Южно-Российский государственный технический университет (Новочеркасский политехнический институт)

А.В. Благин

Т.А.Аскарян

А.И.Попов

ЗАДАЧИ ПО ФИЗИКЕ

Часть 2

Учебное пособие к практическим занятиям и выполнению индивидуальных домашних заданий по физике для студентов дневной формы обучения

Новочеркасск 2006

ББК 22.3 УДК 530.1 (075.8) Б

Репензенты:

доктор физ.-мат. наук, проф. Л.С.Лунин канд. физ.-мат. наук, доц. Е.И.Киреев

Благин А.В., Аскарян Т.А., Попов А.И.

Задачи по физике. Учебное пособие к практическим занятиям и выполнению индивидуальных домашних заданий по физике / Юж.-Рос. гос. техн. ун-т. – Новочеркасск: ЮРГТУ, 2006. – 64 с.

Пособие написано с учетом требований Государственных образовательных стандартов для студентов технических специальностей высших учебных заведений, изучающих физику в течение 3-х семестров. Главное внимание уделено методическим рекомендациям и пояснениям к решению заданий.

УДК 530.1 (075.8)

©Южно-Российский государственный технический университет, 2006 © Благин А.В., Аскарян Т.А., Попов А.И, 2006

ОГЛАВЛЕНИЕ

Электростатика	
§9 Взаимодействие заряженных тел. Закон Кулона	4
§10. Напряженность и потенциал электростатического поля	8
§11. Электрическая емкость. Энергия электрического поля	20
Постоянный электрический ток	
§12. Законы постоянного тока	26
§14. Электрический ток в металлах, жидкостях и газах	34
Электромагнетизм	
§14. Магнитное поле постоянного тока	39
§15. Силы, действующие на электрические заряды и проводники с	
током в магнитном поле	44
§16. Электромагнитная индукция. Энергия магнитного поля	51
ПРИЛОЖЕНИЯ	61

ЭЛЕКТРОСТАТИКА

§9. Взаимодействие заряженных тел. Закон Кулона

Основные формулы

3акон Kулона имеет вид $F = \frac{1}{4\pi\varepsilon_0} \frac{|q_1||q_2|}{\varepsilon r^2} \ ,$

где F — модуль силы взаимодействия точечных зарядов q_1 и q_2 ; r — расстояние между зарядами; ε — диэлектрическая проницаемость вещества; $\varepsilon_0 = 8.85 \cdot 10^{-12} \Phi/\text{M}$ — электрическая постоянная.

Линейная плотность заряда, равномерно распределённого вдоль прямой, равна

$$\tau = \frac{q}{l}$$
,

где q — заряд, находящийся на стержне длины l.

Поверхностиная плотность заряда, равномерно распределённого по поверхности, равна

$$\sigma = \frac{q}{S}$$
,

где q — заряд, находящийся на поверхности площадью S.

Объёмная плотность заряда, равномерно распределённого по объёму, равна

$$\rho = \frac{q}{V}$$

где q — заряд, находящийся внутри объёма V.

- 9.1. Два шарика массой m=0,1 г каждый подвешены в одной точке на нитях длиной l=20 см каждая. Получив одинаковый заряд, шарики разошлись так, что нити образовали между собой угол $\alpha=60^{0}$. Найти заряд каждого шарика.
- 9.2. Два одинаковых заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол α. Шарики погружаются в масло плотностью

- $\rho_0 = 8.10^2 \text{ кг/м}^3$. Определить диэлектрическую проницаемость є масла, если угол расхождения нитей при погружении шариков в масло остается неизменным. Плотность материала шариков $\rho = 1.6.10^3 \text{ кг/м}^3$.
- 9.3. Даны два шарика массой m = 1 г каждый. Какой заряд q нужно сообщить каждому шарику, чтобы сила взаимного отталкивания зарядов уравновесила силу взаимного притяжения шариков по закону тяготения Ньютона? Рассматривать шарики как материальные точки.
- 9.4. В элементарной теории атома водорода принимают, что электрон обращается вокруг ядра по круговой орбите. Определить скорость V электрона, если радиус орбиты r = 53 пм, а также частоту n вращения электрона.
- 9.5. Расстояние между двумя точечными зарядами $q_1 = 1$ мкКл и $q_2 = -q_1$ равно 10 см. Определить силу F, действующую на точечный заряд q = 0,1 мкКл, удаленный на $r_1 = 6$ см от первого и на $r_2 = 8$ см от второго зарядов.
- 9.6. В вершинах правильного шестиугольника со стороной a=10 см расположены точечные заряды Q, 2q, 3q, 4q, 5q, 6q (q=0,1 мкКл). Найти силу F, действующую на точечный заряд q, лежащий в плоскости шестиугольника и равноудаленный от его вершин.
- 9.7. Два одинаковых проводящих заряженных шара находятся на расстоянии r=60 см. Сила отталкивания F_1 шаров равна 70 мкН. После того как шары привели в соприкосновение и удалили друг от друга на прежнее расстояние, сила отталкивания возросла и стала равной $F_2=160$ мкН. Вычислить заряды q_1 и q_2 , которые были на шарах до их соприкосновения. Диаметр шаров считать много меньшим расстояния между ними.
- 9.8. Два одинаковых проводящих заряженных находятся на расстоянии r = 30 см. Сила притяжения F_1 шаров равна 90 мкН. После того как шары были приведены в друг от соприкосновение И удалены друга на прежнее расстояние, они стали отталкиваться с силой $F_2 = 160$ мкH. Определить заряды q_1 и q_2 , которые были на шарах до их соприкосновения. Диаметр шаров считать МНОГО расстояния между ними.

- 9.9. Два положительных точечных заряда q и 4q закреплены на расстоянии l=60 см друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд Q_l так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещения заряда возможны только вдоль прямой, проходящей через закрепленные заряды.
- 9.10. Расстояние l между свободными зарядами $q_1 = 180$ нКл и $q_2 = 720$ нКл равно 60 см. Определить точку на прямой, проходящей через заряды, в которой нужно поместить третий заряд q_3 так, чтобы система зарядов находилась в равновесии. Определить величину и знак заряда. Устойчивое или неустойчивое будет равновесие?
- 9.11. Три одинаковых заряда q = 1 нКл каждый расположены по вершинам равностороннего треугольника. Какой отрицательный заряд q_1 нужно поместить в центре треугольника, чтобы его притяжение уравновесило силы взаимного отталкивания зарядов? Будет ли это равновесие устойчивым?
- 9.12. В вершинах квадрата находятся одинаковые заряды q = 0,3 нКл каждый. Какой отрицательный заряд q_1 нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда?
- 9.13. Три небольших шарика, каждый массы m=6 г и с зарядом q=1,0 мкКп, соединены шелковыми нитями, образуя равносторонний треугольник со стороной l=200 мм. Одну нить пережгли. Найти ускорение среднего шарика сразу после этого. Сил тяжести нет.
- 9.14. Тонкий стержень длиной l=10 см равномерно заряжен. Линейная плотность τ заряда равна 1 мкКл/м. На продолжении оси стержня на расстоянии a=20 см от ближайшего его конца находится точечный заряд q=100 нКл. Определить силу F взаимодействия заряженного стержня и точечного заряда.
- 9.15. Тонкий длинный стержень равномерно заряжен с линейной плотностью заряда, равной 10 мкКл/м. На продолжении оси стержня на расстоянии a=20 см от его конца

- находится точечный заряд q=10 нКл. Определить силу F взаимодействия заряженного стержня и точечного заряда.
- 9.16. Тонкий очень длинный стержень равномерно заряжен с линейной плотностью заряда, равной 10 мкКл/м. На перпендикуляре к оси стержня, восставленном из его конца, находится точечный заряд q=10 нКл. Расстояние a заряда от конца стержня равно 20 см. Найти силу F взаимодействия заряженного стержня и точечного заряда.
- 9.17. Тонкая нить длиной l=20 см равномерно заряжена с линейной плотностью $\tau=10$ нКл/м. На расстоянии a=10 см от нити, против ее середины, находится точечный заряд q=1 нКл. Вычислить силу F, действующую на этот заряд со стороны заряженной нити.
- 9.18. Тонкий длинный стержень равномерно заряжен с линейной плотностью $\tau=10$ мкКл/м. Какова сила F, действующая на точечный заряд q=10 нКл, находящийся на расстоянии a=20 см от стержня, вблизи его середины?
- 9.19. Тонкая бесконечная нить согнута под углом 90°. Нить несет заряд, равномерно распределенный с линейной плотностью $\tau = 1$ мкКл/м. Определить силу F, действующую на точечный заряд q = 0,1 мкКл, расположенный на продолжении одной из сторон и удаленный от вершины угла на a = 50 см.
- 9.20. Тонкое кольцо радиусом R=10 см несет равномерно распределенный заряд q=0,1 мкКл. На перпендикуляре к плоскости кольца, восставленном из его середины, находится точечный заряд $q_1=10$ нКл. Определить силу F, действующую на точечный заряд q со стороны заряженного кольца, если он удален от центра кольца на: 1) $l_1=20$ см; 2) $l_2=2$ м.
- 9.21. Тонкое полукольцо радиусом R=10 см несет равномерно распределенный заряд с линейной плотностью $\tau=1$ мкКл/м. В центре кривизны полукольца находится заряд q=20 нКл. Определить силу F взаимодействия точечного заряда и заряженного полукольца.
- 9.22. По тонкому кольцу радиусом R=10 см равномерно распределен заряд с линейной плотностью $\tau=1$ нКл/м. В центре кольца находится заряд q=0,4 мкКл. Определить силу F, растягивающую кольцо. Взаимодействием зарядов кольца пренебречь.

§10. Напряженность и потенциал электростатического поля

Основные формулы

Напряженность электрического поля определяется выражением

$$\vec{E} = \vec{F}/q$$
,

где \vec{F} — сила, действующая на точечный заряд q, помещенный в данную точку поля.

Потенциал электростатического поля равен

$$\varphi = \Pi/q$$
,

где Π – потенциальная энергия точечного заряда q, находящегося в данной точке поля .

Сила, действующая на точечный заряд, находящийся в электрическом поле, и потенциальная энергия этого заряда определяются из соотношений

$$\vec{F} = q\vec{E}$$
, $\Pi = q\varphi$.

Принцип суперпозиции электрических полей: напряженность или потенциал поля, созданного системой точечных зарядов, равны сумме напряженностей или потенциалов полей каждого из зарядов, то есть

$$\overline{E} = \sum_{i=1}^{N} \overline{E}_i$$
 , $\varphi = \sum_{i=1}^{N} \varphi_{i,}$,

где $\overline{E}_i, \varphi_i$ — напряженность и потенциал в данной точке поля, созданного i — м зарядом.

Напряженность и потенциал поля, созданного точечным зарядом, определяются из соотношений:

$$E = \frac{|q|}{4\pi\varepsilon_0 \varepsilon r^2} , \quad \varphi = \frac{q}{4\pi\varepsilon_0 \varepsilon r} ,$$

где r — расстояние от заряда Q до точки, в которой определяются напряженность и потенциал электростатического поля.

Теорема Остроградского – Гаусса для электростатического поля имеет вид

$$\oint_{S} E_{n} dS = \frac{1}{\varepsilon_{0} \varepsilon} \sum_{i=1}^{N} q_{i} ,$$

где $\oint_S E_n dS$ — поток вектора напряженности электростатического поля сквозь произвольную замкнутую поверхность S; $\sum_{i=1}^n q_i$ — сумма зарядов, охваченных данной поверхностью.

Напряженность и потенциал поля, создаваемого проводящей заряженной сферой радиуса R, заряд которой q, на расстоянии r от центра сферы, определяются формулами:

а) если
$$r < R$$
, то $E = 0$, $\varphi = \frac{q}{4\pi\varepsilon_0\varepsilon R}$;

б) если
$$r = R$$
, то $E = \frac{|q|}{4\pi\varepsilon_0\varepsilon R^2}$, $\varphi = \frac{q}{4\pi\varepsilon_0\varepsilon R}$;

в) если
$$r > R$$
, то $E = \frac{|q|}{4\pi\varepsilon_0 \varepsilon r^2}$, $\varphi = \frac{q}{4\pi\varepsilon_0 \varepsilon r}$.

Напряженность поля, создаваемого прямой бесконечной равномерно заряженной линией или бесконечно длинным цилиндром, равна

$$E = \frac{\tau}{2\pi\varepsilon_0 \varepsilon r} ,$$

где r — расстояние от нити или оси цилиндра до точки, в которой вычисляется напряженность поля.

Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью, определяется выражением

$$E = \frac{\sigma}{2\varepsilon\varepsilon_0},$$

где σ — поверхностная плотность заряда на плоскости.

Вектор электрического смещения \vec{D} связан с вектором напряженности электрического поля \vec{E} соотношением

$$\vec{D} = \varepsilon \varepsilon_0 \vec{E}$$
,

где ε_0 — электрическая постоянная, ε — диэлектрическая проницаемость вещества.

Связь потенциала с напряженностью выражается уравнениями:

а) в общем случае
$$\vec{E} = -grad(\varphi)$$
, или $\vec{E} = -\left(\vec{i}\frac{\partial \varphi}{\partial x} + \vec{j}\frac{\partial \varphi}{\partial y} + \vec{k}\frac{\partial \varphi}{\partial z}\right)$;

б) в случае однородного поля $E = \frac{\varphi_1 - \varphi_2}{d}$,

где φ_1 и φ_2 – потенциалы точек двух эквипотенциальных поверхностей; d – расстояние между этими поверхностями;

в) в случае поля, обладающего центральной или осевой симметрией,

$$E = -\frac{d\varphi}{dr}$$
.

Электрический момент диполя определяется формулой

$$\vec{p} = |q|\vec{l}$$
,

где Q — заряд диполя; \vec{l} — плечо диполя, то есть вектор, направленный от отрицательного заряда к положительному и численно равный расстоянию между зарядами.

Работа сил электростатического поля по перемещению заряда q из точки поля с потенциалом φ_1 в точку с потенциалом φ_2 равна

$$A_{12}=q(\varphi_{\!\scriptscriptstyle 1}-\varphi_{\!\scriptscriptstyle 2})$$
, или $A=q\!\int\limits_L\!\vec{E}d\vec{l}$.

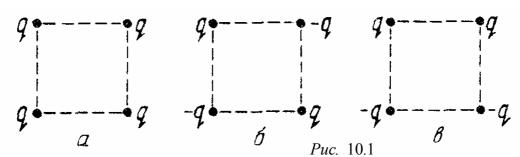
- 10.1. Определить напряженность E электрического поля, создаваемого точечным зарядом q=10 нКл на расстоянии r=10 см от него. Диэлектрик масло.
- 10.2. Расстояние d между двумя точечными зарядами $q_1 = 8$ нКл и $q_2 = -5,3$ нКл равно 40 см. Вычислить напряженность E поля в точке, лежащей посередине между зарядами. Чему равна напряженность, если второй заряд будет положительным?
- 10.3. Электрическое поле создано двумя точечными зарядами $q_1=10\,$ нКл и $q_2=-20\,$ нКл, находящимися на расстоянии $d=20\,$ см друг от друга. Определить напряженность E поля в точке, удаленной от первого заряда на $r_1=30\,$ см и от второго на $r_2=50\,$ см.
- 10.4. Расстояние d между двумя точечными положительными зарядами $q_1 = 9q$ и $q_2 = q$ равно 8 см. На каком расстоянии r от первого заряда находится точка, в которой напряженность E поля зарядов равна нулю? Где находилась бы эта точка, если бы второй заряд был отрицательным?
- 10.5. Два точечных заряда $q_1 = 2q$ и $q_2 = -q$ находятся на расстоянии d друг от друга. Найти положение точки на прямой, проходящей через эти заряды, напряженность поля E в которой равна нулю.
- 10.6. Электрическое поле создано двумя точечными зарядами $q_1 = 40$ нКл и $q_2 = -10$ нКл, находящимися на расстоянии d = 10 см друг от друга. Определить напряженность поля E в

- точке, удаленной от первого заряда на $r_1 = 12$ см и от второго на $r_2 = 6$ см.
- 10.7. Тонкое кольцо радиусом R=8 см несет заряд, равномерно распределенный с линейной плотностью $\tau=10$ нКл/м. Какова напряженность электрического поля E в точке, равноудаленной от всех точек кольца на расстояние r=10 см?
- 10.8. Тонкое полукольцо радиуса R=20 см заряжено равно мерно зарядом q=0.70 нКл. Найти модуль напряженности электрического поля в центре кривизны этого полукольца.
- 10.9. Полусфера несет заряд, равномерно распределенный с поверхностной плотностью $\sigma = 1 \text{ нКл/м}^2$. Найти напряженность электрического поля E в геометрическом центре полусферы.
- 10.10. На металлической сфере радиусом R=10 см находится заряд q=1 нКл. Определить напряженность электрического поля E в следующих точках: 1) на расстоянии $r_1=8$ см от центра сферы; 2) на её поверхности; 3) на расстоянии $r_2=15$ см от центра сферы. Построить график зависимости E от r.
- 10.11. Две концентрические металлические заряженные сферы радиусами $R_1=6$ см и $R_2=10$ см несут соответственно заряды $q_1=1$ нКл и $q_2=-0,5$ нКл. Найти напряженность электростатического поля E в точках, отстоящих от центра сфер на расстояниях $r_1=5$ см, $r_2=9$ см, $r_3=15$ см. Построить график зависимости E(r).
- 10.12. Очень длинная тонкая прямая проволока несет заряд, равномерно распределенный по всей ее длине. Вычислить линейную плотность заряда τ , если напряженность E поля на расстоянии a=0.5 м от проволоки против ее середины равна $200~{\rm B/m}$.
- 10.13. Расстояние d между двумя длинными тонкими проволоками, расположенными параллельно друг другу, равно 16 см. Проволоки равномерно заряжены разноименными зарядами с линейной плотностью $\tau = 150$ мкКл/м. Какова напряженность E поля в точке, удаленной на r = 10 см как от первой, так и от второй проволоки?
- 10.14. Прямой металлический стержень диаметром d=5 см и длиной l=4 м несет равномерно распределенный по его поверхности заряд q=500 нКл. Определить напряженность E

- поля в точке, находящейся против середины стержня на расстоянии a = 1 см от его поверхности.
- 10.15. Бесконечно длинная тонкостенная металлическая трубка радиусом R=2 см несет равномерно распределенный по поверхности заряд ($\sigma=1$ нКл/м²). Определить напряженность E поля в точках, отстоящих от оси трубки на расстояниях $r_1=1$ см, $r_2=3$ см. Построить график зависимости E(r).
- 10.16. На отрезке тонкого прямого проводника длиной l=10 см равномерно распределен заряд с линейной плотностью $\tau=3$ мкКл/м. Вычислить напряженность E поля, создаваемого этим зарядом в точке, расположенной на оси проводника и удаленной от ближайшего конца отрезка на расстояние, равное длине этого отрезка.
- 10.17. Тонкий стержень длиной l=12 см заряжен с линейной плотностью $\tau=200$ нКл/м. Найти напряженность E электрического поля в точке, находящейся на расстоянии r=5 см от стержня против его середины.
- 10.18. Тонкий стержень длиной l=10 см заряжен с линейной плотностью $\tau=400$ нКл/м. Найти напряженность E электрического поля в точке, расположенной на перпендикуляре к стержню, проведенном через один из его концов, на расстоянии r=8 см от этого конца.
- 10.19. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими одинаковый равномерно распределенный по площади заряд (σ = 1 нКл/м²). Определить напряженность E поля: 1) между пластинами; 2) вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинами.
- 10.20. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностными плотностями $\sigma_1 = 2$ нКл/м² и $\sigma_2 = -5$ нКл/м². Определить напряженность E поля: 1) между пластинами; 2) вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинами.
- 10.21. Две бесконечные параллельные пластины равномерно заряжены с поверхностной плотностью $\sigma_1 = 10$ нКл/м² и σ_2

- $= 30 \text{ нКл/м}^2$. Определить силу взаимодействия между пластинами, приходящуюся на площадь S, равную 1 м^2 .
- 10.22. Эбонитовый сплошной шар радиусом R=5 см несет заряд, равномерно распределенный с объемной плотностью $\rho=10$ нКл/м³. Определить напряженность E и смещение D электрического поля в точках: 1) на расстоянии $r_1=3$ см от центра сферы; 2) на поверхности сферы; 3) на расстоянии $r_2=10$ см от центра сферы. Построить графики зависимостей E(r) и D(r).
- 10.23. Длинный парафиновый цилиндр радиусом R=2 см несет заряд, равномерно распределенный по объему с объемной плотностью $\rho=10$ нКл/м 3 . Определить напряженность E и смещение D электрического поля в точках, находящихся от оси цилиндра на расстоянии: 1) $r_1=1$ см; 2) $r_2=3$ см. Обе точки равноудалены от концов цилиндра. Построить графики зависимостей E(r) и D(r).
- 10.24. Тонкая нить несет равномерно распределенный по длине заряд с линейной плотностью $\tau=2$ мкКл/м. Вблизи средней части нити на расстоянии r=1 см, малом по сравнению с ее длиной, находится точечный заряд q=0,1 мкКл. Определить силу F, действующую на заряд.
- 10.25. Большая металлическая пластина несет равномерно распределенный по поверхности заряд (σ = 10 нКл/м²). На малом расстоянии от пластины находится точечный заряд q = 100 нКл. Найти силу F, действующую на заряд.
- 10.26. Между пластинами плоского конденсатора находится точечный заряд q=30 нКл. Поле конденсатора действует на заряд с силой $F_I=10$ мН. Определить силу F_2 взаимного притяжения пластин, если площадь S каждой пластины равна 100 см^2 .
- 10.27. Две одинаковые круглые пластины площадью по $S=100~{\rm cm}^2$ каждая расположены параллельно друг другу. Заряд одной пластины равен $q_1=100~{\rm HK}$ л, другой $q_2=-100~{\rm HK}$ л. Определить силу F взаимного притяжения пластин в двух случаях, когда расстояние между ними: 1) $r_1=2~{\rm cm}$; 2) $r_2=10~{\rm m}$.
- 10.28. Две параллельные, бесконечно длинные прямые нити несут заряд, равномерно распределенный по длине с линейными плотностями $\tau_1 = 0,1$ мкКл/м и $\tau_2 = 0,2$ мкКл/м.

- Определить силу F взаимодействия, приходящуюся на отрезок нити длиной 1 м. Расстояние r между нитями равно 10 см.
- 10.29. Металлический шар имеет заряд $q_1 = 0,1$ мкКл. На расстоянии от его поверхности, равном радиусу шара, находится конец нити, вытянутой вдоль силовой линии. Нить несет равномерно распределенный по длине заряд $q_2 = 10$ нКл. Длина нити равна радиусу шара. Определить силу F, действующую на нить, если радиус R шара равен 10 см.
- 10.30. Точечный заряд q=10 нКл, находясь в некоторой точке поля, обладает потенциальной энергией $\Pi=10$ мкДж. Найти потенциал φ этой точки поля.
- 10.31. При перемещении заряда q=20 нКл между двумя точками поля внешними силами была совершена работа A=4 мкДж. Определить работу A_I сил поля и разность $\Delta \varphi$ потенциалов этих точек поля.
- 10.32. Поле создано точечным зарядом q=1 нКл. Определить потенциал ϕ поля в точке, удаленной от заряда на расстояние r=20 см.
- 10.33. Определить потенциал ϕ электрического поля в точке, удаленной от зарядов $q_1 = -0.2$ мкКл и $q_2 = 0.5$ мкКл соответственно на $r_1 = 15$ см и $r_2 = 25$ см.
- 10.34. Заряды $q_1=1$ мкКл и $q_2=-1$ мкКл находятся на расстоянии d=10 см. Определить напряженность E и потенциал φ поля в точке, удаленной на расстояние r=10 см от первого заряда и лежащей на линии, проходящей через первый заряд перпендикулярно направлению от q_1 к q_2 .
- 10.35. Вычислить потенциальную энергию Π системы двух точечных зарядов $q_1=100$ нКл и $q_2=10$ нКл, находящихся на расстоянии d=10 см друг от друга.
- 10.36. Какова потенциальная энергия Π системы четырех одинаковых точечных зарядов q=10 нКл, расположенных в вершинах квадрата со стороной длиной a=10 см?
- 10.37. По тонкому кольцу радиусом R=10 см равномерно распределен заряд с линейной плотностью $\tau=10$ нКл/м. Определить потенциал ϕ в точке, лежащей на оси кольца, на расстоянии a=5 см от центра.


- 10.38. На отрезке тонкого прямого проводника равномерно распределен заряд с линейной плотностью $\tau = 10$ нКл/м. Вычислить потенциал ϕ поля, создаваемого этим зарядом в точке, расположенной на оси проводника и удаленной от ближайшего конца отрезка на расстояние, равное длине этого отрезка.
- 10.39. Тонкий стержень длиной l=10 см несет равномерно распределенный заряд q=1 нКл. Определить потенциал φ электрического поля в точке, лежащей на оси стержня на расстоянии a=20 см от ближайшего его конца.
- 10.40. Тонкие стержни образуют квадрат со стороной a. Стержни заряжены с линейной плотностью заряда $\tau = 1,33$ нКл/м. Найти потенциал ϕ электрического поля в центре квадрата.
- 10.41. Бесконечно длинная тонкая прямая нить несет равномерно распределенный по длине нити заряд с линейной плотностью $\tau = 0,01$ мкКл/м. Определить разность потенциалов $\Delta \varphi$ двух точек поля, удаленных от нити на $r_1 = 2$ см и $r_2 = 4$ см.
- 10.42. Имеются две концентрические металлические сферы радиусами $R_1 = 3$ см и $R_2 = 6$ см. Пространство между сферами заполнено парафином. Заряд q_1 внутренней сферы равен -1 нКл, заряд внешней сферы $q_2 = 2$ нКл. Найти потенциал φ электрического поля на расстоянии от центра сфер: 1) $r_1 = 1$ см; 2) $r_2 = 5$ см; 3) $r_3 = 9$ см.
- 10.43. Металлический шар радиусом R=5 см несет заряд q=1 нКл. Шар окружен слоем эбонита толщиной d=2 см. Вычислить потенциал φ электрического поля на расстоянии от центра шара: 1) $r_1=3$ см; 2) $r_2=6$ см; 3) $r_3=9$ см. Построить график зависимости $\varphi(r)$.
- 10.44. Заряд распределен равномерно по бесконечной плоскости с поверхностной плотностью $\sigma=10~{\rm HK}{\rm J/m}^2$. Определить разность потенциалов $\Delta \varphi$ двух точек поля, одна из которых находится на плоскости, а другая удалена от плоскости на расстояние $d=10~{\rm cm}$.
- 10.45. Определить потенциал ϕ , до которого можно зарядить уединенный металлический шар радиусом R=10 см, если напряженность E поля, при которой происходит пробой воздуха, равна 3 MB/м. Найти также максимальную поверхностную плотность σ электрических зарядов перед пробоем.

- 10.46. Две бесконечные параллельные плоскости находятся на расстоянии d=0.5 см друг от друга. На плоскостях равномерно распределены заряды с поверхностными плотностями $\sigma_1=0.2$ мкКл/м² и $\sigma_2=-0.3$ мкКл/м². Определить разность потенциалов U между плоскостями.
- 10.47. Металлический шарик диаметром d=2 см заряжен отрицательно до потенциала $\phi=150$ В. Сколько электронов находится на поверхности шарика?
- 10.48. Сто одинаковых капель ртути, заряженных до потенциала $\phi = 20$ В, сливаются в одну большую каплю. Каков потенциал ϕ_1 образовавшейся капли?
- 10.49. Сплошной парафиновый шар радиусом R=10 см равномерно заряжен с объемной плотностью $\rho=1$ мкКл/м³. Определить потенциал φ электрического поля в центре шара и на его поверхности. Построить график зависимости $\varphi(r)$.
- 10.50. Эбонитовый толстостенный полый шар несет равномерно распределенный по объему заряд с плотностью $\rho = 2 \text{ мкКл/м}^3$. Внутренний радиус R_I шара равен 3 см, наружный $R_2 = 6 \text{ см}$. Определить потенциал φ поля в следующих точках: 1) на наружной поверхности шара; 2) на внутренней поверхности шара; 3) в центре шара.
- 10.51. Напряженность E однородного электрического поля в некоторой точке равна 600 В/м. Вычислить разность потенциалов между другой, этой точкой И лежащей на прямой, 60° составляющей угол α c направлением вектора напряженности. Расстояние Δr между точками равно 2 мм.
- 10.52. Электрическое поле создано положительным точечным зарядом. Потенциал ϕ поля в точке, удаленной от заряда на r=12 см, равен 24 В. Определить значение и направление градиента потенциала в этой точке.
- 10.53. Точечные заряды $q_1 = 1$ мкКл и $q_2 = 0,1$ мкКл находятся на расстоянии $r_1 = 10$ см друг от друга. Какую работу A совершат силы поля, если второй заряд, отталкиваясь от первого, удалится от него на расстояние: 1) $r_2 = 10$ м; 2) $r_3 = \infty$?
- 10.54. Тонкий стержень согнут в полукольцо. Стержень заряжен с линейной плотностью $\tau = 133$ нКл/м. Какую работу A

- надо совершить, чтобы перенести заряд q=6,7 нКл из центра полукольца в бесконечность?
- 10.55. Тонкий стержень согнут в кольцо радиусом R=10 см. Он заряжен с линейной плотностью $\tau=300$ нКл/м. Какую работу A надо совершить, чтобы перенести заряд q=5 нКл из центра кольца в точку, расположенную на оси кольца на расстоянии l=20 см от его центра?
- 10.56. Электрон находится в однородном электрическом поле напряженностью $E=200~{\rm kB/m}$. Какой путь пройдет электрон за время $t=1~{\rm hc}$, если его начальная скорость была равна нулю? Какой скоростью будет обладать электрон в конце этого интервала времени?
- 10.57. Какая ускоряющая разность потенциалов U требуется для того, чтобы сообщить скорость v = 30 Mm/c: 1) электрону; 2) протону?
- 10.58. Разность потенциалов U между катодом и анодом электронной лампы равна 90 B, расстояние r=1 мм. С каким ускорением a движется электрон от катода к аноду? Какова скорость v электрона в момент удара об анод? За какое время t электрон пролетает расстояние от катода до анода? Поле считать однородным.
- 10.59. Пылинка массой m=1 мг, несущая на себе пять электронов, прошла в вакууме ускоряющую разность потенциалов U=3 МВ. Какова кинетическая энергия T пылинки? Какую скорость у приобрела пылинка?
- 10.60. Заряженная частица, пройдя ускоряющую разность потенциалов U = 600 кВ, приобрела скорость v = 5.4 Мм/с. Определить удельный заряд частицы (отношение заряда в массе).
- 10.61. Электрон, летевший горизонтально со скоростью $v_0=1,6\,$ Мм/с, влетел в однородное электрическое поле с напряженностью $E=90\,$ В/см, направленное вертикально вверх. Какова будет по модулю и направлению скорость v электрона через $1\,$ нс?
- 10.62. Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потенциалом $\varphi_1 = 100$ В электрон имел скорость $V_1 = 6$ Мм/с. Определить

- потенциал φ_2 точки поля, в которой скорость V_2 электрона будет равна $0.5V_1$.
- 10.63. Электрон с начальной скоростью $v_0 = 3$ Мм/с влетел в однородное электрическое поле напряженностью E = 150 В/м. Вектор начальной скорости перпендикулярен линиям напряженности электрического поля. Найти: 1) силу F, действующую на электрон; 2) ускорение a, приобретаемое электроном; 2) скорость у электрона через t = 0,1 мкс.
- 10.64. Электрон влетел в пространство между пластинами плоского конденсатора со скоростью $v_0 = 10$ Мм/с, направленной параллельно пластинам. На сколько приблизится электрон к положительно заряженной пластине за время движения внутри конденсатора (поле считать однородным), если расстояние d между пластинами равно 16 мм, разность потенциалов U = 30 В и длина l пластин равна 6 см?
- 10.65. Положительно заряженная частица, заряд которой равен элементарному заряду e, прошла ускоряющую разность потенциалов $U=60\,$ кВ и летит на ядро атома лития, заряд которого равен трем элементарным зарядам. На какое наименьшее расстояние r_{min} частица может приблизиться к ядру? Начальное расстояние частицы от ядра можно считать бесконечно большим, а массу частицы пренебрежимо малой по сравнению с массой ядра.
- 10.66. Два электрона, находящиеся на большом расстоянии друг от друга, сближаются с относительной начальной скоростью v = 10 Mm/c. Определить минимальное расстояние r_{min} , на которое они могут подойти друг к другу.
- 10.67. Три одинаковых шарика, расположенные в вершинах равностороннего треугольника со стороной a, соединены друг с другом нитями. Заряд и масса каждого шарика равны q и m. Одну из нитей пережгли. Найти максимальную скорость среднего шарика. Сил тяжести нет.
- 10.68. Небольшой шарик висит над горизонтальной проводящей плоскостью на изолирующей упругой нити жесткости k. После того, как шарик зарядили, он опустился на x см, и его расстояние от проводящей плоскости стало равным l. Найти заряд шарика.

- 10.69. Точечный заряд q=100 мкКл находится на расстоянии $l=1,5\,$ см от проводящей плоскости. Какую работу надо совершить против электрических сил, чтобы медленно удалить этот заряд на очень большое расстояние от плоскости?
- 10.70. Два точечных заряда, q и -q, расположены на расстоянии l друг от друга и на одинаковом расстоянии l/2 от проводящей плоскости с одной стороны от нее. Найти модуль электрической силы, действующей на каждый заряд.
- 10.71. Точечный заряд q=2 мкКл находится между двумя проводящими взаимно перпендикулярными полуплоскостями. Расстояние от заряда до каждой полуплоскости l=5 см. Найти модуль силы, действующей на заряд.
- 10.71. Найти потенциал незаряженной проводящей сферы, вне которой на расстоянии $l=30\,$ см от ее центра находится точечный заряд $q=0.5\,$ мкКл.
- 10.72. Три электрона, находившихся на расстоянии a=10 мм друг от друга, начали симметрично разлетаться под действием взаимного отталкивания. Найти их максимальные скорости.
- 10.73. Определить суммарную энергию взаимодействия точечных зарядов, расположенных в вершинах квадрата со стороной *а* в системах, которые показаны на рис. 10.1.

10.74. Точечный заряд q находится на расстоянии l от проводящей плоскости. Найти энергию взаимодействия этого заряда с зарядами, индуцированными на плоскости.

§11. Электрическая емкость. Энергия электрического поля

Основные формулы

Электрическая ёмкость уединенного проводника или конденсатора определяется соотношением

$$C = \frac{q}{\varphi}$$
, ИЛИ $C = \frac{q}{U}$,

где ϕ – потенциал уединённого проводника; U – разность потенциалов между пластинами конденсатора; q – заряд проводника или конденсатора.

Электроемкость уединенной проводящей сферы радиуса R равна $C = 4\pi\varepsilon_0 \varepsilon R$.

Электроемкость плоского конденсатора равна

$$C = \frac{\varepsilon \varepsilon_0 S}{d},$$

где S – площадь каждой пластины конденсатора; d – расстояние между пластинами.

Электроемкость сферического конденсатора определяется формулой

$$C = \frac{4\pi\varepsilon_0 \varepsilon R_1 R_2}{R_2 - R_1},$$

где R_I и R_2 — радиусы концентрических сфер, являющихся обкладками конденсатора; ε — диэлектрическая проницаемость вещества, находящегося между обкладками.

Электроемкость цилиндрического конденсатора определяется формулой

$$C = \frac{2\pi\varepsilon_0\varepsilon l}{\ln(R_2/R_1)},$$

где R_1 и R_2 — радиусы двух коаксиальных цилиндров длины l, являющихся обкладками конденсатора, пространство между которыми заполнено диэлектриком с диэлектрической проницаемостью ϵ .

Электроемкость батареи конденсаторов определяется по формулам:

а) при последовательном соединении

$$\frac{1}{C} = \sum_{i=1}^{N} \frac{1}{C_i}$$
;

б) при параллельном соединении

$$C = \sum_{i=1}^{N} C_i,$$

где N – число конденсаторов в батарее.

Энергия электрического поля W уединенного заряженного проводника равна

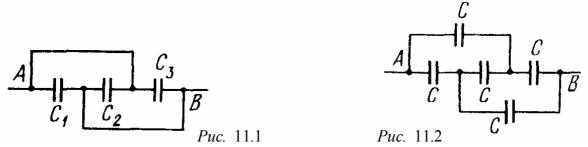
$$W = \frac{q\varphi}{2} = \frac{C\varphi^2}{2} = \frac{q^2}{2C},$$

где q — заряд проводника; ϕ — потенциал проводника; C — его электрическая емкость.

Энергия электрического поля заряженного конденсатора равна

$$W = \frac{qU}{2} = \frac{CU^2}{2} = \frac{q^2}{2C}$$
,

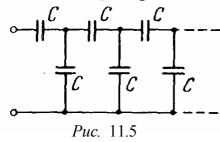
где q — заряд конденсатора; U — разность потенциалов его обкладок; C — электрическая емкость конденсатора.


Объемная плотность энергии ω электростатического поля равна

$$\omega = \frac{1}{2} \varepsilon_0 \varepsilon E^2 = \frac{1}{2} ED,$$

где E и D – напряженность и смещение электростатического поля, находящегося в среде с диэлектрической проницаемостью ε .

- 11.1. Найти электроемкость C уединенного металлического шара радиусом R=1 см, находящегося в вакууме.
- 11.2. Определить электроемкость C металлической сферы радиусом R=2 см, погруженной в воду.
- 11.3. Определить электроемкость C Земли, принимая ее за шар радиусом R = 6400 км.
- 11.4. Два металлических шара радиусами $R_I = 2$ см и $R_2 = 6$ см соединены проводником, емкостью которого можно пренебречь. Шарам сообщен заряд q = 1 нКл. Найти поверхностную плотность σ зарядов на шарах.
- 11.5. Шар радиусом $R_1=6$ см заряжен до потенциала $\varphi_1=300$ В, а шар радиусом $R_2=4$ см до потенциала $\varphi_2=500$ В. Определить потенциал φ шаров после того, как их соединили металлическим проводником. Емкостью соединительного проводника пренебречь.


11.6. Определить электроемкость C плоского слюдяного конденсатора, площадь S пластин которого равна 100 см², а расстояние между ними равно 0,1 мм.

11.7. Найти емкость системы одинаковых конденсаторов между точками А и В, которая показана: а) на рис. 11.1; б)на рис. 11.2.

11.8. Четыре одинаковые металлические пластины расположены в воздухе на расстоянии d=1 мм друг от друга. Площадь каждой пластины S=220 см². Найти емкость системы между точками A и B, если пластины соединены так, как показано: а) на рис. 11.3; б) на рис. 11.4.

11.9. Найти емкость бесконечной цепи, которая образована повторением одного и того же звена из двух одинаковых конденсаторов, каждый емкости C (рис. 11.5).

11.10. Между пластинами

плоского конденсатора, заряженного до разности потенциалов U = 600 В, находятся два слоя диэлектриков: стекла толщиной $d_I = 7$ мм и эбонита толщиной $d_2 = 3$ мм. Площадь S каждой пластины конденсатора равна 200 см 2 . Найти: 1) электроемкость C конденсатора; 2) смещение D, напряженность E поля и падение потенциала $\Delta \varphi$ в каждом слое.

11.11. На пластинах плоского конденсатора равномерно распределен заряд с поверхностной плотностью $\sigma = 0.2$ мкКл/м². Расстояние d между пластинами равно 1 мм. На сколько изменится разность потенциалов на его обкладках при увеличении расстояния d между пластинами до 3 мм?

- 11.12. В плоский конденсатор вдвинули плитку парафина толщиной d=1 см, которая вплотную прилегает к его пластинам. На сколько нужно увеличить расстояние между пластинами, чтобы получить прежнюю емкость?
- 11.13. Электроемкость C плоского конденсатора равна 1,5 мкФ. Расстояние d между пластинами равно 5 мм. Какова будет электроемкость C конденсатора, если на нижнюю пластину положить лист эбонита толщиной $d_1 = 3$ мм?
- 11.14. Между пластинами плоского конденсатора находится плотно прилегающая стеклянная пластинка. Конденсатор заряжен до разности потенциалов $U_I = 100~\mathrm{B}$. Какова будет разность потенциалов U_2 , если вытащить стеклянную пластинку из конденсатора?
- 11.15. Две концентрические металлические сферы радиусами $R_1 = 2$ см и $R_2 = 2,1$ см образуют сферический конденсатор. Определить его электроемкость C, если пространство между сферами заполнено парафином.
- 11.16. К воздушному конденсатору, заряженному до разности потенциалов $U=600~\mathrm{B}$ и отключённому от источника напряжения, присоединили параллельно второй, незаряженный конденсатор таких же размеров и формы, но с диэлектриком (фарфор). Определить диэлектрическую проницаемость ε фарфора, если после присоединения второго конденсатора разность потенциалов уменьшилось до $U_I=100~\mathrm{B}$.
- 11.17. Два конденсатора электроёмкостями $C_1 = 3$ мкФ и $C_2 = 6$ мкФ соединены между собой и присоединены к батарее с ЭДС E = 120 В. Определить заряды q_1 и q_2 конденсаторов и разности потенциалов U_1 и U_2 между их обкладками, если конденсаторы соединены: 1) параллельно; 2) последовательно.
- 11.18. Конденсатор электроёмкостью $C_I = 0,2$ мкФ был заряжен до разности потенциалов $U_I = 320$ В. После того как его соединили параллельно со вторым конденсатором, заряженным до разности потенциалов $U_2 = 450$ В, напряжение U на нём изменилось до 400 В. Вычислить ёмкость C_2 второго конденсатора.
- 11.19. Конденсатор электроёмкостью $C_I = 0,6$ мк Φ был заряжен до разности потенциалов $U_I = 300$ В и соединён

- параллельно со вторым конденсатором электроёмкостью $C_2 = 0,4$ мкФ, заряженным до разности потенциалов $U_2 = 150$ В. Найти заряд Δq , перетекший с пластин первого конденсатора на второй.
- 11.20. Три одинаковых плоских конденсатора соединены последовательно. Электроемкость C такой батареи конденсаторов равна 89 пФ. Площадь S каждой пластины равна 100 см². Диэлектрик стекло. Какова толщина d стекла?
- 11.21. Конденсатор емкости $C_1 = 1$ мкФ, заряженный до напряжения U=110В, подключили параллельно к концам системы из двух последовательно соединенных конденсаторов, емкости которых $C_2 = 2$ мкФ и $C_3 = 3$ мкФ. Какой заряд протечет при этом по соединительным проводам?
- 11.22. Конденсатору, электроемкость C которого равна 10 п Φ , сообщен заряд q=1 пКл. Определить энергию W конденсатора.
- 11.23. Расстояние d между пластинами плоского конденсатора равно 2 см, разность потенциалов U=6 кВ. Заряд q каждой пластики равен 10 нКл. Вычислить энергию W поля конденсатора и силу F взаимного притяжения пластин.
- 11.24. Какое количество теплоты Q выделится при разряде плоского конденсатора, если разность потенциалов U между пластинами равна 15 кВ, расстояние d=1 мм, диэлектрик слюда и площадь S каждой пластины равна 300 см 2 ?
- 11.25. Сила F притяжения между пластинами плоского воздушного конденсатора равна 50 мН. Площадь S каждой пластины равна 200 см 2 . Найти объемную плотность энергии ω электрического поля конденсатора.
- 11.26. Плоский воздушный конденсатор состоит из двух круглых пластин радиусом R=10 см каждая. Расстояние d_1 между пластинами равно 1 см. Конденсатор зарядили до разности потенциалов U=1,2 кВ и отключили от источника тока. Какую работу A нужно совершить, чтобы, удаляя пластины друг от друга, увеличить расстояние между ними до $d_2=3,5$ см?
- 11.27. Плоский воздушный конденсатор электроемкостью C = 1,11 нФ заряжен до разности потенциалов U = 300 В. После отключения от источника тока расстояние между пластинами конденсатора было увеличено в пять раз. Определить: 1) разность

потенциалов U_I на обкладках конденсатора после их раздвижения; 2) работу A внешних сил по раздвижению пластин.

- 11.28. Внутри плоского конденсатора находится параллельная обкладкам пластина, толщина которой составляет 0,6 расстояния между обкладками. Емкость конденсатора в отсутствие пластины C = 20нФ. Конденсатор сначала подключили к источнику постоянного напряжения U = 200 В, затем отключили и после этого медленно извлекли пластину из зазора. Найти работу, совершенную против электрических сил при извлечении пластины, если она: а) металлическая; б) стеклянная.
- 11.29. Конденсатор электроемкостью $C_1 = 666$ пФ зарядили до разности потенциалов U = 1,5 кВ и отключили от источника тока. Затем к конденсатору присоединили параллельно второй, незаряженный конденсатор электроемкостью $C_2 = 444$ пФ. Определить энергию, израсходованную на образование искры, проскочившей при соединении конденсаторов.
- 11.30. Конденсаторы электроемкостями $C_1 = 1$ мк Φ , $C_2 = 2$ мк Φ и $C_3 = 3$ мк Φ включены в сеть с напряжением U = 1,1 кВ. Определить энергию каждого конденсатора в случаях: 1) последовательного соединения; 2) параллельного соединения.
- 11.31. Электроемкость C плоского конденсатора равна 111 пФ. Диэлектрик фарфор. Конденсатор зарядили до разности потенциалов $U=600~\mathrm{B}$ и отключили от источника напряжения. Какую работу A нужно совершить, чтобы вынуть диэлектрик из конденсатора? Трение пренебрежимо мало.
- 11.32. Найти энергию W уединенной сферы радиусом R=4 см, заряженной до потенциала $\phi=500~\mathrm{B}.$
- 11.33. Вычислить энергию W электростатического поля металлического шара, которому сообщен заряд q=100 нКл, если диаметр d шара равен 20 см.
- 11.34. Сферическую оболочку радиуса R_1 , равномерно заряженную зарядом q, расширили до радиуса R_2 . Найти работу, совершенную при этом электрическими силами.
- 11.35. Сферическая оболочка заряжена равномерно с повер хностной плотностью σ. Найти модуль электрической силы на единицу поверхности оболочки.

постоянный электрический ток

§12. Законы постоянного тока

Основные формулы

Сила тока равна

$$I = \frac{dq}{dt}$$
,

где dq — заряд, прошедший через поперечное сечение проводника за малое время dt .

Для постоянного тока

$$I=\frac{q}{t}$$
,

где q — количество электричества, прошедшее через поперечное сечение проводника за произвольный промежуток времени t.

Плотность тока равна

$$\vec{j} = \frac{dI}{dS}\vec{n}$$
,

где dI — сила тока через малый элемент поперечного сечения проводника, площадь которого равна dS; \vec{n} — единичный вектор, совпадающий по направлению с направлением движения положительных зарядов.

Сопротивление R и проводимость G проводника определяются по формулам

$$R = \rho \frac{l}{S}$$
; $G = \frac{1}{R} = \gamma \frac{S}{l}$,

где ρ — удельное сопротивление; γ — удельная проводимость; l — длина проводника; S — площадь поперечного сечения проводника.

Сопротивление системы проводников определяется по формулам:

- а) при последовательном соединении $R = \sum_{i=1}^{N} R_i$;
- б) при параллельном соединении $\frac{1}{R} = \sum_{i=1}^{N} \frac{1}{R_i}$;

где R_i — сопротивление i-го проводника; N — число проводников.

Закон Ома имеет вид:

а) для однородного участка цепи, не содержащего ЭДС

$$I = \frac{\varphi_1 - \varphi_2}{R} = \frac{U}{R} ,$$

где $\varphi_1 - \varphi_2 = U$ — разность потенциалов (напряжение) на концах участка цепи; R — сопротивление участка;

б) для неоднородного участка цепи, содержащего ЭДС $I = \frac{(\varphi_1 - \varphi_2) \pm \varepsilon}{R} \,,$

$$I = \frac{(\varphi_1 - \varphi_2) \pm \varepsilon}{R},$$

где ε – ЭДС источника тока; R - полное сопротивление участка, равное сумме внешних и внутренних сопротивлений;

в) для замкнутой (полной) цепи

$$I = \frac{\varepsilon}{R+r} ,$$

R — внешнее сопротивление цепи; r — внутреннее где сопротивление источника.

Законы Кирхгофа состоят в следующем:

- 1) алгебраическая сумма сил токов, сходящихся в узле, равна нулю, т. е. $\sum I_i = 0$;
- 2) в любом замкнутом контуре алгебраическая сумма падений напряжения на отдельных участках цепи равна алгебраической сумме ЭДС, встречающихся в контуре, т.е. $\sum_{i=1}^{n} I_i R_i = \sum_{i=1}^{k} \varepsilon_j$

На основании этих законов можно составить уравнения, необходимые для определения искомых величин (сил токов, сопротивлений и ЭДС). Применяя законы Кирхгофа, следует соблюдать следующие правила.

- 1. Перед составлением уравнений необходимо произвольно выбрать: а) направления токов (если они не заданы по условию задачи) и указать их стрелками на чертеже; б) направления обхода контуров.
- 2. При составлении уравнений по первому закону Кирхгофа считать токи, входящие в узел, положительными, а отрицательными. Число уравнений, узла, выходящие ИЗ составляемых по первому закону Кирхгофа, должно быть на единицу меньше числа узлов, содержащихся в цепи.
- 3. При составлении уравнений по второму закону Кирхгофа надо считать, что:
- а) падение напряжения на участке цепи входит в уравнение со знаком плюс, если направление тока на данном участке совпадает с выбранным направлением обхода контура,

противном случае падение напряжения входит в уравнение со знаком минус;

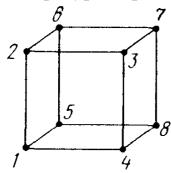
б) ЭДС входит в уравнение со знаком плюс, если она повышает потенциал в направлении обхода контура, т.е. если при обходе контура приходится идти от минуса к плюсу внутри источника тока, в противном случае ЭДС входит в уравнение со знаком минус.

независимых уравнений, которые могут Число составлены по второму закону Кирхгофа, должно быть меньше числа замкнутых контуров, имеющихся в цепи. Для составления уравнений первый контур можно выбирать произвольно. Все последующие контуры следует выбирать таким образом, чтобы в каждый новый контур входила хотя бы одна ветвь цепи, не участвовавшая ни в одном из ранее использованных контуров. Если при решении уравнений, составленных указанным выше способом, получены отрицательные значения силы тока или сопротивления, TO это означает, ЧТО через ТОК данное действительности сопротивление направлении, В течет противоположном выбранному.

 $Paбота\ moкa\ dA$ за малое время dt на однородном участке цепи равна

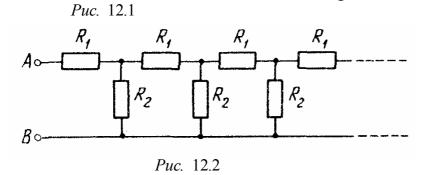
$$dA = I^2 R dt = \frac{U^2}{R} dt = IU dt.$$

Мощность тока равна


$$P = \frac{dA}{dt} = I^2 R = \frac{U^2}{R} = IU.$$

Закон Джоуля – Ленца имеет вид

$$dQ = I^2 R dt ,$$

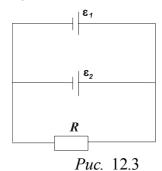

где dQ — количество теплоты, выделяющееся в участке цепи с сопротивлением R, по которому течет ток I, за малое время dt.

- 12.1. Сила тока в проводнике равномерно нарастает от $I_0 = 0$ до I = 3 A в течение времени t = 10 с. Определить заряд q, прошедший в проводнике.
- 12.2. Определить плотность тока j в железном проводнике длиной l=10 м, если провод находится под напряжением U=6 В.
- 12.3. Напряжение U на шинах электростанции равно 6,6 кВ. Потребитель находится на расстоянии l=10 км. Определить площадь S сечения медного провода, который следует взять для устройства двухпроводной линии передачи, если сила тока I в линии равна 20 A и потери напряжения в проводах не должны превышать 3 %.
- 12.4. Вычислить сопротивление R графитового проводника, изготовленного в виде прямого кругового усеченного конуса высотой h=20 см и радиусами оснований $r_I=12$ мм и $r_2=8$ мм. Температура t проводника равна 20^{0} С.

12.5. Найти сопротивление проволочного каркаса, имеющего форму куба (рис. 12.1), при включении его в цепь между точками: а) 1-7; б) 1-2; в) 1-3. Сопротивление каждого ребра каркаса равно R.

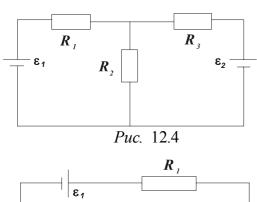
12.6. На рис. 2.36 показана

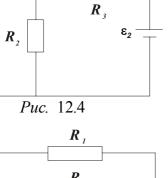
бесконечная цепь, образованная повторением одного и того же звена - сопротивлений R_1 = 4 Ом и R_2 = 3 Ом. Найти


сопротивление между точками А и В.

12.7. Катушка и амперметр соединены последовательно и присоединены к источнику тока. К зажимам катушки присоединен вольтметр сопротивлением $R_{\rm e}=1$ кОм. Показания амперметра I=0,5 A, вольтметра U=100 B. Определить сопротивление R катушки. Сколько процентов от точного значения сопротивления катушки составит погрешность, если не учитывать сопротивления вольтметра?

- 12.8. Зашунтированный амперметр измеряет токи силой до I=10 А. Какую наибольшую силу тока может измерить этот амперметр без шунта, если сопротивление R_a амперметра равно 0,02 Ом и сопротивление R_u шунта равно 5 Ом?
- 12.9. Внутреннее сопротивление r батареи аккумуляторов равно 3 Ом. Сколько процентов от точного значения ЭДС составляет погрешность, если, измеряя разность потенциалов на зажимах батареи вольтметром с сопротивлением $R_{\rm e}=200$ Ом, принять её равной ЭДС?
- 12.10. Амперметр и вольтметр подключили последовательно к батарее с ЭДС ε =6 В. Если параллельно вольтметру подключить некоторое сопротивление, то показание вольтметра уменьшается в 2 раза, а показание амперметра во столько же раз увеличивается. Найти показание вольтметра после подключения сопротивления.
- 12.11. К источнику тока с ЭДС $\varepsilon = 1,5$ В присоединили катушку с сопротивлением R = 0,1 Ом. Амперметр показал силу тока, равную $I_I = 0,5$ А. Когда к источнику тока присоединили последовательно еще один источник тока с такой же ЭДС, то сила тока I в той же катушке оказалась равной 0,4 А. Определить внутренние сопротивления r_I и r_2 первого и второго источника тока.
- 12.12. Две группы из трех последовательно соединенных элементов соединены параллельно. ЭДС каждого элемента равна $\varepsilon = 1,2$ В, внутреннее сопротивление r = 0,2 Ом. Полученная батарея замкнута на внешнее сопротивление R = 1,5 Ом. Найти силу тока I во внешней цепи.
- 12.13. Имеется N одинаковых гальванических элементов с ЭДС ε и внутренним сопротивлением r каждый. Из этих элементов требуется собрать батарею, состоящую из нескольких параллельных групп, содержащих n последовательно соединенных элементов. При таком значении n сила тока I во внешней цепи, имеющей сопротивление R, будет максимальной? Чему будет равно внутреннее сопротивление $R_{\it вн}$ батареи при этом значении n?
- 12.14. Даны 12 элементов с ЭДС ε = 1,5 В и внутренним сопротивлением r = 0,4 Ом каждый. Как нужно соединить эти

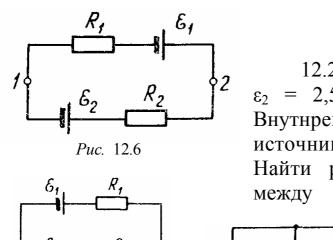

элементы, чтобы получить от собранной из них батареи наибольшую силу тока во внешней цепи, имеющей сопротивление R = 0.3 Ом? Определить максимальную силу тока I_{max} .


12.15. Два элемента ($\epsilon_1 = 1,2$ В, $r_1 = 0,1$ Ом; $\epsilon_2 = 0,9$ В, $r_2 = 0,3$ Ом) соединены одноименными полюсами. Сопротивление Rсоединительных проводов равно 0,2 Ом. Определить силу тока I в цепи.

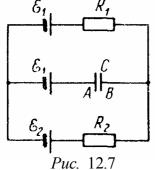
12.16. Две батареи аккумуляторов (ϵ_1 = 10 B, $r_1 = 1 \text{ Oм}; \ \epsilon_2 = 8 \text{ B}, \ r_2 = 2 \text{ Oм})$ и реостат (R = 6 Oм) соединены, как показано на рис. 12.3. Найти силу тока в батареях и реостате.

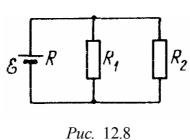
12.17. Определить силу тока I_3 в резисторе R_3 (электрическая сопротивлением изображена на рис. 12.4) и напряжение U_3 на

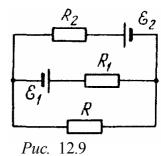
R,


концах этого резистора, если $\varepsilon_1 = 4$ B, $\varepsilon_2 = 3 \text{ B}, R_I = 2 \text{ OM},$ $R_2 = 6 \,\mathrm{OM}$ Om. 1 Внутренними сопротивлениями источников тока пренебречь.

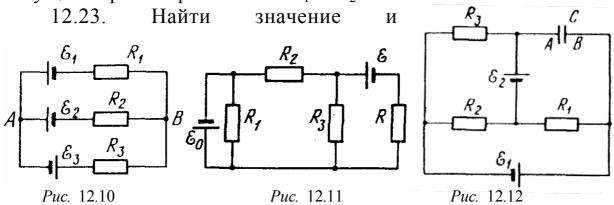
12.18. Три батареи с ЭДС ε_1 = 12 В, ε_2 = 5 В и ε_3 = 10 В и одинаковыми внутренними сопротивлениями г, равными 1 Ом, соединены между собой одноименными полюсами. Сопротивление соединительных


проводов ничтожно мало. Определить силы токов, текущих через каждую батарею.


12.19. Три источника тока с ЭДС $\varepsilon_1 = 11$ В, $\varepsilon_2 = 4$ В и $\varepsilon_3 = 6$ В и три реостата с сопротивлениями $R_1 = 5$ Ом, $R_2 = 10$ Ом и $R_3 = 2$ Ом соединены, как показано на рис. 12.5. Определить силы токов в реостатах. Внутреннее сопротивление источников тока пренебрежимо мало.


12.20. Найти разность потенциалов ϕ_1 - ϕ_2 между точками 1 и 2 схемы (рис. 12.6), если R_1 =10 Ом, R_2 = 20 Ом, ϵ_1 = 5 В и ϵ_2 = 2 В. Внутренние сопротивления источников тока пренебрежимо малы.

12.21. В схеме (рис. 12.7) $\varepsilon_1 = 1$ В, $\varepsilon_2 = 2,5$ В, R_1 =10 Ом, $R_2 = 20$ Ом. Внутнренние сопротивления источников пренебрежимо малы. Найти разность потенциалов ϕ_1 - ϕ_2 между обкладками



конденсатора C.

12.22. В схеме (рис. 12.8) $\varepsilon = 5$ В, $R_1 = 4$ Ом, $R_2 = 6$ Ом. Внутреннее сопротивление источника R = 0,1 Ом. Найти токи, текущие через сопротивления R_1 и R_2 .

направление тока через резистор с сопротивлением R в схеме (рис. 12.9), если $\varepsilon_1 = 1.5$ В, $\varepsilon_2 = 3.7$ В, $R_1 = 10$ Ом , $R_2 = 20$ Ом, R = 5 Ом. Внутренние сопротивления источников пренебрежимо малы.

12.24. В схеме (рис. 12.10) ε_1 = 1,5 В, ε_2 = 2В, ε_3 = 2,5В, R_1 =10 Ом, R_2 = 20 Ом, R_3 = 30 Ом. Внутренние сопротивления источников пренебрежимо малы. Найти: а) ток через резистор с сопротивлением R_1 ; б) разность потенциалов ϕ_1 - ϕ_2 между точками A и B.

12.25. Найти ток через резистор с сопротивлением R в схеме (рис. 12.11). Внутренние сопротивления источников пренебрежимо малы.

- 12.26. Найти разность потенциалов ϕ_A – ϕ_B между обкладками конденсатора C схемы (рис. 12.12). Внутренние сопротивления источников пренебрежимо малы.
- 12.27. Конденсатор емкости C = 400 пФ подключили через сопротивление R = 650 Ом к источнику постоянного напряжения U_0 . Через сколько времени напряжение на конденсаторе станет $U = 0.90 \ U_0$?
- 12.28. Лампочка и реостат, соединенные последовательно, присоединены к источнику тока. Напряжение U на зажимах лампочки равно 40 B, сопротивление R реостата равно 10 Ом. Внешняя цепь потребляет мощность P=120 Вт. Найти силу тока I в цепи.
- 12.29. ЭДС батареи аккумуляторов $\varepsilon = 12$ В, сила тока $I_{\kappa 3}$ короткого замыкания равна 5 А. Какую наибольшую мощность P_{max} можно получить во внешней цепи, соединенной с такой батареей?
- 12.30. К батарее аккумуляторов, ЭДС є которой равна 2 В и внутреннее сопротивление r=0,5 Ом, присоединен проводник. Определить: 1) сопротивление R проводника, при котором мощность, выделяемая в нем, максимальна; 2) мощность P_{max} , которая при этом выделяется в проводнике.
- 12.31. ЭДС є батареи равна 20 В. Сопротивление R внешней цепи равно 2 Ом, сила тока I=4 А. Найти КПД батареи. При каком значении внешнего сопротивления R КПД будет равен 99 %?
- 12.32. К зажимам батареи аккумуляторов присоединен нагреватель. ЭДС ε батареи равна 24 В, внутреннее сопротивление r=1 Ом. Нагреватель, включенный в цепь, потребляет мощность P=80 Вт. Вычислить силу тока I в цепи и КПД η нагревателя.
- 12.33. Обмотка электрического кипятильника имеет две секции. Если включена только первая секция, то вода закипает через $t_1 = 15$ мин, если только вторая, то через $t_2 = 30$ мин. Через сколько минут закипит вода, если обе секции включить: а) последовательно; б) параллельно?
- 12.34. При силе тока $I_1=3$ A во внешней цепи батареи аккумуляторов выделяется мощность $P_1=18$ Вт, при силе тока $I_2=1$ A соответственно $P_2=10$ Вт. Определить ЭДС ε и

внутреннее сопротивление r батареи.

- 12.35. Сила тока в проводнике сопротивлением $R=100~{\rm Om}$ равномерно нарастает от $I_0=0$ до $I_{max}=10~{\rm A}$ в течение времени $t=30~{\rm c}$. Определить количество теплоты Q, выделившееся за это время в проводнике.
- 12.36. Сила тока в проводнике сопротивлением R=12 Ом равномерно убывает от $I_0=5$ А до I=0 в течение времени t=10 с. Какое количество теплоты Q выделяется в этом проводнике за указанный промежуток времени?
- 12.37. По проводнику сопротивлением R=3 Ом течет ток, сила которого возрастает. Количество теплоты Q, выделившееся в проводнике за время $\tau=8$ с, равно 200 Дж. Определить количество электричества Q, протекшее за это время по проводнику. В момент времени, принятый за начальный, сила тока в проводнике была равна нулю.
- 12.38. Сила тока в проводнике сопротивлением $R=15~{\rm Om}$ равномерно возрастает от $I_0=0$ до некоторого максимального значения в течение времени $\tau=5~{\rm c}$. За это время в проводнике выделилось количество теплоты $Q=10~{\rm kДж}$. Найти среднюю силу тока < I> в проводнике за этот промежуток времени.
- 12.39. Сила тока в проводнике равномерно увеличивается от $I_0 = 0$ до некоторого максимального значения в течение времени $\tau = 10$ с. За это время в проводнике выделилось количество теплоты Q = 1 кДж. Определить скорость нарастания тока в проводнике, если его сопротивление R равно 3 Ом.

§13. Электрический ток в металлах, жидкостях и газах

Основные формулы

Связь плотности тока j со средней скоростью $\langle V \rangle$ упорядоченного движения заряженных частиц имеет вид

$$j = en\langle V \rangle$$
,

где e — заряд частицы; n — концентрация заряженных частиц. 3акон Oма в ∂ ифференциальной форме записывается в виде $\bar{i} = \gamma \overline{E}$, где γ — удельная проводимость; \overline{E} — напряженность электрического поля; \overline{j} — плотность тока.

Закон Джоуля — Ленца в дифференциальной форме имеет вид $\omega = \gamma E^2$,

где ω — объемная плотность тепловой мощности.

Законы электролиза Фарадея имеют вид:

1) первый закон

$$m = kq$$
,

где m — масса вещества, выделившегося на электроде при прохождении через электролит электрического заряда q; k — электрохимический эквивалент вещества.

2) второй закон

$$k=\frac{M}{F\cdot z}\,,$$

где F — постоянная Фарадея (F = 96,5 кКл/моль); M — молярная масса ионов данного вещества; z — валентность ионов.

3) объединенный закон

$$m = \frac{1}{F} \frac{M}{z} q = \frac{1}{F} \frac{M}{z} It,$$

где I — сила тока, проходящего через электролит; t — время, в течение которого шел ток.

Подвижность ионов равна

$$b=\frac{\langle V\rangle}{E},$$

где $\langle V \rangle$ — средняя скорость упорядоченного движения ионов; E — напряженность электрического поля.

Закон Ома в дифференциальной форме для электролитов и газов при самостоятельном разряде в области, далекой от насыщения, имеет вид

$$\vec{j} = qn(b^+ + b^-)\vec{E},$$

где q — заряд иона; n — концентрация ионов; b^+ и b^- — подвижности соответственно положительных и отрицательных ионов.

Плотность тока насыщения равна

$$j_{\mu ac} = q n_0 d ,$$

где n_0 — число пар ионов, создаваемых ионизатором в единице объема в единицу времени ($n_0 = N/(Vt)$, где N — число пар ионов, создаваемых ионизатором за время t в пространстве между

электродами; V — объем этого пространства); d — расстояние между электродами.

Связь удельной проводимости γ с подвижностью b заряженных частиц (ионов) имеет вид

$$\gamma = qn(b^+ + b^-),$$

где q — заряд иона; n — концентрация ионов; b^+ и b^- — подвижности положительных и отрицательных ионов.

- 13.1. Сила тока I в металлическом проводнике равна 0,8 A, сечение S проводника 4 мм². Принимая, что в каждом кубическом сантиметре металла содержится $n=2,5\cdot 10^{22}$ свободных электронов, определить среднюю скорость $\langle V \rangle$ их упорядоченного движения.
- 13.2. Определить среднюю скорость $\langle V \rangle$ упорядоченного движения электронов в медном проводнике при силе тока $I=10~\mathrm{A}$ и сечении S проводника, равном 1 мм². Принять, что на каждый атом меди приходится два электрона проводимости.
- 13.3. Плотность тока j в алюминиевом проводе равна 1 A/mm^2 . Найти среднюю скорость $\langle V \rangle$ упорядоченного движения электронов, предполагая, что число свободных электронов в 1 см^3 алюминия равно числу атомов.
- 13.4. Плотность тока j в медном проводнике равна 3 A/mm^2 . Найти напряженность E электрического поля в проводнике.
- 13.5. В медном проводнике длиной l=2 м и площадью S поперечного сечения, равной 0,4 мм 2 , течет ток. При этом ежесекундно выделяется количество теплоты Q=0,35 Дж. Сколько электронов N проходит за 1 с через поперечное сечение этого проводника?
- 13.6. В медном проводнике объемом V = 6 см³ при прохождении по нему постоянного тока за время t = 1 мин выделилось количество теплоты Q = 216 Дж. Вычислить напряженность E электрического поля в проводнике.
- 13.7. При силе тока I=5 A за время t=10 мин в электролитической ванне выделилось m=1,02 г двухвалентного металла. Определить его молярную массу.

- 13.8. Две электролитические ванны соединены последовательно. В первой ванне выделилось $m_1 = 3.9$ г цинка, во второй за то же время $m_2 = 2.24$ г железа. Цинк двухвалентен. Определить валентность железа.
- 13.9. Определить толщину h слоя меди, выделившейся за время t=5 ч при электролизе медного купороса, если плотность тока $j=80~{\rm A/m}^2$.
- 13.10. Сила тока, проходящего через электролитическую ванну с раствором медного купороса, равномерно возрастает в течение времени $\Delta t = 20$ с от $I_0 = 0$ до I = 2 А. Найти массу m меди, выделившейся за это время на катоде ванны.
- 13.11. В электролитической ванне через раствор прошел заряд $q=193\,$ кКл. При этом на катоде выделился металл количеством вещества $\nu=1\,$ моль. Определить валентность z металла.
- 13.12. Определить количество вещества ν и число атомов N двухвалентного металла, отложившегося на катоде электролитической ванны, если через раствор в течение времени t=5 мин шел ток силой I=2 А.
- 13.13. Сколько атомов двухвалентного металла выделится на 1 см² поверхности электрода за время t = 5 мин при плотности тока j = 10 A/м²?
- 13.14. Энергия ионизации атома водорода $E_i = 2,18\cdot 10^{-18}$ Дж. Определить потенциал ионизации U_i водорода.
- 13.15. Какой наименьшей скоростью V_{min} должен обладать электрон, чтобы ионизировать атом азота, если потенциал ионизации U_i азота равен 14,5 В?
- 13.16. Какова должна быть температура T атомарного водорода, чтобы средняя кинетическая энергия поступательного движения атомов была достаточна для ионизации путем соударений? Потенциал ионизации U_i атомарного водорода равен $13.6~\mathrm{B}$.
- 13.17. Посередине между электродами ионизационной камеры пролетела α частица, двигаясь параллельно электродам, и образовала на своем пути цепочку ионов. Спустя какое время после пролета α частицы ионы дойдут до электродов, если расстояние d между электродами равно 4 см, разность

- потенциалов U = 5 кВ и подвижность ионов обоих знаков в среднем b = 2 см²/(В ·с)?
- 13.18. Азот ионизируется рентгеновским излучением. Определить проводимость G азота, если в каждом кубическом сантиметре газа находится в условиях равновесия $n_0 = 10^7$ пар ионов. Подвижность положительных ионов $b^+ = 1,27$ см²/(B·c) и отрицательных $b^- = 1,81$ см²/(B·c).
- 13.19. Воздух между плоскими электродами ионизационной камеры ионизируется рентгеновским излучением. Сила тока I, текущего через камеру, равна 1,2 мкА. Площадь S каждого электрода равна 300 см², расстояние между ними d=2 см, разность потенциалов U=100 В. Найти концентрацию n пар ионов между пластинами, если ток далек от насыщения. Подвижность положительных ионов $b^+=1,4$ см²/(B·c) и отрицательных $b^-=1,9$ см²/(B·c). Заряд каждого иона равен элементарному заряду.
- 13.20. Объем V газа, заключенного между электродами ионизационной камеры, равен 0,5 л. Газ ионизируется рентгеновским излучением. Сила тока насыщения $I_{hac} = 4$ нА. Сколько пар ионов образуется в 1 с в 1 см³ газа? Заряд каждого иона равен элементарному заряду.
- 13.21. Найти силу тока насыщения между пластинами действием ионизатора конденсатора, если ПОД В кубическом сантиметре пространства между пластинами конденсатора ежесекундно образуется $n_0 = 10^8$ пар ионов, каждый из которых несет один элементарный заряд. Расстояние d между пластинами конденсатора равно 1 см, площадь S пластины равна 100 cm^2 .
- 13.22. В ионизационной камере, расстояние d между плоскими электродами которой равно 5 см, проходит ток насыщения плотностью $j_{hac} = 16$ мкА/м². Определить число n пар ионов, образующихся в каждом кубическом сантиметре пространства камеры в 1 с.

ЭЛЕКТРОМАГНЕТИЗМ

§14. Магнитное поле постоянного тока

Основные формулы

Закон Био – Савара – Лапласа имеет вид

$$d\vec{B} = \frac{\mu\mu_0}{4\pi} \left[d\vec{l} \, \vec{r} \, \right] \frac{I}{r^3} \,,$$

где $d\vec{B}$ — магнитная индукция поля, создаваемого элементом проводника длиной dl с током I; \vec{r} — радиус—вектор, направленный от элемента проводника к точке, в которой вычисляется магнитная индукция; $d\vec{l}$ — вектор, равный по модулю длине элемента проводника и совпадающий по направлению с током; μ — магнитная проницаемость вещества; μ_0 — магнитная постоянная $(\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma \text{H/M})$.

Модуль вектора *dB* определяется по формуле

$$dB = \frac{\mu\mu_0}{4\pi} \frac{I \sin \alpha}{r^2} dl ,$$

где α — угол между векторами $d\vec{l}$ и \vec{r} .

Связь магнитной индукции \vec{B} c напряженностью \vec{H} магнитного поля имеет вид

$$\overline{B} = \mu \mu_0 \overline{H}$$
.

Магнитная индукция в центре кругового тока равна

$$B = \frac{\mu \mu_0 I}{2R},$$

где R — радиус кругового витка.

Магнитная индукция на оси кругового тока равна

$$B = \frac{\mu \mu_0}{4\pi} \frac{2\pi R^2 I}{\left(R^2 + h^2\right)^{3/2}},$$

где h — расстояние от центра витка до точки, в которой вычисляется магнитная индукция.

Магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током, равна

$$B = \frac{\mu \mu_0 I}{2\pi r},$$

где r — расстояние от оси проводника до точки, в которой вычисляется магнитная индукция; I — сила тока в проводнике.

Магнитная индукция поля, создаваемого отрезком провода с током, равна

$$B = \frac{\mu\mu_0}{4\pi} \frac{I}{r} (\cos\alpha_1 - \cos\alpha_2),$$

где r — расстояние от оси проводника до точки, в которой вычисляется магнитная индукция; α_1 и α_2 — углы между проводником и отрезками, проведенными из его концов в точку наблюдения.

Магнитная индукция поля, создаваемого соленоидом в средней его части, равна

$$B = \mu_0 \mu n I$$
,

где n — число витков, приходящееся на единицу длины соленоида; I — сила тока в соленоиде.

Принцип суперпозиции магнитных полей: магнитная индукция результирующего поля \vec{B} равна векторной сумме магнитных индукций $\vec{B}_1, \vec{B}_2, ..., \vec{B}_N$ складываемых полей, то есть

$$\vec{B} = \sum_{i=1}^{N} \vec{B}_i .$$

Задачи

- 14.1. Напряженность H магнитного поля равна 79,6 кА/м. Определить магнитную индукцию B_0 этого поля в вакууме.
- 14.2. Магнитная индукция B поля в вакууме равна 10 мТл. Найти напряженность поля.
- 14.3. Вычислить напряженность H магнитного поля, если его индукция в вакууме $B_0 = 0.05$ Тл.
- 14.4. Найти магнитную индукцию в центре тонкого кольца, по которому течет ток I = 10 А. Радиус r кольца равен 5 см.
- 14.5. По круговому витку радиуса R = 100 мм из тонкого провода циркулирует ток I=1,00 А. Найти магнитную индукцию: а) в центре витка; б) на оси витка на расстоянии h=100 мм от его центра.
- 14.6. По обмотке очень короткой катушки радиусом r=16 см течет ток I=5 А. Сколько витков N проволоки намотано на катушку, если напряженность H магнитного поля в её центре равна 800 А/м?
- 14.7. При какой силе тока I, текущего по тонкому проводящему кольцу радиусом R = 0,2 м, магнитная индукция B в точке, равноудаленной от всех точек кольца на расстояние

- r = 0.3 м, станет равной 20 мкТл?
- 14.8. Длинный прямой соленоид из поволоки диаметром d=0,5 мм намотан так, что витки плотно прилегают друг к другу. Какова напряженность H магнитного поля внутри соленоида при силе тока I=4 A? Толщиной изоляции пренебречь.
- 14.9. По прямому бесконечно длинному проводнику течет ток I=50 А. Определить магнитную индукцию B в точке, удаленной на расстояние r=5 см от проводника.
- 14.10. Два длинных параллельных провода находятся на расстоянии r=5 см один от другого. По проводам текут в противоположных направлениях одинаковые токи I=10 А каждый. Найти напряженность H магнитного поля в точке, находящейся на расстоянии $r_1=2$ см от одного и $r_2=3$ см от другого провода.
- 14.11. Расстояние d между двумя длинными параллельными проводами равно 5 см. По проводам в одном направлении текут одинаковые токи I=30 А каждый. Найти напряженность H магнитного поля в точке, находящейся на расстоянии $r_1=4$ см от одного и $r_2=3$ см от другого провода.
- 14.12. По двум бесконечно длинным прямым параллельным проводам текут токи $I_1 = 50$ А и $I_2 = 100$ А в противоположных направлениях. Расстояние d между проводами равно 20 см. Определить магнитную индукцию B в точке, удаленной на $r_1 = 25$ см от первого и на $r_2 = 40$ см от второго провода.
- 14.13. По двум бесконечно длинным прямым параллельным проводам текут токи $I_1 = 20 \text{ A}$ и $I_2 = 30 \text{ A}$ в одном направлении. Расстояние d между проводами равно 10 см. Вычислить магнитную индукцию B в точке, удаленной от обоих проводов на одинаковое расстояние r = 10 см.
- 14.14. Бесконечно длинный прямой провод согнут под прямым углом. По проводу течет ток I=100 А. Вычислить магнитную индукцию B в двух точках, лежащих на биссектрисе угла и удаленных от вершины угла на a=10 см.
- 14.15. По бесконечно длинному прямому проводу, согнутому по углом $\alpha=120^0$, течет ток I=50 А. Определить магнитную индукцию B в двух точках, лежащих на биссектрисе угла и

- удаленных от вершины на расстоянии a = 5 см.
- 14.16.По контуру в виде равностороннего треугольника идет ток $I=40\,$ А. Длина a стороны треугольника равна $30\,$ см. Определить магнитную индукцию B в точке пересечения высот.
- 14.17. По контуру в виде квадрата идет ток I = 50 А. Длина a стороны квадрата равна 20 см. Определить магнитную индукцию B в точке пересечения диагоналей.
- 14.18. По тонкому проводу, изогнутому в виде прямоугольника, течет ток I=60 А. Длины сторон прямоугольника равны a=30 см и b=40 см. Определить магнитную индукцию B в точке пересечения диагоналей.
- 14.19. Тонкий провод изогнут в виде правильного шестиугольника. Длина d стороны шестиугольника равна 10 см. Определить магнитную индукцию B в центре шестиугольника, если по проводу течет ток I=25 A.
- 14.20. По проводу, согнутому в виде правильного шестиугольника с длиной a стороны, равной 20 см, течет ток I=100 А. Найти напряженность H магнитного поля в центре шестиугольника. Для сравнения определить напряженность H_0 поля в центре кругового провода, совпадающего с окружностью, описанной около данного шестиугольника.
- 14.21. По тонкому проволочному кольцу течет ток. Не изменяя силы тока в проводнике, ему придали форму квадрата. Во сколько раз изменилась магнитная индукция в центре контура?
- 14.22. Бесконечно длинный тонкий проводник с током I = 50 А имеет изгиб (плоскую петлю) радиусом R = 10 см. Определить в точке O магнитную индукцию B поля, создаваемого этим током, в случаях a—e, изображенных на рисунке 14.1

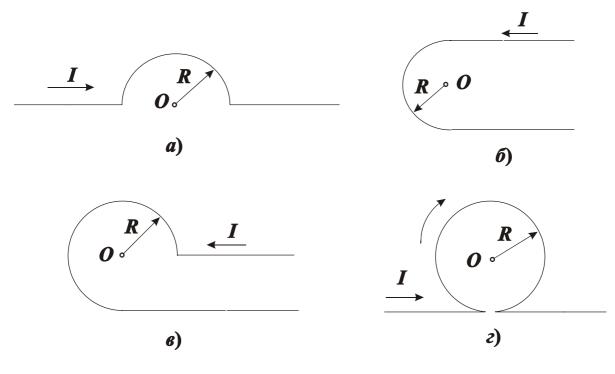


Рис. 14.1

- 14.23. Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом r=53 пм. Вычислить силу эквивалентного кругового тока I и напряженность H магнитного поля в центре окружности.
- 14.24. Определить максимальную магнитную индукцию B поля, создаваемого электроном, движущимся прямолинейно со скоростью $v=10\,$ Мм/с, в точке, отстоящей от траектории на расстоянии $d=1\,$ нм.
- 14.25. На расстоянии r=10 нм от траектории прямолинейно движущегося электрона максимальное значение магнитной индукции $B_{max}=160$ мкТл. Определить скорость v электрона.
- 14.26. Два протона движутся параллельно друг другу с одинаковой скоростью v = 300 км/с. Найти отношение сил магнитного и электрического взаимодействия данных протонов.

§15. Силы, действующие на электрические заряды и проводники с током в магнитном поле

Основные формулы

Закон Ампера, определяющий силу, действующую на проводник с током в магнитном поле, имеет вид

$$\vec{F} = I[\vec{l}\,\vec{B}],$$

где I — сила тока в проводнике; \vec{l} — вектор, равный по модулю длине проводника и совпадающий по направлению с током; \vec{B} — индукция магнитного поля.

Модуль силы Ампера равен

$$F = IBl \sin \alpha$$
,

где α — угол между направлением тока в проводе и вектором магнитной индукции.

Если поле неоднородно и провод не является прямым, то закон Ампера можно применять к каждому его элементу $d\vec{l}$ в отдельности, причем сила Ампера, действующая на данный элемент проводника, равна

$$d\vec{F} = I \left[d\vec{l} \, \vec{B} \right].$$

Сила Лоренца, действующая на заряд, движущийся в магнитном поле, равна

$$\vec{F} = q \left[\vec{V} \vec{B} \right].$$

Модуль силы Лоренца равен

$$F = |q|VB\sin\alpha,$$

где q — величина заряда; V — его скорость; B — индукция магнитного поля; α — угол между вектором скорости и вектором магнитной индукции.

Сила взаимодействия двух прямых бесконечно длинных параллельных проводников с токами I_1 и I_2 , находящихся на расстоянии d друг от друга, рассчитанная на отрезок проводника длиной l, выражается формулой

$$F = \frac{\mu_0 \mu}{2\pi} \frac{I_1 I_2}{d} l.$$

Магнитный момент плоского контура с током равен

$$\vec{p}_m = I\vec{S}$$
,

где I — сила тока в контуре; \vec{s} — вектор, равный по модулю

площади, охватываемой контуром, и совпадающий по направлению с нормалью к его плоскости, причем направление нормали определяется правилом буравчика.

Mеханический момент \vec{M} , действующий на контур с током, помещенный в однородное магнитное поле, равен

$$\vec{M} = \left[\vec{p}_m \vec{B} \right].$$

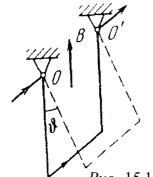
Модуль механического момента равен

$$M = p_m B \sin \alpha ,$$

где α — угол между векторами $\vec{p}_{\scriptscriptstyle m}$ и \vec{B} .

Потенциальная (механическая) энергия контура с током в магнитном поле равна

$$\Pi_{\scriptscriptstyle Mex} = \vec{p}_{\scriptscriptstyle m} \vec{B} = p_{\scriptscriptstyle m} B \cos \alpha .$$

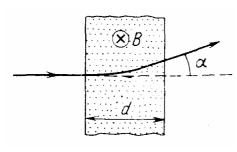

Задачи

- 15.1. Прямой провод длиной l=10 см, по которому течет ток I=20 А, находится в однородном магнитном поле с индукцией B=0,01 Тл. Найти угол α между направлениями вектора B и тока, если на провод действует сила F=10 мH.
- 15.2. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I=1 кА. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.
- 15.3. Тонкий провод в виде дуги, составляющей треть кольца радиусом $R=15\,$ см, находится в однородном магнитном поле $(B=20\,$ мТл). По проводу течет ток $I=30\,$ А. Плоскость, в которой лежит дуга, перпендикулярна линиям магнитной индукции, и подводящие провода находятся вне поля. Определить силу F, действующую на провод.
- 15.4. По тонкому проводу в виде кольца радиусом R=20 см течет ток I=100 А. Перпендикулярно плоскости кольца возбуждено однородное магнитное поле с индукцией B=20 мТл. Найти силу F, растягивающую кольцо.
- 15.5. Двухпроводная линия состоит из длинных параллельных прямых проводов, находящихся на расстоянии

- d = 4мм друг от друга. По проводам текут одинаковые токи I = 50 А. Определить силу взаимодействия токов, приходящуюся на единицу длины провода.
- 15.6. Шины генератора представляют собой две параллельные медные полосы длиной l=2 м каждая, отстоящие друг от друга на расстоянии d=20 см. Определить силу F взаимного отталкивания шин в случае короткого замыкания, когда по ним течет ток I=10 кА.
- 15.7. По двум параллельным проводам длиной l=1 м каждый текут одинаковые токи. Расстояние d между проводами равно 1 см. Токи взаимодействуют с силой F=1 мН. Найти силу тока I в проводах.
- 15.8. По трем параллельным прямым проводам, находящимся на одинаковом расстоянии a=10 см друг от друга, текут одинаковые токи I=100 А. В двух проводах направления токов совпадают. Вычислить силу F, действующую на отрезок длиной l=1 м каждого провода.
- 15.9. По витку радиусом r=5 см течет ток I=10 А. Определить магнитный момент p_m кругового тока.
- 15.10. Очень короткая катушка содержит N=1000 витков тонкого провода. Катушка имеет квадратное сечение со стороной длиной a=10 см. Найти магнитный момент p_m катушки при силе тока I=1 A.
- 15.11. Магнитный момент p_m витка равен 0,2 Дж/Тл. Определить силу тока I в витке, если его диаметр d=10 см.
- 15.12. Напряженность H магнитного поля в центре кругового витка равна 200 А/м. Магнитный момент p_m витка равен 1 А·м². Вычислить силу тока I в витке и радиус R витка.
- 15.13. По кольцу радиусом R течет ток. На оси кольца на расстоянии d=1 м от его плоскости магнитная индукция B=10 нТл. Определить магнитный момент p_m кольца с током. Считать R много меньшим d.
- 15.14. Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом r=53 пм. Вычислить магнитный момент p_m эквивалентного кругового тока и механический момент М, действующий на круговой ток, если атом помещен в магнитное поле, линии индукции которого

параллельны плоскости орбиты электрона. Магнитная индукция B поля равна 0,1 Тл.

- 15.15. Электрон в атоме водорода движется вокруг ядра по круговой орбите некоторого радиуса. Найти отношение магнитного момента p_m эквивалентного кругового тока к моменту импульса L орбитального движения электрона. Заряд электрона и его массу считать известными. Указать направления векторов p_m и L.
- 15.16. По тонкому стержню длиной l=20 см равномерно распределен заряд q=240 нКл. Стержень приведен во вращение с постоянной угловой скоростью $\omega=10$ рад/с относительно оси, перпендикулярной стержню и проходящей через его середину. Определить: 1) магнитный момент p_m , обусловленный вращением заряженного стержня; 2) отношение магнитного момента к моменту импульса (p_m/L) , если стержень имеет массу m=12 г.
- 15.17. Тонкое кольцо радиусом R=10 см несет заряд q=10 нКл. Кольцо равномерно вращается с частотой n=10 с⁻¹ относительно оси, перпендикулярной плоскости кольца и проходящей через ее центр. Найти: 1) магнитный момент p_m кругового тока, создаваемого кольцом; 2) отношение магнитного момента к моменту импульса (p_m/L) , если масса т кольца равна 10 г.
- 15.18. Диск радиусом R = 10 см несет равномерно распределенный по поверхности заряд q = 0,2 мкКл. Диск равномерно вращается с частотой $n = 20c^{-1}$ относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Определить: 1) магнитный момент p_m кругового тока, создаваемого диском; 2) отношение магнитного момента к моменту импульса (p_m/L) , если масса m диска равна 100 г.
- 15.19. Проволочный виток радиусом R=5 см находится в однородном магнитном поле напряженностью H=2 кА/м. Плоскость витка образует угол $\alpha=60^\circ$ с направлением поля. По витку течет ток I=4 А. Найти механический момент M, действующий на виток.
- 15.20. Медный провод сечением $S = 2.5 \, \mathrm{mm}^2$, согнутый в виде трех сторон квадрата, может поворачиваться вокруг горизонтальной оси OO' (рис. 15.1). Провод находится в


однородном вертикально направленном магнитном поле. Найти индукцию поля, если при пропускании по данному проводу тока I=16 A угол отклонения $\theta=20^{\circ}$.

15.21. Рамка гальванометра длиной a=4 см и шириной b=1,5 см, содержащая N=200 витков тонкой проволоки, находится в $Puc.\ 15.1$ магнитном поле с индукцией B=0,1 Тл. Плоскость рамки параллельна линиям индукции. Найти: 1) механический момент M, действующий на рамку, когда по витку течет ток I=1 мA; 2) магнитный момент p_m рамки при этом токе.

- 15.22. Короткая катушка площадью S поперечного сечения, равной 150 см², содержит N=200 витков провода, по которому течет ток I=4 А. Катушка помещена в однородное магнитное поле напряженностью H=8 кА/м. Определить магнитный момент p_m катушки, а также вращающий момент M, действующий на нее со стороны поля, если ось катушки составляет угол $\alpha=60^\circ$ с линиями индукции.
- 15.23. Определить силу Лоренца F, действующую на электрон, влетевший со скоростью $v=4\,$ Мм/с в однородное магнитное поле под углом $\alpha=30^\circ$ к линиям индукции. Магнитная индукция B поля равна $0,2\,$ Тл.
- 15.24. Вычислить радиус R дуги окружности, которую описывает протон в магнитном поле с индукцией B=15 мТл, если скорость v протона равна 2 Мм/с.
- 15.25. Двукратно ионизированный атом гелия (α -частица) движется в однородном магнитном поле напряженностью $H=100~{\rm kA/m}$ по окружности радиусом $R=10~{\rm cm}$. Найти скорость у α частицы.
- 15.26. Ион, несущий один элементарный заряд, движется в однородном магнитном поле с индукцией B=0.015 Тл по окружности радиусом R=10 см. Определить импульс p иона.
- 15.27. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией B=0,5 Тл. Определить момент импульса L, которым обладала частица при движении в магнитном поле, если ее траектория представляла дугу окружности радиусом R=0,2 см.

- 15.28. Электрон движется в магнитном поле с индукцией B=0.02 Тл по окружности радиусом R=1см. Определить кинетическую энергию T электрона (в джоулях и электронвольтах).
- 15.29. Протон, прошедший ускоряющую разность потенциалов $U=600~\mathrm{B}$, влетел в однородное магнитное поле с индукцией $B=0,3~\mathrm{Tn}$ и начал двигаться по окружности. Вычислить ее радиус R.
- 15.30. Заряженная частица, обладающая скоростью $v = 2 \cdot 10^6$ м/с, влетела в однородное магнитное, поле с индукцией B = 0.52 Тл. Найти отношение q/m заряда частицы к ее массе, если частица в поле описала дугу окружности радиусом R = 4 см. По этому отношению определить, какая это частица.
- 15.31. Заряженная частица, прошедшая ускоряющую разность потенциалов U=2 кВ, движется в однородном магнитном поле с индукцией B=15,1 мТл по окружности радиусом R=1см. Определить отношение q/m заряда частицы к ее массе и скорость у частицы.
- 15.32. Заряженная частица с энергией T=1 кэВ движется в однородном магнитном поле по окружности радиусом R=1 мм. Найти силу F, действующую на частицу со стороны поля.
- 15.33. Электрон движется в однородном магнитном поле с индукцией B=0,1 Тл перпендикулярно линиям индукции. Определить силу F, действующую на электрон со стороны поля, если радиус R кривизны траектории равен 0,5 см.
- 15.34. Электрон движется по окружности в однородном магнитном поле напряженностью H = 10 кA/м. Вычислить период T вращения электрона.
- 15.35. Определить частоту n вращения электрона по круговой орбите в магнитном поле, индукция B которого равна 0,2 Тл.
- 15.36. Два однозарядных иона, пройдя одинаковую ускоряющую разность потенциалов, влетели в однородное магнитное поле перпендикулярно линиям индукции. Один ион, масса m_1 которого равна 12 а.е.м., описал дугу окружности радиусом $R_1 = 4$ см. Определить массу m_2 другого иона, который описал дугу окружности радиусом $R_2 = 6$ см.
 - 15.37. Два иона, имеющие одинаковый заряд, но различные

массы, влетели в однородное магнитное поле. Первый ион начал двигаться по окружности радиусом $R_1 = 5$ см, второй ион — по окружности радиусом $R_2 = 2,5$ см. Найти отношение m_1/m_2 масс ионов, если они прошли одинаковую ускоряющую разность потенциалов.

Puc. 15.2

15.38. Протон, ускоренный разностью потенциалов $U=500~\mathrm{kB}$, пролетает поперечное однородное магнитное поле с индукцией $B=0,51~\mathrm{T}$ л. Толщина области с полем $d=10~\mathrm{cm}$ (рис. 15.2). Найти угол α отклонения протона от первоначального

направления движения.

- 15.39. В однородном магнитном поле с индукцией B=100 мкТл движется электрон по винтовой линии. Определить скорость v электрона, если шаг h винтовой линии равен 20 см, а радиус R=5 см.
- 15.40. Электрон движется в однородном магнитном поле с индукцией B=9 мТл по винтовой линии, радиус R которой равен 1 см и шаг h=7,8 см. Определить период T обращения электрона и его скорость v.
- 15.41. В однородном магнитном поле с индукцией B=2 Тл движется протон. Траектория его движения представляет собой винтовую линию с радиусом R=10 см и шагом h=60 см. Определить кинетическую энергию T протона.
- 15.42. Электрон влетает в однородное магнитное поле напряженностью H=16 кА/м со скоростью v=8 Мм/с. Вектор скорости составляет угол $\alpha=60^{0}$ с направлением линий индукции. Определить радиус R и шаг h винтовой линии, по которой будет двигаться электрон в магнитном поле.
- 15.43. Электрон движется по окружности в однородном магнитном поле со скоростью v = 0.8c (c скорость света в вакууме). Магнитная индукция B поля равна 0,01 Тл. Определить радиус окружности в двух случаях: 1) не учитывая увеличение массы со скоростью; 2) учитывая это увеличение.
- B = 0,1 Тл возбуждено электрическое поле напряженностью

- E = 100 кВ/м. Перпендикулярно обоим полям движется, не отклоняясь от прямолинейной траектории, заряженная частица. Вычислить скорость v частицы.
- 15.45. Протон, пройдя ускоряющую разность потенциалов U = 800 В, влетает в однородные, скрещенные под прямым углом магнитное (B = 50 мТл) и электрическое поля. Определить напряженность E электрического поля, если протон движется в скрещенных полях прямолинейно.
- 15.46. Протон влетает со скоростью v = 100 км/с в область пространства, где имеются электрическое (E = 210 B/м) и магнитное (B = 3,3 мТл) поля. Напряженность E электрического поля и магнитная индукция B магнитного поля совпадают по направлению. Определить ускорение протона для начального момента движения в поле, если направление вектора его скорости V: 1) совпадает с общим направлением векторов E и B; 2) перпендикулярно этому направлению.
- 15.47. Пучок протонов проходит, не отклоняясь, через область, в которой созданы однородные поперечные взаимно перпендикулярные электрическое и магнитное поля с E=120 кВ/м и B=50 мТл. Затем пучок попадает на заземленную мишень. Найти силу, с которой пучок действует на мишень, если ток в пучке I=0,80 мА.

§16. Электромагнитная индукция. Энергия магнитного поля

Основные формулы

 $\mathit{Maгниmный}$ nomok Φ через плоский контур площадью S равен:

а) в случае однородного поля

$$\Phi = BS \cos \alpha$$
,

где α — угол между вектором нормали \vec{n} к плоскости контура и вектором магнитной индукции \vec{B} ;

б) в случае неоднородного поля

$$\Phi = \int_{S} B_n dS ,$$

где интегрирование ведется по всей поверхности S.

Потокосцепление, то есть полный магнитный поток, сцепленный со всеми витками контура, равно

$$\Psi = N\Phi$$
,

где N — число витков контура, Φ — магнитный поток сквозь один виток.

Работа по перемещению замкнутого контура с током в постоянном магнитном поле равна

$$A = I\Delta\Phi$$
,

где I — сила тока в контуре; $\Delta \Phi$ — изменение магнитного потока, пронизывающего поверхность, ограничивающую контур.

Основной закон электромагнитной индукции имеет вид

$$\varepsilon_i = -\frac{d\Psi}{dt}$$
.

Частные случаи применения основного закона электромагнитной индукции:

а) разность потенциалов U на концах проводника длиной l, движущегося со скоростью V в однородном магнитном поле с индукцией B, равна

$$U = BlV \sin \alpha$$
,

где α — угол между направлениями векторов скорости и индукции магнитного поля;

б) электродвижущая сила индукции, возникающая в рамке, равномерно вращающейся в однородном магнитном поле, равна

$$\varepsilon_i = NBS\omega \sin \omega t$$
,

где N — число витков в рамке; B — индукция поля; S — площадь одного витка; ω — угловая скорость вращения рамки; t — время.

Заряд, протекающий по замкнутому контуру при изменении потокосцепления $\Delta \psi$, равен

$$q = \frac{\Delta \Psi}{R}$$
,

где R — сопротивление контура.

Индуктивность контура равна

$$L = \frac{\Psi}{I}$$
,

где I — сила тока в контуре ; Ψ — потокосцепление самоиндукции.

Электродвижущая сила самоиндукции, возникающая в замкнутом контуре при изменении силы тока в нем, определяется по формуле

$$\varepsilon_s = -L \frac{dI}{dt} .$$

Индуктивность соленоида равна

$$L = \mu \mu_0 n^2 V ,$$

где n — число витков соленоида на единице его длины; V — объём соленоида; μ — магнитная проницаемость среды внутри соленоида, которую можно определить из соотношения $\mu = \frac{B}{\mu_0 H}$.

Мгновенное значение силы тока в цепи, обладающей сопротивлением R и индуктивностью L, равно:

а) после замыкания цепи

$$I = \frac{\varepsilon}{R} (1 - e^{-(R/L)t}),$$

где ε – электродвижущая сила источника;

б) после размыкания цепи

$$I=I_0e^{-(R/L)t},$$

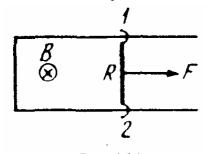
где $I_{\scriptscriptstyle 0}$ — начальное значение силы тока в цепи.

Энергия магнитного поля, создаваемого током I в замкнутом контуре с индуктивностью L, определяется по формуле

$$W_m = \frac{LI^2}{2}.$$

Объёмная плотность энергии магнитного поля равна

$$\omega = \frac{BH}{2} = \frac{\mu \mu_0 H^2}{2} = \frac{B^2}{2\mu \mu_0}.$$


Задачи

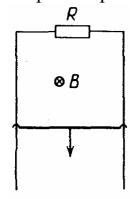
- 16.1. Найти магнитный поток Φ , создаваемый соленоидом сечением $S=10~{\rm cm}^2$, если он имеет $n=10~{\rm витков}$ на каждый сантиметр его длины при силе тока $I=20~{\rm A}$.
- 16.2. Плоский контур, площадь S которого равна 25 см², находится в однородном магнитном поле с индукцией B = 0.04 Тл. Определить магнитный поток Φ , пронизывающий контур, если плоскость его составляет угол $\beta = 30^{\circ}$ с линиями индукции.
 - 16.3. Соленоид длиной l = 1 м и сечением S = 16 см²

- содержит N=2000 витков. Вычислить потокосцепление Ψ при силе тока I в обмотке 10 А.
- 16.4. Плоская квадратная рамка со стороной a=20 см лежит в одной плоскости с бесконечно длинным прямым проводом, по которому течет ток I=100 А. Рамка расположена так, что ближайшая к проводу сторона параллельна ему и находится на расстоянии l=10 см от провода. Определить магнитный поток Φ , пронизывающий рамку.
- $16.5.~{
 m B}$ однородном магнитном поле с индукцией ${
 m B}=0.01~{
 m Tn}$ находится прямой провод длиной $l=8~{
 m cm}$, расположенный перпендикулярно линиям индукции. По проводу течет ток $I=2~{
 m A}.$ Под действием сил поля провод переместился на расстояние $S=5~{
 m cm}.$ Найти работу A сил поля.
- 16.6. Плоский контур, площадь S которого равна 300 см², находится в однородном магнитном поле с индукцией B=0,01 Тл. Плоскость контура перпендикулярна линиям индукции. В контуре поддерживается неизменный ток I=10 A, Определить работу A внешних сил по перемещению контура с током в область пространства, магнитное поле в которой отсутствует.
- 16.7. По проводу, согнутому в виде квадрата со стороной длиной $a=10\,$ см, течет ток $I=20\,$ А, сила которого поддерживается неизменной. Плоскость квадрата составляет угол $\alpha=20^0\,$ с линиями индукции однородного магнитного поля ($B=0,1\,$ Тл). Вычислить работу A, которую необходимо совершить для того, чтобы удалить провод за пределы поля.
- 16.8. По кольцу, сделанному из тонкого гибкого провода, радиусом R=10 см, течет ток I=100 А. Перпендикулярно плоскости кольца возбуждено магнитное поле с индукцией B=0,1 Тл по направлению, совпадающему с индукцией B_1 собственного магнитного поля кольца. Определить работу A внешних сил, которые, действуя на провод, деформировали его и придали ему форму квадрата. Сила тока при этом поддерживалась неизменной. Работой против упругих сил пренебречь.
- 16.9. Виток, по которому течет ток I=20 A, свободно установился в однородном магнитном поле с индукцией $B=0{,}016$ Тл. Диаметр d витка равен 10 см. Определить работу A, которую нужно совершить, чтобы повернуть виток на угол

 $\alpha = \pi/2$ относительно оси, совпадающей с диаметром.

- 16.10. Квадратная рамка со стороной a=10 см, по которой течет ток I=200 A, свободно установилась в однородном магнитном поле (B = 0,2 Тл). Определить работу, которую необходимо совершить при повороте рамки вокруг оси, лежащей в плоскости рамки и перпендикулярной линиям магнитной индукции, на угол $\alpha = 2\pi/3$.
- 16.11. Магнитный поток $\Phi = 40$ мВб пронизывает замкнутый контур. Определить среднее значение электродвижущей силы индукции $\langle \varepsilon_i \rangle$, возникающей в контуре, если магнитный поток изменится до нуля за время $\Delta t = 2$ мс.
- 16.12. Прямой провод длиной l=40 см движется в однородном магнитном поле со скоростью $\mathbf{v}=5$ м/с перпендикулярно линиям индукции. Разность потенциалов U между концами провода равна 0,6 В. Вычислить индукцию B магнитного поля.
- 16.13. В однородном магнитном поле с индукцией B=1 Тл находится прямой провод длиной l=20 см, концы которого замкнуты вне поля. Сопротивление R всей цепи равно 0,1 Ом. Найти силу F, которую нужно приложить к проводу, чтобы перемещать его перпендикулярно линиям индукции со скоростью V=2.5 м/с.
- 16.14. Прямой провод длиной l=10 см помещен в однородное магнитное поле с индукцией B=1 Тл. Концы его замкнуты гибким проводом, находящимся вне поля. Сопротивление R всей цепи равно 0,4 Ом. Какая мощность P потребуется для того, чтобы двигать провод перпендикулярно линиям индукции со скоростью v=20 м/с?

Puc. 16.1


16.15. По П-образному проводнику, расположенному в горизонтальной плоскости, может скользить без трения перемычка 12 (рис. 16.1). Она имеет длину l, массу m и сопротивление R. Вся система находится в вертикальном однородном магнитном поле с индукцией B. В момент

t=0 на перемычку стали действовать постоянной горизонтальной силой F, и перемычка начала перемещаться вправо. Найти

скорость перемычки как функцию времени. Магнитное поле индукционного тока и сопротивление П-образного проводника пренебрежимо малы.

16.16. К источнику тока с электродвижущей силой $\varepsilon = 0.5~\mathrm{B}$ и ничтожно малым внутренним сопротивлением присоединены два металлических стержня, расположенные горизонтально друг другу. Расстояние *l* между стержнями равно параллельно 20 см. Стержни находятся в однородном магнитном поле, направленном вертикально. Магнитная индукция $B=1,5\,$ Тл. По стержням под действием сил поля скользит со скоростью V = 1 м/cсопротивлением прямолинейный провод R 0.02Сопротивление стержней пренебрежимо мало. Определить: 1) электродвижущую силу индукции ε_i ; 2) силу F, действующую на провод со стороны поля; 3) силу тока I в цепи; 4) мощность P_I , расходуемую на движение провода; 5) мощность P_2 , расходуемую на нагревание провода; 6) мощность P_3 , отдаваемую в цепь источника тока.

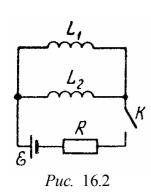
16.17. В однородном магнитном поле с индукцией B=0,4 Тл в плоскости, перпендикулярной линиям индукции поля, вращается стержень длиной l=10 см. Ось вращения проходит через один из концов стержня. Определить разность потенциалов U на концах стержня при частоте вращения n=16 с⁻¹.

гладким 16.18. По ДВУМ вертикальным проводам, отстоящим друг от друга на расстояние действием скользит ПОД силы проводник-перемычка массы т. Вверху провода замкнуты на сопротивление R (рис. 16.2). Система находится В однородном магнитном индукцией B, перпендикулярном плоскости, которой перемещается перемычка. Пренебрегая сопротивлением проводов, перемычки

 $puc.\ 16.2$ сопротивлением проводов, перемычки и скользящих контактов, а также магнитным полем индукционного тока, найти установившуюся скорость перемычки.

16.19. Система отличается от рассмотренной в предыдущей задаче (см. рис. 16.2) лишь тем, что вместо сопротивления R к концам вертикальных проводов подключен конденсатор емкости

- С. Найти ускорение перемычки.
- 16.20. Металлический диск радиуса R=25 см вращают с постоянной угловой скоростью $\omega=130$ рад/с вокруг его оси. Найти разность потенциалов между центром и ободом диска, если: а) внешнего магнитного поля нет; б) имеется перпендикулярное диску внешнее однородное магнитное поле с индукцией B=5.0 мТл.
- 16.21. Непроводящее тонкое кольцо массы m, имеющее заряд q, может свободно вращаться вокруг своей оси. В момент t=0 включили однородное магнитное поле, перпендикулярное плоскости кольца. Индукция поля начала нарастать по некоторому закону B(t). Найти угловую скорость ω кольца как функцию B.
- 16.22. Рамка площадью $S = 200 \text{ см}^2$ равномерно вращается с частотой $n = 10 \text{ c}^{-1}$ относительно оси, лежащей в плоскости рамки и перпендикулярной линиям индукции однородного магнитного поля (B = 0.2 Тл). Каково среднее значение электродвижущей силы индукции $\langle \varepsilon_i \rangle$ за время, в течение которого магнитный поток, пронизывающий рамку, изменится от нуля до максимального значения?
- 16.23. В однородном магнитном поле с индукцией B=0,35 Тл равномерно с частотой n=480 с⁻¹ вращается рамка, содержащая N=500 витков площадью S=50 см². Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Определить максимальную электродвижущую силу индукции ε_{max} , возникающую в рамке.
- 16.24. Рамка площадью $S=100~{\rm cm}^2$ содержит $N=10^3~{\rm витков}$ провода сопротивлением $R_I=12~{\rm Om}$. К концам обмотки подключено внешнее сопротивление $R_2=20~{\rm Om}$. Рамка равномерно вращается в однородном магнитном поле $(B=0,1~{\rm Tn})$ с частотой $n=8~{\rm c}^{-1}$. Определить максимальную мощность P_{max} переменного тока в цепи.
- 16.25. Магнитная индукция B поля между полюсами двухполюсного генератора равна 0,8 Тл. Ротор имеет N=100 витков площадью S=400 см². Определить частоту n вращения якоря, если максимальное значение электродвижущей силы индукции $\varepsilon_{\text{max}}=200$ В.


- 16.26. Проволочный виток радиусом r=4 см, имеющий сопротивление R=0.01 Ом, находится в однородном магнитном поле с индукцией B=0.04 Тл. Плоскость витка составляет угол $\alpha=30^{0}$ с линиями индукции поля. Какое количество электричества q протечет по витку, если магнитное поле исчезнет?
- 16.27. Проволочное кольцо радиусом r=10 см лежит на столе. Какое количество электричества q протечет по кольцу, если его повернуть с одной стороны на другую? Сопротивление R кольца равно 1 Ом. Вертикальная составляющая индукции B магнитного поля Земли равна 50 мкТл.
- 16.28. В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. По цепи протекло количество электричества q=10 мкКл. Определить магнитный поток Φ , пересеченный кольцом, если сопротивление R цепи гальванометра равно 30 Ом.
- 16.29. Между полюсами электромагнита помещена катушка, соединенная с баллистическим гальванометром. Ось катушки параллельна линиям индукции. Катушка сопротивлением $R_1=4$ Ом имеет N=15 витков площадью S=2 см 3 . Сопротивление R_2 гальванометра равно 46 Ом. Когда ток в обмотке электромагнита выключили, по цепи гальванометра протекло количество электричества q=90 мкКл. Вычислить магнитную индукцию B поля электромагнита.
- 16.30. Рамка из провода сопротивлением R=0.01 Ом равномерно вращается в однородном магнитном поле с индукцией B=0.05 Тл. Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Площадь S рамки равна 100 см^2 . Найти, какое количество электричества q протечет через рамку за время поворота ее на угол $\alpha=30^\circ$ в следующих трех случаях:1) от $\alpha_0=0$ до $\alpha_1=30^\circ$; 2) от α_1 до $\alpha_2=60^\circ$; 3) от $\alpha_3=90^\circ$.
- 16.31. Тонкий медный провод массой m=1 г согнут в виде квадрата, и концы его замкнуты. Квадрат помещен в однородное магнитное поле (B=0,1 Тл) так, что плоскость его перпендикулярна линиям индукции поля. Определить количество электричества q, которое протечет по проводнику, если квадрат, потянув за противоположные вершины, вытянуть в линию.
 - 16.32. По длинному прямому проводу течет ток. Вблизи

- провода расположена квадратная рамка из тонкого провода сопротивлением R=0.02 Ом. Провод лежит в плоскости рамки и параллелен двум ее сторонам, расстояния до которых от провода соответственно равны $a_1=10$ см, $a_2=20$ см. Найти силу тока I в проводе, если при его включении через рамку протекло количество электричества q=693 мкКл.
- 16.33. По катушке индуктивностью L=0.03 мГн течет ток I=0.6 А. При размыкании цепи сила тока изменяется практически до нуля за время $\Delta t=120$ мкс. Определить среднюю электродвижущую силу самоиндукции $\langle \varepsilon_{is} \rangle$, возникающую в контуре.
- 16.34. С помощью реостата равномерно увеличивают силу тока в катушке на $\Delta I = 0,1$ А в 1 с. Индуктивность L катушки равна 0,01 Гн. Найти среднее значение электродвижущей силы самоиндукции $\langle \varepsilon_{is} \rangle$.
- 16.35. Индуктивность L катушки равна 2 мГн. Ток частотой v=50 Гц, протекающий по катушке, изменяется по синусоидальному закону. Определить среднюю электродвижущую силу самоиндукции $\langle \varepsilon_{is} \rangle$, возникающую за интервал времени Δt , в течение которого ток в катушке изменяется от минимального до максимального значения. Амплитудное значение силы тока $I_0 = 10$ А.
- 16.36. Катушка, намотанная на немагнитный цилиндрический каркас, имеет $N_1 = 750$ витков и индуктивность $L_1 = 25$ мГн. Чтобы увеличить индуктивность катушки до $L_2 = 36$ мГн, обмотку с катушки сняли и заменили обмоткой из более тонкой проволоки с таким расчетом, чтобы длина катушки осталась прежней. Определить число N_2 витков катушки после перемотки.
- 16.37. Соленоид индуктивностью L=4 мГн содержит N=600 витков. Определить магнитный поток Φ , если сила тока I, протекающего по обмотке, равна 12 A.
- 16.38. Индуктивность L катушки без сердечника равна 0,02 Гн. Какое потокосцепление Ψ создается, когда по обмотке течет ток I=5 A?
- 16.39. Длинный прямой соленоид, намотанный на немагнитный каркас, имеет N=1000 витков и индуктивность

L=3 мГн. Какой магнитный поток Φ и какое потокосцепление ψ создает соленоид при силе тока I=1 А?

16.40. В цепи шел ток $I_0 = 50$ А. Источник тока можно отключить от цепи, не разрывая ее. Определить силу тока в этой цепи через t = 0.01 с после отключения ее от источника тока. Сопротивление R цепи равно 20 Ом, ее индуктивность L = 0.1 Гн.

16.41. Источник тока замкнули на катушку с сопротивлением R=10 Ом и индуктивностью L=1 Гн. Через сколько времени сила тока в цепи достигнет 0.9 предельного значения?

(рис. 2.104) 16.42. B схеме известны ϵ источника, сопротивление R и ЭДС индуктивности катушек L_2 и L_2 . Внутреннее сопротивление источника и сопротивления катушек пренебрежимо Найти малы. установившиеся токи катушках после замыкания ключа К.

приложения

1. Основные физические п				
Нормальное ускорение свободного падения	$g = 9.81 \text{ m/c}^2$			
Гравитационная постоянная	$G = 6.67 \cdot 10^{-11} \text{ м}^3/(\text{кг} \cdot \text{c}^2)$			
Постоянная Авогадро	$N_A = 6,02 \cdot 10^{23} \text{ моль}^{-1}$			
Молярная газовая постоянная	R = 8,31 Дж/(К⋅моль)			
Молярный объем идеального газа при				
нормальных условиях	$V_m = 22,4 \cdot 10^{-3} \text{ м}^3/\text{моль}$			
Постоянная Большмана	$k = 1.38 \cdot 10^{-23} $			
Постоянная Фарадея	$F = 9,65 \cdot 10^4 \text{ Кл/моль}$			
Элементарный заряд	$e = 1.60 \cdot 10^{-19}$ Кл			
Масса электрона	$m_e = 9,11\cdot10^{-31}$ кг			
Удельный заряд электрона	$e/m = 1,76 \cdot 10^{11} \text{ Кл/кг}$			
Скорость света в вакууме	$c = 3.00 \cdot 10^8 \text{ m/c}$			
Постоянная Стефана-Больцмана	$\sigma = 5.67 \cdot 10^{-8} \text{BT/(M}^2 \cdot \text{K}^4)$			
Постоянная закона смещения Вина	$b = 2,90.10^{-3} \text{ M} \cdot \text{K}$			
Постоянцая Плацка	$h = 6.63 \cdot 10^{-34} \text{ Two}c$			
	$\hbar = 1,05 \cdot 10^{-34} \text{Дж} \cdot \text{c}$			
Постоянная Ридберга	$R = 3,29 \cdot 10^{15} c^{-1}$			
Радиус первой боровской орбиты	$a = 5,29 \cdot 10^{-11}$ м			
Комптоновская длина волны электрона	$\lambda_c = 2.43 \cdot 10^{-12} \text{ M}$			
Магнетон Бора				
Энергия ионизации атома водорода				
Атомная единица массы	$1 \text{ a.e. M} = 1.66 \cdot 10^{-27} \text{ Kg}$			
Ядерный магнетон	$\mu_{xx} = 5.05 \cdot 10^{-27} \text{ Mg/T}_{\text{II}}$			
Sign in the roll	μ_N 2,02 10 μ_N			
2. Диэлектрическая прониц	аемость Е			
Вода				
Масло (трансформаторное)				
Парафин	*			
Слюда				
Стекло.				
Фарфор				
Эбонит	3,0			
3. Показатели преломления п				
Алмаз	*			
Вода	•			
Масло коричное				
Сероуглерод				
Стекло	1,50			

4. Плотность ρ твердых тел и жидкостей (Γ/cm^3)

Твердые тела

Алюминий	2.70
Висмут	
Вольфрам	
Железо (чугун, сталь)	
Золото	
Каменная соль	
Латунь	
Марганец	
Медь	
Никель	
Платина	
Свинец	11,3
Серебро	
Уран	
Жидкости (при 15°C)	
Вода (дистиллированная при 4 °C)	1,00
Глицерин	1,26
Керосин	
Масло (оливковое, смазочное)	0,9
Масло касторовое	0,96
Ртуть	
Сероуглерод	1,26
Спирт	8

5. Удельное сопротивление $\ \rho$ и температурный коэффициент $\ \alpha$ проводников

Вещество	ρ при 20 °C, нОм·м	α , °C ⁻¹
Железо	98	6,2·10 ⁻³
Медь	17	4,2·10 ⁻³
Алюминий	26	3,6·10 ⁻³
Графит	$3,9\cdot10^3$	- 0,8·10 ⁻³

6. Работа выхода электронов из металла

Металл	А, эВ	A·10 ⁻¹⁹ , Дж
Калий	2,2	3,5
Литий	2,3	3,7
Натрий	2,5	4,0
Платина	6,3	10,1
Серебро	4,7	7,5
Цинк	4,0	6,4

Задачи по физике.

Учебное пособие к практическим занятиям и выполнению индивидуальных домашних заданий по физике

Составители: Анатолий Вячеславович Благин, Тигран Амлетович Аскарян, Александр Иванович Попов.

Формат 60×84 1/16. Печать оперативная. Бумага тип. №2. Усл. п. л. 4. Тираж 50 экз. С 64.

Южно-Российский государственный технический университет (Новочеркасский политехнический институт).

Адрес ун - та: 346428, Новочеркасск, ул. Просвещения, 132.

Типография АО "Информбюро".

Адрес типографии:

347340, Ростовская обл., г. Волгодонск, Ленина, 73/94.