Министерство образования Российской Федерации ГОУ ВПО УГТУ-УПИ

Кафедра физики

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ТЕМА: ФИЗИКА ТВЕРДОГО ТЕЛА И АТОМНОГО ЯДРА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ

АВТОРЫ: ПЛЕТНЕВА Е.Д. ВАТОЛИНА Н.Д.

ЕКАТЕРИНБУРГ 2004 Рецензенты: к.ф.-м.н., доцент Волков А.Г.

Автор: Е.Д.Плетнева, Н.Д.Ватолина

Физика: Физика твердого тела и атомного ядра: Методические указания: Задания индивидуальной домашней работы/ Е.Д.Плетнева, Н.Д.Ватолина. Екатеринбург: ООО "Изд-во УМЦ УПИ", 2004, 14с.

Методические указания включают в себя варианты индивидуального домашнего задания по теме «Физика твердого тела и атомного ядра» курса общей физики. В них содержатся правила оформления индивидуального домашнего задания и список необходимой литературы при выполнении этого вида учебной работы студента.

Методические указания соответствуют программе курса «Общая физика» и отвечают всем требованиям, принятым на кафедре физики УГТУ-УПИ.

Для студентов УГТУ-УПИ всех специальностей всех форм обучения.

Подготовлено кафедрой физики ГОУ ВПО УГТУ-УПИ

© ООО "Издательство УМЦ УПИ", 2004

Индивидуальное домашнее задание необходимо оформить на листах формата A-4.

Титульный лист должен иметь все атрибуты указанные ниже

Министерство образования Российской Федерации

ГОУ ВПО УГТУ-УПИ

Кафедра физики

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ

ТЕМА: ФИЗИКА ТВЕРДОГО ТЕЛА И ФИЗИКА АТОМНОГО ЯДРА

Выполнил: Студент группы – Ф.И.О. Дата

Проверил: Доцент кафедры физики Ф.И.О. Дата

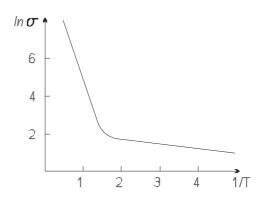
Екатеринбург 2004 г Внутренние страницы должны иметь поля: сверху и снизу 2,5 см. Слева 3,0 см. Справа 2,0см.

Текст и графики (диаграммы) должны быть написаны без помарок и исправлений. Допускается оформление на компьютере.

Ответы оформляются в порядке постановки, от первого последовательно к последнему заданию.

ФИЗИКА ТВЕРДОГО ТЕЛА И ФИЗИКА АТОМНОГО ЯДРА

- 1. Полагая, что на каждый атом алюминия в кристалле приходится по три свободных электрона, определить максимальную энергию $W_{\text{мах}}$ при абсолютном нуле.
- 2. Найти минимальную энергию, необходимую для образования пары электрон-дырка в кристалле GaAs, если его проводимость изменяется в 10 раз при изменении температуры от $t_1 = 20^{0}$ C до $t_2 = -3^{0}$ C.
- 3. Найти период полураспада $T_{1/2}$ радиоактивного изотопа, если его активность за время t=10 сут уменьшилась на 24% по сравнению с первоначальной.
- 4. Рассчитать энергию Ферми E_{Φ} и температуру вырождения для алюминия, если его плотность $\rho = 2,7\cdot 10^3~{\rm kr/m}^3$, а молярная масса $M = 27\cdot 10^{-3}~{\rm kr/monb}$.
- 5. Вычислить удельные теплоемкости кристаллов железа и никеля по классической теории, если их молярные массы равны соответственно $M_{\rm Fe} = 55,85\cdot10^{-3}~{\rm kr/моль},\, M_{\rm Ni} = 58,71\cdot10^{-3}~{\rm kr/моль}.$
- 6. Определить энергию Q ядерной реакции ${}^9Be(\mathsf{n},\varepsilon){}^{10}Be$, если известно, что энергия связи $E_{\rm cs}$ ядра 9Be равна 58,16 МэВ, а ядра ${}^{10}Be$ 64,98 МэВ.


- 1. Найти среднее значение кинетической энергия $W_{\text{кин}}$ электронов в металле при абсолютном нуле, если энергия Ферми W_{Φ} = 6,0 эВ.
- 2. Найти минимальную энергию, необходимую для образования пары электрон-дырка в чистом теллуре, если известно, что его электропроводность возрастает в n=5,2 раза при увеличении температуры от $T_1=300~{\rm K}$ до $T_2=400~{\rm K}$.
- 3. Определить какая доля радиоактивного изотопа $^{225}_{89}Ac$ распадается в течение времени t=6 сут.
- 4. Оценить концентрацию атомов $n_{\rm a}$ и свободных электронов $n_{\rm e}$ в натрии, если энергия Ферми $E_{\Phi}=3,1$ эВ, плотность $\rho=970$ кг/м³, а молярная масса $M=27\cdot10^{-3}$ кг/моль. Найти отношение $n_{\rm e}/n_{\rm a}$.
- 5. Оценить максимальную частоту v_{max} нормальных колебаний атомов в кристалле золота по теории Дебая, если температура Дебая для него $\theta_{\rm L}=180~{\rm K}.$
- 6. Определить энергию Q ядерной реакции $^{14}N({\rm n},p)$ ^{14}C , если известно, что энергия связи $E_{\rm cB}$ ядра ^{14}N равна 104,66 МэВ, а ядра ^{14}C 105,29 МэВ.

- 1. Определить концентрацию свободных электронов в металле при температуре T=0, при которой энергия Ферми $W_{\Phi}=6$ эВ.
- 2. Характерная особенность полупроводников наличие отрицательного температурного коэффициента сопротивления α . Объяснить причину данного эффекта и вычислить α для чистого германия, если ширина запрещенной зоны $\Delta W = 0.75$ эВ. Температура T = 300 К.
- 3. Активность A некоторого изотопа за время t=10 сут уменьшилась на 20%. Определить период полураспада $T_{1/2}$ этого радиоактивного изотопа.
- 4. Рассчитать энергию Ферми E_{Φ} для железа, если его плотность $\rho = 7.9 \cdot 10^3$ кг/м 3 , молярная масса $M = 55.85 \cdot 10^{-3}$ кг/моль, а валентность z = 2. Оценить тепловое "размытие" kT уровня Ферми при комнатной температуре (T = 300 K) и сравнить его с энергией Ферми kT/ E_{Φ} .
- 5. Определить теплоту, необходимую для нагревания кристалла серебра массой m=100г от $T_1=5$ К до $T_2=10$ К, если температура Дебая серебра $\theta_{\rm M}=210$ К, а молярная масса $M=107,87\cdot10^{-3}$ кг/моль.
- 6. При реакции ${}^{6}Li(d,p)$ ${}^{7}Li$ освобождается энергия Q = 5,028 МэВ. Определить массу m ${}^{6}Li$. Массы остальных атомов взять из таблицы.

- 1. Определить максимальную скорость v_{max} электронов в металле при абсолютном нуле, если энергия Ферми $W_{\Phi} = 5$ эВ.
- 2. Красная граница фотоэффекта сурьмяно-цезиевого фотокатода соответствует длине волны $\lambda_{01} = 6,5 \cdot 10^{-7}$ м. Красная граница собственной фотопроводимости отвечает волны $\lambda_{02} = 2,07 \cdot 10^{-8}$ м. Определить положение (в эВ) дна зоны проводимости данного полупроводника относительно вакуума.
- 3. Найти среднюю продолжительность жизни τ атома радиоактивного изотопа кобальта $^{60}_{27}Co$.
- 4. Концентрация свободных электронов в натрии $n_{\rm e} = 2,5 \cdot 10^{28} \, {\rm m}^{-3}$. Оценить максимальную скорость v_{max} электронов в этом металле при $T=0 \, {\rm K}$ и температуру его вырождения $T_{\rm \phi}$.
- 5. В некотором металле при температуре $T_1 = 700~{\rm K}$ отношение электронной теплоемкости $C_{\rm m\; эл}$ к решеточной $C_{\rm m\; pem}$ составляет 0,05. Определить энергию Ферми E_{Φ} .
- 6. При реакции ${}^2H(d,p)\,{}^3H$ освобождается энергия Q=4,033 МэВ. Определить массу $m\,{}^3H$. Массы остальных атомов взять из таблицы.

- 1. Определить долю свободных электронов в металле при абсолютном нуле, энергии W которых заключены в интервале значений от $\binom{1}{2}W_{\text{max}}$ до W_{max} .
- 2. При очень низких температурах красная граница фотопроводимости чистого беспримесного германия $\lambda_0 = 1,7$ мкм. Найти температурный коэффициент сопротивления данного германия при комнатной температуре.
- 3. Некоторый радиоактивный изотоп имеет постоянную распада $\lambda = 1,44\cdot 10^{-3}$ ч. Через какое время распадется 75% первоначальной массы атомов?
- 4. Энергия Ферми в некотором одновалентном металле $E_{\Phi} = 3,5$ эВ. Рассчитать концентрацию свободных электронов в этом металле и среднюю кинетическую энергию электронов при T = 0 К.
- 5. Отношение полной теплоемкости в металле $C_{\rm m}$ к решеточной $C_{\rm m \, pem}$ при некоторой температуре составляет 1,05. Оценить температуру металла, если его энергия Ферми E_{Φ} = 3,1 эВ.
- 6. Ядро урана $^{235}_{92}U$, захватив один нейтрон, разделилось на два осколка, причем освободилось два нейтрона. Одним из осколков оказалось ядро ксенона $^{140}_{54}Xe$. Определить порядковый номер Z и массовое число A второго осколка.

- 1. Найти число свободных электронов, приходящихся на один атом натрия при $T=0{\rm K}$, если уровень Ферми $W_\Phi=3,07$ эВ и плотность натрия равна $0,97\,{\rm \Gamma/cm}^3$.
- 2. Ha график рисунке дан электрозависимости логарифма проводности от обратной температуры для некоторого полупроводника n — типа. Найти с помощью этого графика ширину запрещенной зоны ΔW полупроводника и донорных энергию активации ΔW_{π} уровней.

- 3. Скорость распада в начальный момент времени составляла $2,7\cdot 10^3$ расп/с. Определить скорость распада по истечении половины периода полураспада.
- 4. Температура вырождения в натрии $T_{\phi} = 3,6\cdot 10^4~\rm K$. Определить максимальную скорость v_{max} электронов в этом металле и их среднюю кинетическую энергию при $T=0~\rm K$.
- 5. Максимальная частота v_{max} нормальных колебаний атомов в кристалле составляет $5,0\cdot 10^{12}~\Gamma$ ц. Определить максимальную энергию колебаний E_{max} и температуру Дебая θ_{Π} .
- 6. Определить энергию E, которая освободится при делении всех ядер, содержащихся в уране 235 массой m = 1г.

- 1. Сколько процентов свободных электронов в металле при T=0 имеет кинетическую энергию, превышающую половину максимальной.
- 2. Во сколько раз изменится при повышении температуры от 300 до 310 К проводимость σ а) металла; б) собственного полупроводника, ширина запрещенной зоны $\Delta W = 0.72$ эВ. Каков характер изменения в обоих случаях?
- 3. В руде содержится одинаковое количество атомов ^{206}Pb и ^{238}U . Определить, каким был состав руды 10^9 лет тому назад.
- 4. Оценить вероятности P_1 и P_2 того, что в металле при температуре $T=400~\rm K$ энергетические уровни, лежащие на $\Delta E=0,10~\rm 3B$ выше и ниже уровня Ферми, заняты электронами. Пояснить графически.
- 5. Во сколько раз возрастает сопротивление R образца из чистого германия, если его температуру понизить от $T_1 = 300 \, \text{K}$ до $T_2 = 250 \, \text{K}$? Энергия активации свободных носителей заряда в германии $\Delta E = 0.73 \, \text{B}$.
- 6. Определить массовый расход $m_{\rm t}$ ядерного горючего ^{235}U в ядерном реакторе атомной электростанции. Тепловая мощность P электростанции равна 10 МВт. Принять энергию Q, выделяющуюся при одном акте деления, равной 200 МэВ. К.П.Д. η электростанции составляет 20%.

- 1. Как и во сколько раз изменится вероятность заполнения электронами энергетического уровня в металле, если уровень расположен на 0,1 эВ ниже уровня Ферми и температура изменяется от $T_1=200~{\rm K}$ до $T_2=300~{\rm K}$.
- 2. Сравнить электропроводность чистого германия при $t_1 = -40^{\circ}\mathrm{C}$ и $t_2 = 100^{\circ}\mathrm{C}$. Энергия активации для германия $\Delta W = 0{,}72$ эВ.
- 3. Чему равна удельная активность изотопа ^{238}U , если период его полураспада $T_{1/2} = 4,5\cdot 10^9$ лет? Удельной активностью называется число распадов в 1 с на 1г вещества.
- 4. Определить число электронных состояний в единице объема металла с энергией, лежащей в интервале от E=0,60 эВ до $E+\Delta E=0,61$ эВ.
- 5. Рассчитать энергию активации ΔE носителей тока в теллуре, если при нагревании от $T_1 = 300~{\rm K}$ до $T_2 = 400~{\rm K}$ его проводимость возрастает в 5 раз ?
 - 6. Найти энергию Q ядерных реакций: 1) ${}^{3}H(p,z)$ ${}^{4}He$;
 - 2) ${}^{2}H(d,z){}^{4}He;$ 3) ${}^{2}H(n,z){}^{3}H;$ 4) ${}^{19}F(p,\delta){}^{16}O.$

- 1. Найти разницу энергий ΔW_{π} (в единицах kT) между электронами, находящимися на уровне Ферми, и электронами, находящимися на уровнях, вероятность заполнения которых равны 0,20 и 0,80.
- 2. Длинноволновый край полосы поглощения чистого германия лежит вблизи длины волны $\lambda_0 = 19$ мкм. Оценить ширину запрещенной зоны Δ W германия.
- 3. Какая доля начального количества радиоактивного вещества останется нераспавшейся через 1,5 периода полураспада?
- 4. Оценить максимальную скорость v_{max} электронов в меди и их среднюю кинетическую энергию, полагая что на каждый атом приходится один свободный электрон, если ее плотность $\rho = 8,9 \cdot 10^3 \text{ кг/м}^3$, молярная масса $M = 64 \cdot 10^{-3} \text{ кг/моль}$.
- 5. Удельное сопротивление чистого германия при некоторой температуре $\rho = 0.47~\mathrm{Om\cdot m}$. Подвижности электронов и дырок равны соответственно $b_{\scriptscriptstyle 3\pi} = 0.38~\mathrm{m}^2/(\mathrm{B\cdot c.}), \quad b_{\scriptscriptstyle \pi} = 0.18~\mathrm{m}^2/(\mathrm{B\cdot c.}).$ Вычислить их концентрации n при этой температуре.
- 6. Определить энергию Q ядерной реакции ${}^9Be(\mathsf{n}, \varepsilon){}^{10}Be$, если известно, что энергия связи $E_{\rm cs}$ ядра 9Be равна 58,16 МэВ, а ядра ${}^{10}Be$ 64,98 МэВ.

Вариант 10

- 1. Половина всех свободных электронов в металле обладает кинетическими энергиями, большими, чем некоторая энергия W. Вычислить величину этой энергии в долях энергии W_{Φ} .
- 2. Изобразить энергетическую схему кислородно цериевого фотокатода, если известно, что энергия активации донорных примесей $\Delta W_{\rm д}=0.7$ эВ, красная граница фотоэффекта при очень низких температурах соответствует длине волны $\lambda_0=1.2$ мкм и начало возрастания фототока вблизи следующих двух коротковолновых максимумов отвечает $\lambda_1=500$ нм и $\lambda_2=300$ нм.
- 3. Определить число N ядер, распавшихся в течение времен:1) $t_1 = 1$ мин; 2) $t_2 = 5$ сут, в радиоактивном изотопе фосфора $^{32}_{15}P$ массой m = 1,0 мг.
- 4. Определить вероятности P_1 и P_2 заполнения энергетических состояний электронов в металле, лежащих выше и ниже уровня Ферми на $\Delta E = 0.050$ эВ при T = 290 К. Пояснить графически.
- 5. Энергия активации проводимости чистого кремния $\Delta E = 1,1$ во сколько раз уменьшится удельное сопротивление кремния при его нагревании от $T_1 = 300$ K до $T_2 = 500$ K.
 - 6. Определить энергию Q ядерных реакций:
 - 1) ${}_{4}^{9}Be + {}_{1}^{2}H \rightarrow {}_{5}^{10}B + {}_{0}^{1}n;$
 - 2) ${}_{3}^{6}Li+{}_{1}^{2}H \rightarrow {}_{2}^{4}He+{}_{2}^{4}He$;
 - 3) ${}_{3}^{7}Li + {}_{2}^{4}He \rightarrow {}_{5}^{10}B + {}_{0}^{1}n$;
 - 4) ${}_{3}^{7}Li+{}_{1}^{1}H \rightarrow {}_{4}^{7}Be+{}_{0}^{1}n$;
 - 5) ${}_{20}^{44}Ca + {}_{1}^{1}H \rightarrow {}_{19}^{41}K + {}_{2}^{4}He$;

Освобождается или поглощается энергия в каждой из этих реакций?

ЛИТЕРАТУРА

- 1. **Савельев И.В.** Курс общей физики. Книги 1, 2, 3, 4, 5. М.: Наука Физматлит, 1998. Кн. 1 336 с.; Кн. 2 336 с.; Кн. 3 208 с.; Кн. 4 256 с.; Кн. 5 368 с.
- 2. **Детлаф А.А., Яворский Б.М., Милковская Л.Б.** Курс физики. Т. 1, 2, 3. М.: Высшая школа, 1973–1979. Т. 1, 384 с.; Т. 2, 375 с.; Т. 3, 511 с.
- 3. Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 1989. 608 с., 1999. 718 с.
- 4. **Трофимова Т.И.** Курс физики. М.: Высшая школа, , 1985. 352 с., 1996. 432 с., 1997. 512 с., 1998. 542 с.
- 5. **Зисман Г.А., Тодес О.М**. Курс общей физики Т.1, 2,3. Киев: Дніпро, 1994. Т.1, 350с.; Т. 2, 383с.; Т.3. 512 с.
- 6. **Сивухин Л.В.** Общий курс физики. М.: Наука, 1979-1989.-Т.І-V.