МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ №1

В контрольную работу №1 включены задачи, дающие возможность проверить знания студентов по ключевым вопросам классической механики и основам молекулярной физики и термодинамики.

Решая задачи по кинематике, в которых необходимо использовать математический аппарат дифференциального и интегрального исчисления, студент должен научиться определять мгновенные скорости и ускорения по заданной зависимости координат от времени и решать обратные задачи.

При решении задач на динамику рекомендуется придерживаться следующего порядка:

- 1. Сделать чертеж, выбрать систему отсчета.
- 2. Учесть все силы, действующие на данное тело. Указывая силы, необходимо руководствоваться третьим законом Ньютона:

$$\vec{F}_{12} = -\vec{F}_{21}$$
;

3. Записать второй закон Ньютона в векторной и скалярной формах для каждого тела:

$$m\overline{a} = \sum_{i=1}^n \overline{F_i}$$
;

4. Решить уравнение или систему уравнений.

В задачах на тему "Основы молекулярно-кинетической теории" внимание уделено таким вопросам, как уравнение Менделеева – Клапейрона

$$PV = \frac{m}{\mu}RT$$
, уравнение молекулярно-кинетической теории $P = \frac{2}{3}n\langle E_{nocm}\rangle$,

средние кинетические энергии поступательного и вращательного движения молекулы, статистическое распределение молекул по скорости и по энергии. Задачи на тему "Основы термодинамики" охватывают такие важные соотношения и понятия, как первое начало термодинамики, внутренняя энергия, работа при различных изопроцессах и адиабатном процессе, второе начало термодинамики, энтропия идеального газа, которая в отличии от количества теплоты является функцией состояния.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ №1

Вариант 1-1

1. Движение материальной точки задано уравнением $X=At+Bt^2$, где A=4м/с; B=-0,05м/с². Определить момент времени, в который скорость V точки равна нулю. Найти координату и ускорение в этот момент. Построить графики зависимости координаты, пути, скорости и ускорения этого движения от времени.

OTBET: 40c; 80m; $-0.1m/c^2$.

2. По дуге окружности радиусом R=10м движется точка. В некоторый момент времени нормальное ускорение точки $a_n=4.9$ м/с². В этот момент векторы полного

и нормального ускорений образуют угол ϕ =60. Найти скорость и тангенциальное ускорение точки.

Ответ: 7м/с; 8.5 м/с2.

3. К пружинным весам подвешен блок. Через блок перекинут шнур, к концам которого привязали грузы массами $m_1 = 1.5$ кг и $m_2 = 3$ кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь.

OTBET: $P=4*g*m_1*m_2/(m_1+m_2)=39.2$ H.

4. Тело массой 8 кг начинает скользить с вершины наклонной плоскости высотой 9.4 м с углом наклона 60°. У основания плоскости стоит тележка с песком массой 90 кг. С какой скоростью начнет двигаться тележка, когда тело упадет на нее? Коэффициент трения 0.1.

Ответ: V=0.39 м/с.

5. Определить момент инерции проволочного равностороннего треугольника со стороной a=10 см относительно оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине.

Ответ: $J = 5/12ma^2 = 5.10^5 \,\mathrm{kr} \cdot \mathrm{m}^2$.

6. 12 г азота занимают объем 4 л при температуре 7°С. При нагревании газа при постоянном давлении его плотность стала равной 6 '10⁻⁴ г/см3. До какой температуры нагрели газ?

Ответ: 1400 К.

7. Смесь газов состоит из хлора и криптона, взятых при одинаковых условиях и в равных объемах. Определить удельную теплоемкость смеси C_p .

Ответ: *Cp*= 417 Дж/кг·К.

- 8. Какая часть молекул кислорода при 0^{0} С обладает скоростью от 100 м/с до 110 м/с Ответ: 0,4%.
- 9. При нагревании некоторой массы газа на $\Delta T=1K$ давление газа на стенки сосуда изменилось на 1/340 часть первоначального давления, объем газа оставался неизменным. Найдите начальную температуру газа.

Ответ: 340К.

10.Водород массой m=100 г был изобарически нагрет так, что объем его увеличился в n=3 раза, затем водород был изохорически охлажден так, что давление его уменьшилось в 3 раза. Найти изменение ΔS энтропии в ходе указанных процессов.

Ответ: $\Delta S = mRl_m n/m = 457 \text{ Дж/К}.$

Вариант 1-2

1. Точка движется по прямой согласно уравнению $X=At+Bt^3$, где A=6м/с; B=-0.121м/с³. Определить среднюю путевую скорость < V> точки в интервале времени от $t_1=2$ с до $t_2=6$ с.

Ответ: 3 м/с.

2. Диск радиусом r=10 см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением $\varepsilon=0.5$ рад/с². Найти тангенциальное, нормальное и полное ускорения точек на окружности диска в конце второй секунды после начала вращения.

OTBET: $a_{\tau}=5 \text{ cm/c}^2$, $a_n=10 \text{ cm/c}2$, $a=11 \text{ cm/c}^2$.

3. Самолет описывает петлю Нестерова радиусом R=200м. Во сколько раз сила F, с которой летчик давит на сиденье в нижней точке, больше силы тяжести P летчика, если скорость самолета V=100 м/с?

Ответ: в 6.1 раза.

4. Два неупругих шара массами m_1 =2кг и m_2 =3кг движутся со скоростью соответственно V_1 =8 м/с и V_2 =4 м/с. Определить увеличение внутренней энергии шаров при их столкновении в двух случаях: 1.Меньший шар нагоняет большой; 2.Шары движутся навстречу друг другу.

Ответ: $\Delta U = m1m2(V1-V2)$; 1) 9.6 Дж; 2) 86.4 Дж.

5. Диаметр диска d=20 см, масса m=800г. Определить момент инерции диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.

Ответ: $I = 3(mR^3)/4 = 6.10^{-3} \text{ K}\text{G} \cdot \text{M}^2$.

6. В сосуде вместимостью V=2.24 л при нормальных условиях находится кислород. Определить количество молей и массу кислорода, а также концентрацию его молекул в сосуде.

Ответ: 0.1 моль; 2.3 г; 2.68·10²⁵ м⁻³.

7. Вычислить удельные теплоемкости C_v и C_p смеси неона и водорода. Массовые доли газов соответственно равны 0.8 и 0.2. Значения удельных теплоемкостей неона и водорода соответственно равны C_{vI} =624 Дж/кг·К; C_{pI} =1.04 кДж/кг·К; C_{v2} =10.4 кДж/кг·К; C_{v2} =10.4 кДж/кг·К.

Ответ: C_v =2.58 кДж/кг·К; Cp=3.73 кДж/кг·К.

8. Определить относительное число молекул идеального газа, скорости которых заключены в пределах от θ до θ .01 V_{θ} (до θ .01 наиболее возможной скорости).

Ответ: 7.52·10⁻⁷.

9. Водяной пар расширяется при постоянном давлении. Определить работу расширения, если пару передано количество теплоты *Q*=4 кДж.

Ответ: 1 кДж.

10.Водород массой m=100 г был изобарически нагрет так, что объем его увеличился в n=3 раза, затем водород был изохорически охлажден так, что давление его уменьшилось в 3 раза. Найти изменение ΔS энтропии в ходе указанных процессов.

Ответ: $\Delta S = mRl_m n/m = 457 \text{ Дж/К}.$

Вариант 1-3

1. Зависимость пройденного телом пути S от времени t дается уравнением $S=A-Bt+Ct^2$, где A=6м; B=3м/с; C=2м/с². Найти среднюю скорость и среднее ускорение тела в интервале времени от 1с до 4с. Построить графики пути, скорости и ускорения для $0 \le t \ge 5$ с через 1с.

OTBET: $\langle V \rangle = 7 \text{ m/c}; \langle a \rangle = 4 \text{ m/c}^2$.

2. Камень брошен горизонтально со скоростью *15*м/с. Найти нормальное и тангенциальное ускорение камня через *1*с после начала движения. Сопротивление воздуха не учитывать.

OTBET: $a_{\tau}=5.4 \text{ m/c}^2$: $a_n=8.2 \text{ m/c}^2$.

3. Диск радиусом R=40см вращается вокруг вертикальной оси. На краю диска лежит кубик. Принимая коэффициент трения f=0.4, найти частоту n вращения, при которой кубик соскользнет с диска.

Ответ: $0.5 \, \text{c}^{-1}$.

4. Два груза массами $m_1=10$ кг и $m_2=15$ кг подвешены на нитях длиной l=2м так, что грузы соприкасаются между собой. Меньший груз был отклонен на угол $\phi=60^{\circ}$ и выпущен. Определить высоту h, на которую поднимутся оба груза после удара. Удар грузов считать неупругим.

OTBET: $h=l(1-\cos\phi)(m_1/(m_1+m_2))=16$ cm.

5. Вал массой m=100кг и радиусом R=5см вращался с частотой n=8с⁻¹. К цилиндрической поверхности вала прижали тормозную колодку с силой F=40Н, под действием которой вал остановился через t=10с. Определить коэффициент трения f.

OTBET: $f = 4\pi mRn/Ft = 0.31$.

6. Какое число молекул двухатомного газа занимают объем *10*см³ при давлении *40* мм рт.ст. и температуре *27*°С? Какой энергией теплового движения обладают эти молекулы?

Ответ: 1,3·10¹⁹; 0.133 Дж.

7. В сосуде объемом 0.11м³ содержится смесь газов: 7г азота и 1г водорода при температуре 380°К. Определить давление смеси.

Ответ: 175кПа

8. Температура водорода *300*К. Определите, какую часть от общего числа молекул составляют молекулы, модуль скорости которых отличаются от наиболее вероятной не больше чем на *5*м/с.

Ответ: *ΔN/N=0.53* %

9. Углекислый газ (CO_2), начальная температура которого **360**К, адиабатически сжимается до **1/20** своего первоначального объема. Определите изменение внутренней энергии и совершенную при этом работу, если масса газа **20**г.

Ответ: $|A| = |\Delta U| = 7.05$ Дж.

10. Кислород массой m=2кг увеличил свой объем в 5 раз сначала изотермически, затем — адиабатически. Найти изменения энтропии в каждом из указанных процессов.

Ответ: $\Delta S_1 = 836$ Дж/К; $\Delta S_2 = 0$.

Вариант 1-4

1. Зависимость пройденного телом пути $S=A+Bt+Ct^2$, где A=3м; B=2м/с; C=Iм/с². Найти среднюю скорость и среднее ускорение за первую, вторую и третью секунды его движения.

OTBET: $\langle v_1 \rangle = 3 \text{ m/c}$; $\langle v_2 \rangle = 5 \text{ m/c}$; $\langle v_3 \rangle = 7 \text{ m/c}$. $\langle a_1 \rangle = \langle a_2 \rangle = \langle a_3 \rangle = 2 \text{ m/c}^2$.

2. Колесо, вращаясь равнозамедленно, при торможении уменьшило свою скорость за *1* минуту с *300* об/мин до *180* об/мин. Найти угловое ускорение колеса и число оборотов, сделанных им за это время.

Ответ: ε =-0.21 рад/ c^2 ; N=240 об.

3. Тело массой m=0.2кг соскальзывает без трения по желобу высотой h=2м. Начальная скорость V_{θ} шарика равна θ . Найти изменения импульса шарика и импульс, полученный желобом при движении тела.

Ответ: $\Delta p = 1.25$ н·с; p = -1.25 н·с.

4. Тело весом p_1 =2кг движется навстречу второму телу, вес которого p_2 = 1.5кг, и неупруго сталкивается с ним. Скорость тела непосредственно перед столкновением была равна соответственно V_1 =l м/с и V_2 =2 м/с. Сколько времени будут двигаться эти тела после столкновения, если коэффициент трения равен K=0.05?

Ответ: $\Delta t = 0.58$ с.

5. Найти момент инерции тонкого однородного кольца радиусом R=20см и массой m=100г относительно оси, лежащей в плоскости кольца и проходящей через его центр.

OTBET: $I=l/2mR^2$.

6. 10г кислорода находится под давлением 3атм. при температуре 10°C. После расширения вследствие нагревания при постоянном давлении кислород занял объем 10л. Найти температуру и плотность газа после расширения.

Ответ: 1170К; 1кг/м³.

7. Найти плотность газовой смеси водорода и кислорода, если массовые доли их равны соответственно 1/9 и 8/9. Смесь находится при давлении 100кПа и температуре 300К.

Ответ: 0.402 кг/м^3 .

8. В сосуде под поршнем находится гремучий газ, занимающий при нормальных условиях объем 10^{-4} м³. При быстром сжатии газ воспламенятся. Найти температуру воспламенения гремучего газа, если известно, что работа сжатия равна 4.73к Γ м.

Ответ: *T*=780К.

9. В баллоне находится **2.5** г кислорода. Найти число молекул кислорода, скорости которых превышают значение средней квадратичной скорости.

Ответ: $\Delta N = 1.9 \cdot 10^{22}$.

10. Идеальный газ совершает цикл Карно. Температура нагревателя в 4 раза выше температуры охладителя. Какую долю от количества теплоты, получаемого за один цикл от нагревателя, газ отдает охладителю?

Ответ: 1/4.

Вариант 1-5

1. Колесо радиусом R=10 см вращается так, что зависимость линейной скорости точек, лежащих на ободе колеса, от времени движения дается уравнением $V=At+Bt^2$, где A=3см/с; B=1м/с². Найти угол, составляемый вектором полного ускорения с радиусом колеса в момент времени t=0.3 и 5с после начала движения.

Otbet: $\alpha = 90^{\circ}$; $15^{\circ} 32'$; $4^{\circ} 38'$.

2. С какой высоты упало тело, если последний метр своего пути оно прошло за время t=0.1с?

Ответ: 5.61м.

3. Найти силу тяги, развиваемую мотором автомобиля, движущегося в гору с ускорением $I_{\rm M}/c^2$. Уклон горы равен $I_{\rm M}$ на каждые $25_{\rm M}$ пути. Вес автомобиля $9.8\cdot10^3$ Н. Коэффициент трения равен 0.1.

Ответ: *F=2370* Н.

4. Снаряд весом *980*Н, летящий горизонтально вдоль железнодорожного пути со скоростью *500*м/с, попадает в вагон с песком весом *10*т и застревает в нем. Какую скорость получит вагон, если: вагон стоял неподвижно; вагон двигался со скоростью *36*км/ч в том же направление, что и снаряд.

Ответ: 17.8 км/ч; 53.5 км/ч.

5. Две гири разного веса соединены нитью и перекинуты через блок, момент инерции которого I=50 кг·м², и радиус R=20см. Блок вращается с трением и момент сил равен $M_{mp}=98.1$ н·м. Найти разность натяжений нити T_1 - T_2 по обе стороны блока, если известно, что блок вращается с постоянным угловым ускорением $\varepsilon=2.36$ рад/с².

OTBET: T_1 - $T_2 = (I \varepsilon - M_{mp})/R = 1080 \text{ H}.$

6. В сосуде, объем которого 3π , находится кислород при температуре 17° С. Давление газа 10^{-3} мм.рт.ст. Определите: сколько молекул кислорода имеется в сосуде; среднюю внутреннюю энергию газа.

Ответ: 10¹⁷; 6.25·10¹⁵ Эв.

7. В замкнутом сосуде находится смесь водорода и азота при температуре 27° С и давлении 10^{5} Па. Как изменится давление смеси, если температуру повысить до 150° С?

Ответ: 1.415·10⁵ Па.

8. Показания барометра на вершине горы составляют **43**% от показания барометра у подножия горы. Определите высоту этой вершины, если температура воздуха **10**°C.

Ответ: h=6900м.

9. В цилиндре под поршнем находится в замкнутом пространстве воздух. Какая работа должна быть произведена, чтобы поднять поршень на h_1 =10см, если начальная высота столба воздуха h_0 =15см и наружное давление p_0 =10⁵ Па? Площадь поршня S=10 см². Весом поршня можно пренебречь. Температура газа в цилиндре остается неизменной.

Ответ: -2.33 Дж.

10. В результате нагревания 22г азота его абсолютная температура увеличилась в 1.2 раза, а энтропия увеличилась на 4.19 Дж/град. При каких условиях производилось нагревание (при постоянном объеме или при постоянном давлении)?

Ответ: при постоянном давлении.

Вариант 1-6

1. Тело, бросили вертикально вверх с начальной скоростью V_{θ} =5 м/с. Через 2с мячик упал на землю. Определить высоту балкона над землей и скорость мячика в момент удара о землю.

Ответ: 9.62м; -14.6м/с.

2. Найти, во сколько раз нормальное ускорение точки, лежащей на ободе вращающегося колеса, больше ее тангенциального ускорения для того момента, когда вектор полного ускорения этой точки составляет угол 30° с вектором ее линейной скорости.

Ответ: 0.58.

3. Ракета, масса которой M=6 т, поднимается вертикально вверх. Двигатель ракеты развивает силу тяги F=500 кН. Определить ускорение ракеты и силу натяжения троса, свободно свисающего с ракеты, на расстоянии, равном 1/4 его длины от точки прикрепления троса. Масса троса равна m=10кг. Силой сопротивления воздуха пренебречь.

Otbet: a=F/(M+m)-g=73.5 m/c2.

4. Струя воды сечением S=6 см² ударяется о стенку под углом $\alpha=60^{\circ}$ к нормали и упруго отталкивает от стенки без потери скорости. Найти силу, действующую на стенку, если известно, что скорость течения воды в струе V=12м/с.

Ответ: *F*=86Н.

5. Вычислить момент инерции проволочного прямоугольника со сторонами *a*=12см и *b*=16см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по длине проволоки с линейной плотностью *τ*=0.1кг/м.

Otbet: $I = 1/2 \tau a^2 (b+1/3a) = 44 \cdot 10^{-4} \text{ kg·m}^2$.

6. Какое количество киломолей газа находится в баллоне объемом 10м³ при давлении 720мм.рт.ст. и температуре 17°C?

Ответ: 0.4 кмоля.

7. В *1*кг сухого воздуха содержится *232*г кислорода и *768*г азота (массами других газов пренебречь). Определить относительную молярную массу воздуха.

Ответ: 28.8.

8. Какая часть молекул кислорода при θ °C обладает скоростью от 100м/с до 110 м/с. Ответ: 0.004 = 0.4 %.

9. Какое количество тепла надо сообщить *10*г азота, находящимся в закрытом сосуде при температуре 7°C, чтобы увеличить среднюю квадратичную скорость его молекул вдвое?

Ответ: Q = 6.25 кДж.

10.Идеальная холодильная машина, работающая по обратному циклу Карно, совершает за один цикл работу, равную 3.7·10⁴ Дж. При этом она берет тепло от тела с температурой -10°С и передает тепло телу с температурой +17°С. Найти: а) К.П.Д. цикла; б) количество тепла, отнятого у холодного тела за один цикл.

Ответ: $\eta = 1.05$; $Q_I = 38.8 \cdot 10^3$ Дж.

Вариант 1-7

1. С одной и той же позиции два стрелка стреляют из винтовки по брошенной вверх тарелке, находящейся от них на расстоянии S=100м. Начальная скорость пули первого стрелка $V_I=310$ м/с; второго – $V_2=325$ м/с, причем второй стрелок стреляет позже на $\Delta t=0.01$ с. Какой из стрелков первым поразил мишень?

Ответ: Второй

2. Нормальное ускорение точки, движущейся по окружности радиусом r=4м, изменяется по закону $a_n=a+bt+ct^2$. Найти тангенциальное ускорение точки, если a=1м/с²; b=3м/с²; c=2.25м/с².

Otbet: $a_{\tau}=3$ m/c.

3. Сани массой **200**кг движутся ускоренно в горизонтальном направлении. Действующая сила в **1000**Н приложена под углом $\alpha=30^{\circ}$ к горизонту. Коэффициент трения **R=0.05**. Определить ускорение.

OTBET: $a=4 \text{ m/c}^2$.

4. Вагон массой 40т, движущийся со скоростью 2м/с, в конце запасного пути ударяется о пружинный амортизатор. Насколько он сожмет пружину, если коэффициент упругости ее $2.25 \cdot 10^5$ н/м?

Ответ: 0.84 м.

5. На вал массой m_1 =20кг намотана нить, к концу которой привязали груз массой m_2 =1кг. Определить ускорение груза, опускающегося под действием силы тяжести. Трением пренебречь.

Ответ: $a=0.89 \text{ m/c}^2$.

6. Газ массой 10кг, молекулы которого состоят из атомов водорода и углерода, содержит $3.76 \cdot 10^{26}$ молекул. Определить массу атомов углерода и водорода, входящих в молекулу этого газа.

Ответ: $m_c \approx 2 \cdot 10^{-26}$ кг; $m_H \approx 6.67 \cdot 10^{-27}$ кг.

7. Определить удельные теплоемкости C_{ν} и C_{p} смеси аргона и азота, если их массовые доли одинаковы и равны 0.5.

Ответ: 526 Дж/кг·К.

8. Метеорологический шар с водородом перед запуском имеет объем 0.04м³. Определить объем шара на высоте 3000м над местом запуска. Среднюю температуру воздуха по высоте считать равной 7° С.

Ответ: 0.041 м³.

9. В цилиндре диаметром d=20см и высотой b=42см с подвижным поршнем находится газ под давлением $12\cdot10^5$ Па при температуре 300° С. Определить

работу, совершаемую газом при снижении температуры до 10° С при постоянном давлении.

Ответ: -8000 Дж.

10.Изменение энтропии в тепловой машине, работающей по циклу Карно, за один цикл равно 10^4 Дж·К. Определить полезную работу, если температура нагревателя 320° С, холодильника 20° С.

Ответ: $A=3\cdot10^6$ Дж.

Вариант 1-8

1. Путь, пройденный по окружности радиусом R=2м, выражен уравнением $S=at^2+bt$. Найти нормальное, тангенциальное и полное ускорение точки через t=0.5с после начала движения, если a=3м/с²; b=1м/с.

Ответ: $a_n=8 \text{ м/c}^2$; $a_{\tau}=6\text{м/c}^2$; a=10м/c2.

2. Молоток массой *m=1*кг, движущийся со скоростью *6*м/с, ударяет по гвоздю и заколачивает его на *1.5* см в кусок дерева. Предполагая, что молоток движется равнозамедленно, определить время, которое требуется, чтобы молоток остановился после удара, и силу, действующую на гвоздь.

Ответ: t=0.005с; F=1200Н.

3. Для погрузки угля в вагон применяется ленточный транспортер, который перемещает уголь вверх по наклону на высоту 5м. В минуту погрузчик доставляет 12т угля. Какую работу совершает транспортер за 5 мин.

Ответ: 29.4·10⁵ Дж.

4. Вычислите момент инерции тонкого обода радиусом R=0.5м и массой 3кг относительно оси, проходящей через конец диаметра перпендикулярной плоскости обода.

Ответ: I = 2mR2 = 1.5 кг.

5. Маховик, момент инерции которого равен I=63.6кг·м², вращается с постоянной угловой скоростью $\omega=31.4$ рад/с. Найти тормозящий момент под действием которого маховик останавливается через 20с.

Ответ: M=100 н·м.

6. В колбе объемом 2дм³ содержится газ под давлением $0.66 \cdot 10^5$ Па. Сколько молекул газа в колбе, если температура в колбе $t=17^{\circ}$ С?

Ответ: 3.3·10²² молекул.

7. В сосуде при температуре $t=100^{\circ}$ С и давлении $P=4\cdot10^{5}$ Па находится 2м³ смеси кислорода O_2 и сернистого газа SO_2 . Определить парциальное давление компонентов, если масса сернистого газа 8кг.

Ответ: $Po_2 \approx 2.1 \cdot 10^5 \Pi a$; $Pso_2 \approx 1.9 \cdot 10^5 \Pi a$.

8. Какая часть молекул сернистого ангидрида (S0₂) при температуре **200**°C обладает скоростями в пределах **420** \div **430** м/с?

Ответ: 2.2 %.

9. При изобарическом сжатии азота была совершена работа, равная *12*кДж. Определить затраченное количество теплоты и изменение внутренней энергии газа.

Ответ: *Q=-42* кДж; *∆U=-30* кДж.

10.От идеальной теплосиловой установки, работающей по циклу Карно, отводится ежечасно с помощью холодильника $2.7 \cdot 10^8$ Дж теплоты при температуре 9° С. Определить мощность установки, если количество подводимой теплоты равно $9 \cdot 10^8$ Дж/ч.

Ответ: 175 кВт.

Вариант 1-9

1. Уравнение движения материальной точки имеет вид: $X=1+4t-t^2$. За какое время точка пройдет путь, равный 8м? Чему будет равно перемещение точки за это время?

Ответ: 4c; θ .

2. Небольшое тело начинает движение по окружности радиусом 30м с постоянным по модулю тангенциальным ускорением 5м/с². Найти полное ускорение тела через 3с после начала движения.

OTBET: 9m/c^2 .

3. Тело скользит по наклонной плоскости с углом наклона 30° . Скорость тела в точке 1 -0.14м/с; а в точке 2, находящейся ниже точки 1, -2.57м/с. Коэффициент трения между телом и поверхностью R=0.1. Найти время движения тела из точки 1 в точку 2.

Ответ: 0.59с.

4. В ящик с песком массой M=5кг, подвешенный на нити длиной l=3м, попадает пуля массой m==0.005кг и отклоняет его на угол $\alpha=10^{\circ}$. Определить скорость пули.

Ответ: 943 м/с.

5. Тело из состояния покоя приводится во вращение вокруг горизонтальной оси с помощью падающего груза, соединенного со шнуром, предварительно намотанного на ось. Определить момент инерции тела, если груз массой *m*=2кг в течение *t*=12с опускается на расстояние *h*=1м. Радиус оси *r*=8мм. Силой трения пренебречь.

Ответ: 0.092 кг·м².

6. Резиновый шар соединяет $2 \cdot 10^{-3}$ м³ воздуха при температуре **27**°C. Какой объем займет воздух, если шар опустить в воду на глубину **10**м, где температура воды **17**°C? Атмосферное давление нормальное.

Other: $9.8 \cdot 10^{-4} \text{ m}^3$.

7. Смешано m_1 =40 г водорода (H₂) с m_2 =32 г кислорода (O₂). Удельные теплоемкости этих газов соответственно равны: $C_p(H_2)$ =14.2·10³Дж/кг·К и $C_p(O_2)$ =912Дж/кг·К. Определить потерю тепла при охлаждении смеси на Δt =30°С при постоянном объеме; удельную теплоемкость смеси C_v .

Ответ: $Q=-1.27\cdot10^4$ Дж; $C_v=5.88\cdot10^3$ Дж/кг·К.

8. Определите вес цилиндрического столба воздуха, основание которого равно 1м², а высота 530м. Считайте, что температура воздуха 300К, давление у поверхности земли 760мм.рт.ст.

Ответ: 6000Н.

9. При нагревании некоторой массы газа на $\Delta T=1$ К давление газа на стенки сосуда изменилось на 1/340 часть первоначального давления, объем газа оставался неизменным. Найдите начальную температуру газа.

Ответ: 340К.

10.Водород массой 0.8кг (i=5) совершает цикл Карно. Максимальное давление $P_I=10^6\Pi$ а, минимальное $P_3=10^5\Pi$ а. Минимальный объем $V_I=2$ м³, минимальный $V_3=12$ м³. Определить температуры состояния газа в точках пересечения изотерм и адиабат, а также P_2 и V_3 .

Ответ: $T_1 = T_2 = 601$ К; $T_3 = T_4 = 361$ К; $P_2 = 6.13 \cdot 10^5$ Па; $V_2 = 3.262$ м³.

1. Точка движется по прямой согласно уравнению $X=At+Bt^3$, где A=6м/с; B=-0.121м/с³. Определить среднюю путевую скорость < V> точки в интервале времени от $t_1=2$ с до $t_2=6$ с.

Ответ: 3 м/с.

2. Диск радиусом r=10см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением $\varepsilon=0.5$ рад/с². Найти тангенциальное, нормальное и полное ускорения точек на окружности диска в конце второй секунды после начала вращения.

OTBET: $a_{\tau} = 5 \text{cm/c}^2$, $a_n = 10 \text{cm/c}^2$, $a = 11 \text{cm/c}^2$.

3. Самолет описывает петлю Нестерова радиусом R=200м. Во сколько раз сила F, с которой летчик давит на сиденье в нижней точке, больше силы тяжести P летчика, если скорость самолета V=100м/с?

Ответ: в 6.1 раза.

4. Два неупругих шара массами m_1 =2кг и m_2 =3кг движутся со скоростью соответственно V_1 =8м/с и V_2 =4м/с. Определить увеличение внутренней энергии шаров при их столкновении в двух случаях: 1. Меньший шар нагоняет большой; 2. Шары движутся навстречу друг другу.

Ответ: $\Delta U = m_1 m_2 (V_1 - V_2)^2 / (m_1 + m_2)$; 1)9.6Дж; 2)86.4Дж.

5. Диаметр диска d=20см, масса m=800г. Определить момент инерции диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.

OTBET: $I = 3(mR^2)/4 = 6 \cdot 10^{-3} \text{ K} \cdot \text{M}^2$.

6. В сосуде вместимостью V=2.24л при нормальных условиях находится кислород. Определить количество молей и массу кислорода, а также концентрацию его молекул в сосуде.

Ответ: 0.1 моль; 2.3г; 2.68·10²⁵ м⁻³.

7. Вычислить удельные теплоемкости C_v и C_p смеси неона и водорода. Массовые доли газов соответственно равны 0.8 и 0.2. Значения удельных теплоемкостей неона и водорода соответственно равны $Cv_1=624$ Дж/кг·К; $Cp_1=1.04$ кДж/кг·К; $Cv_2==10.4$ кДж/кг·К; $Cp_2=14.6$ кДж.кг·К.

Ответ: C_v =2.58 кДж/кг·К; C_p =3.73 кДж/кг·К.

8. Определить относительное число молекул идеального газа, скорости которых заключены в пределах от 0 до 0.01 V_6 (до 0.01 наиболее возможной скорости).

Ответ: 7.52·10⁻⁷.

9. Водяной пар расширяется при постоянном давлении. Определить работу расширения, если пару передано количество теплоты *0*=4кДж.

Ответ: 1 кДж.

10.Водород массой m=100г был изобарически нагрет так, что объем его увеличился в n=3раза, затем водород был изохорически охлажден так, что давление его уменьшилось в 3 раза. Найти изменение ΔS энтропии в ходе указанных процессов.

Ответ: $\Delta S = mRl_m n/m = 457$ Дж/К.