ФГБОУ ВПО "Воронежский государственный технический университет"

Кафедра физики

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к решению задач и выполнению контрольной работы № 2 по физике для студентов всех технических направлений подготовки заочной сокращённой формы обучения

Составители: канд. физ.-мат. наук А.Г. Москаленко, канд. техн. наук М.Н. Гаршина, канд. физ.-мат. наук И.А. Сафонов, канд. физ.-мат. наук Т.Л.Тураева

УДК 531 (07)

Методические указания к решению задач и выполнению контрольной работы № 2 по физике для студентов всех технических направлений подготовки заочной сокращённой формы обучения/ ФГБОУ ВПО "Воронежский государственный технический университет"; сост. А.Г. Москаленко, М.Н. Гаршина, И.А. Сафонов, Т.Л. Тураева. Воронеж, 2012. 62 с.

Методические указания содержат основные формулы, примеры решения задач, таблицы вариантов контрольных заданий по разделам: электростатика, постоянный электрический ток, электромагнетизм, колебания и волны.

Предназначены для студентов второго курса.

Методические указания подготовлены в электронном виде в текстовом редакторе MS Word 2003 и содержатся в файле Физика 3O. КР №2.docx.

Табл. 4. Ил. 33. Библиогр.: 8 назв.

Рецензент д-р физ.-мат. наук, проф. Е.В. Шведов

Ответственный за выпуск зав. кафедрой канд. физ.-мат. наук, проф. Т.Л. Тураева

© ФГБОУ ВПО "Воронежский государственный технический университет", 2012

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ И ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ ЗАОЧНОЙ СОКРАЩЁННОЙ ФОРМЫ ОБУЧЕНИЯ

1. Контрольные работы необходимо выполнять чернилами в школьной тетради, на обложке которой привести сведения по следующему образцу:

Контрольная работа №2 по физике студента ФВЗО, группы РК-031 Шифр251021 Иванова И.И.

- 2. Номера задач, которые студент должен включить в свою контрольную работу, определяются по таблице вариантов в соответствии с последним номером зачётной книжки (шифром).
- 3. Условия задач в контрольной работе надо переписывать полностью без сокращений.
- 4. Решение задач следует сопровождать краткими, но исчерпывающими пояснениями. В тех случаях, когда это возможно, даётся чертёж.
- 5. Решать задачу надо в общем виде, т.е. выразить искомую величину в буквенных обозначениях величин, заданных в условиях задачи.
- 6. Все вычисления следует проводить в единицах СИ с соблюдением правил приближённых вычислений.
- 7. Если контрольная работа при рецензировании не зачтена, студент обязан представить её на повторную рецензию, включив в неё те задачи, решение которых оказалось неверным.

КОНТРОЛЬНАЯ РАБОТА № 2

1. ЭЛЕКТРОСТАТИКА

1.1. Основные законы и формулы

1. Напряженность и потенциал поля точечного заряда

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^3} \vec{r}; \, \varphi = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}.$$

2. Принцип суперпозиции электростатических полей

$$\vec{E} = \sum_{i=1}^{n} \vec{E}_i$$
; $\varphi = \sum_{i=1}^{n} \varphi_i$

3. Линейная, поверхностная и объемная плотность зарядов

$$\tau = \frac{dq}{dl}$$
; $\sigma = \frac{dq}{ds}$; $\rho = \frac{dq}{dV}$.

4. Теорема Гаусса для электростатического поля в вакууме

$$\Phi_{E} = \iint E_{n} dS = \frac{1}{\varepsilon_{0}} \sum_{i=1}^{N} q_{i} = \frac{1}{\varepsilon_{0}} \int_{V} \rho dV,$$

где $\sum q_i$ – алгебраическая сумма зарядов, охватываемых поверхностью.

5. Связь между напряженностью и потенциалом электростатического поля

$$\vec{E} = -\vec{\nabla}\varphi = -\left(\frac{\partial\varphi}{\partial x}\vec{i} + \frac{\partial\varphi}{\partial y}\vec{j} + \frac{\partial\varphi}{\partial z}\vec{k}\right); \quad E_l = -\frac{\partial\varphi}{\partial l}.$$

6. Циркуляция вектора напряженности

$$\iint E_l dl = 0.$$

7. Работа сил электростатического поля

$$A_{12} = q ig(arphi_1 - arphi_2 ig)$$
 или $A_{12} = q \int\limits_2^1 E_l dl$.

8. Поляризованность диэлектрика

$$\vec{P} = \sum_{i=1}^{n} \vec{P}_i / \Delta V,$$

где \vec{P}_i – дипольный момент i-ой молекулы; ΔV – объем диэлектрика.

Связь между поляризованностью диэлектрика и напряженностью электростатического поля

$$\vec{P} = \chi \varepsilon_0 \vec{E} ,$$

где χ – диэлектрическая восприимчивость вещества.

9. Вектор электрического смещения

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}, \quad unu \quad \vec{D} = \varepsilon \varepsilon_0 \vec{E}$$

где $\varepsilon = 1 + \chi$ - диэлектрическая проницаемость вещества.

10. Теорема Гаусса для электростатического поля в диэлектрике

$$\Phi_D = \iint_{S} D_n dS = \sum_{i=1}^n q_i,$$

где $\sum_{i=1}^{n} q_i$ – алгебраическая сумма сторонних электрических

зарядов, заключенных внутри замкнутой поверхности.

11. Условия на границе раздела двух диэлектриков

$$D_{2n} = D_{1n} \; ; \quad E_{2\tau} = E_{1\tau} \; .$$

12. Поле в однородном диэлектрике

$$\vec{E} = \vec{E}_0 / \varepsilon$$
; $\vec{D} = \vec{D}_0$,

где \vec{E}_0 и \vec{D}_0 - напряженность и электрическое смещение внешнего поля.

13. Напряженность электрического поля у поверхности проводника

$$E = \sigma / \varepsilon_0 \varepsilon,$$

где σ – поверхностная плотность зарядов.

15. Ёмкость плоского конденсатора

$$C = \varepsilon_0 \varepsilon S / d ,$$

где S – площадь каждой пластины; d – расстояние между пластинами.

16. Емкость цилиндрического конденсатора

$$C = 2\pi \varepsilon_0 \varepsilon \ell / \ln(r_2 / r_1),$$

где ℓ - длина обкладок конденсатора; r_1 и r_2 - радиусы коаксиальных цилиндров .

17. Емкость сферического конденсатора

$$C = 4\pi\varepsilon_0 \varepsilon r_1 r_2 / (r_2 - r_1),$$

где r_1 и r_2 - радиусы концентрических сфер.

18. Емкость системы конденсаторов при последовательном и параллельном соединении

$$\frac{1}{C} = \sum_{i=1}^{n} \frac{1}{C_i} \; ; \quad C = \sum_{i=1}^{n} C_i \; .$$

19. Энергия взаимодействия системы точечных зарядов

$$W = \frac{1}{2} \sum q_i \varphi_i ,$$

где φ_i - потенциал, создаваемый в той точке, где находится заряд q_i , всеми зарядами, кроме i – го.

20. Энергия системы с непрерывно распределенным $W = \frac{1}{2} \int \varphi \rho d V \; .$

21. Энергия заряженного конденсатора $W = CU^2/2 = qU/2 = q^2/2C.$

22. Объемная плотность энергии электростатического поля

$$\omega = \frac{\varepsilon_0 \varepsilon E^2}{2} \, .$$

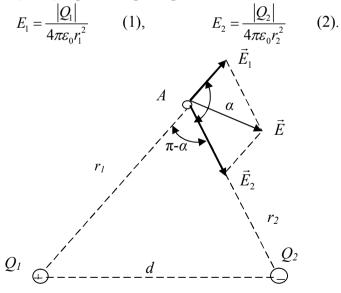
1.2. Примеры решения задач

Пример 1. Два точечных электрических заряда $Q_1 = 1 \mu K_{\Pi}$ и $Q_2 = -2 \mu K_{\Pi}$ находятся в воздухе на расстоянии d = 10 см друг от друга. Определить напряжённость E и потенциал φ поля, создаваемого этими зарядами в точке A, удалённой от заряда Q_1 на расстоянии $r_1 = 9$ см и от заряда Q_2 на $r_2 = 7$ см.

Решение

Согласно принципу суперпозиции электрических полей, каждый заряд создаёт поле независимо от присутствия в пространстве других зарядов. Напряжённость \vec{E} электростатического поля в искомой точке может быть найдена как геометрическая сумма напряжённостей \vec{E}_1 и \vec{E}_2 полей, создаваемых каждым зарядом в отдельности: $\vec{E} = \vec{E}_1 + \vec{E}_2$.

Напряжённости электростатического поля, создаваемого в воздухе ($\varepsilon=1$) зарядами Q_1 и Q_2 ,



Вектор \vec{E}_1 направлен по силовой линии от заряда Q_1 , так как этот заряд положителен, вектор \vec{E}_2 направлен также по силовой линии, но к заряду Q_2 , так как этот заряд отрицателен.

Модуль вектора \vec{E} найдём по теореме косинусов:

$$E = \sqrt{E_1^2 + E_2^2 + 2E_1 E_2 \cos \alpha} , \qquad (3)$$

где α — угол между векторами \vec{E}_1 и \vec{E}_2 , который может быть найден из треугольника со сторонами r_1 , r_2 и d

$$\cos\alpha = \frac{d^2 - r_1^2 - r_2^2}{2r_1r_2}.$$

Подставляя выражение E_{1} из (1) и E_{2} из (2) в (3), получим

$$E = \frac{1}{4\pi\varepsilon_0} \sqrt{\frac{Q_1^2}{r_1^4} + \frac{Q_2^2}{r_2^4} + 2\frac{|Q_1||Q_2|}{r_1^2 r_2^2} \cos\alpha} . \tag{4}$$

В соответствии с принципом суперпозиции электрических полей потенциал φ результирующего поля, равен алгебраической сумме потенциалов

$$\varphi = \varphi_1 + \varphi_2 \,. \tag{5}$$

Потенциал электрического поля, создаваемого в вакууме точечным зарядом Q на расстоянии r от него, выражается формулой

$$\varphi = \frac{Q}{4\pi\varepsilon_0 r}.$$
 (6)

Согласно формулам (5) и (6) получим $\varphi = \frac{Q_1}{4\pi\varepsilon_0 r_1} + \frac{Q_2}{4\pi\varepsilon_0 r_2}$, или

$$\varphi = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q_1}{r_1} + \frac{Q_2}{r_2} \right).$$

Произведём вычисления:

$$E = 3.58 \ B/M$$
, $\varphi = -157 \ B$.

Пример 2. Электрическое поле создано двумя параллельными бесконечными заряженными плоскостями с поверхностными плотностями заряда σ_1 =0,4 $m\kappa K n/m^2$ и σ_2 =0,1 $m\kappa K n/m^2$. Определить напряжённость электрического поля, созданного этими заряженными плоскостями.

Решение

Согласно принципа суперпозиции электростатических полей,

$$\vec{E} = \vec{E}_1 + \vec{E}_2,$$

где, $|\vec{E}_1| = \sigma_1/2\varepsilon_0$ u $|\vec{E}_2| = \sigma_2/2\varepsilon_0$ - напряженности электростатических полей, создаваемых первой и второй плоскостями соответственно.

Плоскости делят всё пространство на три области: I, II, III. Как видно из рисунка, в первой и областях электрические третьей силовые обоих полей линии направлены в одну сторону и следовательно, напряжённости суммарных полей $E^{(I)}$ и $E^{(III)}$ в первой и третьей областях равны между собой, противоположно направлены равны И сумме напряжённостей полей, создаваемых первой и второй плоскостями:

$$I$$
 σ_{1}
 σ_{2}
 \vec{E}_{1}
 \vec{E}_{2}

$$E^{(I)}=E^{(III)}=E_1+E_2$$
 или $E^{(I)}=E^{(III)}=rac{(\sigma_1+\sigma_2)}{2arepsilon_0}$.

Во второй области (между плоскостями) электрические силовые линии направлены в противоположные стороны и, следовательно, напряжённость поля $E^{(II)}$ равна разности напряжённостей полей, создаваемых первой и второй плоскостями: $E^{(II)} = |E_1 - E_2|$, или

$$E^{(II)} = \frac{(\sigma_1 - \sigma_2)}{2\varepsilon_0}.$$

Подставив данные и произведя вычисления, получим

$$E^{(I)} = E^{(III)} = 28,3\kappa B/M$$
, $E^{(II)} = 17\kappa B/M$.

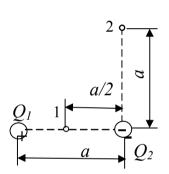
Пример 3. Электрическое поле создаётся двумя зарядами $Q_1 = 4$ $m\kappa K\pi$ и $Q_2 = -2$ $m\kappa K\pi$, находящиеся на расстоянии a=0,1 m друг от друга. Определить работу A_{12} сил поля по перемещению заряда Q = 50 m из точки 1 в точку 2 (см. рис.).

Решение

Для определения работы A_{12} сил поля воспользуемся соотношением

$$A_{12} = Q(\varphi_1 - \varphi_2).$$

Применяя принцип суперпозиции электрических полей, определим потенциалы φ_1 и φ_2 точек 1 и 2 поля:



$$\varphi_{1} = \frac{Q_{1}}{4\pi\varepsilon\varepsilon_{0}a/2} + \frac{Q_{2}}{4\pi\varepsilon\varepsilon_{0}a/2} = \frac{2(Q_{1} + Q_{2})}{4\pi\varepsilon\varepsilon_{0}a};$$

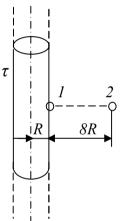
$$\varphi_{2} = \frac{Q_{1}}{4\pi\varepsilon\varepsilon_{0}a\sqrt{2}} + \frac{Q_{2}}{4\pi\varepsilon\varepsilon_{0}a} = \frac{Q_{1}/\sqrt{2} + Q_{2}}{4\pi\varepsilon\varepsilon_{0}a}.$$
 Тогда
$$A_{12} = \frac{Q}{4\pi\varepsilon\varepsilon_{0}a} \Big[(2(Q_{1} + Q_{2}) - (Q_{1}/\sqrt{2} + Q_{2})) \Big],$$
 Или
$$A_{12} = \frac{Q}{4\pi\varepsilon\varepsilon_{0}a} \Big[Q_{1}(2 - 1/\sqrt{2}) + Q_{2} \Big].$$

После подстановки численных значений, получим $A_{12} = 14,3 M \mathcal{D} \mathcal{H}$.

Пример 4. С поверхности бесконечного равномерно заряженного ($\tau = 50 \ nKn/m$) прямого цилиндра вылетает α – частица ($v_0 = 0$). Определить кинетическую энергию T_2 α - частицы в точке 2 на расстоянии 8R от поверхности цилиндра.

Решение

Так как силы электростатического поля являются консервативными, то для определения кинетической энергии α - частицы в точке 2 воспользуемся законом сохранения энергии, записанном в виде $E_1 = E_2$, где E_1 и E_2 полные энергии α - частицы в точках 1 и 2.



Так как $E_I = T_I + U_I$ и $E_2 = T_2 + U_2$ (T_I и T_2 — кинетические энергии α -частицы; а U_I и U_2 — потенциальные), то, учитывая, что $T_I = 0$ ($v_I = 0$), можно записать $U_I = T_2 + U_2$, откуда:

$$T_2 = U_1 - U_2 = Q(\varphi_1 - \varphi_2),$$
 (1) где Q — заряд α — частицы, φ_1 и φ_2 — потенциалы точек 1 и 2.

Для определения разности потенциалов воспользуемся соотношением между напряжённостью поля и

изменением потенциала: $\vec{E} = -grad\varphi$.

Для поля с осевой симметрией, каким является поле цилиндра, это соотношение можно записать в виде

$$E = -\frac{d\varphi}{dr}$$
, или $d\varphi = -Edr$.

Интегрируя это выражение, найдём разность потенциалов двух точек, отстоящих на расстояниях r_1 и r_2 от оси цилиндра:

$$\varphi_2 - \varphi_1 = -\int_{r_1}^{r_2} E dr \,. \tag{2}$$

Так как цилиндр бесконечный, то для вычисления напряжённости поля можно воспользоваться формулой напряжённости поля, создаваемого бесконечно длинным цилиндром: $E = \frac{\tau}{(2\pi\varepsilon_0 r)}$. Подставив выражение для E в уравнение (2), получим

$$\varphi_2 - \varphi_1 = -\frac{\tau}{2\pi\varepsilon_0} \int_{r_1}^{r_2} \frac{dr}{r} = -\frac{\tau}{2\pi\varepsilon_0} \ln \frac{r_2}{r_1},$$

или

$$\varphi_1 - \varphi_2 = \frac{\tau}{2\pi\varepsilon_0} \ln \frac{r_2}{r_1}.$$
 (3)

Тогда, подставив выражение (3) в уравнение (2), получим

$$T_2 = \frac{Q\tau}{2\pi\varepsilon_0} \ln \frac{r_2}{r_1}.$$

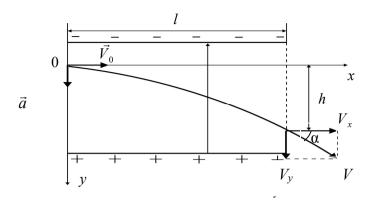
Проведём вычисления:

$$T_2 = 6.33 \cdot 10^{-16} \, \text{Дж} = 3.96 \cdot 10^3 \, \text{эВ}.$$

Пример 5. Электрон влетает в плоский горизонтальный конденсатор параллельно его пластинам со скоростью $\upsilon_0=10^7~\text{M/c}$. Напряженность поля в конденсаторе E=100B/cm, длина конденсатора l=5cm. Найти модуль и направление скорости электрона в момент вылета из конденсатора. На сколько отклонится электрон от первоначального направления?

Решение

Совместим начало координат с точкой, где находился электрон в момент его попадания в поле конденсатора. Движение электрона в конденсаторе можно представить как результат сложения двух прямолинейных движений: равномерного движения со скоростью $\upsilon_x = \upsilon_0$ в горизонтальном направлении и равноускоренного движения с некоторым ускорением \vec{a} вдоль оси OY.



Ускорение вдоль оси OV создает электростатическая сила (силой тяжести по сравнению с электростатической пренебрегаем)

$$a = \frac{eE}{m}$$
,

где e – заряд электрона, E – напряженность поля.

Тогда уравнения, определяющие зависимость координат x и y и проекций скорости v_x и v_y от времени, будут иметь вид:

$$x = V_0 t$$
, $y = \frac{at^2}{2} = \frac{eEt^2}{2m}$, (1)

$$V_x = V_0, \quad V_y = at = \frac{eEt}{m}.$$
 (2)

В момент вылета из конденсатора x=l , y=h, $t=t_1$. Тогда получим

$$t_1 = \frac{l}{\upsilon_0}; \quad V_{\nu} = \frac{eEl}{m\upsilon_0}; \quad h = \frac{eEl^2}{2m\upsilon_0^2}.$$
 (3)

В момент вылета модуль скорости $\vec{\upsilon}$ равен

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{v_0^2 + \left(\frac{eEl}{mv_0}\right)^2}.$$
 (4)

Направление вектора определяется углом α, для которого, как видно из рисунка,

$$tg\alpha = \frac{v_y}{v_0} = \frac{eEl}{mv_0^2}.$$
 (5)

Подставляя числовые значения, получим

$$h = 2.2 \cdot 10^{-2} \text{ m}, \quad V = 1.3 \cdot 10^7 \frac{\text{M}}{\text{c}}; \quad tg \alpha = 0.9; \quad \alpha \approx 42^{\circ}.$$

Пример 6. Конденсатор емкостью C_I =3 $m\kappa\Phi$ был заряжен до разности потенциалов U_I =40B. После отключения от источника тока конденсатор соединили параллельно с другим незаряженным конденсатором емкостью C_2 =5 $m\kappa\Phi$. Какая энергия W израсходуется на образование искры в момент присоединения второго конденсатора?

Решение

Энергия, израсходованная на образование искры,

$$W'=W_1-W_2, (1)$$

где W_1 — энергия, которой обладал первый конденсатор до присоединения к нему второго конденсатора; W_2 — энергия, которую имеет батарея, составленная из двух конденсаторов. Энергия заряженного конденсатора определяется по формуле

$$W = CU^2/2 . \tag{2}$$

где C – емкость конденсатора или батареи конденсаторов.

Выразив в формуле (1) энергии W_1 и W_2 по формуле (2) и приняв во внимание, что общая емкость параллельно соединенных конденсаторов равна сумме емкостей отдельных конденсаторов, получим

$$W' = \frac{C_1 U_1^2}{2} - \frac{\left(C_1 + C_2\right) U_2^2}{2} \tag{3}$$

где U_2 — разность потенциалов на зажимах батареи конденсаторов.

Учитывая, что заряд после присоединения второго конденсатора остался прежним, выразим разность потенциалов U_2 следующим образом:

$$U_2 = \frac{Q}{C_1 + C_2} = \frac{C_1 U_1}{C_1 + C_2}.$$
 (4)

Подставив выражение U_2 в (3), найдем

$$W' = \frac{C_1 U_1^2}{2} - \frac{(C_1 + C_2)C_1^2 U_1^2}{2(C_1 + C_2)^2},$$

или

$$W' = \frac{1}{2} \frac{C_1 C_2}{C_1 + C_2} U_1^2.$$

Произведем вычисления: $W' = 1,5 \, \text{мДж}$.

Пример 7. Плоский воздушный конденсатор с площадью пластин S равной $500 \ cm^2$, подключён к источнику тока, ЭДС которого равна $\xi = 300B$. Определить работу А внешних сил по раздвижению пластин от расстояния $d_1 = 1cm$ до $d_2 = 3 \ cm$ в двух случаях: 1) пластины перед раздвижением отключались от источника тока; 2) пластины в процессе раздвижения остаются подключёнными к нему.

Решение

1-й случай. Систему двух заряженных и отключённых от источника тока пластин можно рассматривать как изолированную систему, по отношению к которой справедлив закон сохранения энергии. В этом случае работа внешних сил равна изменению энергии системы:

$$A = \square W = W_2 - W_1, \tag{1}$$

где W_1 — энергия поля конденсатора в начальном состоянии (пластины находились на расстоянии d_1); W_2 — энергия поля конденсатора в конечном состоянии (пластины находились на расстоянии d_2).

Энергию в данном случае удобно выразить через заряд Q на пластинах, так как заряд пластин, отключённых от источника, при раздвижении не изменяется. Подставив в равенство (1) выражения $W_2 = Q^2 / 2C_2$ и $W_1 = Q^2 / 2C_1$, получим

$$A = \frac{Q^2}{2C_2} - \frac{Q^2}{2C_1}, \quad u\pi u \quad A = \frac{Q^2}{2} \left(\frac{1}{C_2} - \frac{1}{C_1}\right).$$

Выразив в этой формуле заряд через ЭДС источника тока и начальную электроёмкость C_1 ($Q = C_1 \xi$), найдём

$$A = \frac{C_1^2 \xi^2}{2} \left(\frac{1}{C_2} - \frac{1}{C_1} \right). \tag{2}$$

Подставляя в формулу (2) выражения электроёмкости ($C_1 = \varepsilon_0 S / d_1$ и $C_2 = \varepsilon_0 S / d_2$) плоского конденсатора, получим

$$A = \frac{\varepsilon_0^2 S^2 \xi^2}{2d_1^2} \left(\frac{d_2}{\varepsilon_0 S} - \frac{d_1}{\varepsilon_0 S} \right) = \frac{\varepsilon_0 S \xi^2}{2d_1^2} \left(d_2 - d_1 \right) . \tag{3}$$

Произведя вычисления по формуле (3), найдём

$$A = \frac{8,85 \cdot 10^{-12} \cdot 500 \cdot 10^{-4} \cdot 300^2}{2(1 \cdot 10^{-2})^2} (3-1)10^{-2} = 3,98 \text{мкДж}.$$

2-й случай. Пластины остаются подключёнными к источнику тока и система двух пластин уже не является изолированной. Воспользоваться законом сохранения энергии в этом случае нельзя.

При раздвижении пластин конденсатора разность их потенциалов не изменяется $(U=\xi)$, а ёмкость будет уменьшаться $(C=\varepsilon_0S/d)$. Будут уменьшаться также заряд на пластинах конденсатора (Q=CU) и напряжённость электрического поля (E=U/d). Так как величины E и Q, необходимые для вычисления работы, изменяются, то работу следует вычислять путём интегрирования.

$$dA = QE_1 dx, (4)$$

где E_I — напряжённость поля, создаваемого зарядом одной пластины.

Выразим напряжённость поля E_1 и заряд Q через расстояние x между пластинами:

$$E_1 = \frac{1}{2}E = \frac{\xi}{2x} \quad \text{и} \quad Q = C\xi \; , \; \text{ или} \quad Q = \varepsilon_0 \, \frac{S}{x} \, \xi \; .$$

Подставив эти выражения E_I и Q в равенство (4), получим

$$dA = \frac{1}{2} \varepsilon_0 \frac{S\xi^2}{x^2} dx.$$

Проинтегрировав это равенство в пределах от d_1 до d_2 , найдём выражение для искомой работы:

$$A = \frac{1}{2} \varepsilon_0 S \xi^2 \int_{d_1}^{d_2} \frac{dx}{x^2} = \frac{1}{2} \varepsilon_0 S \xi^2 \left(-\frac{1}{x} \right) \Big|_{d_1}^{d_2} = \frac{1}{2} \varepsilon_0 S \xi^2 \left(\frac{1}{d_1} - \frac{1}{d_2} \right).$$

После упрощения последняя формула имеет вид

$$A = \frac{1}{2} \varepsilon_0 \frac{S \xi^2 (d_2 - d_1)}{d_1 \cdot d_2}.$$

Сделав вычисления, получим A = 1,33 мкДж.

2. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

2.1. Основные законы и формулы

1. Сила и плотность электрического тока

$$I = \frac{dq}{dt}; j = \frac{dI}{dS_{\perp}} = en < u > ,$$

где < u >, — средняя скорость упорядоченного движения зарядов; n — концентрация зарядов.

Сопротивление и проводимость проводника

$$R = \int \rho \frac{dl}{S}; \quad \sigma = \frac{1}{\rho},$$

где ho - удельное сопротивление.

2. Обобщенный закон Ома в дифференциальной и интегральной формах

$$\vec{j} = \sigma(\vec{E}^* + \vec{E}); \quad I = (\varphi_1 - \varphi_2 + \xi) / R,$$

где \vec{E}^* - напряженность поля сторонних сил; $\varphi_I - \varphi_2$ - разность потенциалов на концах участка цепи; ξ - ЭДС источников тока, входящих в участок

3. Закон Джоуля–Ленца в дифференциальной интегральной формах

$$\omega = jE = \sigma E^2; \quad Q = \int RI^2 dt,$$

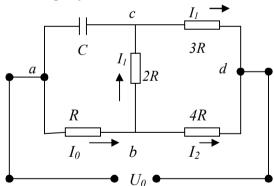
где ω - удельная тепловая мощность тока.

4. Правила Кирхгофа

$$\sum_{k=1}^{n} I_k = 0; \quad \sum_{k=1}^{n} I_k R_K = \sum_{k=1}^{n} \xi_k.$$

2.2. Примеры решения задач

Пример 1. Найдите заряд на конденсаторе в схеме, изображенной на рисунке.



Решение

Постоянный ток через конденсатор не проходит и в ветви, где он включен, тока нет. Поэтому ток I_0 , идущий от источника напряжения U_0 , пойдет по резистору R и разветвится в точке b на токи I_1 и I_2 , не заходя в ветвь ac. Заряд на конденсаторе

$$q = C \cdot U_{ac}, \tag{1}$$

где

$$U_{ac} = U_1 + U_2. (2)$$

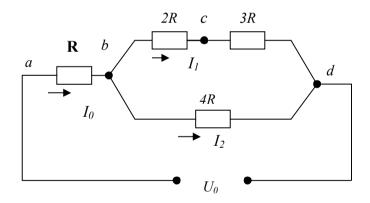
Здесь U_1 и U_2 - падения напряжений на резисторах сопротивлением R и 2R соответственно:

$$U_1 = I_0 \cdot R$$
 , $U_2 = I_1 \cdot 2R$.

Для их нахождения воспользуемся правилами расчета последовательной и параллельной цепей, упростив схему.

Применим закон Ома ко всей цепи

$$I_0 = \frac{U_0}{R_{o\delta uq}} = \frac{U_0}{R + \frac{(2R + 3R) \cdot 4R}{2R + 3R + 4R}} = \frac{9}{29} \cdot \frac{U_0}{R}.$$
 (3)



Для параллельных ветвей *bcd* и *bd* можно записать:

$$I_1(2R + 3R) = I_2 \cdot 4R$$
.

Отсюда $I_2 = 5/4 I_1$. В то же время

$$I_0=I_1+I_2=I_1+\frac{4}{5}I_1=\frac{9}{4}I_1, \qquad I_1=\frac{4}{9}I_0=\frac{4}{9}\cdot\frac{9}{29}\frac{U_{_0}}{R}=\frac{4}{29}\frac{U_{_0}}{R},$$

$$U_2=I_12R=\frac{4}{29}\cdot\frac{U_{_0}}{R}\cdot 2R=\frac{8}{29}\cdot U_{_0}, \qquad U_1=I_0R=\frac{9}{29}\cdot\frac{U_{_0}}{R}\cdot R=\frac{9}{29}U_{_0}.$$
 На основании (2)
$$Uac=\frac{2}{29}U_{_0}+\frac{8}{29}U_{_0}=\frac{17}{29}U_{_0}$$
 Подставляя это выражение в (1), получим $q=\frac{17}{29}CU_{_0}$.

Пример 2. По проводнику сопротивлением R=3 O_M течет ток, сила которого возрастает. Количество теплоты Q, выделившееся в проводнике за время $\tau=8c$, равно $200\, \ensuremath{\mathcal{L}}$ ж. Определить количество электричества q, протекшее за это время по проводнику. В момент времени, принятый за начальный, сила тока в проводнике равна нулю.

Решение

Из условия равномерности возрастания тока следует I=kt или dq/dt=kt, где k - коэффициент пропорциональности.

Отсюда
$$dq = k \cdot t \cdot dt$$
, а $q = k \int_{0}^{\tau} t \cdot dt = \frac{k \tau^{2}}{2}$.

Значение k найдем из выражения количества теплоты, выделившейся в проводнике:

$$dQ = I^2 R dt = k^2 R t^2 dt.$$

Интегрируя, получим $Q = k^2 R \int_0^{\tau} t^2 \cdot dt = \frac{1}{3} k^2 \tau^3 R$.

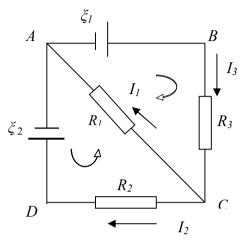
Отсюда
$$k = \sqrt{3Q/(\tau^3 R)}$$
.

После подстановки получим $q = \sqrt{3Q\tau/4R} = 20 \ K\pi$.

Пример 3. Найти силу тока во всех участках цепи, представленной на рисунке. ($\xi_1 = 2, 1$ B, $\xi_2 = 1, 9$ B, $R_1 = 45$ Oм, $R_2 = 10$ Oм u $R_3 = 10$ Oм). Внутренним сопротивлением элементов пренебречь.

Решение

Для расчета данной pазветвленной цепи применим законы Кирхгофа.



Для этого выберем направления токов в ветвях и покажем их стрелками на схеме. Узлы схемы обозначим точками А и С. Так как число узлов равно двум, то запишем одно уравнение по первому закону Кирхгофа, например, для узла С

$$I_3 = I_1 + I_2 . (1)$$

Запишем второй закон Кирхгофа для контуров ABC и ACD, выбрав направления обхода контуров.

$$I_3 R_3 + I_1 R_1 = \xi_1 \,, \tag{2}$$

$$I_1 R_1 - I_2 R_2 = \xi_2 \quad . \tag{3}$$

Вместо контура ACD или ABC можно было взять контур ABCD.

Имеем три уравнения с тремя неизвестными: I_1 , I_2 , I_3 . При решении этой системы уравнений целесообразно в уравнения подставить числовые коэффициенты. Тогда уравнения примут вид:

$$I_3 = I_1 + I_2$$

 $10I_3 + 45I_1 = 2.1$
 $45I_1 - 10I_2 = 1.9$

Решая эти уравнения, получим, I_1 =0,04A, I_2 = -0,01 A, I_3 = 0,03 A. Отрицательный знак у тока I_2 указывает на то, что направление этого тока было выбрано нами неверно. В действительности ток I_2 течет от $D \kappa C$.

3. ЭЛЕКТРОМАГНЕТИЗМ

3.1. Основные формулы

1. Закон Био – Савара – Лапласа

$$d\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{Idl \sin \alpha}{r^2},$$

где dB — магнитная индукция поля, создаваемого элементом контура dl, по которому течет ток I; \vec{r} — радиус-вектор, проведенный от dl к точке, в которой определяется магнитная индукция; $\mu_0 = 4\pi \cdot 10^{-7} \, \Gamma$ н/м — магнитная постоянная.

2. Принцип суперпозиции магнитных полей

$$\vec{B} = \sum_{i=1}^{n} \vec{B}_{i}$$

- 3. Магнитная индукция полей, создаваемых токами простейших конфигураций:
 - а) бесконечно длинным прямым проводником

$$B = \frac{\mu_0 I}{2\pi b},$$

где b – расстояние от оси проводника;

б) круговым током

$$B = \frac{\mu_0 I}{2R},$$

где R — радиус кругового тока;

в) прямолинейным отрезком проводника

$$B = \frac{\mu_0 I}{4\pi h} (\cos \alpha_1 - \cos \alpha_2),$$

где α_1 и α_2 – значения угла между током и радиус-вектором \vec{r} для крайних точек проводника;

г) бесконечно длинным соленоидом

$$B = \mu_0 nI$$
,

где n — число витков на единицу длины;

д) соленоидом конечной длины

$$B = \frac{\mu_0}{2} \ln(\cos \alpha_1 - \cos \alpha_2),$$

где α_1 и α_2 – углы, которые образует с осью соленоида радиусвектор, проведенный к крайним виткам соленоида.

4. Циркуляция вектора магнитной индукции

$$\iint B_l dl = \mu_0 \sum_{k=1}^n I_k \quad ,$$

где $\sum_{k=1}^{n} I_{k}$ — алгебраическая сумма токов, охватываемых контуром.

5. Закон Ампера

$$d\vec{F} = I[d\vec{l}; \vec{B}],$$

где $d\vec{F}$ - сила, действующая на помещенный в магнитное поле с индукцией \vec{B} элемент проводника длиной dl, по которому течет ток I

6. Момент сил Ампера, действующий на контур с током в магнитном поле с индукцией \vec{B} ,

$$\vec{M} = \iint [\vec{r}, d\vec{F}] = [\vec{P}_{\scriptscriptstyle m}, \vec{B}],$$

где $\vec{P}_m = \vec{n} I S$ — магнитный момент контура с током; \vec{n} — единичный вектор нормали к поверхности контура.

7. Сила, действующая на контур с током (магнитный диполь) в неоднородном магнитном поле,

$$\vec{F} = P_m \frac{\partial \vec{B}}{\partial n},$$

где $\partial \vec{B}/\partial n$ — производная вектора \vec{B} по направлению диполя.

8. Элементарная работа сил Ампера при перемещении контура с током

$$dA = Id\Phi$$
.

где $d\Phi = B_n \cdot dS$ – поток вектора магнитной индукции сквозь поверхность dS.

9. Формула Лоренца

$$\vec{F} = q\vec{E} + q[\vec{V}, \vec{B}],$$

где \vec{F} — результирующая сила, действующая на движущийся заряд q со стороны электрического и магнитного поля.

10. Закон электромагнитной индукции Фарадея

$$\varepsilon_i = -N \frac{d\Phi}{dt} = -\frac{d\Psi}{dt},$$

где ε_i — электродвижущая сила индукции; N — число витков; $\Psi = N\Phi$ — потокосцепление.

11. Магнитный поток, создаваемый током I в контуре с индуктивностью L,

$$\Phi = LI$$
.

12. ЭДС самоиндукции и взаимной индукции

$$\varepsilon_s = -L \frac{dI}{dt};$$
 $\varepsilon = -L_{12} \frac{dI}{dt},$

где L_{12} – взаимная индуктивность контуров.

13. Индуктивность соленоида

$$L = \mu_0 \, \mu \, n^2 \, V,$$

где n — число витков на единицу длины; V — объем соленоида.

14. Энергия магнитного поля

$$W = \frac{LI^2}{2}.$$

15. Объемная плотность энергии магнитного поля

$$\omega = \frac{B^2}{2\mu_0\mu} = \frac{\mu_0\mu H^2}{2} = \frac{BH}{2}.$$

3.2. Примеры решения задач

Пример 1. Рядом с длинным прямым проводом MN, по которому течёт ток силой I_1 , расположена квадратная рамка со стороной b, обтекаемая током силой I_2 . Рамка лежит в одной плоскости с проводником MN, так что её сторона, ближайшая к проводу, находится от него на расстоянии a. Определить магнитную силу, действующую на рамку.

Решение

Рамка с током находится в неоднородном магнитном поле, создаваемым бесконечно длинным проводником MN:

$$B = \frac{\mu_0 I_1}{2\pi r}.$$

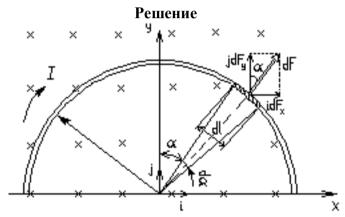
Каждая сторона рамки будет испытывать действие сил Ампера, направление которых показано на рисунке. Так как стороны AB и DC расположены одинаково относительно провода MN, действующие на них силы \vec{F}_3 и \vec{F}_4 численно равны и равнодействующая всех сил, приложенных к рамке, равна

$$F = F_1 - F_2,$$
 где $F_1 = I_2 B_1 b = \frac{\mu_0 I_1 I_2 b}{2\pi a},$ а $F_2 = I_2 B_2 b = \frac{\mu_0 I_1 I_2 b}{2\pi (a+b)}.$

Окончательно

$$F = \frac{\mu_0 I_1 I_2 b^2}{2\pi (a+b)a}.$$

Пример 2. Провод в виде тонкого полукольца радиусом R=10 cm находится в однородном магнитном поле (B=50 mTn). По проводу течёт ток I=10 A. Найти силу F, действующую на провод если плоскость полукольца перпендикулярна линиям магнитной индукции, а подводящие провода находятся вне поля.



Расположим провод в плоскости чертежа перпендикулярно линиям магнитной индукции и выделим на нём малый элемент dl с током. На этот элемент тока Idl будет действовать по закону Ампера сила $d\vec{F} = I \left[d\vec{l} \ , \vec{B} \right]$. Направление этой силы можно определить по правилу векторного произведения или по правилу левой руки.

Используя симметрию, выберем координатные оси так, как это изображено на рисунке. Силу dF представим в виде

$$d\vec{F} = \vec{i}dF_x + \vec{j}dF_y,$$

где i и j — единичные векторы (орты); dF_x и dF_y — проекции вектора dF на координатные оси O_x и O_y .

Силу F, действующую на весь провод, найдём интегрированием:

$$\vec{F} = \int_L d\vec{F} = \vec{i} \int_L dF_x + \vec{j} \int_L dF_y,$$

где символ L указывает на то, что интегрирование ведётся по всей длине провода L. Из соображений симметрии первый

интеграл равен нулю
$$\left(\int_L dF_x = 0\right)$$
. Тогда
$$\vec{F} = \vec{j} \int_L dF_y \quad . \tag{1}$$

Из рисунка следует, что $dF_y = dF cos \alpha$, где dF — модуль вектора $d\vec{F}$ ($dF = IBdl \sin(d\vec{lB})$). Так как вектор $d\vec{l}$ перпендикулярен

вектору \vec{B} $(\sin(d\vec{l}\vec{B})=1)$, то dF=IBdl. Выразив длину дуги dl через радиус R и угол α , получим

$$dF = IBRd\alpha$$
.

Тогда

$$dF_{v} = IBR\cos\alpha d\alpha$$
.

Введём dF_y под интеграл соотношения (1) и проинтегрируем в пределах от $-\pi/2$ до $+\pi/2$ (как это следует из рисунка):

$$\vec{F} = \vec{j}IBR \int_{-\pi/2}^{+\pi/2} \cos \alpha d\alpha = 2\vec{j}IBR.$$
 (2)

Из полученного выражения видно, что сила \vec{F} сонаправлена с положительным направлением оси Oy (единичным вектором \vec{j}). Найдём модуль силы \vec{F} :

$$F = |\vec{F}| = 2IBR$$
.

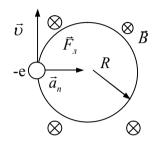
Убедимся в том, что правая часть этого равенства даёт единицу силы (H):

 $[I][B][R]=1A\cdot 1T\pi\cdot 1_{\mathcal{M}}=1A\cdot 1H\cdot 1_{\mathcal{M}}\cdot 1_{\mathcal{M}}/(1A\cdot (1_{\mathcal{M}})^2)=1H.$ Произведём вычисления: $F=2\cdot 10\cdot 50\cdot 10^{-3}\cdot 0,1H=0,1H.$

Пример 3. Электрон, влетев в однородное магнитное поле с индукцией B=0,2 Tn, стал двигаться по окружности радиуса R=5 cm. Определить магнитный момент $P_{_{M}}$ эквивалентного кругового тока.

Решение

Электрон начинает двигаться по окружности, если он влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции, т. е. $\vec{v} \perp \vec{B}$. В этом случае сила Лоренца \vec{F}_n сообщит электрону нормальное ускорение \vec{a}_n .



Согласно второму закону Ньютона $\frac{m\upsilon^2}{R} = e\upsilon B \ (\sin\alpha = 1)$. Отсюда находим скорость электрона $\upsilon = \frac{eBR}{m}$ и период его обращения $T = \frac{2\pi R}{\upsilon} = \frac{2\pi m}{eB}$.

Движение электрона по окружности эквивалентно круговому току

$$I_{\rm grb} = \frac{e}{T} = \frac{e^2 B}{2\pi m} \ .$$

$$P_{\scriptscriptstyle M} = I_{\scriptscriptstyle \mathcal{K}B} S$$
,

где $S=\pi R^2$ – площадь, ограниченная окружностью, описываемой электроном.

Подставим значения $I_{_{_{_{9KB}}}}$ и S в формулу магнитного момента, окончательно получим $P_{_{_{\!M}}}=\frac{e^2BR^2}{2m}.$

Убедимся в том, что правая часть равенства даст единицу измерения магнитного момента (Am^2) :

$$\frac{e^2BR^2}{m} = \frac{K\pi^2 \cdot T\pi \cdot M^2}{\kappa \varepsilon^2} = \frac{K\pi^2 \cdot H}{\kappa \varepsilon \cdot A \cdot M} = \frac{A^2 \cdot c^2 \cdot M \cdot M^2}{A \cdot M \cdot \kappa \varepsilon \cdot c^2} = A \cdot M^2.$$

Произведем вычисление:

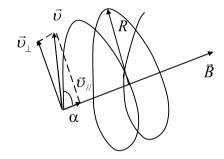
$$P_{\scriptscriptstyle M} = \frac{(1, 6 \cdot 10^{-19})^2 \cdot 0, 2 \cdot (0, 05)^2}{2 \cdot 9, 1 \cdot 10^{-31}} A \cdot M^2 = 7,03 \cdot 10^{-12} A \cdot M^2.$$

Пример 4. Электрон движется в однородном магнитном поле с индукцией B=10~ MT n по винтовой линии, радиус которой равен 1 cm и шаг h=6~cm. Определить период T обращения электрона и его скорость v.

Решение

Разложим скорость $\vec{\upsilon}$ электрона на две составляющие: параллельную вектору \vec{B} - $\vec{\upsilon}_{\parallel}$ и перпендикулярную ему $\vec{\upsilon}_{\perp}$.

Скорость σ_{\parallel} в магнитном поле не изменяется и обеспечивает перемещение электро-



на вдоль силовой линии. Скорость σ_{\perp} в результате действия силы Лоренца будет изменяться только по направлению, обеспечивая движение по окружности. Таким образом, электрон будет участвовать одновременно в двух движениях: равномерном перемещении его со скоростью υ_{\parallel} и вращательном со скоростью υ_{\parallel} .

Согласно второму закону Ньютона

$$ev_{\perp}B = \frac{mv_{\perp}^2}{R}.$$

Перпендикулярная составляющая скорости будет равна

$$\upsilon_{\perp} = \frac{eBR}{m}$$
.

Период обращения электрона связан именно с этой составляющей скоростью соотношением

$$T = \frac{2\pi R}{\upsilon_{\perp}} = \frac{2\pi m}{eB}.$$

Проверим размерность полученного выражения и произведем вычисление:

$$\left[\frac{m}{eB}\right] = \frac{\kappa c}{K\pi \cdot T\pi} = \frac{\kappa c \cdot A \cdot M^2}{A \cdot c \cdot H \cdot M} = \frac{\kappa c \cdot c^2 \cdot M^2}{c \cdot \kappa c \cdot M^2} = 1c$$

$$T = \frac{2\pi \cdot 9.1 \cdot 10^{-31}}{1.6 \cdot 10^{-19} \cdot 10 \cdot 10^{-3}} = 3.57 \cdot 10^{-9} c = 3.67 \,\mu c.$$

Модуль скорости v, как видно из рисунка, можно выразить через v_{\parallel} и v_{\parallel} :

$$\upsilon = \sqrt{\upsilon_{\perp}^2 + \upsilon_{\parallel}^2}$$

Параллельную составляющую скорости υ_{\parallel} найдем из следующих соображений. За время, равное периоду обращения T, электрон пройдет вдоль силовой лини расстояние h, т.е. $h=T\upsilon_{\parallel}$, откуда

$$\upsilon_{//} = \frac{eBh}{2\pi m}$$
.

Таким образом, модуль скорости электрона

$$\upsilon = \frac{eB}{m} \sqrt{R^2 + \left(\frac{h}{2\pi}\right)^2}$$

Произведем вычисления:

$$\upsilon = \frac{1, 6 \cdot 10^{-9} \cdot 10 \cdot 10^{-3}}{9, 1 \cdot 10^{-31}} \left[0, 01^2 + \left(\frac{0, 06}{2\pi} \right)^2 \right]^{\frac{1}{2}} \frac{\text{M/c}}{c} = 2, 46 \cdot 10^7 \, \text{M/c}.$$

Пример 5. В одной плоскости с бесконечно длинным прямым проводом, по которому течёт ток $I=50\,A$, расположена прямоугольная рамка так, что две большие стороны её длиной $l=65\,$ см параллельны проводу, а расстояние от провода до ближайшей из этих сторон равно её ширине. Каков магнитный поток Φ , пронизывающий рамку?

Решение

Магнитный поток Φ через поверхность площадью S определяется выражением

$$\Phi = \int_{S} B_n dS .$$

В нашем случае вектор магнитной индукции \vec{B} перпендикулярен плоскости рамки. Поэтому для всех точек рамки B_n =B. Магнитная индукция B, создаваемая бесконечно длинным прямым проводником с током, определяется формулой

x

dS=ldx

$$B = \frac{\mu_0 I}{2\pi x},$$

где x — расстояние от провода до точки, в которой определяется B.

Для вычисления магнитного потока заметим, что так как B зависит от x и элементарный поток Φ будет также зависеть от x, то

 $d\Phi = B(x)dS$. $\parallel + a + a + B$ Разобьём площадь рамки на узкие элементарные площадки длиной l, шириной dx и площадью dS = ldx (см. рис.). В пределах этой площадки магнитную индукцию можно считать постоянной, так как все части площадки равноудалены

(на расстояние x) от провода. С учётом сделанных замечаний элементарный магнитный поток можно записать в виде

$$d\Phi = \frac{\mu_0 I}{2\pi x} l dx .$$

Проинтегрировав полученное выражение в пределах от $x_1 = a$ до $x_2 = 2a$, найдём

$$\Phi = \frac{\mu_0 I l}{2\pi} \int_{a}^{2a} \frac{dx}{x} = \frac{\mu_0 I l}{2\pi} \ln x \Big|_{a}^{2a}.$$

Подставив пределы, получим

$$\Phi = \frac{\mu_0 Il}{2\pi} \ln 2.$$

Убедимся в том, что правая часть полученного равенства дает единицу магнитного потока ($B\delta$):

$$[\mu_0][I][I] = 1\Gamma_H/M \cdot 1A \cdot 1M = 1 B6.$$

Произведя вычисления, найдём $\Phi = 4.5 \text{ мкВб}$.

Пример 6. В однородном магнитном поле ($B = 0.2T_{\Lambda}$) равномерно с частотой v=600мин⁻¹ вращается рамка, содержащая N = 1200 витков, плотно прилегающих друг к другу. Площадь рамки S = 100 см². Ось вращения лежит в плоскости рамки и перпендикулярна линиям магнитной индукции. Определите максимальную ЭДС, индуцируемую в рамке.

Решение

Согласно закону электромагнитной индукции

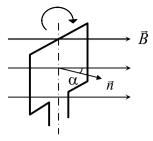
$$\xi = -\frac{d\Phi}{dt}$$
,

где $\Phi = NBScos\ \alpha$ – полный магнитный поток, пронизывающий рамку.

При вращении рамки угол $\alpha(\vec{n},\vec{B})$, образованный нормалью n к плоскости рамки и линиями индукции B, изменятся по закону

$$\alpha = \omega t = 2\pi v t$$
.

Подставив в закон электромагнитной индукции выражение магнитного потока и продифференцировав по времени, найдем мгновенное значение ЭДС индукции:



$$\xi = -NBS \frac{d}{dt} (\cos 2\pi vt) = NBS \cdot 2\pi v \cdot \sin 2\pi vt$$

Максимальное значение ЭДС определится при условии, что $sin\ 2\pi vt = 1$. таким образом,

$$\xi_{\rm max} = 2\pi v NBS$$
.

Убедимся в том, что правая часть этого равенства дает единицу ЭДС (B):

$$[2\pi v NBS] = \frac{T\pi \cdot M^2}{c} = \frac{H \cdot M}{A \cdot M \cdot c} = \frac{\mathcal{A} \mathcal{H} c}{K\pi} = B.$$

Произведем вычисление:

$$\xi_{\text{max}} = 2\pi \cdot 10 \cdot 1200 \cdot 0, 2 \cdot 100 \cdot 10^{-4} = 151(B).$$

4. КОЛЕБАНИЯ И ВОЛНЫ

4.1. Основные формулы

Механические колебания

1. Дифференциальное уравнение гармонических колебаний материальной точки и его решение

$$x + \omega_0^2 x = 0,$$

$$x = A\cos(\omega_0 t + \varphi_0),$$

где x — смещение колеблющейся точки от положения равновесия; $\omega_0 = \sqrt{k/m}$ — собственная частота колебаний; m — масса точки; κ — коэффициент упругой (квазиупругой) силы.

2. Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях

$$\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} - \frac{2xy}{A_1 A_2} \cdot \cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1).$$

3. Амплитуда и фаза результирующего колебания, возникающего при сложении двух одинаково направленных колебаний с одинаковыми частотами.

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2 A_{1} A_{2} \cos (\varphi_{2} - \varphi_{1}),$$

$$tg\varphi = \frac{A_{1} \sin \varphi_{1} + A_{2} \sin \varphi_{2}}{A_{1} \cos \varphi_{1} + A_{2} \cos \varphi_{2}}.$$

4. Период колебаний физического маятника

$$T=2\pi\sqrt{L/g}$$
 ,

где L=J/ma — приведенная длина физического маятника, J — момент инерции маятника относительно оси колебаний, a - расстояние центра масс маятника от оси колебаний.

5. Дифференциальное уравнение затухающих колебаний и его решение

$$\stackrel{\square}{x+2\beta}\stackrel{\square}{x+\omega_0^2x=0},$$
 и $x=A_0e^{-\beta t}cos(\omega t+\varphi),$

где $\beta=r/2m$ — коэффициент затухания; r — коэффициент сопротивления; $\omega=\sqrt{\omega_0^2-\beta^2}$ — угловая частота затухающих колебаний; $A=A_0$ $e^{-\beta t}$ — амплитуда колебаний в момент времени t.

6. Логарифмический декремент затухания и добротность О колебательной системы

$$\lambda = \ln \frac{A(t)}{A(t+T)} = \beta T,$$

$$Q = \frac{\pi}{\lambda} = \pi N_e,$$

где A(t) и A(t+T) — амплитуды двух последовательных колебаний, отстоящих по времени друг от друга на период; N_e — число колебаний, в течение которых амплитуда уменьшается в e= 2,73 раз.

7. Дифференциальное уравнение вынужденных колебаний и его решение для установившихся колебаний:

$$x + 2\beta x + \omega_0^2 x = f_0 \cos \omega_e t,$$

$$x = A \cos(\omega_e t - \varphi),$$

где $F_0 \cos \omega_6 t$ - внешняя периодическая сила, действующая на материальную точку;

 $f_0 = F_0/m; \ A = f_0 \Big/ \sqrt{\left(\omega_0^2 - \omega_B^2\right)^2 + 4\beta^2 \omega_B^2} -$ амплитуда вынужденных колебаний;

$$tg\varphi = \frac{2\beta\omega_e}{\omega_0^2 - \omega_e^2}$$

8. Резонансная частота и резонансная амплитуда

$$\omega_{pes} = \sqrt{\omega_0^2 - 2\beta^2}$$

$$A_{pes} = \frac{f_0}{2\beta\sqrt{\omega_0^2 - \beta^2}}.$$

Электрические колебания

1. Дифференциальное уравнение затухающих электрических колебаний в контуре и его решение

$$q + 2\beta q + \omega_0^2 q = 0,$$

$$q = q_m e^{-\beta t} \cos(\omega t + \varphi),$$

где $\beta=R/2L$ – коэффициент затухания, $\omega_0=1/\sqrt{LC}$ - собственная частота колебаний, $\omega=\sqrt{\omega_0^2-\beta^2}=\sqrt{1/LC-(R/2L)^2}$ - частота затухающих колебаний.

Добротность контура

$$Q = 1/R \sqrt{L/C}$$

2. Дифференциальное уравнение вынужденных электрических колебаний при последовательном включении в контур переменной ЭДС и его решение

$$q + 2\beta q + \omega_0^2 q = \frac{E_m}{L} \cos \omega_e t,$$

$$q = q_m \cos(\omega_e t + \varphi),$$

$$I = I_m \cos(\omega_e t + \varphi_1),$$

где φ - разность фаз между колебаниями заряда и внешней ЭДС; $\omega_{\!\scriptscriptstyle B}$ - частота внешней ЭДС; $I_m = \omega_{\!\scriptscriptstyle B} \, q_m$ - амплитуда тока, $\varphi_1 = \varphi$ - $\pi/2$ - сдвиг по фазе между током и внешней ЭДС.

$$\omega_{pes} = \sqrt{\omega_0^2 - 2\beta^2} = \sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}};$$

$$I_m = \frac{E_m}{\sqrt{(R^2 + (\omega_e L - 1/\omega_e C)^2)}};$$

$$tg\varphi = \frac{R}{\omega_e L - 1/\omega_e C}.$$

Волны

1. Уравнение бегущей волны

$$\xi(x,t) = A_0 \cos \omega (t - \frac{x}{t}) = A_0 \cos(\omega t - kx),$$

где ξ - смещение точки, имеющей координату x в момент времени $t, \quad k=2\pi/\lambda$ - волновое число, v — фазовая скорость, λ - длина волны.

2. Уравнение стоячей волны

$$\xi(x,t) = 2A_0 \cos kx \cdot \cos \omega t,$$

Расстояние *l* между двумя соседними пучностями или двумя соседними узлами стоячей волны и длина бегущей волны связаны соотношением:

$$l = \lambda / 2$$

- 3. Скорость распространения в веществе:
 - а) упругой продольной волны

$$v = \sqrt{\frac{E}{\rho}}$$
,

где E – модуль Юнга, ρ - плотность вещества.

б) упругой поперечной волны

$$v = \sqrt{\frac{G}{\rho}}$$

где G — модуль сдвига,

в) упругой продольной волны в газах

$$v = \sqrt{\frac{\gamma RT}{\mu}}$$

где $\gamma = C_p/C_v$ – показатель адиабаты, μ - молярная масса.

г) электромагнитной волны

$$\upsilon = \frac{c}{\sqrt{\varepsilon\mu}};$$

где ε , μ - диэлектрическая и магнитная проницаемости.

4. Эффект Доплера для акустических волн

$$V = \frac{\upsilon_{_{36}} + \upsilon_{np}}{\upsilon_{_{36}} - \upsilon_{ucm}} V_0 ,$$

где v — частота звука, воспринимаемого движущимся приёмником, $v_{\rm 3B}$ - скорость звука, $v_{\rm np}$ — скорость приемника ($v_{\rm np} > 0$, если приемник приближается к источнику), $v_{\rm ист}$ — скорость источника ($v_{\rm ист} > 0$, если источник приближается), v_0 - частота звука, испускаемого источником.

4.2. Примеры решения задач

Пример 1. Частица совершает гармонические колебания вдоль оси x около положения равновесия x=0, частота колебания ω_0 = $4c^{-1}$. В некоторый момент времени координата частицы $x_0 = 25$ c_M и ее скорость $\upsilon_0 = 100$ c_M/c . Найти координату x и скорость υ частицы через t = 2,4 c после этого момента.

Решение

Запишем уравнение гармонических колебаний частицы в виде:

$$x = A\cos(\omega_0 t + \varphi_0), \tag{1}$$

тогда уравнение скорости будет иметь вид:

$$\upsilon = x = -A\omega_0 \sin(\omega_0 t + \varphi_0). \tag{2}$$

Для нахождения параметров данных уравнений воспользуемся начальными условиями. При t=0 имеем:

$$x_0 = A\cos\varphi_0,$$

 $v_0 = -A\omega_0\sin\varphi_0,$

откуда
$$tg\phi_0=-rac{\upsilon_0}{\omega_0x_0}=-1\;; \quad \phi_0=-\pi/4, \quad A=\sqrt{x_0^{\;2}+rac{\upsilon_0^{\;2}}{\omega_0^{\;2}}}\;.$$

Координата и скорость частицы υ в момент времени t = 2,4 с найдутся из уравнений (1) и (2):

$$x = -29 \text{ cm}, \qquad v = -81 \text{ cm/c}.$$

Пример 2. Точка совершает гармонические колебания вдоль некоторой прямой с периодом $T=0,6\ c$ и амплитудой $A=10\ cm$. Найти среднюю скорость точки за время, в течении которого она проходит путь A/2:

а) из положения равновесия; б) из крайнего положения.

Решение

Выберем за начало отсчета времени момент, когда точка проходит положение равновесия. Тогда уравнение колебаний имеет вид:

$$x = A \sin \omega_0 t$$
.

Исходя из этого уравнения определим момент времени t_1 , соответствующий смещению точки x = A/2. Имеем:

$$\frac{A}{2} = A \sin \frac{2\pi}{T} t_1,$$

откуда $t_1 = T/12$.

Значение средней скорости точки при ее движении из положения равновесия определяется из формулы:

$$v_{cp1} = \frac{S}{t} = \frac{A}{2t_1}; \qquad v_{cp1} = 100 \text{ cm/c}.$$

Время движения точки из крайнего положения до половины амплитуды будет равно:

$$t_2 = \frac{T}{4} - t_1 = \frac{T}{16}$$
.

С учетом этого:

$$v_{cp2} = \frac{A}{2t_2}; \quad v_{cp2} = 50 \text{ cm/c}.$$

Аналогичные результаты могут быть получены при использовании формулы:

$$\upsilon_{cp} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \upsilon(t) dt.$$

Пример 3. Найти амплитуду и начальную фазу результирующего колебания, возникающего при сложении двух одинаково направленных колебаний, выражаемых уравнениями: $x_1 = 3\cos(\omega t + \pi/3)$ см, $x_2 = 8\sin(\omega t + \pi/3)$ см. Написать уравнение результирующего колебания.

Решение

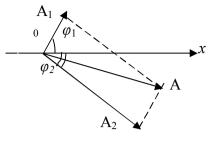
Вначале, используя тригонометрические формулы, приведем уравнение второго колебания к виду

$$x_2 = 8 \cos(\omega t - \pi/6) c_M$$
.

Затем построим векторную диаграмму сложения однонаправленных колебаний (см. рис.). Согласно теореме косинусов получим

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Box\varphi} ,$$

где $\Delta \varphi = \varphi_2 - \varphi_1$.



Произведя вычисления, найдем А=8,5 см. Тангенс начальной фазы результирующего колебания определится из рисунка

$$tg\phi=rac{A_1\sin\phi_1+A_2\sin\phi_2}{A_1\cos\phi_1+A_2\cos\phi_2}\,,$$
 откуда ϕ = - 0.2 $pa\partial$.

Уравнение результирующего колебания запишется в виде:

$$x = 8.5\cos(\omega t - 0.2) c_M$$
.

Пример 4. Тело массой m = 5 г совершает затухающие колебания. В течении времени t = 50 c тело потеряло 60 % своей энергии. Определить коэффициент сопротивления r.

Решение

Энергия тела, совершающего колебания, определяется по формуле

$$E = mA^2\omega^2/2.$$

Учитывая зависимость амплитуды затухающих колебаний от времени $A = A_0 e^{-\beta t}$,

получим

$$E = mA_0 e^{-2\beta t} \omega^2 / 2$$
, или $E = E_0 e^{-2\beta t}$, (1)

где $E_0 = mA_0^2\omega^2/2$ — энергия тела в момент времени t = 0.

К моменту времени $t=50\ c$ тело потеряло 60 % своей первоначальной энергии, следовательно,

$$E = 0.4E_0.$$
 (2)

Приравнивая (1) и (2), сокращая на E_0 и, логарифмируя обе части равенства, найдем:

$$ln2,5 = 2\beta t$$
.

Отсюда выражаем β:

$$\beta = (\ln 2.5)/2t. \tag{3}$$

 $\beta = r/2m$ С другой стороны, **(4)** Из сравнения (3) и (4) получим $r = (m \ln 2.5)/t$

После подстановки числовых значений найдем

$$r = 9,16 \cdot 10^{-5} \text{ } \kappa c/c.$$

Пример 5. Тело массой m=10 г совершает затухающие колебания с максимальным значением амплитуды 7см, начальной фазой, равной нулю, коэффициентом затухания, равным $1.6 c^{-1}$. На это тело начала действовать внешняя периодическая сила, под действием которой установились вынужденные колебания. Уравнение вынужденных колебаний имеет вид $x=5\sin(10\pi t-0.75\pi)$ см. Найти: 1) уравнение свободных колебаний; 2) уравнение внешней периодической силы.

Решение

Уравнение свободных затухающих колебаний имеет вид $x = A_0 e^{-\beta t} \sin \omega t$

$$x - A_0 e^{-\epsilon} \sin \omega t$$
, (1)

где $\omega = \sqrt{\omega_0^2 - \beta^2}$ - частота затухающих колебаний; ω_0 – собственная частота колебаний; в - коэффициент затухания.

По условию сдвиг фаз φ между собственными и вынужденными колебаниями равен – $3\pi/4$; следовательно, $tg(-3\pi/4) = 1$. С другой стороны,

$$tg\varphi = \frac{2\beta\omega_{\rm g}}{\omega_{\rm 0}^2 - \omega_{\rm e}^2}.$$

Из равенства

$$\frac{2\beta\omega_{e}}{\omega_{0}^{2}-\omega_{e}^{2}} = 1,$$

$$\omega_{0} = \sqrt{\omega_{e}^{2}+2\beta\omega_{e}}.$$
(2)

следует

У нас $\omega_{e} = 10\pi$, $\beta = 1.6$ с⁻¹. Подставляя эти значения в (2), получим, $\omega_{0} = 10.5\pi$. С учётом того, что $\beta^{2} << \omega_{0}^{2}$, получим, что частота ω затухающих колебаний равна частоте ω_{0} собственных колебаний. Следовательно, уравнение свободных затухающих колебаний примет вид

$$x = 7e^{-1.6t} \sin 10.5 \omega \pi t c M.$$

Уравнение внешней периодической силы

$$F = F_0 \sin \omega t. \tag{3}$$

Амплитудное значение вынуждающей силы

$$F_0 = f_0 m = Am \sqrt{(\omega_0^2 - \omega_e^2)^2 + 4\beta^2 \omega_e^2}.$$
 (4)

После подстановки числовых значений получаем $F_0 = 72 \ MH$. С учетом этого уравнение внешней периодической силы будет иметь вид

$$F = 72 \sin 10\pi t MH$$
.

Пример 6. Омическое сопротивление контура $R=10^2\,O$ м, индуктивность $L=10^{-2}\,\Gamma$ н , ёмкость $C=10^{-6}\,\Phi$. Определить силу тока в контуре в момент времени $t=5\cdot 10^{-5}c$, если при t=0 заряд на конденсаторе $q_0=10^{-5}\,K$ л , а начальная сила тока равна нулю.

Решение

Общий вид уравнения затухающих колебаний в контуре запишем в виде: $q = q_m e^{-\beta t} \sin(\omega t + \varphi_0)$, (1)

где $\beta = R/2L = 5 \cdot 10^3 c^{-1}$,

$$\omega = \sqrt{\omega_0^2 - \beta^2} = \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2} = 8.7 \cdot 10^3 c^{-1}.$$

Начальную фазу φ_0 и амплитудное значение заряда $q_{\rm m}$ определим из начальных условий. Учитывая, что при ${\bf t}=0$ $q=q_0$, получаем

$$q_0 = q_{\rm m} \sin \varphi_0. \tag{2}$$

Взяв производную по t от выражения (1), найдём закон изменения силы тока

$$I = -q_{\rm m} \left[-\beta e^{-\beta t} \sin(\omega t + \varphi_0) + \omega t^{-\beta t} \cos(\omega t + \varphi_0) \right]. \tag{3}$$

Так как при t = 0 I = 0, получаем $-\beta \sin \varphi_0 + \omega \cos \varphi_0 = 0$.

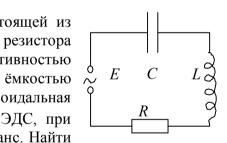
Откуда $\lg \varphi_0 = \omega / \beta$ и $\varphi_0 = arc \lg (\omega / \beta) \approx \pi/3$. Наконец, из (2) находим

$$q_{\rm m} = \frac{q_0}{\sin \frac{\pi}{3}} = \frac{2q_0}{\sqrt{3}}$$
.

С учётом найденных параметров уравнения (3) определим силу тока в контуре в момент времени $t = 5 \cdot 10^{-5} c$

$$I = 4.6 \cdot 10^{-2} A$$
.

Пример 7. В цепи, состоящей из последовательно соединённых резистора R = 20 Ом, катушки индуктивностью $L = 1 \text{м} \Gamma \text{н}$ и конденсатора ёмкостью $C = 0,1 \text{м} \kappa \Phi$, действует синусоидальная ЭДС. Определите частоту ω ЭДС, при которой в цепи наступит резонанс. Найти



действующие значения силы тока I и напряжений U_R , U_L , U_C на всех элементах цепи при резонансе, если при этом действующее значение ЭДС E=30B .

Решение

Под действием переменной ЭДС в цепи установятся вынужденные колебания. При этом амплитудные значения тока I_0 и ЭДС E_0 связаны соотношениями

$$I_0 = \frac{E_0}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}.$$

В соответствии с формулами, связывающими амплитудные и действующие значения токов и напряжений ($I=I_0/\sqrt{2}$, $E=E_0/\sqrt{2}$), данное соотношение имеет аналогичный вид и для действующих значений:

$$I = -\frac{E}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}.$$

Максимальному току при резонансе I_{pes} соответствует такое значение ω ,при котором выполняется условие $L\omega - \frac{1}{C\omega} = 0$, откуда $\omega = \omega_{\rm p} = \sqrt{\frac{1}{LC}} = 1 \cdot 10^5 \; pa\partial/c$.

При этом сила тока
$$I = \frac{E}{\sqrt{R^2}} = \frac{E}{R} = 1,5A$$
.

Зная силу тока I, найдём действующие значения напряжения на каждом из элементов контура. В соответствии с законом Ома для каждого из участков получим:

$$\begin{split} U_{\mathrm{R}} &= I \cdot R = E = 30B \;, \\ U_{\mathrm{L}} &= I \cdot L\omega = \frac{E}{R} L\omega = 150B \;, \\ U_{\mathrm{C}} &= I \cdot \frac{1}{C\omega} = U_{\mathrm{L}} = 150B . \end{split}$$

Равенство $U_{\rm L}$ = U_c следует из равенства $L\omega$ = 1/ ω C при резонансе.

5. ЗАДАЧИ ДЛЯ ВЫПОЛНЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ №2

- 1. Расстояние d между точечными положительными зарядами $q_1 = 9q$ и $q_2 = q$ равно 8 cm. На каком расстоянии r от первого заряда находится точка, в которой напряженность E поля зарядов равна нулю? Где находилась бы эта точка, если бы второй заряд был отрицательным?
- 2. Электрическое поле создано двумя точечными зарядами q_1 =40 nKn и q_2 =-10 nKn, находящимися на расстоянии d =10 cm друг от друга. Определить напряженность E в точке, удаленной от первого заряда на r_1 = 12 cm и от второго на r_2 = 6 cm.
- 3. В вершинах квадрата со стороной $a=5\ cm$ находятся одинаковые положительные заряды $q=2\ nm$. Определить напряженность поля в середине одной из сторон квадрата.
- 4. Электростатическое поле создано двумя бесконечными параллельными плоскостями, заряженными с поверхностной плотностью $\sigma_I = 1 \ H K \pi / m^2$ и $\sigma_2 = -2 \ H K \pi / m^2$. Определить напряженность электростатического поля: 1) между плоскостями; 2) за пределами плоскостей. Построить график E(x).
- 5. Одинаковые по модулю, но разные по знаку заряды |q|=18нKл расположены в двух вершинах равносторон- него треугольника со стороной a=2 m. Найти напряженность поля E в третьей вершине треугольника.
- 6. В однородном электростатическом поле с напряжённостью $E=10^6~B/m$, направленном под углом $\alpha=30^0~$ к вертикали, висит на нити шарик массой $m=2\varepsilon$, несущий заряд q=10 μ K π . Найти силу натяжения нити.
- 7. В двух вершинах равностороннего треугольника помещены одинаковые заряды $q_1 = q_2 = q = 5$ мкKл. Какой точечный заряд необходимо поместить в середину стороны,

соединяющей заряды q_1 и q_2 , чтобы напряженность электрического поля в третьей вершине треугольника оказалась равной нулю?

- 8. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими одинаковый равномерно распределенный по площади заряд ($\sigma=1~\mu K n/m^2$). Определить напряженность E поля: 1) между пластинами; 2) вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам.
- 9. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностными плотностями $\sigma_I = 1 \mu K \pi / m^2$ и $\sigma_2 = 3 \mu K \pi / m^2$. Определить напряженность E поля: 1) между пластинами; 2) вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам.
- 10. Две бесконечные параллельные пластины равномерно заряжены с поверхностной плотностью σ_I =10 nKn/m^2 и σ_2 =-30 nKn/m^2 . Определить силу взаимодействия между пластинами, приходящуюся на площадь S, равную $1m^2$.
- 11. По кольцу радиусом R равномерно распределен заряд q_0 . Какую работу нужно совершить, чтобы перенести заряд q из центра кольца в точку, расположенную на оси кольца на расстоянии R от его центра?
- 12. Два точечных заряда $q_1 = 4 \cdot 10^{-8} \ K\pi$ и $q_2 = 2,5 \cdot 10^{-8} \ K\pi$ находятся в воздухе на расстоянии r_1 =1 M друг от друга. Какую работу надо совершить, чтобы сблизить заряды до расстояния $r_2 = 0.2 \ M$?
- 13. Шарик массой 1 c и зарядом 10^{-8} Kn перемещается из точки A, потенциал которой равен 600 B, в точку C, потенциал которой равен нулю. Чему была равна скорость в точке A, если в точке C она стала равной 20 m/c?
- 14. На расстоянии $r_1 = 4$ *см* от бесконечно длинной заряженной нити находится точечный заряд $2 \cdot 10^{-8}$ *Кл*. Под

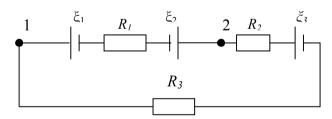
действием поля заряд перемещается до расстояния $r_2 = 2$ см. При этом совершается работа $5 \cdot 10^{-6}$ Дж. Найти линейную плотность заряда нити.

- 15. Около заряженной бесконечно протяженной плоскости находится точечный заряд $2 \cdot 10^{-8} \ Kn$. Под действием поля заряд перемещается вдоль силовой линии на расстояние 2cm. При этом совершается работа $A=5 \cdot 10^{-6} \ Дж$. Найти поверхностную плотность заряда на плоскости.
- 16. Какую работу необходимо совершить при переносе точечного заряда q_0 из бесконечности в точку, находящуюся на расстоянии r=10 cm от поверхности заряженного металического шара? Потенциал на поверхности шара ϕ =200 B, радиус шара R =2 cm.
- 17. Две бесконечные параллельные плоскости находятся на расстоянии d=1 см друг от друга. На плоскостях равномерно распределены заряды с поверхностными плотностями $\sigma_I = 0.2$ мкКл/м² и $\sigma_2 = -0.3$ мкКл/м². Определить разность потенциалов между плоскостями.
- 18. Электрон, летевший горизонтально со скоростью υ =1,6 $\mathit{Mm/c}$, влетел в однородное электрическое поле с напряженностью E =90 $\mathit{B/cm}$, направленное вертикально вверх. Какова будет по модулю и направлению скорость υ электрона через 1 hc ?
- 19. Электрон влетел в пространство между пластинами плоского конденсатора со скоростью $\upsilon=10~Mm/c$, направленной параллельно пластинам. На сколько приблизится электрон к положительно заряженной пластине за время движения внутри конденсатора (поле считать однородным), если расстояние d между пластинами равно 16~mm, разность потенциалов U=30~B и длина l пластин равна 6~mm?
- 20. Электрон влетел в плоский конденсатор, имея скорость $\upsilon = 10~M\text{M/c}$, направленную параллельно пластинам. В момент вылета из конденсатора направление скорости электрона составляло угол 35° с первоначальным направле-

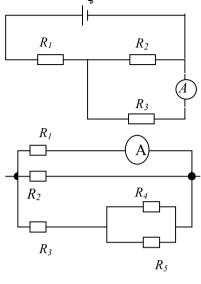
нием скорости. Определить разность потенциалов U между пластинами (поле считать однородным), если длина l пластин равна $10\ cm$ и расстояние d между ними равно $2\ cm$.

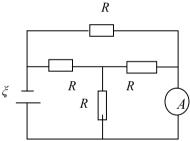
- 21. Параллельно обкладкам плоского конденсатора введена металлическая пластинка толщиной 6 $\mathit{мм}$. Определить электроемкость конденсатора, если площадь каждой из обкладок $100~\mathit{cm}^2$, расстояние между ними $8~\mathit{mm}$.
- 22. Один конденсатор заряжен до напряжения $50\ B$, другой конденсатор такой же емкости до напряжения $150\ B$. Какое напряжение установится между обкладками конденсатора, если их соединить одноименно заряженными обкладками?
- 23. Два конденсатора емкостью 3 и 5 $m\kappa\Phi$ соединены последовательно и подсоединены к источнику постоянного напряжения 12 B. Определить заряд каждого конденсатора и разность потенциалов между его обкладками.
- 24. Между обкладками плоского конденсатора находится металлическая пластинка толщиной 4*мм*. Как изменится электроемкость конденсатора, если эту пластинку убрать? Расстояние между обкладками 6 *мм*, площадь обкладок 100 см².
- 25. Найти напряжение на каждом из двух конденсаторов, если они соединены последовательно, имеют электроемкость 4 и 6 $m\kappa\Phi$ и присоединены к источнику постоянного напряжения 100~B.
- 26. Два конденсатора одинаковой электроемкости $6 m \kappa \Phi$ каждый были заряжены один до 100 B, другой до 200 B. Затем конденсаторы соединили параллельно. Определить напряжение батареи после соединения и изменение энергии системы.
- 27. Два конденсатора одинаковой электроемкости 4 $m\kappa\Phi$ каждый заряжены один до 100~B, другой до 200~B. Затем конденсаторы соединили последовательно. Определить изменение энергии системы.

- 28. Шару радиусом R_1 сообщили заряд q_1 , а шару радиусом R_2 заряд q_2 . Расстояние между шарами много больше их радиусов. Найти отношение поверхностной плотности зарядов на шарах к их радиусам, если шары соединить тонкой металлической проволокой.
- 29. Сила F притяжения между пластинами плоского воздушного конденсатора равна 50 MH. Площадь S каждой пластины равна 200 cM^2 . Найти объемную плотность энергии поля конденсатора.
- 30. Плоский воздушный конденсатор с площадью пластины S подключен к источнику тока с ЭДС ξ . Определить работу A внешних сил по раздвижению пластин от расстояния d_1 до d_2 , если пластины перед раздвижением отключаются от источника.
- 31. К зажимам батареи аккумуляторов присоединен нагреватель. ЭДС батареи равна 24B, внутреннее сопротивление r=1 Om. Нагреватель, включенный в цепь, потребляет мощность P = 80 Bm. Вычислить силу тока I в цепи и КПД нагревателя.
- 32. Определить разность потенциалов между точками 1 и 2 представленной цепи, если ξ_1 =2B, ξ_2 =5B, ξ_3 =2B, R_1 =1OM, R_2 = 2OM, R_3 = 2OM.



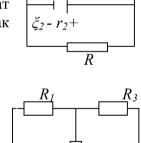
- 33. Определить силу тока, протекающего через амперметр. Напряжение на зажимах элемента в замкнутой цепи равно 2,1 B; R_1 =5 OM, R_2 =6 OM, R_3 =3 OM. Сопротивлением амперметра пренебречь.
- 34. Амперметр, включенный в участок цепи, показывает силу тока $I_1 = 0,5A$. Найти силу тока, протекающего через R_4 если $R_2 = 4$ O_M , $R_1 = R_4 = 2$ O_M , $R_3 = R_5 = 1$ O_M . Сопротивлением амперметра пренебречь.
- 35. Найти показание амперметра в схеме представленной на рисунке. Сопротивления амперметра и источника пренебрежимо малы. R=10~Om, $\xi=30B$.



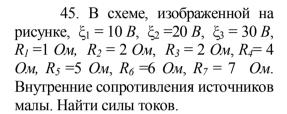


- 36. Вольтметр, подключенный к зажимам источника тока, показал U_1 =6 B. Когда к тем же зажимам подключили лампочку, вольтметр стал показывать U_2 = 3B. Что покажет вольтметр, если вместо одной подключить две такие же лампочки, соединенные последовательно?
- 37. Сила тока в проводнике сопротивлением R=15~Om равномерно возрастает от $I_0=0$ до некоторого максимального значения в течение времени t=5c. За это время в проводнике выделилось количество теплоты $Q=10~\kappa \not\square mc$. Найти среднюю силу тока в проводнике за этот промежуток времени.

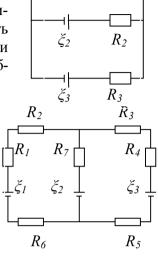
- 38. Сила тока в резисторе линейно нарастает за 4 c от 0 до 8 A. Сопротивление резистора 10 Om. Определить количество теплоты, выделившееся в резисторе за первые 3 c.
- 39. В течение 5 c по резистору сопротивлением 10 Om течет ток, сила которого равномерно возрастает. В начальный момент сила тока равна нулю. Определить заряд, протекший за 5 c, если количество теплоты, выделившееся за это время, равно $500\, \mbox{Дж}.$
- 40. Сила тока в резисторе равномерно возрастает от нулевого значения в течение 10~c. За это время выделилось количество теплоты 500~ Джс. Определить скорость возрастания тока, если сопротивление резистора 10~ Ом.
- 41. Две батареи аккумуляторов (ξ_1 =10 B, r_1 =1 O_M , ξ_2 =8 B, r_2 =2 O_M) и реостат сопротивлением R=6 O_M соединены как показано на рисунке. Найти силу тока в батареях и реостате.
- 42. Два источника тока ($\xi_1 = 8 B$, $r_1 = 2 O_M$, $\xi_2 = 6 B$, $r_2 = 1,5 O_M$) и реостат сопротивлением $R = 6 O_M$ соединены как показано на рисунке. Вычислить силу тока, текущего через реостат.
- 43. Определить силу тока I_3 в резисторе сопротивлением R_3 и напряжение U_3 на концах резистора, если $\xi_1=4$ B, $R_1=2$ O_M , $\xi_2=3$ B, $R_2=6$ O_M , $R_3=1$ O_M . Внутренними сопротивлениями амперметра и источников тока пренебречь.



44. Три источника тока с $\xi_1 = 11~B$, $\xi_2 = 4~B$, $\xi_3 = 6~B$ и три реостата с сопротивлениями $R_1 = 5~O$ м, $R_2 = 10~O$ м, $R_3 = 2~O$ м соединён как показано на рисунке. Определить силы токов в реостатах. Внутренними сопротивлениями источников тока пренебречь.



46. Три сопротивления R_1 =5 Oм, R_2 =5 Oм и R_3 =3 Oм, а также источник тока с ЭДС ξ =1,4 B соединены, как показано на рисунке. Определить ЭДС источника тока, который надо подключить в цепь между точками A и B, чтобы сила тока через сопротивлении

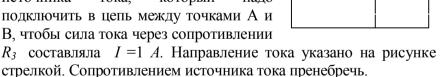


 ξ_1

 R_1

В

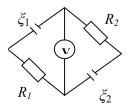
 R_3



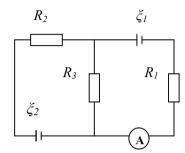
 R_2

 R_1

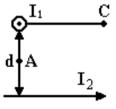
47. В схеме, представленной на рисунке, $\xi_1 = \xi_2 = 110~B$, $R_1 = R_2 = 200~O$ м, сопротивление вольтметра $R_{\nu} = 1000~O$ м. Найти показание вольтметра. Сопротивлением источников пренебречь.



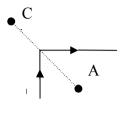
- 48. В схеме к задаче 47 , $\xi_1 = \xi_2$, $R_2 = 2R_1$. Во сколько раз ток, текущий через вольтметр, больше тока, текущего через R_2 ? Сопротивлением источников пренебречь.
- 49. В схеме, к задаче 77, $R_1 = R_2 = 100 \ Om$. Вольтметр показывает 50B, сопротивление вольтметра равно 150 Om. Найти ЭДС батарей. Сопротивлением источников пренебречь.
- 50. В схеме, представленной на рисунке, ξ_I =110B, ξ_2 =220B, $R_I = R_2 = R = 100 OM$, $R_3 = 500 OM$. Найти показание амперметра. Внугренними сопротивлениями амперметра и элементов пренебречь.



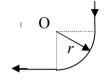
- 51. Вычислить магнитную индукцию поля, создаваемого отрезком AB прямолинейного проводника с током в точке C, расположенной на перпендикуляре к середине этого отрезка на расстоянии 6 cм от него. По проводнику течет ток 30 A. Отрезок AB проводника виден из точки C под углом 90^{0} .
- 52. Два прямолинейных длинных проводника расположены параллельно на расстоянии 10 c_M друг от друга. По проводникам текут токи $I_1 = I_2 = 5$ A в противоположных направлениях. Найти величину и направление магнитной индукции поля в точке, находящейся на расстоянии 10 c_M от каждого проводника.
- 53. Два бесконечно длинных прямых проводника скрещены под прямым углом. По проводникам текут токи $I_1 = 80 A$ и $I_2 = 60 A$. Расстояние между проводниками $d = 10 \ cm$. Чему равна магнитная индукция в точках A и C, одинаково удаленных от обоих проводников?



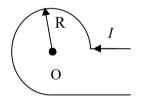
54. Бесконечно длинный прямой проводник согнут под прямым углом. По проводнику течет ток $I=100\,A$. Вычислить магнитную индукцию в точках A и C, лежащих на биссектрисе угла и удаленных от вершин угла на $a=20\,$ см.



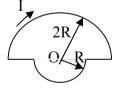
55. По бесконечно длинному прямому проводу, изогнутому так, как показано на рисунке, течет ток $I = 100 \, A$. Определить индукцию B в точке O, если $r = 10 \, c M$.



- 56. По тонкому проводящему кольцу радиусом $R=10\ cm$ течет ток $I=80\ A$. Найти магнитную индукцию в точке, равноудаленной от всех точек кольца на $r=20\ cm$.
- 57. По контуру в виде квадрата течет ток I = 50 А. Длина стороны квадрата равна 20 *см*. Определить магнитную индукцию B в точке пересечения диагоналей.
- 58. Бесконечно длинный тонкий проводник с током $I = 50 \, A$ имеет изгиб (плоскую петлю) радиусом $R = 10 \, cm$. Определить в точке О магнитную индукцию B поля, создаваемого этим током.



59. По плоскому контуру из тонкого провода течет ток $I = 100\,A$. Определить магнитную индукцию В поля, создаваемого этим током в точке О. Радиус R изогнутой части контура равен $20\,$ см.



60. По тонкому проволочному кольцу течет ток. Не изменяя силы тока в проводнике, ему придали форму квадрата. Во сколько раз изменится магнитная индукция в центре контура?

- 61. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I=1 κA . Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.
- 62. Тонкий провод в виде дуги, составляющей треть кольца радиусом $R=15\ cm$, находится в однородном магнитном поле ($B=20\ mTn$). По проводу течет ток $I=30\ A$. Плоскость, в которой лежит дуга, перпендикулярна линиям магнитной индукции, и подводящие провода находятся вне поля. Определить силу F, действующую на провод.
- 63. По тонкому проводу в виде кольца радиусом $R=20\ cm$ течет ток $I=100\ A$. Перпендикулярно плоскости кольца возбуждено однородное магнитное поле с индукцией $B=20\ mTn$. Найти силу F, растягивающую кольцо.
- 64. Из проволоки сделано полукольцо радиусом $R=10\ cM$, по которому протекает ток силой $I=10\ A$. Полукольцо помещено в магнитное поле. Вектор индукции лежит в плоскости полукольца и перпендикулярен диаметру. Индукция B равна $50\ MTn$. Определить силу, действующую на проволоку.
- 65. Проводник в виде тонкого полукольца радиусом R=10~cм находится в однородном магнитном поле с индукцией $B=5,0\cdot 10^{-2}~T$ л. По проводнику течет ток I=10~A. Найти силу, действующую на проводник, если плоскость полукольца перпендикулярна линиям индукции, а подводящие провода находятся вне поля.
- 66. Электрон, обладая скоростью v=1 M_M/c , влетает в однородное магнитное поле под углом $\alpha=60^{0}$ к направлению поля и начинает двигаться по спирали. Напряжённость магнитного поля H=1.5 $\kappa A/m$. Определите шаг и радиус витка спирали.
- 67. Электрон в однородном магнитном поле с индукцией B=0,1 T_{π} движется по окружности. Найти величину

эквивалентного кругового тока, создаваемого движением электрона.

- 68. Электрон движется в однородном магнитном поле с индукцией $B=10^{-4}$ $T_{\it R}$ по винтовой линии. Чему равна скорость электрона, если шаг винтовой линии h=20 $c_{\it M}$, а радиус R=5 $c_{\it M}$?
- 69. Электрон движется в однородном магнитном поле с индукцией $B = 9 \cdot 10^{-3}~Tn$ по винтовой линии, радиус которой r=1~cm и шаг h=7,8~cm. Определить период обращения электрона и его скорость.
- 70. В однородном магнитном поле с индукцией $B=2\ Tл$ движется протон. Траектория его движения представляет собой винтовую линию с радиусом $R=10\ cm$ и шагом $h=60\ cm$. Определить кинетическую энергию T протона.
- 71. В однородном магнитном поле с индукцией B=0,4 Tn в плоскости, перпендикулярной силовым линиям поля, вращается стержень длиной l=10 cm. Ось вращения проходит через один из концов стержня. Определить разность потенциалов на концах стержня при частоте его вращения n=16 $o\delta/c$.
- 72. В однородном магнитном поле с индукцией $B=0,35~T\pi$ равномерно с частотой $n=480~o\sigma/мин$ вращается рамка, содержащая N=500 витков площадью $S=50~cm^2$. Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Определить максимальную ЭДС индукции, возникающую в рамке.
- 73. В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. По цепи протекло количество электричества 10^{-5} K_{π} . Определить магнитный поток Φ , пересеченный кольцом, если сопротивление цепи гальванометра равно $30 \ Om$.
- 74. Рамка из провода сопротивлением 0,01~Om равномерно вращается в однородном магнитном поле с индукцией 0,05~Tn. Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Площадь рамки $100~cm^2$. Какое

- количество электричества протекает через рамку за время поворота ее на угол 30° в следующих трех случаях: 1) от 0 до 30° ; 2) от 30° до 60° ; 3) от 60° до 90° ?
- 75. Тонкий медный проводник массой 1 ε согнут в виде квадрата, и концы его замкнуты. Квадрат помещен в однородное магнитное поле (B=0,1 Tn) так, что плоскость его перпендикулярна линиям индукции поля. Определить количество электричества q, которое протечет по проводнику, если квадрат, потянув за противоположные вершины вытянуть в линию.
- 76. На расстоянии $a=1\, m$ от длинного прямого проводника с током $I=10^3\, A$ расположено кольцо радиусом $r=1\, cm$. Кольцо расположено так, что поток, пронизывающий кольцо, максимален. Чему равно количество электричества, которое протечет по кольцу, если ток в проводнике будет выключен. Сопротивление кольца $R=10\, Om$.
- 77. Соленоид содержит 1000 витков. Сечение сердечни- ка равно 10 cm^2 . По обмотке течет ток, создающий поле с индукцией B=1,5 Tn. Найти среднее значение ЭДС, которая возникнет в соленоиде, если ток уменьшится до нуля за время, равное $5\cdot10^4$ c.
- 78. Проволочное кольцо радиусом $r=10\ cm$ лежит на столе. Какое количество электричества протечет по кольцу, если его повернуть с одной стороны на другую? Сопротивление R кольца равно 1 Om. Вертикальная составляющая индукции B магнитного поля Земли равна $50\ mkTn$.
- 79. По длинному прямому проводу течет ток. Вблизи провода расположена квадратная рамка из тонкого провода сопротивлением R=0,02 Om. Провод лежит в плоскости рамки и параллелен двум ее сторонам, расстояния до которых от провода соответственно равны a_1 = 10 cm, a_2 = 20 cm. Найти силу тока в проводе, если при его включении через рамку протекло количество электричества q = 693 mkkn.

- 80. Горизонтальный стержень длиной l=1 M вращается вокруг вертикальной оси, проходящей через один из его концов. Ось вращения параллельна магнитному полю, индукция которого B=50 $M\kappa Tn$. При какой частоте вращения стержня разность потенциалов на концах этого стержня U=1MB.
- 81. Колебания материальной точки совершаются по закону x=0.03sin π (t+0.5) m. Определить наибольшие значения скорости и ускорения. Чему равна фаза колебаний спустя 5 c после начала движения?
- 82. Написать уравнение гармонического колебательного движения, если максимальное ускорение точки равно $0,493~m/c^2$, период колебаний 2 c и смещение точки от положения равновесия в начальный момент времени 0,025~cm.
- 83. Точка совершает гармонические колебания. Период колебания T=2 c, амплитуда A=5 cm, начальная фаза равна нулю. Найти скорость точки в момент времени, когда ее смещение от положения равновесия равно 2,5 cm.
- 84. Начальная фаза гармонического колебания равна нулю. Через какую долю периода скорость точки будет равна половине ее максимальной скорости?
- 85. Материальная точка одновременно участвует в двух колебаниях, происходящих вдоль одной прямой и выражаемых уравнениями x_1 = $sin\omega t$ c_M и x_2 = $cos\omega t$ c_M . Найти амплитуду A результирующего колебания, его частоту v и начальную фазу φ . Написать уравнение движения.
- 86. Складываются два взаимно перпендикулярных колебания, выражаемых уравнениями

$$x = A_1 sin\omega t$$
 и $y = A_2 cos\omega(t+\tau)$, где $A_1 = 2$ см, $A_2 = 1$ см; $\omega = \pi c^{-1}$; $\tau = 0,5$ с.

Найти уравнение траектории и построить ее, показав направление движения точки.

87. Точка совершает одновременно два гармонических колебания, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями

$$x = 4\cos\pi t$$
 см и $y = 8\cos\pi(t+1)$ см.

Найти уравнение траектории и построить график ее движения.

- 88. Найти амплитуду и начальную фазу гармонического колебания, полученного от сложения одинаково направленных колебаний, данных уравнениями
 - $x_1 = 4\sin \pi t \ c_M \ M \ x_2 = 3\sin(\pi t + \pi/2) \ c_M.$

Написать уравнение результирующего колебания. Построить векторную диаграмму сложения амплитуд.

- 89. Написать уравнение результирующего колебания, получающегося в результате сложения двух взаимно перпендикулярных колебаний с одинаковой частотой v=5 Γu и с одинаковой начальной фазой $\varphi=\pi/3$. Амплитуды колебаний равны $A_1=0.10$ м и $A_2=0.05$ м.
- 90. Точка участвует в двух взаимно перпендикулярных колебаниях $x=cos\pi t$ и $y=cos\pi t/2$. Найти траекторию результирующего движения точки.
- 91. Амплитуда колебаний маятника длиной l=1 m за время t=10 mun уменьшилась в 2 раза. Определить логарифмический декремент колебаний λ .
- 92. Логарифмический декремент колебаний λ маятника равен 0,003. Определить число N полных колебаний, которые должен сделать маятник, чтобы амплитуда уменьши- лась в два раза.
- 93. Гиря массой m=500 ε подвешена к спиральной пружине жесткостью k=20 H/M и совершает упругие колебания в некоторой среде. Логарифмический декремент колебаний λ =0,004. Определить число N полных колебаний, которые должна совершить гиря, чтобы амплитуда колебаний уменьшилась в 2 раза. За какое время t произойдет это уменьшение?

- 94. Математический маятник длиной в 24,7 *см* совершает затухающие колебания. Через какое время энергия колебаний маятника уменьшится в 9,4 раза, если логарифмический декремент затухания $\lambda = 0.01$?
- 95. Найти число N полных колебаний системы, в течение которых энергия системы уменьшилась в два раза. Логарифмический декремент колебаний $\lambda=0{,}01{.}$
- 96. Пружинный маятник (жесткость пружины k равна 10~H/M, масса m груза равна 100~e) совершает вынужденные колебания в вязкой среде с коэффициентом сопротивления $r=2\cdot10^{-2}\kappa e/c$. Определить коэффициенты затухания β и резонансную амплитуду A_{pes} , если амплитудное значение вынуждающей силы $F_0=10~MH$.
- 97. Найти время, за которое амплитуда колебания тока в контуре с добротностью Q=5000 уменьшится в два раза, если частота колебаний v=2,2 $M\Gamma u$.
- 98. Колебательный контур имеет емкость C=10 $m\kappa\Phi$, индуктивность L=25 $m\Gamma h$ и активное сопротивление R=1 Om. Через сколько колебаний амплитуда тока в этом контуре уменьшится в e=2,7 раз?
- 99. Добротность колебательного контура Q=5. Определить, на сколько процентов отличается частота ω свободных колебаний контура от ее собственной частоты ω_0 .
- 100. Колебательный контур имеет емкость $1,1\,10^{-9}$ Φ , индуктивность 5.10^{-3} ΓH . Логарифмический декремент затухания равен 0,005. За какое время потеряется вследствие затухания 99% энергии контура?

6. ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ № 2

	Номера заданий									
Вариант	1	2	3	4	5	6	7	8	9	10
1	1	11	21	31	41	51	61	71	81	91
2	2	12	22	32	42	52	62	72	82	92
3	3	13	23	33	43	53	63	73	83	93
4	4	14	24	34	44	54	64	74	84	94
5	5	15	25	35	45	55	65	75	85	95
6	6	16	26	36	46	56	66	76	86	96
7	7	17	27	37	47	57	67	77	87	97
8	8	18	28	38	48	58	68	78	88	98
9	9	19	29	39	49	59	69	79	89	99
10	10	20	30	40	50	60	70	80	90	100

ПРИЛОЖЕНИЕ

Основные физические постоянные электромагнетизма

Элементарный заряд	$E = 1, 6.10^{-19} K_{\pi}$
Масса электрона	$m = 9,11 \cdot 10^{-31} \kappa z$
Масса протона	$m = 1,67 \cdot 10^{-27} \kappa z$
Удельный заряд электрона	$e/m = 1,76 \cdot 10^{11} K$ л/кг
Скорость света в вакууме	$C = 3.00 \cdot 10^8 \text{M/c}$

Диэлектрическая проницаемость ε

Вода	81
Масло (трансформаторное)	2,2
Парафин	2,0
Слюда	7,0
Стекло	7,0
Фарфор	5,0
Эбонит	3,0

Удельное сопротивление ho и температурный коэффициент проводимости lpha

Вещество	ρ при $20^{0}C$, μO_{M} м	α , ${}^{0}C^{-1}$
Железо	98	6,2·10 ⁻³
Медь	17	4,2·10 ⁻³
Алюминий	26	3,6·10 ⁻³
Графит	3,9·10 ³	$-0.8 \cdot 10^3$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Савельев И.В. Курс физики / И.В. Савельев. М.: Наука, 1989. Т.1-3.
- 2. Детлаф А.А. Курс физики / А.А. Детлаф, Б.М. Яворский. М.: Высш. шк., 1989.
- 3. Трофимова Т.И. Курс физики / Т.И. Трофимова. М.: Высш. шк., 2001.
- 4. Яворский Б.М. Справочник по физике/ Б.М. Яворский, А.А. Детлаф. М.: Наука, 1985.
- 5. Чертов А.Г. Задачник по физике / А.Г Чертов, А.А. Воробьёв, учеб. пособие для студентов втузов. М.: Высш. шк., 1988.-527с.
- 6. Волькенштейн В.С. Сборник задач по общему курсу физики / В.С. Волькенштейн. Изд. 2 доп. и перераб. С.Пб.: Специальная литература, 1999-328с.
- 7.. Физика: методические указания к контрольным заданиям для студентов заочников инженерно-технических специальностей вузов / А.А Воробьёв, В.П. Иванов, В.Г. Кондакова, А.Г. Чертов. М.: Высш. шк., 1987 208с.
- 8. Дмитриева Т.Ф., Основы физики / Т.Ф. Дмитриев, В.Л. Прокофьев. М. Высш. шк., 2001.

СОДЕРЖАНИЕ

Методические указания к решению задач и вып	олнению
контрольных работ по физике для студентов	заочной
сокращённой формы обучения	1
КОНТРОЛЬНАЯ РАБОТА №2	2
1. Электростатика	2
1.1. Основные законы и формулы	
1.2. Примеры решения задач	
2. Постоянный электрический ток	
2.1. Основные законы и формулы	

2.2. Примеры решения задач	16
3. Электромагнетизм	20
3.1. Основные формулы	20
3.2. Примеры решения задач	23
4. Колебания и волны	31
4.1. Основные формулы	31
4.2. Примеры решения задач	36
5. Задачи для выполнения контрольной работы №2	43
Варианты контрольной работы № 2	59
Приложение	60
Библиографический список	

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к решению задач и выполнению контрольной работы № 2 по физике для студентов всех технических направлений подготовки заочной сокращённой формы обучения

Составители:

Москаленко Александр Георгиевич Гаршина Мария Николаевна Сафонов Игорь Александрович Тураева Татьяна Леонидовна

В авторской редакции

Компьютерный набор И.А. Сафонова

Подписано к изданию 16.10.2012. Уч. – изд. л. 3,8.

ФГБОУ ВПО "Воронежский государственный технический университет" 394026 Воронеж, Московский просп.,14