Министерство образования Российской Федерации

ГОУ ВПО УГТУ-УПИ

Кафедра физики

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ТЕМА: ВОЛНОВАЯ ОПТИКА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ

АВТОРЫ: ПЛЕТНЕВА Е.Д. ВАТОЛИНА Н.Д.

ЕКАТЕРИНБУРГ 2003 Рецензенты: к.ф.-м.н., доцент Волков А.Г.

Автор: Е.Д.Плетнева, Н.Д.Ватолина

Физика: Волновая оптика: Методические указания: Задания индивидуальной домашней работы/ Е.Д.Плетнева, Н.Д.Ватолина. Екатеринбург: ООО "Изд-во УМЦ УПИ", 2003, 14c.

Методические указания включают в себя варианты индивидуального домашнего задания по теме «Волновая оптика» курса общей физики. В них содержатся правила оформления индивидуального домашнего задания и список необходимой литературы при выполнении этого вида учебной работы студента.

Методические указания соответствуют программе курса «Общая физика» и отвечают всем требованиям, принятым на кафедре физики УГТУ-УПИ.

Для студентов УГТУ-УПИ всех специальностей всех форм обучения.

Подготовлено кафедрой физики ГОУ ВПО УГТУ-УПИ

© ООО "Издательство УМЦ УПИ", 2003

Индивидуальное домашнее задание необходимо оформить на листах формата A-4.

Титульный лист должен иметь все атрибуты указанные ниже

Министерство образования Российской Федерации

ГОУ ВПО УГТУ-УПИ

Кафедра физики

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ

ТЕМА: ВОЛНОВАЯ ОПТИКА

Выполнил: Студент группы – ФИО Дата

Проверил: Доцент кафедры физики ФИО Лата

Екатеринбург 2004 г

Внутренние страницы должны иметь поля: сверху и снизу 2,5 см. Слева 3,0 см. Справа 2,0см.

Текст и графики (диаграммы) должны быть написаны без помарок и исправлений. Допускается оформление на компьютере.

Ответы оформляются в порядке постановки, от первого последовательно к последнему заданию.

- 1. В опыте Юнга отверстия освещались монохроматическим светом ($\lambda = 600$ нм). Расстояние между отверстиями d = 1 мм, расстояние от отверстий до экрана L = 3 м. Найти положение трех первых светлых полос.
- 2. Найти радиусы r_k первых пяти зон Френеля, если расстояние от источника света до волновой поверхности a=1 м, расстояние от волновой поверхности до точки наблюдения b=1 м. Длина волны света $\lambda=500$ нм.
- 3. Мощность излучения раскаленной металлической поверхности N' = 0,67 кВт. Температура поверхности T = 2500 К, ее площадь S = 10 см². Какую мощность излучения N имела бы эта поверхность, если бы она была абсолютно черной? Найти отношение k энергетических светимостей этой поверхности и абсолютно черного тела при данной температуре.
- 4. Найти задерживающуюся разность потенциалов U для электронов, вырываемых при освещении калия светом с длиной волны $\lambda = 330$ нм.
- 5. Рентгеновские лучи с длиной волны $\lambda_0 = 70.8$ пм испытывают комптоновское рассеяние на парафине. Найти длину волны λ рентгеновских лучей, рассеянных в направлениях: а) $\varphi = \pi/2$; б) $\varphi = \pi$.
- 6. На пути световой волны, идущей в воздухе, поставили стеклянную пластинку толщиной h = 1мм. На сколько изменится оптическая длина пути, если волна падает на пластинку: 1) нормально; 2) под углом $i = 30^{0}$?

- 1. В опыте с зеркалами Френеля расстояние между мнимыми изображениями источника света d=0.5 мм, расстояние до экрана L=5 м. В зеленом свете получились интерференционные полосы, расположенные на расстоянии l=5 мм друг от друга. Найти длину волны $\lambda=$ зеленого цвета.
- 2. Дифракционная картина наблюдается на расстоянии l от точечного источника монохроматического света ($\lambda = 600$ нм). На расстоянии a = 0,0l от источника помещена круглая непрозрачная преграда диаметром D = 1 см. Найти расстояние l, если преграда закрывает только центральную зону Френеля.
- 3. Температура вольфрамовой спирали в 25-ваттной электрической лампочке T = 2450 K. Отношение ее энергетической светимости к энергетической светимости абсолютно черного тела при данной температуре k = 0,3. Найти площадь S излучающей поверхности спирали.
- 4. При фотоэффекте с платиновой поверхности электроны полностью задерживаются разностью потенциалов U=0.8 В. Найти длину волны λ применяемого облучения и предельную длину волны λ_0 , при которой еще возможен фотоэффект.
- 5. Какова была длина волны λ_0 рентгеновского излучения, если при комптоновском рассеянии этого излучения графитом под углом $\varphi = 60^{0}$ длина волны рассеянного излучения оказалась равной $\lambda = 25,4$ пм?
- 6. Во сколько раз надо увеличить термодинамическую температуру абсолютно черного тела, чтобы его излучательная способность R_e возросла в два раза?

- 1. В опыте Юнга на пути одного из интерферирующих лучей помещалась тонкая стеклянная пластинка, вследствие чего центральная светлая полоса смещалась в положение, первоначально занятое пятой светлой полосой (не считая центральной). Луч падает перпендикулярно к поверхности пластинки. Показатель преломления пластинки n=1,5. Длина волны $\lambda=600$ нм. Какова толщина h пластинки.
- 2. На диафрагму с диаметром отверстия D=1,96 мм падает нормально параллельный пучок монохроматического света ($\lambda=600$ нм). При каком наибольшем расстоянии l между диафрагмой и экраном в центре дифракционной картины еще будет наблюдаться темное пятно?
- 3. Какую энергетическую светимость R_3 имеет абсолютно черное тело, если максимум спектральной плотности его энергетической светимости приходится на длину волны $\lambda = 484$ нм?
- 4. Фотоны с энергией $\varepsilon = 4,9$ эВ вырывают электроны из металла с работой выхода A = 4,5 эВ. Найти максимальный импульс p_{max} , передаваемый поврехности металла при вылете каждого электрона.
- 5. Рентгеновские лучи с длиной волны $\lambda_0 = 20$ пм испытывают комптоновское рассеяние под углом $\varphi = 90^{0}$ С. Найти изменение $\Delta\lambda$ длины волны рентгеновских лучей при рассеянии, а также энергию W_e и импульс электрона отдачи.
- 6. Принимая коэффициент черноты угля при температуре T = 600 K равным 0,8, определить: 1) излучательную способность R_e угля; 2) энергию W, излучаемую с поверхности угля площадью $S = 5 \text{ см}^2$ за время t = 10 мин.

- 1. В опыте Юнга стеклянная пластинка толщиной h=12 см помещается на пути одного из интерферирующих лучей перпендикулярно к лучу. На сколько могут отличаться друг от друга показатели преломления в различных местах пластинки, чтобы изменение разности хода от этой неоднородности не превышало $\Delta=1$ мкм?
- 2. На щель шириной $a = 6\lambda$ падает нормально параллельный пучок монохроматического света с длиной волны λ . Под каким углом φ будет наблюдаться третий дифракционный минимум света?
- 3. В каких областях лежат спектра длины волн, соответствующие максимуму спектральной плотности энергетической светимости, если источником света служит: а)спираль электрической лампочки (T = 3000 K); б) поверхность Солнца (T = 6000 K); в) атомная бомба, в которой в момент взрыва развивается температура $T \cong 10^7 \, \text{K}$? Излучение считать близким к излучению абсолютно черного тела.
- 4. Найти постоянную Планка h, если известно, что электроны, вырываемые из металла светом с частицей $v_1 = 2,2 \cdot 10^{15} \, \Gamma$ ц, полностью задерживаются разностью потенциалов $U_1 = 6,6 \, \mathrm{B}$, а вырываемые светом с частотой $v_2 = 4,6 \cdot 10^{15} \, \Gamma$ ц разностью потенциалов $U_2 = 16,5 \, \mathrm{B}$.
- 5. При комптоновском рассеянии энергия падающего фотона распределяется поровну между рассеянным фотоном и электроном отдачи. Угол рассеяния $\varphi = \pi/2$. Найти энергию W и импульс p рассеянного фотона.
- 6. Мощность излучения шара радиусом R = 10см при некоторой постоянной температуре T равна 1 кВт. Найти эту температуру, считая шар серым телом с коэффициентом поглощения $a_{\rm T} = 0.25$.

- 1. Пучок света ($\lambda = 582$ нм) падает перпендикулярно к поверхности стеклянного клина. Угол клина $\gamma = 20$ ". Какое число k_0 темных интерференционных полос приходится на единицу длины клина? Показатель преломления стекла n = 1,5.
- 2. Какое число штрихов N_0 на единицу длины имеет дифракционная решетка, если зеленая линия ртути ($\lambda = 546,1$ нм) в спектре первого порядка наблюдается под углом $\varphi = 19^0$?
- 3. На рис. 129 дана кривая зависимости спектральной энергетической светимости абсолютно черного тела r_{λ} от длины волны λ при некоторой температуре. К какой температуре T относится эта кривая? Какой процент излучаемой энергии приходится на долю видимого спектра при этой температуре?
- 4. Вакуумный фотоэлемент состоит из центрального катода (вольфрамового шарика) и анода (внутренней поверхности посеребренной изнутри колбы). Контрактная разность потенциалов между электродами $U_0 = 0.6$ В ускоряет вылетающие электроны. Фотоэлемент освещается светом с длиной волны $\lambda = 230$ нм. Какую задерживающую разность потенциалов U надо приложить между электродами, чтобы фототок упал до нуля? Какую скорость υ получат электроны, когда они долетят до анода, если не прикладывать между катодом и анодом разности потенциалов?
- 5. Энергия рентгеновских лучей $\varepsilon = 0.6$ мэВ. Найти энергию $W_{\rm e}$ электрона отдачи, если длина волны рентгеновских лучей после комптоновского рассеяния изменилась на 20%.
- 6. Определить температуру T абсолютно черного тела, при которой максимум спектральной плотности излучательной способности $(r_{\lambda,T})_{max}$ приходится на красную границу видимого спектра $(\lambda_I = 750 \text{ нм})$; на фиолетовую $(\lambda_2 = 380 \text{ нм})$.

- 1. Тонкая пленка с показателем преломления 1,5 освещается светом с длиной волны $\lambda = 600$ нм. При какой минимальной толщине пленки исчезнут интерференционные полосы?
- 2. На дифракционную решетку нормально падает пучок света от разрядной трубки. Какова должна быть постоянная d дифракционной решетки, чтобы в направлении $\varphi = 41^0$ совпадали максимумы линий $\lambda_1 = 656,3$ нм и λ_2 410,2 нм?
- 3. На какую длину волны λ приходится максимум спектральной плотности энергетической светимости абсолютно черного тела, имеющего температуру, равную температуре $t = 37^{\circ}\text{C}$ человеческого тела, т. е. T = 310 K?
- 4. Одна из пластин незаряженного плоского конденсатора освещается рентгеновскими лучами, вырывающими из нее электроны со скоростью $\upsilon = 10^6$ м/с. Электроны собираются на второй пластине. Через какое время t фототок между пластинами прекратится, если с каждого квадратного сантиметра площади вырывается ежесекундно $n = 1 \cdot 10^{13}$ электронов? Расстояние между пластинами d = 10 мм.
- 5. Найти наименьшую λ_{\min} и наибольшую λ_{\max} длины волн спектральных линий водорода в видимой области спектра.
- 6. Фотон с энергией $\varepsilon = 0,4$ МэВ рассеялся под углом $\theta = 90^{\circ}$ на свободном электроне. Определить энергию ε рассеянного фотона и кинетическую энергию T электрона отдачи.

- 1. Установка для получения колец Ньютона освещается белым светом, падающим по нормали к поверхности пластинки. Радиус кривизны линзы R=5 м. Наблюдение ведется в проходящем свете. Найти радиусы $r_{\rm c}$ и $r_{\rm kp}$ четвертого синего кольца ($\lambda_c=400$ нм) и третьего красного кольца ($\lambda_{\rm kp}=630$ нм).
- 2. На дифракционную решетку нормально падает пучок света от разрядной трубки, наполненной гелием. На какую линию λ_2 в спектре третьего порядка накладывается красная линия гелия (λ_1 = 670 нм) спектра второго порядка?
- 3. Абсолютно черное тело имеет температуру $T_1 = 2900 \text{ K. B}$ результате остывания тела длина волны, на которую приходится максимум спектральной плотности энергетической светимости, изменилась на $\Delta \lambda = 9$ мкм. До какой температуры T_2 охладилось тело?
- 4. Кванты света с энергией $W = 7,9 \cdot 10^{-19}$ Дж вырывают фотоэлектроны из металла с работой выхода $A_{\rm B} = 7,2 \cdot 10^{-19}$ Дж. Найти максимальный импульс p, передаваемый поверхности металла при вылете каждого электрона.
- 5. Найти наибольшую длину волны λ_{max} в ультрафиолетовой области спектра водорода. Какую наименьшую скорость υ_{min} должны иметь электроны, чтобы при возбуждении атомов водорода ударами электронов появилась эта линия?
- 6. При увеличении термодинамической температуры T абсолютно черного тела в два раза длина волны λ_m , на которую приходится максимум спектральной плотности излучательной способности $(r_{\lambda,T})_{\text{мах}}$, уменьшилась на $\Delta\lambda=400$ нм. Определить начальную и конечную температуры T_1 и T_2

- 1. Установка для получения колец Ньютона освещается светом от ртутной дуги, падающим по нормали к поверхности пластинки. Наблюдение ведется в проходящем свете. Какое по порядку светлое кольцо, соответствующее линии $\lambda_1 = 579,1$ нм, совпадает со следующим светлым кольцом, соответствующим линии $\lambda_2 = 577$ нм?
- 2. На дифракционную решетку нормально падает пучок монохроматического света. Максимум третьего порядка наблюдается под углом $\varphi = 36^048$ ° к нормали. Найти постоянную d решетки, выраженную в длинах волн падающего света.
- 3. Температура T абсолютно черного тела изменилась при нагревании от 1000 до 3000 К. Во сколько раз увеличилась при этом его энергетическая светимость R_3 ? На сколько изменилась длина волны λ , на которую приходится максимум спектральной плотности энергетической светимости? Во сколько раз увеличилась его максимальная спектральная плотность энергетической светимости r_{λ} ?
- 4. Катод фотоэлемента освещается монохроматическим светом с длиной волны λ . При отрицательном потенциале на аноде, равном $U_1=1,6$ В, ток в цепи прекращается. При изменении длины волны света в n=1,5 раза ток в цепи прекращается при отрицательном напряжении $U_2=1,8$ В. Определите работу выхода $A_{\rm B}$ электронов с поверхности катода.
- 5. В каких пределах должна лежать энергия бомбардирующих электронов, чтобы при возбуждении атомов водорода ударами этих электронов спектр водорода имел только одну спектральную линию?
- 6. Температура T абсолютно черного тела равна 2кК. Определить 1) спектральную плотность излучательной способности $r_{\lambda,T}$ для длины волны $\lambda = 600$ нм; 2) излучательную способность R_e в интервале длин волн от $\lambda_I = 590$ нм до $\lambda_2 = 610$ нм. Принять, что средняя спектральная плотность излучательной способности тела в этом интервале равна значению, найденному для длины волны $\lambda = 600$ нм.

- 1. На тонкую стеклянную пластинку, покрытую очень тонкой пленкой, показатель преломления n_2 вещества которой равен 1,4, падает нормально направленный пучок монохроматического света ($\lambda=0.6$ мкм). Отраженный свет максимально ослаблен вследствие интерференции. Определить толщину d пленки.
- 2. Кольца Ньютона наблюдаются с помощью двух одинаковых плосковыпуклых линз радиусом кривизны R равным 1м, сложенных вплотную выпуклыми поверхностями (плоские поверхности линз параллельны). Определить радиус r_2 второго светлого кольца, наблюдаемого в отраженном свете ($\lambda = 600$ нм) при нормальном падении света на поверхность верхней линзы.
- 3. На щель шириной a=0,1мм нормально падает параллельный пучок света от монохроматического источника ($\lambda=0,6$ мкм). Определить ширину l центрального максимума в дифракционной картине, проецируемой с помощью линзы, находящейся непосредственно за щелью, на экран отстоящий от линзы на расстоянии $\Delta=1$ м.
- 4. Для прекращения фотоэффекта, вызванного облучением ультрафиолетовым светом платиновой пластинки, НУЖНО приложить задерживающую разность потенциалов $U_1 = 3,7 \text{ B}.$ Если платиновую пластинку заменить другой пластинкой, то задерживающую разность потенциалов придется увеличить до 6 В. Определить работу выхода электронов с поверхности этой пластинки.
- 5. В результате эффекта Комптона фотон при соударении с электроном был рассеян на угол $\theta = 90^{\circ}$. Энергия ε^{\Box} рассеянного фотона равна 0,4 МэВ. Определить энергию ε фотона до рассеяния.
- 6. Муфельная печь потребляет мощность P = 1 кВт. Температура T её внутренней поверхности при открытом отверстии площадью S = 25 см² равна 1,2кК. Считая, что отверстие печи излучает как абсолютно черное тело, определить, какая часть \mathcal{E} мощности рассеивается стенками.

Вариант 10

- 1. На стеклянный клин нормально к его грани падает монохроматический свет с длиной волны $\lambda=0.6$ мкм. В возникшей при этом интерференционной картине на отрезке длиной l=1 см наблюдается 10 полос. Определить преломляющий угол α клина.
- 2. В установке для наблюдения колец свет с длиной волны $\lambda=0.5$ мкм падает нормально на плосковыпуклую линзу с радиусом кривизны $R_1=1$ м, положенную выпуклой стороной на вогнутую поверхность плосковогнутой линзы с радиусом кривизны $R_2=2$ м. Определить радиус r_3 третьего темного кольца Ньютона, наблюдаемого в отраженном свете.
- 3. На диафрагму с круглым отверстием радиусом r=1 мм падает нормально параллельный пучок света длиной волны $\lambda=0.5$ мкм. На пути лучей, прошедших через отверстие, помещают экран. Определить максимальное расстояние $b_{\rm max}$ от центра отверстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пятно.
- 4. Какая доля энергии фотона израсходована на работу вырывания фотоэлектрона, если красная граница фотоэффекта $\lambda_0 = 307$ нм и максимальная кинетическая энергия $T_{\rm max}$ фотоэлектрона равна 1 эВ.
- 5. Фотон с энергией ε = 0,75 МэВ рассеялся на свободном электроне под углом θ = 60° . Принимая, что кинетическая энергия и импульс электрона до соударения с фотоном были пренебрежимо малы, определить: 1) энергию ε^{\Box} рассеянного фотона; 2) кинетическую энергию T электрона отдачи; 3) направление его движения.
- 6. Максимальная спектральная плотность излучательной способности $(r_{\lambda,T})_{\text{мах}}$ абсолютно черного тела равна $4,16\cdot 10^{11} \frac{Bm/\,\text{м}^2}{\text{м}}$. На какую длину волны λ_m оно приходится?

ЛИТЕРАТУРА

1. **Савельев И.В.** Курс общей физики. Книги 1, 2, 3, 4, 5. - М.: Наука Физматлит, 1998. Кн. 1 336 с.; Кн. 2 336 с.; Кн. 3 208 с.; Кн. 4 256 с.; Кн. 5 368 с.

- 2. **Детлаф А.А., Яворский Б.М., Милковская Л.Б.** Курс физики. Т. 1, 2, 3. М.: Высшая школа, 1973–1979. Т. 1, 384 с.; Т. 2, 375 с.; Т. 3, 511 с.
- 3. Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 1989. 608 с., 1999. 718 с.
- 4. **Трофимова Т.И.** Курс физики. М.: Высшая школа, , 1985. 352 с., 1996. 432 с., 1997. 512 с., 1998. 542 с.
- 5. **Зисман Г.А., Тодес О.М**. Курс общей физики Т.1, 2,3. Киев: Дніпро, 1994. Т.1, 350с.; Т. 2, 383с.; Т.3. 512 с.
- 6. **Сивухин Л.В.** Общий курс физики. М.: Наука, 1979-1989.-Т.І-V.