Внешний фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта. Красная граница фотоэффекта. Фотоны. Опыт Боте. Энергия, масса и импульс фотона. Эффект Комптона и его теория. Давление света. Опыты Лебедева.

Атомная и ядерная физика

СТРОЕНИЕ АТОМА ВОДОРОДА. ТЕОРИЯ БОРА. Закономерности в атомных спектрах. Сериальные формулы. Формула Бальмера.

Модель атома Томсона. Опыты Резерфорда по рассеянию α-частиц. Ядерная модель атома. Постулаты Бора. Опыт Франка и Герца. Элементарная боровская теория водородоподобного

атома. Правило квантования круговых орбит. Схема энергетических уровней атома водорода.

ЭЛЕМЕНТЫ КВАНТОВОЙ МЕХАНИКИ. Гипотеза де Бройля. Опыты по дифракции электронов. Формула де Бройля для свободной частицы. Границы применимости классической механики. Соотношение неопределенностей. Применение соотношения неопределенностей к решению квантовомеханических задач. Уравнение Шредингера для стационарных состояний. Волновая функция и ее физический смысл.

СТРОЕНИЕ И СВОЙСТВА АТОМНОГО ЯДРА. Состав ядра. Нуклоны. Заряд, размеры и масса атомного ядра. Массовое и зарядовое число. Изотопы. Понятие о свойствах и природе ядерных сил. Дефект массы и энергия связи ядра. Устойчивость ядер.

РАДИОАКТИВНОСТЬ. ЯДЕРНЫЕ РЕАКЦИИ. радиоактивность. Естественная искусственная Закон И Период распада. полураспада. Типы радиоактивного радиоактивного распада. Основные характеристики α и βраспадов. Правила смещения. Понятие о ядерных реакциях. Законы сохранения в ядерных реакциях. Тепловой эффект ядерных реакций. Реакции деления и синтеза. Понятие об элементарных частицах.

ОСНОВНЫЕ ФОРМУЛЫ ПО ФИЗИКЕ Ч.3

• Скорость света в среде:

$$v = c/n$$
,

где c - скорость света в вакууме; n - показатель преломления среды.

• Оптическая длина пути световой волны:

$$L = nl$$
,

где l -геометрическая длина пути световой волны в среде с показателем преломления n.

• Оптическая разность хода двух световых волн:

$$\Delta = L_1 - L_2.$$

• Связь разности фаз с оптической разностью хода световых волн:

$$\Delta \varphi = 2\pi \Delta/\lambda$$
,

где λ - длина световой волны.

• Условие интерференционных максимумов:

$$\Delta = \pm k\lambda , \qquad (k = 0, 1, 2, \dots),$$

где k - порядок интерференции.

• Условие интерференционных минимумов:

$$\Delta = \pm (2k+1)\lambda/2, \qquad (k = 0,1,2,...).$$

• Оптическая разность хода световых волн, возникающая при отражении монохроматического света от тонкой пленки:

$$\Delta = 2d\sqrt{n^2 - \sin^2\alpha} + \lambda/2$$

ИЛИ

$$\Delta = 2dnCos\beta + \lambda/2$$
,

где d - толщина пленки, n - показатель преломления пленки, α - угол падения, β - угол преломления света в пленке.

• Радиусы светлых колец Ньютона в отраженном свете и темных колец в проходящем свете:

$$r_k = \sqrt{(2k-1)R\lambda/2}$$
, $(k = 1, 2, 3,...)$,

где κ - номер кольца, R - радиус кривизны линзы.

• Радиусы темных колец Ньютона в отраженном свете и светлых колец в проходящем свете:

$$r_k = \sqrt{kR\lambda}$$
, $(k = 1, 2, 3,...)$.

• Радиусы зон Френеля для сферической волны:

$$r_k = \sqrt{\frac{ab}{a+b}k\lambda}$$
, $(k = 1, 2, 3,...)$,

где κ - номер зоны, a - расстояние от источника до фронта волны, b -расстояние от фронта волны до центра экрана.

• Радиусы зон Френеля для плоской волны:

$$r_k = \sqrt{kb\lambda}$$
, $(k = 1, 2, 3,...)$.

• Условие дифракционного минимума при дифракции на одной щели:

$$bSin\varphi = \pm k\lambda$$
, $(k = 1,2,3,...)$,

где κ - номер минимума, ϕ - угол дифракции, b - ширина щели.

• Условие дифракционного максимума при дифракции на одной шели:

$$bSin\varphi = \pm (2k+1)\lambda/2, \qquad (k = 0,1,2,3,...).$$

• Условие главных дифракционных максимумов при дифракции на решетке:

$$dSin\varphi = \pm k\lambda$$
, $(k = 0,1,2,3,...)$,

где d - период дифракционной решетки.

• Условие дополнительных минимумов при дифракции на решетке:

$$dSin \varphi = \pm k^{'}/N$$
, $(k^{'}=1,2,3,...,$ кроме $0,N,2N,3N,...)$, где N - число щелей решетки.

• Разрешающая способность дифракционной решетки:

$$R = \lambda/\Delta\lambda = kN$$
,

где $\Delta\lambda$ - наименьшая разность длин волн двух соседних спектральных линий, при которой эти линии могут быть видны раздельно в спектре, λ - длина волны, вблизи которой производятся измерения.

• Угловая дисперсия дифракционной решетки:

$$D_{\varphi} = \frac{\delta \varphi}{\delta \lambda} = \frac{k}{dCos\varphi},$$

где $\delta \varphi$ - угловое расстояние между двумя спектральными линиями с разностью длин волн $\delta \lambda$.

• Линейная дисперсия дифракционной решетки:

$$D_l = \frac{\delta l}{\delta \lambda},$$

где δl - линейное расстояние между двумя спектральными линиями с разностью длин волн $\delta \lambda$.

• Формула Вульфа-Брэгга для дифракции рентгеновских лучей:

$$2dSin\theta = k\lambda$$
,

где θ - угол скольжения, d - расстояние между атомными плоскостями.

• Степень поляризации света:

$$P = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}},$$

где I_{max} и I_{min} - максимальная и минимальная интенсивности света, пропускаемые поляризатором.

• Закон Брюстера:

$$tg\alpha_{B}=n_{12},$$

где $\alpha_{\rm B}$ - угол падения, при котором отразившийся от диэлектрика свет полностью поляризован, n_{12} - относительный показатель преломления второй среды относительно первой.

• Закон Малюса:

$$I = I_{\rm o} Cos^2 \varphi$$
,

где I_0 - интенсивность света, падающего на поляризатор, I - интенсивность этого света после поляризатора, φ - угол между направлением колебаний светового вектора и плоскостью пропускания поляризатора.

• Угол поворота плоскости поляризации при прохождении света через оптически активное вещество:

$$\varphi = \alpha d$$
 (в твердых телах),

где α - постоянная вращения; d - длина пути, пройденного светом в оптически активном веществе;

$$\varphi = [\alpha] \rho d$$
 (в растворах),

где $[\alpha]$ - удельное вращение; ρ - массовая концентрация оптически активного вещества в растворе.

• Угол поворота плоскости поляризации в эффекте Фарадея: $\varphi = VdH$,

где V - постоянная Верде, H - напряженность магнитного поля соленоида, d - длина соленоида.

• Взаимосвязь массы и энергии релятивистской частицы:

$$E = mc^2$$
 или $E = \frac{m_0 c^2}{\sqrt{1 - (v/c)^2}} = \frac{E_0}{\sqrt{1 - (v/c)^2}},$

где $E_o = m_o c^2$ - энергия покоя частицы, m_0 - масса покоя частицы, m - релятивистская масса, v - скорость частицы.

• Полная энергия свободной частицы:

$$E = E_0 + T$$
,

где Т - кинетическая энергия частицы.

• Кинетическая энергия релятивистской частицы:

$$T = (m - m_0)c^2$$
 или $T = E_0 \left(\frac{1}{\sqrt{1 - (v/c)^2}} - 1 \right).$

• Импульс релятивистской частицы:

$$p = \frac{m_0 v}{\sqrt{1 - \left(v / c\right)^2}}.$$

• Связь полной энергии и импульса релятивистской частицы:

$$E = \sqrt{E_0^2 + (pc)^2}$$
, $p = \frac{1}{c}\sqrt{T(T + 2E_0)}$.

• Закон Кирхгофа:

$$\frac{r_{\lambda,T}}{\alpha_{\lambda,T}} = \varphi(\lambda,T),$$

где $r_{\lambda T}$ - испускательная способность тела, $\alpha_{\lambda T}$ - поглощательная способность, $\varphi(\lambda,T)$ - универсальная функция Кирхгофа, T - температура тела.

• Формула Планка:

000,

где h - постоянная Планка, κ - постоянная Больцмана.

• Закон Стефана-Больцмана:

$$R_9 = \sigma T^4$$

где $R_{\mathfrak{I}}$ - энергетическая светимость абсолютно черного тела, σ - постоянная Стефана-Больцмана.

• Энергетическая светимость серого тела:

$$R_{2} = \alpha \sigma T^{4}$$

где α - коэффициент поглощения серого тела (степень черноты).

• Закон смещения Вина:

$$\lambda_m T = b$$
,

где λ_m - длина волны, на которую приходится максимум испускательной способности абсолютно черного тела, b - постоянная Вина.

• Максимальное значение испускательной способности абсолютно черного тела для данной температуры:

$$r_{max} = cT^5$$
,

где константа $c = 1,3.10^{-5} \text{ Br/m}^3 \text{K}^5$.

• Энергия фотона:

$$\varepsilon = h v$$
 или $\varepsilon = hc/\lambda$,

где v - частота фотона.

- Масса фотона: $m = \varepsilon/c^2$.
- Импульс фотона: $p = mc = h/\lambda$.
- Формула Эйнштейна для фотоэффекта:

$$h v = A + T_{max},$$

где A - работа выхода электрона, T_{max} - максимальная кинетическая энергия фотоэлектрона.

- Красная граница фотоэффекта: $\lambda_0 = hc/A$.
- Коротковолновая граница сплошного рентгеновского спектра:

$$\lambda_{min} = hc/eU$$
,

где e - заряд электрона, U - ускоряющая разность потенциалов в рентгеновской трубке.

• Давление света при нормальном падении на поверхность:

$$p = E_{9}(1+\rho)/c = w(1+\rho),$$

где $E_{\text{-}}$ - энергетическая освещенность, w - объемная плотность энергии излучения, ρ - коэффициент отражения поверхности; или

$$p = (1 + \rho) \frac{N\varepsilon}{cSt}$$
,

где N - число фотонов, падающих на поверхность, S - площадь поверхности, t - время облучения, ε - энергия фотона.

• Формула Комптона:

$$\lambda' - \lambda = \frac{h}{m_0 c} (1 - Cos\theta) = \frac{2h}{m_0 c} Sin^2 (\theta / 2),$$

где λ - длина волны падающего фотона, λ - длина волны рассеянного фотона, θ - угол рассеяния, m_{θ} - масса покоя электрона.

• Обобщенная сериальная формула Бальмера:

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right), \quad (n = m+1, m+2, ...),$$

где R - постоянная Ридберга, m и n - главные квантовые числа, Z - порядковый номер химического элемента.

• Первый постулат Бора:

$$m_0 v_n r_n = nh/2\pi$$
, $(n = 1,2,3,...)$,

где m_0 - масса электрона, v_n - скорость электрона на n-ой орбите, r_n - радиус n-ой стационарной орбиты, n - главное квантовое число.

• Энергия, излучаемая или поглощаемая атомом водорода: $\varepsilon = h v = E_m - E_n$,

где E_m и E_n - энергии стационарных состояний атома со значениями главного квантового числа m и n.

• Радиус *n*-ой стационарной орбиты водородоподобных атомов:

$$r_n = \frac{\varepsilon_0 h^2}{\pi m_0 Z e^2} n^2,$$
 $(n = 1, 2, 3, ...).$

где ε_0 - электрическая постоянная.

• Радиус стационарной орбиты в атоме водорода:

$$r_n = \frac{\varepsilon_0 h^2}{\pi m_0 e^2} n^2$$
, $(n = 1, 2, 3, ...)$.

• Энергия электрона в водородоподобном атоме:

$$E_n = -\frac{m_0 e^4 Z^2}{8h^2 \varepsilon_0^2} \frac{1}{n^2}, \qquad (n = 1, 2, 3, ...).$$

• Длина волны де Бройля:

$$\lambda = h/p$$
,

где p - импульс частицы.

• Соотношение неопределенностей:

$$\Delta x \Delta p \ge h/2\pi$$

где Δx -неопределенность координаты, Δp -неопределенность проекции импульса на ось x.

• Энергия связи нуклонов в ядре:

$$E_{ce} = c^2 \{ Zm_H + (A - Z)m_n - m_a \},$$

в том числе удельная энергия связи

$$E_{y\partial} = E_{ce}/A$$
,

где m_H - масса атома водорода, m_n - масса нейтрона, m_a - масса атома, A - массовое число, Z - зарядовое число.

• Закон радиоактивного распада:

$$N=N_0e^{-\lambda t}$$
,

где N - число ядер, не распавшихся к моменту времени t; N_0 - число ядер в начальный момент времени, λ - постоянная распада.

• Период полураспада:

$$T = \frac{\ln 2}{\lambda}$$

• Активность радиоактивного изотопа:

$$A = A_0 e^{-\lambda t}$$
 или $A = \lambda N$.

где A_0 - активность в начальный момент времени.

• Энергетический эффект ядерной реакции:

$$Q = c^2(\Sigma m_i - \Sigma m_k),$$

где Σm_i - сумма масс ядер или частиц, вступающих в реакцию, Σm_k - сумма масс продуктов реакции.

КОНТРОЛЬНАЯ РАБОТА № 5

Таблица 5. Варианты к контрольной работе № 5

Вариант		Номера	задач		
0	503	511	522	531	547
1	507	512	527	538	550
2	501	516	521	532	541

Вариант		Номера	задач		
3	508	515	530	533	544
4	505	517	529	539	542
5	506	520	525	540	543
6	502	519	526	536	549
7	504	514	524	537	545
8	510	518	524	535	546
9	509	513	528	534	548

- **501.** В опыте Юнга вначале берется свет с длиной волны λ_1 = 660 нм, а затем с другой длиной волны λ_2 . Какова длина волны во втором случае, если седьмая светлая полоса в первом случае совпадает с десятой темной полосой во втором случае?
- **502**. Для измерения показателя преломления аммиака в одно из плеч интерферометра Майкельсона поместили откачанную трубку длиной l=14 см, закрытую на концах плоскопараллельными стеклами. При заполнении трубки аммиаком, интерференционная картина для света с длиной волны λ =0,59 мкм сместилась на κ =180 полос. Определить показатель преломления аммиака.
- **503**. В опыте Ллойда источник света находится на расстоянии d=1 мм от зеркала и на расстоянии l=4 м от экрана. На каком расстоянии x_{max} от середины центральной полосы будет находиться третья светлая полоса? Длина волны света λ =700 нм.
- 504. На поверхность стеклянного объектива с показателем $n_1 = 1,5$ преломления нанесена тонкая пленка, показатель преломления которой равен $n_2=1,2$ ("просветляющая пленка"). произойдет При какой наименьшей толщине пленки максимальное ослабление отраженного света в средней части видимого спектра (λ =550 нм)?
- **505**. Мыльная пленка с показателем преломления n=1,33, расположенная вертикально, образует клин вследствие стекания

жидкости. Угол при вершине клина равен $\alpha = 19,6$ ". На пленку падает нормально свет с длиной волны $\lambda = 0,5$ мкм. Какое число темных интерференционных полос приходится на единицу длины клина?

- **506**. В каких пределах (в зависимости от угла падения α) может изменяться толщина плоскопараллельной стеклянной пластинки с показателем преломления n=1,6, чтобы можно было наблюдать максимум двенадцатого порядка для света с длиной волны λ =600 нм?
- **507**. В опыте по наблюдению колец Ньютона при освещении тонкой плосковыпуклой линзы светом с длиной волны λ =589 нм расстояние между первым и вторым светлыми кольцами при наблюдении в отраженном свете оказалось равным 0,5 мм. Определить радиус кривизны линзы R.
- **508**. Кольца Ньютона наблюдают с помощью двух одинаковых плосковыпуклых линз, соприкасающихся своими сферическими поверхностями. Диаметр пятого светлого кольца в отраженном свете длиной волны λ =600 нм равен d_5 =1,5 мм. Определить фокусное расстояние F линзы. Показатель преломления стекла n=1,5.
- **509**. В установке для наблюдения колец Ньютона пространство между плосковыпуклой линзой с показателем преломления n_1 =1,5 и стеклянной пластинкой с n_2 =1,7 заполнено жидкостью с n_3 =1,6. Радиус кривизны линзы R=5 см. Найти радиус пятого светлого кольца r_5 в отраженном свете с длиной волны λ =600 нм.
- **510**. Найти расстояние между третьим и шестнадцатым темными кольцами Ньютона, если расстояние между вторым и двадцатым темными кольцами равно 4,8 мм. Наблюдение проводится в отраженном свете.
- **511**. На дифракционную решетку, содержащую n=400 штрихов на 1 мм, падает нормально свет с длиной волны λ =0,6 мкм. Найти общее число дифракционных максимумов, которые дает эта решетка. Определить угол φ дифракции,

соответствующий последнему максимуму.

- **512**. Какова должна быть длина дифракционной решетки l, имеющей n=500 штрихов на 1 мм, чтобы в спектре второго порядка можно было различить две спектральные линии излучения натрия с длинами волн λ_1 =589,0 и λ_2 =589,6 нм?
- **513**. Период дифракционной решетки d=0,01 мм, а ширина прозрачной части b=2,5 мкм. Длина волны монохроматического света λ =500 нм. Сколько дифракционных максимумов не будет наблюдаться в спектре по одну сторону от нулевого максимума до угла ϕ =30 0 из-за влияния главных минимумов?
- **514**. Дифракционная картина наблюдается на расстоянии l=4 м от точечного источника монохроматического света с длиной волны λ =500 нм. Посередине между экраном и источником помещена диафрагма с круглым отверстием. При каком радиусе отверстия центр дифракционной картины, наблюдаемой на экране, будет наиболее темным?
- **515**. Точечный источник света с длиной волны λ =0,5 мкм расположен на расстоянии a=1 м перед непрозрачным круглым диском диаметром d=2 мм. Найти расстояние b от диска до точки наблюдения, для которой открыты зоны Френеля, начиная с четвертой.
- **516**. На дифракционную решетку с периодом d=3 мкм падает нормально белый свет. Определить угловое расстояние между концом спектра первого порядка и началом спектра второго порядка. Считать длину волны фиолетового края видимой части спектра λ_{ϕ} =0,40 мкм, а красного λ_{κ} =0,76 мкм.
- **517**. На каком расстоянии друг от друга будут находиться две спектральные линии ртутной лампы с длинами волн λ_1 =577,0 нм и λ_2 =579,1 нм в спектре первого порядка, полученном с помощью дифракционной решетки с периодом d=20 мкм? Фокусное расстояние линзы, проецирующей спектр на экран, равно F=0,6 м.
- **518**. На щель шириной b=2 мкм падает нормально свет с длиной волны λ =0,5 мкм. Найти ширину дифракционного

изображения щели на экране, если изображение проецируется собирающей линзой с фокусным расстоянием F=1 м. Шириной изображения считать расстояние между первыми дифракционными минимумами, расположенными по обе стороны от нулевого максимума освещенности.

- **519**. Определить наибольшую разрешающую способность дифракционной решетки шириной l=3 мм и периодом d=6 мкм для желтой линии натриевой лампы с длиной волны $\lambda=589,6$ нм.
- **520**. Исследуя структуру кристаллической решетки с помощью рентгеновских лучей с длиной волны $\lambda = 3.2$ нм, установили, что первое зеркальное отражение рентгеновских лучей наблюдается при угле скольжения $\theta_1 = 3^0$. Найти расстояние между атомными плоскостями d и угол скольжения θ_2 , при котором будет наблюдаться следующее зеркальное отражение.
- **521**. Естественный свет падает на систему из 3-х поляризаторов, плоскость пропускания каждого из которых повернута на угол φ =30 0 относительно плоскости пропускания предыдущего поляризатора. Какая часть светового потока проходит через эту систему?
- **522**. Поглощение света в поляризаторе (призме Николя) равно k=10%. Во сколько раз изменится интенсивность естественного света при прохождении его через два таких поляризатора, плоскости пропускания которых повернуты друг относительно друга на угол $\varphi=63^{0}$?
- **523.** Предельный угол полного внутреннего отражения света для некоторого вещества равен φ = 45^{0} . Чему равен для этого вещества угол полной поляризации (угол Брюстера) $\alpha_{\rm E}$ и скорость распространения света в этом веществе?
- **524**. Естественный свет падает на оптическую систему, состоящую из двух скрещенных поляризаторов, между которыми расположена кварцевая пластинка, вырезанная перпендикулярно оптической оси. При толщине пластинки d=10 мм свет не проходит через эту систему. Какова должна быть толщина пластинки, чтобы проходило 50 % светового потока?

- **525**. Трубка с раствором сахара концентрацией C_1 =0,28 г/см³ поворачивает плоскость поляризации на угол φ =24⁰. Когда в эту трубку добавили еще некоторое количество сахара, то плоскость поляризации повернулась еще на угол $\Delta \varphi$ =8⁰. Определить концентрацию сахара C_2 в растворе во втором случае.
- **526**. Трубка с бензолом длиной l=26 см помещена в однородное магнитное поле соленоида, расположенного между двумя скрещенными поляризаторами. Найти минимальную напряженность магнитного поля H_{min} , при которой через эту систему пройдет 50% естественного света. Постоянную Верде для бензола считать равной V=2,59 угл. мин/A.
- **527**. Интенсивность естественного света после прохождения через две одинаковые призмы Николя уменьшилась в 5,4 раза. Определить долю потерь света k в процентах в каждой призме изза их неидеальности, если угол между плоскостями пропускания призм составляет φ =45 0 .
- **528**. На стеклянную пластинку с показателем преломления n=1,7 падает луч естественного света под углом Брюстера. На сколько нужно изменить угол падения, чтобы получить полную поляризацию отраженного луча, если пластинку поместить в сосуд с водой. Показатель преломления воды n=1,33.
- **529**. Степень поляризации частично поляризованного света равна P=0,25. Найти отношение интенсивности поляризованной составляющей этого света к интенсивности естественной составляющей.
- **530**. Степень поляризации частично поляризованного света равна P=0,5. Во сколько раз амплитуда A_1 светового вектора, соответствующая его составляющей с максимальной интенсивностью, больше амплитуды A_2 , соответствующей составляющей с минимальной интенсивностью?
- **531**. Определить поглощательную способность $\alpha_{\lambda T}$ для длины волны λ =400 нм, если испускательная способность этого тела $r_{\lambda T}$ при температуре T_1 =1500 К равна испускательной способности абсолютно черного тела при температуре T_2 =1460 К.

- **532**. Для длины волны λ =0,6 мкм испускательная способность тела $r_{\lambda T}$ равна испускательной способности абсолютно черного тела, имеющего температуру T_I =3000 К. Найти температуру данного тела T_2 , если его поглощательная способность для этой длины волны равна $\alpha_{\lambda T}$ =0,5.
- **533**. Печь потребляет мощность P=2 кВт. Температура внутри печи при открытом отверстии площадью S=50 см 2 равна T=1500 К. Определить, какая часть мощности рассеивается стенками. Считать, что отверстие печи излучает как абсолютно черное тело.
- **534**. Максимальное значение испускательной способности абсолютно черного тела равно r_{max} =3,1 10^{11} Bt/м³. Какой длине волны λ_{max} соответствует максимум испускательной способности этого тела?
- **535**. Температура абсолютно черного тела равна T_1 =2500 К. Найти температуру другого абсолютно черного тела T_2 , если длина волны, соответствующая максимуму его испускательной способности λ_2 , на 0,5 мкм больше такой же длины волны для первого тела.
- **536**. Считая Солнце абсолютно черным телом с температурой T=6000 K, определить: 1) мощность излучения с площади S=1 м 2 , 2) длину волны λ_{max} , соответствующую максимуму его испускательной способности, 3) максимальное значение испускательной способности r_{max} .
- **537**. Температура абсолютно черного тела T увеличилась в два раза, в результате чего длина волны, на которую приходится максимум испускательной способности $\lambda_{m,ax}$, уменьшилась на 600 мкм. Определить начальную и конечную температуру тела.
- **538**. Температура вольфрамовой нити в электрической лампе мощностью P=25 Вт равна T=2450 К. Поглощательная способность вольфрама при данной температуре равна α =0,3. Найти площадь излучающей поверхности нити S.
- **539**. Поверхность абсолютно черного тела нагрета до температуры T=1000 К. Затем одна половина поверхности

- нагревается на 100 К, а другая половина охлаждается так, что длина волны, на которую приходится максимум испускательной способности λ_{max} , увеличивается в 1,2 раза. Во сколько раз изменится энергетическая светимость Rэ поверхности этого тела?
- **540**. В результате остывания абсолютно черного тела, имевшего первоначально температуру T_I =2900 K, длина волны, соответствующая максимуму испускательной способности λ_{max} , изменилась на 9 мкм. До какой температуры T_2 охладилось тело?
- **541**. С какой скоростью V должен двигаться электрон, чтобы его кинетическая энергия T была равна энергии фотона E с длиной волны: 1) $\lambda_1 = 520$ нм, 2) $\lambda_2 = 5,2$ пм?
- **542**. Кванты света с длиной волны λ =250 нм вырывают фотоэлектроны из металла с работой выхода A=4,5 эВ. Найти максимальный импульс p_{max} , передаваемый поверхности металла при вылете каждого электрона.
- **543.** При фотоэффекте с платинового катода величина задерживающей разности потенциалов оказалась равной U_3 =0,8 В. Определить: 1) длину волны используемого излучения, 2) максимальную длину волны, при которой еще возможен фотоэффект $\lambda_{\kappa p}$. Работа выхода электрона из платины равна A=6,3 эВ.
- **544**. Найти максимальную скорость электронов V_{max} , вылетающих из металла под действием γ -лучей с длиной волны λ =0,002 нм.
- **545**. Определить энергию E, импульс p и массу фотона m ,длина волны которого соответствует видимой части спектра (λ =500 нм).
- **546**. Железный шарик, отдаленный от других тел, облучают монохроматическим излучением с длиной волны λ =200 нм. До какого максимального потенциала ϕ_{max} зарядится шарик, теряя фотоэлектроны. Работа выхода электронов из железа A=4,36 эВ.
- **547**. Длина волны коротковолновой границы тормозного рентгеновского спектра λ_{\min} изменяется на 26 пм при увеличении в 1,5 раза напряжения на рентгеновской трубке. Найти

первоначальное напряжение на трубке U.

- **548**. Определить длину волны коротковолновой границы сплошного рентгеновского спектра λ_{min} , если скорость электронов, подлетающих к антикатоду рентгеновской трубки, составляет 85% от скорости света c.
- **549**. В результате изменения длины волны света, которым облучают фотокатод, с длины волны λ_I =0,35 мкм до λ_2 =0,54 мкм получено, что максимальные скорости фотоэлектронов уменьшаются в 2 раза. Найти работу выхода электронов A с поверхности этого металла.
- **550**. Протон влетает в тормозящее электрическое поле с начальной скоростью V_o =2,7 10^5 км/с. Какую разность потенциалов U он сможет преодолеть согласно классической и релятивистской механике? Масса протона m=1,67 10^{-27} кг.

КОНТРОЛЬНАЯ РАБОТА № 6

Таблица 6. Варианты к контрольной работе № 6

Вариант		Номера	задач		
0	610	611	623	632	641
1	602	617	621	633	642
2	607	618	627	640	647
3	608	613	628	637	649
4	609	612	630	639	646
5	603	620	622	638	650
6	605	614	625	636	643
7	606	615	624	634	644
8	604	619	626	635	645
9	601	616	629	631	648

601. Точечный источник мощностью P=10 Вт испускает

- свет с длиной волны λ =589 нм. Определить число фотонов N, падающих в единицу времени на единицу площади на расстоянии l=2 м от источника.
- **602**. Найти расстояние от точечного источника излучения мощностью P=100 Вт и длиной волны λ =0,6 мкм до точки, где концентрация фотонов равна n=10 8 м $^{-3}$.
- **603**. Излучение лазера в виде импульса с длительностью τ =0,13 мс и энергией E=10 Дж сфокусировано в круг диаметром d=10 мм на поверхность, перпендикулярную излучению. Коэффициент отражения поверхности ρ =0,5. Определить давление излучения на эту поверхность.
- **604**. Излучением лазера в виде импульса с энергией E=13 Дж "выстреливают" по нормали в небольшое идеальное зеркало массой m=10 мг, подвешенное на нити длиной l=10 см. Найти угол α , на который отклонится зеркало.
- **605**. На поверхность площадью S=100 см² ежеминутно падает световой поток с энергией E=63 Дж. Найти величину светового давления p и силу давления F в случаях когда поверхность: 1) полностью отражает падающие на нее лучи, 2) полностью поглощает падающие лучи.
- **606**. Монохроматический пучок света с длиной волны λ =490 нм, падая нормально на поверхность, оказывает на нее давление равное p=5 10^{-7} Па. Сколько квантов света N падает ежесекундно на единицу площади этой поверхности? Коэффициент отражения света от этой поверхности равен ρ =0,25.
- **607**. Монохроматическое излучение с длиной волны λ =500 нм падает нормально на плоское зеркало и давит на него с силой F=100 нH. Определить число фотонов N, ежесекундно падающих на зеркало.
- **608**. Определить концентрацию фотонов n в параллельном пучке монохроматического света с длиной волны λ =600 нм, который падает на черную поверхность и оказывает на нее давление p=20 мкПа.

- **609**. На идеальное плоское зеркало площадью поверхности S=2 см² падает нормально свет с поверхностной плотностью потока излучения равной 2 10^5 Bt/м². Зеркало облучается в течении времени t=2 с. Найти импульс, полученный зеркалом.
- **610**. Поток световой энергии, излучаемой электрической лампой, равен Φ =600 Вт. На расстоянии l=1 м от лампы перпендикулярно падающим лучам расположено плоское круглое зеркало радиусом r=1 см. Считая лампу точечным изотропным излучателем, определить силу давления света F на зеркало.
- **611**. Найти длину волны рассеянного фотона λ , если в результате комптоновского рассеяния угол между направлением движения рассеянного фотона и электрона отдачи равен ϕ =90 0 .
- **612.** Определить импульс электрона отдачи mv при эффекте Комптона, если фотон с энергией ε , равной энергии покоя электрона, был рассеян на угол θ =180 0 .
- **613**. В результате комптоновского рассеяния γ кванта с энергией ε =2 МэВ его длина волны изменилась на 30 %. Какова кинетическая энергия электрона отдачи?
- **614**. В эффекте Комптона энергия падающего фотона ε распределяется поровну между рассеянным фотоном и электроном отдачи. Угол рассеяния равен θ =90 $^{\circ}$. Найти энергию ε и импульс p рассеянного фотона.
- **615**. Рентгеновский фотон с длиной волны λ =1 пм рассеялся на свободном электроне под углом θ =90 0 . Какую долю своей энергии фотон передал электрону?
- **616**. Рентгеновский фотон с энергией ε =0,25 МэВ рассеялся на свободном электроне. Энергия рассеянного фотона равна ε =0,20 МэВ. Определить угол рассеяния фотона.
- **617**. В эффекте Комптона длины волн рентгеновского излучения, рассеянного под углами θ_1 = 60^0 и θ_2 = 120^0 , отличаются в 2 раза. Определить длину волны падающего излучения λ .
- **618**. Фотон с импульсом p=1,02 МэВ/с, где c скорость света в вакууме, расселся на покоившемся свободном электроне, в результате чего импульс фотона стал равным p=0,255 МэВ/с.

Под каким углом θ рассеялся фотон?

- **619**. При рассеянии рентгеновского фотона на свободном электроне на угол θ =120 0 электрон отдачи получил кинетическую энергию T=0,45 Мэв. Найти энергию фотона ε до рассеяния.
- **620**. В эффекте Комптона рентгеновский фотон с длиной волны λ =0,07 нм рассеивается на угол θ =90 0 . Определить угол между падающим фотоном и электроном отдачи.
- **621**. Определить, во сколько раз увеличится радиус орбиты электрона r в атоме водорода, находящемся в основном состоянии, при поглощении им кванта энергии ε =12,09 эВ.
- **622**. Возбужденный атом водорода при переходе в основное состояние испустил последовательно два фотона с длинами волн λ_1 =4051нм и λ_2 =97,25 нм. Определить энергию первоначального состояния атома E_n и соответствующее ему квантовое число n.
- **623.** Покоящийся ион гелия He⁺ испустил фотон, соответствующий головной линии серии Лаймана. Этот фотон вырвал электрон из покоящегося атома водорода, который находился в основном состоянии. Найти скорость электрона.
- **624**. Найти период обращения T и угловую скорость обращения электрона на 1-ой боровской орбите иона атома He^+ .
- **625.** Покоящийся атом водорода испустил фотон, соответствующий головной линии серии Лаймана. Какую скорость приобрел атом? Масса атома водорода $m=1,67\ 10^{-27}\ \rm kr$.
- **626.** Найти скорость фотоэлектронов, вырываемых электромагнитным излучением с длиной волны λ =0,018 мкм из ионов He⁺, которые находятся в основном состоянии и покоятся.
- спектре **627.** испускания атомарного водорода, полученном с помощью дифракционной решетки с периодом d=2Бальмера обнаружено, серии ЧТО одна ИЗ линий наблюдается во втором порядке спектра под углом $\varphi = 29^{0}05^{\circ}$. Определить квантовое число уровня n, с которого совершен переход, соответствующий этой линии.
 - **628**. Какую наименьшую скорость V_{min} должен иметь

электрон, чтобы при соударении с невозбужденным покоящимся атомом водорода вызвать излучение хотя бы одной линии в спектре атома водорода. Определить длину волны этой линии.

- **629**. На атом водорода, находящийся в возбужденном состоянии с квантовым числом n=2, падает фотон и выбивает электрон с кинетической энергией T=4 эВ. Найти энергию падающего фотона.
- **630**. Определить первый потенциал возбуждения φ_1 и энергию ионизации E_i атома водорода, находящегося в основном состоянии.
- **631**. Определить дебройлевскую длину волны движущегося электрона, если известно, что масса его на 1% больше массы покоя электрона. Нужно ли учитывать волновые свойства этого электрона при прохождении его через щель шириной d=1 мкм?
- **632**. Найти длину волны де Бройля для электрона, прошедшего ускоряющую разность потенциалов U=500 кВ. Нужно ли учитывать волновые свойства таких электронов в задаче о дифракции электронов на щели шириной d=0,5 мкм?
- **633**. Моноэнергетический пучок электронов падает под углом скольжения θ =30 $^{\rm O}$ на естественную грань монокристалла с постоянной решетки d=0,24 нм. При какой минимальной ускоряющей разности потенциалов будет наблюдаться зеркальное отражение электронов?
- **634**. Во сколько раз отличается дебройлевская длина волны протона λ , ускоренного разностью потенциалов U=1 ГВ, от величины неопределенности его координаты Δx , соответствующей неопределенности его импульса $\Delta p/p=0,001$. Масса протона $m_p=1,67.10^{-27}$ кг.
- **635**. При каком значении кинетической энергии электрона T ошибка в определении длины волны де Бройля без учета релятивистской поправки составит 2%?
- **636**. Какую энергию необходимо дополнительно сообщить электрону, чтобы его дебройлевская длина волны уменьшилась от λ_1 =100 пм до λ_2 =50 пм?
 - 637. Оценить с помощью соотношения неопределенностей

неопределенность скорости электрона Δv в атоме водорода, полагая размер атома равным l=0,1 нм. Сравнить полученную величину со скоростью электрона v_1 на первой орбите атома H.

- **638**. Пучок электронов падает нормально на узкую щель шириной b=1 мкм. На экране, отстоящем от щели на расстоянии l=0,5 м, ширина центрального дифракционного максимума составила d=0,36 мм. Определить скорость электронов.
- **639**. Найти дебройлевскую длину волны релятивистских электронов, подлетающих к антикатоду рентгеновской трубки, если длина волны коротковолновой границы сплошного рентгеновского спектра равна λ_{min} =10 пм.
- **640**. Электрон пролетел ускоряющую разность потенциалов U=0,1 МэВ. Сравнить его дебройлевскую длину волны λ с величиной неопределенности его координаты, если неопределенность импульса составляет $\Delta p/p$ =0,01.
- **641**. При бомбардировке ядер бора ${}_{5}B^{10}$ α -частицами происходит ядерная реакция, в результате которой образуются два новых ядра, одно из которых ядро атома водорода ${}_{1}H^{1}$. Найти зарядовое число Z и массовое число A второго ядра, записать уравнение этой реакции и определить ее энергетический эффект Q, указав выделяется или поглощается энергия в этой реакции. Масса атома бора m=10,01294 а.е.м., масса атома водорода m=1,00814 а.е.м., масса α -частицы m=4,00149 а.е.м., масса атома неизвестного ядра m=13,00335 а.е.м.
- **642**. Определить начальную активность A_0 радиоактивного препарата $_7$ Mg²⁷ массой m=0,2 мкг и его активность A через время t=6 часов. Период полураспада препарата T=10 мин.
- **643**. Найти среднюю энергию связи на один нуклон (удельную энергию связи) $E_{yд}$ в ядре кислорода ${}_8\mathrm{O}^{16}$. Масса атома водорода $m_{\mathrm{H}}{=}1,00783$ а.е.м, масса атома кислорода $m_{\mathrm{O}}{=}15,99491$ а.е.м., масса нейтрона $m_{n}{=}1,00867$ а.е.м.
- **644**. Препарат радиоактивного фосфора $_{15}P^{32}$ совершает 10^4 β -распадов за время t=1 с. Период полураспада фосфора T=14,3 суток. Найти массу препарата и его активность через один месяц.

Написать схему β-распада.

- **645**. Какая энергия Q выделяется, если в следующей ядерной реакции $_{13}\mathrm{Al}^{27} + _2\mathrm{He}^4 \rightarrow _{14}\mathrm{Si}^{30} + _1\mathrm{H}^1$ подвергаются превращению все ядра, находящиеся в $m{=}1$ г алюминия. Масса атома алюминия $m{=}26,99010$ а.е.м., масса атома гелия $m{=}4,00388$ а.е.м., масса атома кремния $m{=}29,98325$ а.е.м., масса атома водорода $m{=}1,00814$ а.е.м.
- **646**. Определить энергию на один нуклон, которая выделяется в ядерной реакции $_3\mathrm{Li}^6 + _1\mathrm{H}^2 \to 2_2\mathrm{He}^4$. Масса атома лития m=6,01513 а.е.м., масса атома дейтерия m=2,01355 а.е.м., масса атома гелия m=4,00260 а.е.м.
- **647**. Сколько тепла Q выделяется при образовании m=1 г гелия $_2$ He 4 из дейтерия $_1$ H 2 ? Написать уравнение этой ядерной реакции. Масса атома гелия m=4,00260 а.е.м., масса атома дейтерия m=2,01355 а.е.м.
- **648**. Радиоактивный препарат урана $_{92}\mathrm{U}^{238}$ массой m=1 г испускает $1,24.10^4$ α -частиц в секунду. Найти период T полураспада изотопа, его активность A, написать схему α -распада
- **649**. Какая доля радиоактивных ядер кобальта $_{27}\text{Co}^{60}$, период полураспада которого равен T=5,3 года, распадается за 1 месяц?
- **650**. Определить энергию связи приходящуюся на один нуклон в ядре атома $_{92}$ U²³⁸ и сравнить ее с энергией связи на один нуклон в ядре атома кобальта $_{27}$ Co⁵⁶. Масса атома урана $_{m=238,12376}$ а.е.м., масса атома кобальта $_{m=55,95769}$ а.е.м., масса атома водорода $_{m=1,00814}$ а.е.м., масса нейтрона $_{m=1,00867}$ а.е.м.

Таблица основных физических постоянных

Физическая постоянная	Обозна-	Значение
	чение	
		2
Ускорение свободного падения	g	9.81 m/c^2
Гравитационная постоянная	γ	$6,67 \ 10^{-11} \ \text{m}^2/(\text{kg c}^2)$
Число Авогадро	$N_{ m A}$	$6,02 \ 10^{23} \ \text{моль}^{-1}$
Универсальная газовая	R	8,31 Дж/(моль К)
постоянная		
Постоянная Больцмана	k	1,38 10 ⁻²³ Дж/К
Элементарный заряд	e	1,6 10 ⁻¹⁹ Кл
Скорость света в вакууме	С	$3,00 \ 10^8 \mathrm{m/c}$
Постоянная закона	σ	$5,67 \cdot 10^{-8} \text{ BT/(M}^2 \text{ K}^4)$
Стефана-Больцмана		0,07 10 B1/(H1 1t)
Постоянная закона смещения	b	2,90 10 ⁻⁸ м К
Вина		2,50 10 M IC
Постоянная Планка	h	6,63 10 ⁻³⁴ Дж с
Постоянная Планка, деленная на	h	1,054 10 ⁻³⁴ Дж с
2π		1,00110 дже
Постоянная Ридберга	R	$1,097 \ 10^7 \ \mathrm{m}^{-1}$
Радиус первой боровской орбиты	a_0	$0,529 \ 10^{-10} \ \text{M}$
Комптоновская длина волны	Λ	$2,43 \ 10^{-12} \ \text{M}$
электрона		- , 15 10 11
Магнетон Бора	$\mu_{ m B}$	$0.927 \ 10^{-23} \ \text{A m}^2$
Энергия ионизации атома	$E_{\rm i}$	2,18 10 ⁻¹⁸ Дж (13,6
водорода		эB)
Атомная единица массы	а. е. м.	- /

Коэффициент	1,66 10 ⁻²⁷ кг
пропорциональности между	9,00 10 ¹⁶ Дж/кг
энергией и массой	(931 МэВ/ а. е. м.)

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Трофимова Т. И. Курс физики. -М.: Высшая школа, 1990.
- 2. Савельев И. В. Курс общей физики. -М.: Наука, т. 1-4, 1987.
- 3. Чертов А. Г., Воробьев А. А. Задачник по физике. -М.: Высшая школа, 1988.
- 4. Иродов И. Е. Задачи по общей физике. -М.: Наука, 1988.
- 5. Волькенштейн В. С. Сборник задач по общему курсу физики. М.: Наука, 1980.

СОДЕРЖАНИЕ

Введение	3
Организация изучения курса физики на заочном отделении	
МИРЭА	5
Указания по выполнению и оформлению контрольных работ	8
Указания по решению и оформлению задач	9
Пример решения задачи	11
Часть І. Физические основы механики. Молекулярная физика	аи
термодинамика	13
Рабочая программа по части I	13
Основные формулы по части I	15
Контрольная работа № 1	22
Контрольная работа № 2	28
Часть 2. Электричество и магнетизм	35
Рабочая программа по части II	35
Основные формулы по части II	37
Контрольная работа № 3	45
Контрольная работа № 4	53

Часть III. Волновая и квантовая оптика. Атомная и ядерная	
физика	61
Рабочая программа по части III	
Основные формулы по части III	
Контрольная работа № 5.	70
Контрольная работа № 6	78
Таблица основных физических постоянных	84
Рекомендуемая литература	85