МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ №3

В контрольную работу №3 включены задачи по разделам: «Электромагнетизм» и «Колебания и волны».

- 1. Решая задачи по разделу «Электромагнетизм» прежде всего, необходимо показать на чертеже направление векторов напряженности (индукции) магнитного поля. Вывести формулу напряженности (индукции) поля, созданного проводниками различной конфигурации. Рассматривая движение заряженных частиц и токов в магнитном поле, показать направление сил, действующих на частицы и токи (пояснить, каким образом определено направление сил).
- 2. При решении задач по разделу «Колебания и волны» обязательно указать вид колебаний, привести дифференциальное уравнение колебаний и его решение. Решение задач должно сопровождаться исчерпывающими, но краткими объяснениями, раскрывающими физический смысл употребляемых формул.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ №3

Вариант 3-1

1. Между полюсами электромагнита создается однородное магнитное поле с индукцией B=0,1Тл. По проводу длиною l=70см, помещенному перпендикулярно силовым линиям, течет ток силой I=70А. Найти силу F действующую на провод.

Ответ: F=4,9Н.

2. По двум длинным параллельным проводам, находящимся на расстоянии d=5см друг от друга, текут токи $I_1=I_2=10$ А в противоположных направлениях. Найти напряженность магнитного поля в точке, находящейся на расстоянии $r_1=2$ см от одного провода и $r_2=3$ см от другого провода.

Ответ: 132,7А/м.

3. Два круговых витка расположены в двух взаимно-перпендикулярных плоскостях так, что центры этих витков совпадают. Радиус каждого витка r=2см и токи, текущие по виткам, $I_1=I_2=5$ A. Найти напряженность магнитного поля в центре этих витков.

Ответ: 177А/М.

4. Круговой контур помещен в однородное магнитное поле так, что плоскость контура перпендикулярна силовым линиям поля. По контуру идет ток I=2A, радиус r=2cm. Какую работу надо совершить, чтобы повернуть контур на 90° вокруг оси, совпадающей с диаметром контура?

Ответ: 5·10⁻⁴Дж.

5. Протон влетел в магнитное поле с индукцией B=1Тл перпендикулярно линиям индукции и описал дугу радиусом R=10см. Найти скорость протона.

Ответ: $9,57 \cdot 10^6$ м/с.

6. Найти разность потенциалов на концах оси автомобиля, возникающую при движении его со скоростью $\upsilon=120$ км/час, если длина оси l=1,5м, а вертикальная составляющая индукции магнитного поля Земли $B=5\cdot10^{-5}$ Тл.

Ответ: 2,5мВ.

7. Определить силу тока I в цепи через t=0,01c после ее размыкания. Сопротивление цепи R=200м и индуктивность $L=0,1\Gamma$ н. Сила тока I_0 до размыкания цепи равна 50A.

Ответ: 6,75А.

8. Найти максимальные скоростью и ускорение a-частицы воздуха в ультразвуковой волне с частотой v=50000 Γ ц и амплитудой смещения частицы A= 10^{-5} cм.

Otbet: 3,14cm/c; 9,87cm/c².

9. Начальная амплитуда A_0 колебания маятника равна 3см. Через t_1 =10c она стала равной A_2 =1см. Через сколько времени t_2 амплитуда колебаний будет равна A=10 5 см?

Ответ: ≈21с.

10. Колебательный контур радиоприемника состоит из катушки с индуктивностью $L=10^{-3}\Gamma$ н. и конденсатора, емкость С которого может меняться в пределах от 9,7 π Ф до 92 π Ф. В каком диапазоне длин волн может принимать радиостанции этот приемник?

Ответ: От 186м до 570м.

Вариант 3-2

1. Напряженность магнитного поля $H=100 \Pi/M$. Вычислить магнитную индукцию В этого поля в вакууме.

Ответ: 126мкТл.

2. Длинный прямой соленоид из проволоки диаметром d=0,5мм намотан так, что витки плотно прилегают друг к другу. Найти напряженность Н магнитного поля внутри соленоида при силе тока I=4A. Толщиной изоляции проволоки пренебречь.

Ответ: 8кЛ/м.

3. По тонкому проводу в виде кольца радиусом R=20см идет ток I=100Л. Перпендикулярно плоскости кольца возбуждено однородное магнитное поле с индукцией B=20мТл. Найти силу F растягивающую кольцо.

Ответ: 0,4Н.

4. Рамка с током I=5A содержит N=20 витков тонкого провода. Определить магнитный момент p_m рамки с током, если ее площадь S=10cm².

Ответ: 0,1Aм².

5. Электрон в однородном магнитном поле движется по винтовой линии радиусом R=5см и шагом h=20см. Определить скорость электрона, если магнитная индукция S=0,1мTл.

Ответ: $1,04 \cdot 10^6 \text{ м/c}$.

6. Рамка площадью $S=50 \text{cm}^2$, содержащая N=100 витков, равномерно вращается в однородном магнитном поле с индукцией B=40 мTл. Определить максимальную эдс индукции, если ось вращения лежит в

плоскости рамки и перпендикулярна линиям индукции, а рамка вращается с частотой v=660 об/мин.

Ответ: 2,01В.

7. Источник тока замкнули на катушку с сопротивлением R=100м и индуктивностью $L=1\Gamma$ н. Через какое время сила тока замыкания достигнет 0,9 предельного значения ?

Ответ: 0,23с.

8. Уравнение движения точки дано в виде $\mathbf{x}_{\text{см}} = 2\sin\left(\frac{\pi}{2}\mathbf{t} + \frac{\pi}{4}\right)$. Найти период Т колебаний, максимальную скорость \mathbf{v}_{max} точки, ее максимальное ускорение a_{max}

Otbet: 4c; $3,14 \cdot 10^{-2} \text{m/c}$; $4,93 \cdot 10^{-2} \text{m/c}^2$.

9. Материальная точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых $\mathbf{x}_{\text{см}} = \cos \pi t$ $\mathbf{y}_{\text{см}} = 2\cos \frac{\pi}{2} \mathbf{t}$. Найти траекторию движения точки.

Ответ: $y^2 = 2 + 2x$ при -1см $\le x \le 1$ см и -2см $\le y \le 2$ см.

10. Катушка индуктивностью L=1м Γ н и воздушный конденсатор, состоящий из двух круглых пластин диаметром D=20см каждая, соединены параллельно. Расстояние d между пластинами равно 1см. Определить период T колебаний.

Ответ: 33,2нс.

Вариант 3-3

1. По двум длинным параллельным проводам текут в одинаковом направлении токи I_1 =10A и I_2 =15Л. Расстояние между проводами равно d=10см. Определить напряженность H магнитного поля в точке, удаленной от первого провода на r_1 =8см и от второго на r_2 =6см.

Ответ: 44,5Л/м.

2. По контуру в виде квадрата идет ток I=50Л. Длина стороны квадрата a=20см. Определить магнитную индукцию В в точке пересечения диагоналей квадрата.

Ответ: 282мкТл.

3. Прямой провод, по которому течет ток I=1кЛ, расположен в однородном магнитном поле перпендикулярно линиям индукции. С какой силой F действует поле на отрезок провода длиной l=1м, если магнитная индукция B=1Тл?

Ответ: 1кН.

4. По кольцу радиусом R течет ток. На оси кольца на расстоянии d=1м от его плоскости магнитная индукция B=10нТл. Определить магнитный момент $p_{\scriptscriptstyle M}$ кольца с током. Считать R много меньше d.

OTBET: 50MAm^2

5. Найти кинетическую энергию протона, движущегося по дуге окружности радиусом R=60см в магнитном поле с индукцией B=1Tл.

Ответ: 17,3МэВ.

6. В магнитном поле с индукцией B=0.05Тл, вращается стержень длиною l=1м с постоянной угловой скоростью $\omega=20$ рад/с. Ось вращения проходит через конец стержня и параллельна линиям индукции магнитного поля. Найти разность потенциалов, возникающую на концах стержня.

Ответ: 0,5В.

7. Соленоид индуктивностью L=4м Γ н содержит N=600 витков. Определить магнитный поток Φ , если сила тока I протекающего по обмотке, равна 12A.

Ответ: 80мкВб.

8. Через сколько времени t от начала движения точка, совершающая колебательное движение по уравнению $\mathbf{x} = 7 \sin \mathbf{0}, 5\pi \mathbf{t}$ проходит путь от положения равновесия до максимального смещения ?

Ответ: 1с.

9. Затухающее колебание происходит по закону $\mathbf{x}_{cm} = \mathbf{10} \mathbf{e}^{-0.2t} \mathbf{\cos 8} \pi \mathbf{t}$ Найти амплитуду А по истечении N=10 полных колебаний.

Ответ: ≈6 см.

10. Колебательный контур, состоящий из воздушного конденсатора с двумя пластинами площадью $S=100\text{cm}^2$ каждая и катушки с индуктивностью $L=1\text{mk}\Gamma\text{h}$, резонирует на волну длиной A=10m. Найти расстояние d между пластинами конденсатора.

Ответ: 3,14 мм.

Вариант 3-4

1. По двум длинным параллельным проводам текут в противоположных направлениях токи I_1 =10A и I_2 =15A. Расстояние между проводами d равно 10см. Определить напряженность магнитного поля H в точке, удаленной от первого провода на 8см и от второго на 6см.

Ответ: 17,4А/м.

2. Прямой провод длиной l=10см, по которому течет ток I=20A, находится в однородном магнитном поле с индукцией B=0,01Тл. Найти угол a между направлением вектора В и направлением тока, если на провод действует сила F=10мH.

Ответ: 30°.

3. По контуру в виде равностороннего треугольника идет ток I=40A. Длина стороны треугольника a=30см. Найти магнитную индукцию В в точке пересечения высот треугольника.

Ответ: 240мкТл.

4. Найти магнитный поток Φ , создаваемый соленоидом с сечением $S=10\text{cm}^2$, если он имеет n=10 витков на каждый сантиметр его длины при силе тока $I=20\Pi$.

Ответ: 25,2мкВб.

5. В однородном магнитном поле с индукцией B=2Tл движется протон. Траектория его движения представляет собою винтовую линию с радиусом K=10см и шагом H=60см. Определить кинетическую энергию протона.

Ответ: $5,8\cdot10^{-13}$ Дж.

6. Проводник длиной l=1м скользит по горизонтальным рельсам в вертикальном магнитном поле с индукцией B=0,1Тл. Концы рельсов замкнуты на конденсатор емкостью C=1мкФ. Определить заряд q на конденсаторе, если скорость υ проводника равна 100м/с.

Ответ: 10⁻⁵Кл.

7. С помощью реостата равномерно увеличивают силу тока в катушке на ΔI =0,1A в 1с. Индуктивность L катушки равна 0,01Гн. Найти среднее значение эдс самоиндукции.

Ответ: 1мВ.

8. Уравнение движения точки дано в виде $\mathbf{x} = \sin\frac{\pi}{6}\mathbf{t}$ Найти моменты времени, в которые достигаются максимальная скорость v_{max} и максимальное ускорение a_{max} .

Ответ: $\upsilon = \upsilon_{max}$ при t = 0, 6, 12...(c),

 $a=a_{\text{max}}$ при t=3,9,15...(c).

9. Амплитуда затухающих колебаний маятника за время t_1 =5мин уменьшилась в два раза. За какое время t_2 считая от начального момента, амплитуда уменьшится в восемь раз?

Ответ: 15мин.

10. На какую длину волны A будет резонировать контура состоящий из катушки с индуктивностью L=4мк Γ н и конденсатора с емкостью C=1,11п Φ ?

Ответ: 126м.

Вариант 3-5

1. По контуру в виде правильного шестиугольника со стороной a=10см идет ток I=20А Найти магнитную индукцию B в центре шестиугольника.

Ответ: 138мкТл

2. По прямому бесконечно длинному проводнику течет ток I=50A. Определить магнитную индукцию B в точке, удаленной на расстояние r=5см от проводника.

Ответ: 200мкТл.

3. По двум тонким проводам, изогнутым в виде колец радиусом H=10см, текут одинаковые токи $I_1=I_2=10$ A. Найти силу F взаимодействия этих колец, если плоскости колец параллельны, а расстояние d между центрами колец равно 1мм.

Ответ: 12,6мН.

4. При двукратном обводе магнитного полюса вокруг проводника с током I=100A была совершена работа A=1мДж. Найти магнитный поток Ф, создаваемый полюсом.

Ответ: 5мкВб.

5. Ион, несущий один элементарный заряд, движется в однородном магнитном поле с индукцией B=0,015Тл по окружности радиусом R=10см. Найти импульс p иона.

Ответ; 2,4·10⁻²²кг м/с.

6. Медный диск, поставленный перпендикулярно линиям индукции магнитного поля, вращается, делая n=9000оборот/мин, вокруг оси, проходящей через центр диска и направленной перпендикулярно его плоскости. Индукция поля B=0,1Тл, радиус диска R=20см. Найти разность потенциалов, возникшую между центром диска и его краем.

Ответ: 1,88В.

7. Индуктивность L соленоида длиной l=1м, намотанного в один слой на немагнитный каркас, равна 1,6мГн. Площадь сечения соленоида S=20см². Определить число n витков на каждом сантиметре длины соленоида.

Ответ: 8 витков на 1 см.

8. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых $\mathbf{x}_{\text{см}} = \sin \pi \mathbf{t}$ $\mathbf{y}_{\text{см}} = 2\sin \left(\pi \mathbf{t} + \frac{\pi}{2}\right)$. Найти траекторию движения точки.

Ответ: Эллипс.

9. Амплитуда колебаний маятника длиной l=1м за время t=10мин уменьшилась в два раза. Найти логарифмический декремент в затухания.

Ответ: 2,31 10⁻³.

10. Колебательный контур имеет индуктивность L=1,6м Γ н, электроемкость C=0,04мк Φ и максимальное напряжение на зажимах $U_{max}=200$ В. Сопротивление контура ничтожно мало. Найти максимальную силу тока I_{max} контуре.

Ответ: 1А.

Вариант 3-6

1. Обмотка соленоида содержит два слоя плотно прилегающих друг к другу витков провода диаметром d=0,2мм. Найти магнитную индукцию В на оси соленоида, если по проводу идет ток I=0,5 Л.

Ответ: 6,28мкТл.

2. По двум очень длинным прямым параллельным проводам текут токи I_1 =50A и I_2 =100A в противоположных направлениях. Расстояние между проводами d=20cm. Определить магнитную индукцию B в точке, удаленной на r_1 =25cm от первого провода и на r_2 =40cm от второго.

Ответ: 21,2мкТл.

3. По двум параллельным проводам длиной I=1м каждый текут одинаковые токи. Расстояние между проводами d=1см. Токи взаимодействуют с силой F=1мН. Найти силу тока I в проводах.

Ответ: 7А.

4. В центре кругового витка напряженность Н магнитного поля равна 200 A/m. Магнитный момент витка $p_{\rm m}$ =1 Am^2 . Найти силу тока I в витке и радиус R витка.

Ответ: 37А, 9,27см.

5. Протон, прошедший ускоряющую разность потенциалов U=600B, влетел в однородное магнитное поле с индукцией B=0,3Tл и начал двигаться по окружности. Определить радиус R окружности.

Ответ: 12мм.

6. Между полюсами двухполюсного генератора магнитная индукция B=0,8Tл. Ротор имеет N=100 витков площадью S=400см². Найти частоту n вращения якоря, если максимальное значение эдс индукции $\varepsilon=\epsilon$ ''B

Ответ: 600мин⁻¹.

7. По катушке индуктивностью L=0,03м Γ н течет ток I=0,6A. При размыкании цепи сила тока изменяется практически до нуля за время Δt =1,2 10^{-4} с. Определить среднее значение эдс самоиндукции, возникающей в контуре.

Ответ: 0,15В.

8. Материальная точка массой m=10г колеблется по уравнению $\mathbf{x}_{\text{см}} = 5\sin\!\left(\frac{\pi}{5} + \frac{\pi}{4}\right)$ Найти максимальную силу \mathbf{P}_{max} ,действующую на точку, и полную энергию E колеблющейся точки.

Ответ: $19,7 \cdot 10^{-5}$ H, $4,93 \cdot 10^{-6}$ Дж.

9. Логарифмический декремент колебаний маятника Θ =0,003. Определить число N полных колебаний, которые должен сделать маятник, чтобы амплитуда колебаний уменьшилась в два раза.

Ответ: 231.

10. Индуктивность колебательного контура L=0,5м Γ н. Какова должна быть электроемкость C контура, чтобы он резонировал на длину волны $\lambda=300$ м? Ответ: 51 π Ф.

Вариант 3-7

1. При какой силе тока I, текущего по тонкому проводящему кольцу радиусом R=0,2м, магнитная индукция B в точке, равноудаленной от всех точек кольца на расстояние r=0,3м, станет равной 20мкТл?

Ответ: 21,5Л.

2. По тонкому проводу в виде прямоугольника течет ток I=60A. Длины сторон прямоугольника равны a=30см и b=40см. Найти магнитную индукцию В в точке пересечения диагоналей прямоугольника.

Ответ: 200мкТл.

3. По двум длинным параллельным прямым проводам, находящимся на расстоянии d=4мм друг от друга, текут одинаковые токи $I_1=I_2=50$ A. Найти силу взаимодействия токов, приходящуюся на единицу длины провода.

Ответ: 0,125Н/М.

4. В однородном магнитном поле с индукцией B=0,01Тл находится прямой провод длиной l=8см, расположенный перпендикулярно линиям магнитной индукции. По проводу течет ток I=2А. Под действием сил поля провод переместился на расстояние s=5см. Найти работу А сил поля.

Ответ: 80мкДж.

5. Заряженная частица с энергией W=1кэВ движется в однородном магнитном поле по окружности радиусом R=1мм. Найти силу F, действующую на частицу со стороны поля.

Ответ: 3,2·10⁻¹³Н.

6. В однородном магнитном поле с индукцией B=0,4Тл в плоскости, перпендикулярной линиям индукции поля, вращается стержень длиной l=10см. Ось вращения проходит через один из концов стержня. Частота вращения n=16с⁻¹. Определить разность потенциалов на концах стержня.

Ответ; 201мВ.

7. На картонный каркас длиной l=50см и площадью сечения S=4см 2 намотан в один слой провод диаметром d=0,2мм так, что витки плотно прилегают друг к другу. Толщиной изоляции пренебречь. Найти индуктивность L получившегося соленоида.

Ответ: 6,28мГн.

8. Точка совершает колебания по уравнению $\mathbf{x} = \mathbf{A} \cos \boldsymbol{\omega} \mathbf{t}$, где $\mathbf{A} = 5 \mathrm{cm}$, $\boldsymbol{\omega} = 2 \mathrm{c}^{-1}$. Найти ускорение a точки в момент времени, когда скорость $\boldsymbol{\upsilon}$ точки равна $8 \mathrm{cm/c}$.

Ответ: 12см/c^2 .

9. Каков логарифмический декремент Θ затухания математического маятника длиной l=0,8м, если его начальная амплитуда A_0 =5°, а через t=5мин амплитуда A стала равной 0,5°?

Ответ: 0,014.

10. В контуре с индуктивностью L и емкостью C совершаются свободные незатухающие колебания. Зная, что максимальное напряжение на конденсаторе равно U_{max} найти максимальный ток I_{max} в контуре.

Ответ: $I_{max} = U_{max} \sqrt{\frac{C}{L}}$

Вариант 3-8

1. По длинному проводу, согнутому под прямым углом, идет ток I=20A. Определить

напряженность H магнитного поля в точке, лежащей на продолжении одной из сторон угла на расстоянии r=2см от середины.

Ответ: ≈80А/м.

2. Найти магнитную индукцию B в центре тонкого кольца, по которому идет ток I=10A. Радиус кольца R=5см.

Ответ: 126мкТл.

3. Контур в виде прямоугольника со сторонами a=10см и b=15см расположен в плоскости, в которой находится очень длинный прямой провод. По

контуру и по проводу текут одинаковые токи $I_1=I_2=12A$. Найти силу F с которой прямой провод с током действует на контура если расстояние r от провода до ближайшей стороны b прямоугольника равно 2см.

Ответ: 18 10⁻⁵Н.

4. Проволочный виток радиусом R=5см находится в однородном магнитном поле. Напряженность поля H=2кA/м. Плоскость витка образует угол a=60° с направлением поля. По витку течет ток I=4A. Найти механический момент M, действующий на виток.

Ответ: 39,5мкНм.

5. Электрон движется в магнитном поле с индукцией $B=0,02T\pi$ по окружности радиусом R=1см. Найти кинетическую энергию электрона.

Ответ: 3,52кэВ.

6. Скорость самолета с реактивным двигателем $\upsilon = 950$ км/час. Найти разность потенциалов, возникающую на концах крыльев самолета, если вертикальная составляющая напряженности магнитного поля Земли H = 39,8 А/м. Размах l крыльев самолета равен 12,5м.

Ответ: 165мВ.

7. Определить эдс самоиндукции в проводнике с индуктивностью L=0,5Гн, если ток в нем равномерно изменился за время Δt =0,05c от I_1 =30A до I_2 =15A.

Ответ: 150В.

8. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых $\mathbf{x}_{\text{см}} = 2\sin\omega t$ $\mathbf{y}_{\text{см}} = 2\cos\omega t$. Найти траекторию движения точки.

Ответ: Окружность.

9. Определить период T затухающих колебаний, если период T_0 собственных колебаний системы равен 1с и логарифмический декремент колебаний Θ =0,628.

Ответ: 1,005с.

10. Конденсатор емкостью C=500пФ соединен параллельно с катушкой длиной l=40см и площадью сечения S=5см 2 . Катушка содержит N=1000 витков. Сердечник немагнитный. Найти период T колебаний.

Ответ: 5,57мкс.

Вариант 3-9

1. В центр витка помещена магнитная стрелка, причем стрелка расположена в плоскости витка. Радиус витка r=10см. Если по витку пропустить ток I=2A, то стрелка отклонится на угол $a=32^{\circ}$. Найти горизонтальную составляющую H_3 напряженности магнитного поля Земли.

Ответ: 15,9А/м.

2. По двум длинным параллельным проводам, находящимся на расстоянии d=5см друг от друга, текут токи $I_1=I_2=10$ A в противоположных направлениях. Найти напряженность H магнитного поля в точке, отстоящей на расстояние r=5см от обоих проводов.

Ответ: 31,84А/м.

3. Шины генератора представляют собой две параллельные медные полосы длиной l=2м каждая, отстоящие друг от друга на расстоянии d=20см. Определить силу F взаимного отталкивания шин в случае короткого замыкания, когда по ним текут токи I_1 = I_2 =10кA.

Ответ: 200Н.

4. По витку радиусом R=10см течет ток I=50А. Виток помещен в однородное магнитное поле с индукцией B=0,2Тл. Определить момент сил M, действующий на виток, если плоскость витка составляет угол a=60° с линиями индукции.

Ответ: 0,157Нм.

5. Определить частоту v обращения электрона по круговой орбите в магнитном поле c индукцией $B=1T\pi$.

Ответ: 2,8 10¹⁰с⁻¹.

6. Прямой провод длиной l=40см движется в однородном магнитном поле со скоростью υ =5м/с перпендикулярно линиям индукции. Разность потенциалов U между концами провода равна 0,6В. Найти индукцию В магнитного поля.

Ответ: 0,3Тл.

7. Участок цепи состоит из сопротивления R=0,2Oм и индуктивности $L=0,02\Gamma$ н. Ток, идущий по участку цепи, изменяется со временем t по закону I=3t. Найти, как меняется разность потенциалов U между концами участка цепи в зависимости от времени t.

Otbet: U = (0,06+0,6t)B.

8. Уравнение колебаний точки имеет вид $x = A\cos\omega(t+\pi)$ где $\omega = \pi c^{-1}$ и $\tau = 0,2c$. Определить период T колебаний.

Ответ: 2с.

9. За время t=8мин амплитуда затухающих колебаний маятника уменьшилась в три раза. Определить коэффициент затухания β.

Ответ: 0,0023с⁻¹.

10. Колебательный контур содержит конденсатор электроемкостью $C=8\pi\Phi$ и катушку, индуктивность которой L=0,5м Γ н. Каково максимальное напряжение U_{max} на обкладках конденсатора, если максимальная сила тока $I_{max}=40$ мA?

Ответ: 317В.

Вариант 3-10

1. Из куска проволоки сделан круглый виток радиуса R и подключен к источнику с постоянной эдс. Как изменится напряженность H магнитного поля в центре круга, если из того же куска проволоки сделать два витка радиусом R/2?

Ответ: Увеличится в два раза.

2. По проводу, согнутому в виде равностороннего треугольника со стороной a=50см, проходит постоянный электрический ток I=3,14А. Чему равна напряженность Н магнитного поля в центре треугольника?

Ответ: 9А/м.

3. Тонкий провод в виде дуги, составляющей треть кольца радиусом R=15см, находится в однородном магнитном поле с индукцией 20мТл. По проводу течет ток I=30A. Плоскость, в которой лежит дуга, перпендикулярна линиям магнитной индукции. Подводящие провода находятся вне поля. Найти силу F действующую на провод.

Ответ: 0,156Н.

4. Плоский контур с площадью S=25см² находится в однородном магнитном поле с индукцией B=0,04Тл. Определить магнитный поток Φ , пронизывающий контур, если плоскость контура составляет угол $a=30^{\circ}$ с линиями индукции.

Ответ: 50мкВб.

5. Электрон движется по окружности в однородном магнитном поле напряженностью H=10кA/м. Вычислить период Т вращения электрона.

Ответ: 2,84нс.

6. Проводник длиной l=1м движется со скоростью $\upsilon=9$ м/с перпендикулярно линиям индукции однородного магнитного поля. Определить магнитную индукцию B, если на концах проводника возникает разность потенциалов U=0,02B.

Ответ: 4мТл.

7. По обмотке соленоида индуктивностью $L=0,2\Gamma$ н течет ток I=10A. Найти энергию W магнитного поля соленоида.

Ответ: 10Дж.

8. Точка совершает гармонические колебания. Наибольшее смещение x_{max} точки равно 10см, наибольшая скорость v_{max} =20см/с. Найти угловую частоту ω колебаний и максимальное ускорение a_{max} точки.

Ответ: $2c^{-1}$; $40cm/c^2$.

9. Чему равен логарифмический декремент Θ затухания математического маятника, если за t=1мин амплитуда колебаний уменьшилась в два раза? Длина маятника l=1м.

Ответ: 0,023.

10. Колебательный контур состоит из параллельно соединенных конденсатора электроемкостью C=1мк Φ и катушки индуктивностью L=1м Γ н. Сопротивление контура ничтожно мало. Найти частоту V колебаний.

Ответ: 5,05кГц.