ГОСКОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СВЯЗИ И ИНФОРМАТИЗАЦИИ ПОВОЛЖСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ

КАФЕДРА ФИЗИКИ

Одобрена советом ОИФ 12 декабря 1998 года

МЕТОДИЧЕСКАЯ РАЗРАБОТКА к выполнению контрольных работ по физике № 1 и № 2 для студентов I курса заочного отделения

Составили: доц. Агапова Н.Н.

ст.пр. Арсеньев А.Н.

асс. Зотова Л.И.

Редактор: проф. Глущенко А.Г. Рецензент: проф. Митлина Л.А.

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ

Решение задач требует знания физических законов. Поэтому, прежде чем приступить к решению задач, необходимо изучить соответствующие темы курса физики по рекомендуемым учебным пособиям. При решении задач необходимо пользоваться следующей схемой:

- 1. Записать полностью условие задачи. Выписать все величины, входящие в условие, столбиком и выразить их в одних единицах (преимущественно в Международной системе единиц СИ).
- 2. Осмыслить физическую сущность задачи, представив ее наглядно в виде четкого рисунка, на котором, хотя бы условно, указать все параметры, характеризующие явления, на основе которых построено условие задачи.
- 3. Указать основные законы и формулы, на которых базируется условие задачи, разъяснить буквенные обозначения, употребляемые при написании формул. Векторные величины внести на чертеж. Если при решении задачи применяется формула, полученная для частного случая, не выражающая какой-нибудь физический закон или не являющаяся определением какой-нибудь физической величины, то ее следует вывести. Пояснения должны быть краткими, но исчерпывающими.
- 4. Решить задачу сначала в общем виде, то есть в буквенных обозначениях, заданных в условии задачи и взятых из таблиц.
- 5. Подставив в рабочую формулу размерности, убедиться в правильности размерности искомой величины.
- 6. Подставить в конечную формулу числовые значения. При вычислениях соблюдать правила приближенных вычислений и округлений.

ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Примеры решения задач.

Пример 1. Через блок, укрепленный на горизонтальной оси, проходящей через его центр, перекинута нить, к концам которой прикреплены грузы $m_1 = 0.3$ кг и $m_2 = 0.2$ кг. Масса блока m = 0.3 кг. Блок считать однородным диском. Найти ускорение грузов.

Дано: $m_1 = 0.3 \text{ кг}$ $m_2 = 0.2 \text{ кг}$ m = 0.3 кгa = ?

грузов:

Решение:

Система состоит из трех тел: грузов \mathbf{m}_1 и \mathbf{m}_2 , движущихся поступательно, и блока \mathbf{m}_3 , вращающегося относительно непод-

вижной оси, проходящей через центр инерции блока. Груз m_1 находится под действием двух сил: силы тяжести m_1 $\stackrel{\rightarrow}{g}$ и силы натяжения нити $\stackrel{\rightarrow}{T_1}$. Груз m_2 также находится под действием двух сил: силы тяжести m_2 $\stackrel{\rightarrow}{g}$ и силы натяжения нити $\stackrel{\rightarrow}{T_2}$. Запишем 2-й закон Ньютона для

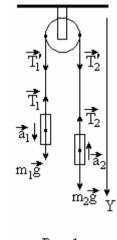


Рис.1

 $\overrightarrow{m_1} \overrightarrow{a_1} = \overrightarrow{m_1} \overrightarrow{g} + \overrightarrow{T_1} , \qquad (1)$

$$\overrightarrow{m_2} \overrightarrow{a_2} = \overrightarrow{m_2} \overrightarrow{g} + \overrightarrow{T_2} .$$
(2)

Блок вращается вокруг неподвижной горизонтальной оси, проходящей через его центр, следовательно, момент силы тяжести блока и момент силы реакции оси равны нулю. Если предположить, что нить не скользит относительно блока, то вращают блок только силы натяжения нити.

Запишем основное уравнение динамики вращательного движения для блока:

$$\vec{1\varepsilon} = \vec{M}_1 + \vec{M}_2 , \qquad (3)$$

где: ε – угловое ускорение,

I – момент инерции блока,

 $\stackrel{\rightarrow}{M}_1$ и $\stackrel{\rightarrow}{M}_2$ – моменты сил $\stackrel{\rightarrow}{T}_1'$ и $\stackrel{\rightarrow}{T}_2'$.

Если нить невесома, то силы натяжения вдоль нити с каждой стороны блока одинаковы по модулю, то есть:

$$T_1' = T_1, T_2' = T_2.$$

Ускорения обоих грузов считаем равными по модулю на основании нерастяжимости нити. Если нить не проскальзывает относительно блока, то касательное ускорение его точек, соприкасающихся с нитью, равно ускорению нити в любой ее точке и ускорению грузов:

$$a_1 = a_2 = a$$
.

Для перехода к скалярным соотношениям для описания движения грузов введем ось Ү. Теперь векторные уравнения (1) и (2) можно заменить скалярными:

$$m_1 a = m_1 g - T_1,$$

 $-m_2 a = m_2 g - T_2.$ (4)

Моменты сил $\overrightarrow{T_1}'$ и $\overrightarrow{T_2}'$ направлены по оси вращения, но в противоположные стороны. Примем направление вектора $\overrightarrow{\epsilon}$ за положительное. Тогда момент силы $\overrightarrow{T_1}'$ относительно оси вращения будет положительным, а момент силы $\overrightarrow{T_2}'$ — отрицательным. Векторное уравнение (3) можно переписать в виде:

$$I\varepsilon = T_1'r - T_2'r,$$

ИЛИ

$$I\varepsilon = T_1 r - T_2 r,$$

где: r – радиус блока.

Учитывая, что момент инерции однородного диска $I = \frac{mr^2}{2}$ и

связь линейного и углового ускорений $\varepsilon = \frac{a}{r}$, получаем:

$$\frac{mr^{2}}{2} \cdot \frac{a}{r} = T_{1}r - T_{2}r,$$

$$0.5ma = T_{1} - T_{2}.$$
(5)

Из уравнений (4) выразим силы натяжения нитей:

$$T_1 = m_1 g - m_1 a$$
,
 $T_2 = m_2 g + m_2 a$.

Подставим в (5), получим:

$$0.5ma = m_1g - m_1a - m_2g - m_2a,$$

$$m_1a + m_2a + 0.5ma = m_1g - m_2g,$$

$$a = \frac{m_1 - m_2}{m_1 + m_2 + 0.5m}g.$$

Проверим размерность:

$$[a] = \frac{\kappa \Gamma - \kappa \Gamma}{\kappa \Gamma + \kappa \Gamma + \kappa \Gamma} \cdot \frac{M}{C^2} = \frac{M}{C^2}.$$

Вычисления:

$$a = 9.81 \frac{0.3 - 0.2}{0.3 + 0.2 + 0.5 \cdot 0.3} = 1.5 \left(\frac{M}{c^2}\right).$$

Ответ: $a = 1.5 \text{ м/c}^2$.

Пример 2. По рельсам свободно движется платформа с установленным на ней орудием. Скорость платформы $v_0 = 10$ м/с. Из орудия производят выстрел вдоль рельс, в направлении движения. Скорость снаряда относительно платформы $u_1 = 400$ м/с. Каково должно быть соотношение между массой М платформы вместе с орудием и массой снаряда m, чтобы скорость платформы уменьшилась в 10 раз?

Дано:

$$v_0 = 10 \text{ м/c}$$

 $u_1 = 400 \text{ м/c}$
 $v_0/v_1 = 10$
 $M/m = ?$

Скорость платформы меняется вследствие взаимодействия снаряда и платформы. Выясним, является ли эта система изолированной. На тела рассматриваемой системы действуют три внешние силы: сила тяжести, сила реакции опоры и силы трения. Первые две силы в сумме дают

ноль. Так как силы взаимодействия, возникающие при выстреле, очень велики, то по сравнению с ними силой трения можно пренебречь. Следовательно, система снаряд — платформа является изолированной системой (в первом приближении).

Решение задачи проведем в системе координат, связанной с Землей. До выстрела импульс системы:

$$\vec{p}_0 = (M + m) \vec{v}_0,$$

после выстрела:

$$\overrightarrow{p}_1 = \overrightarrow{M} \overrightarrow{v}_1 + \overrightarrow{m} (\overrightarrow{v}_1 + \overrightarrow{u}_1),$$

где: $(v_1 + u_1)$ — скорость снаряда относительно Земли после вы-

стрела, v_1 – скорость платформы после выстрела.

По закона сохранения импульса:

$$(M+m)\overset{\rightarrow}{v_0}=M\overset{\rightarrow}{v_1}+m\overset{\rightarrow}{(v_1+\overset{\rightarrow}{u_1})}\,.$$

Учтем, что $v_1 = 0.1v_0$ и запишем в скалярной форме:

$$(M+m)v_0 = 0.1Mv_0 + m(0.1v_0 + u_1),$$

$$0.9Mv_0 = mu_1 - m0.9v_0,$$

$$\frac{M}{m} = \frac{u_1 - 0.9v_0}{0.9v_0} = \frac{400 - 0.9 \cdot 10}{0.9 \cdot 10} \approx 44.$$

Размерность:

$$\left[\frac{M}{m}\right] = \frac{M/C - M/C}{M/C} = 1.$$

Ответ: M/m = 44.

Пример 3. Два шара массами $m_1 = 2.5$ кг и $m_2 = 1.5$ кг движутся друг другу навстречу со скоростями $v_1 = 6$ м/с и $v_2 = 2$ м/с. Найти: 1) скорости шаров после удара, 2) кинетические энергии шаров до и после удара, 3) энергию, затраченную на деформацию шаров при ударе. Удар считать прямым и неупругим.

Дано:
$$m_1 = 2,5 \ \text{кг}, \ m_2 = 1,5 \ \text{кг}$$

$$v_1 = 6 \ \text{м/c}, \ v_2 = 2 \ \text{м/c}$$

$$u = ?, W_1 = ?, \ W_2 = ?,$$

$$W_{\text{деф}} = ?$$

1) Неупругие шары не восстанавливают после удара свою первоначальную форму. Следовательно, не возникают силы, способные оттолкнуть шары друг от друга. Поэтому шары после удара движутся совместно с одинаковой скоростью \vec{u} . Определим эту скорость по закону сохранения импульса. Ось X направим по вектору $\overset{\rightarrow}{v_1}$. В проекциях на ось X закон сохранения импульса примет вид:

$$m_1 v_1 - m_2 v_2 = (m_1 + m_2) u$$
,
 $u = \frac{m_1 v_1 - m_2 v_2}{m_1 + m_2}$.

Проверка размерности:

$$\begin{bmatrix} u \end{bmatrix} = \frac{\kappa \Gamma \frac{M}{C} - \kappa \Gamma \frac{M}{C}}{\kappa \Gamma + \kappa \Gamma} = \frac{M}{C},$$
$$u = \frac{2,5 \cdot 6 - 1,5 \cdot 2}{2,5 + 1,5} = 3 \left(\frac{M}{C}\right).$$

2) Кинетическая энергия шаров до и после удара:

$$W_1 = \frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2}, \qquad W_2 = \frac{(m_1 + m_2)u^2}{2}.$$

$$[W] = \frac{\kappa r \cdot M^2}{c^2} = Дж.$$

$$W_1 = \frac{2,5 \cdot 6^2}{2} + \frac{1,5 \cdot 2^2}{2} = 48 (Дж), \quad W_2 = \frac{(2,5+1,5) \cdot 3^2}{2} = 18 (Дж).$$

3) Энергия деформации равна разности энергий шаров до и после удара (по закону сохранения и превращения энергии):

$$W_{\text{пеф}} = W_1 - W_2 = 30 (Дж)$$
.

Ответ: u = 3 м/c, $W_1 = 48 \text{ Дж}$, $W_2 = 18 \text{ Дж}$, $W_{\text{пиф}} = 30 \text{ Дж}$.

Пример 4. Человек стоит в центре скамьи Жуковского (рис.3) и вместе с ней вращается по инерции с частотой v_1 = 0,5 об/с. Момент инерции человека и скамейки относительно оси вращения $I = 6 \text{ кг} \cdot \text{м}^2$. В вытянутых в сторону руках человек держит две гири массой m = 2 кг каждая. Расстояние между гирями L_1 = 1,6 м. Сколько оборотов в секунду будет делать скамейка с человеком, если он опустит руки и расстояние между гирями станет равным L_2 = 0,4 м?

Дано:
$$v_1 = 0.5 \text{ об/c}$$
 $I = 6 \text{ кг·м}^2$ $m = 2 \text{ кг}$ $L_1 = 1.6 \text{ м}$ $L_2 = 0.4 \text{ м}$ $v_2 = ?$

Поскольку в данной системе трением пренебрегаем, а моменты внешних сил тяжести и реакции опоры будем считать уравновешенными, для системы человек — скамья — гири будет выполняться закон сохранения момента импульса:

$$(I + I_1) \overset{\rightarrow}{\omega}_1 = (I + I_2) \overset{\rightarrow}{\omega}_2$$

или в скалярной форме ($\vec{\omega}_1$ и $\vec{\omega}_2$ совпадают по направлению):

$$(I + I_1)\omega_1 = (I + I_2)\omega_2 \quad , \tag{1}$$

где: І – момент инерции человека и скамейки,

 I_1 – момент инерции гирь в 1-м положении,

ω₁ – угловая скорость системы в 1-м положении,

 I_2 – момент инерции во 2-м положении,

 ω_2 – угловая скорость системы во 2-м положении.

Выразим угловую скорость ω через частоту ν:

$$\omega_1 = 2\pi v_1$$
, $\omega_2 = 2\pi v_2$.

Момент инерции гири определяется по формуле момента инерции материальной точки: $I=mr^2$. Гирь в нашем случае две, r=L/2 , поэтому:

$$I_1 = 2m \left(\frac{L_1}{2}\right)^2 = \frac{mL_1^2}{2}$$
,

$$I_2 = 2m \left(\frac{L_2}{2}\right)^2 = \frac{mL_2^2}{2}$$
.

Подставляя выражения для $\,\omega_{_{\! 1}},\,\,\omega_{_{\! 2}}\,,\,\,I_{_{\! 1}}\,\,$ и $\,I_{_{\! 2}}\,$ в равенство (1), получим:

$$2\pi v_1 \left(I + \frac{mL_1^2}{2} \right) = 2\pi v_2 \left(I + \frac{mL_2^2}{2} \right).$$

Отсюда определим:

$$v_2 = v_1 \frac{I + 0.5 \text{mL}_1^2}{I + 0.5 \text{mL}_2^2} = 0.7 \left(\frac{\text{of}}{\text{c}}\right).$$

Проверка размерности:

$$[v_1] = \frac{\text{OG}}{\text{C}} \cdot \frac{\text{KF} \cdot \text{M}^2 + \text{KF} \cdot \text{M}^2}{\text{KF} \cdot \text{M}^2 + \text{KF} \cdot \text{M}^2} = \frac{\text{OG}}{\text{C}} .$$

Otbet: $v_1 = 0.7 \text{ ob/c}$.

Пример 5. Мальчик катит обруч по горизонтальной дороге со скоростью v = 2 м/с. На какое расстояние может вкатиться обруч на горку за счет его кинетической энергии? Уклон горки 10 м на каждые 100 м пути.

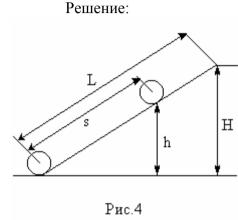
Дано:

$$v = 2 \text{ M/c}$$

 $H = 10 \text{ M}$
 $L = 100 \text{ M}$
 $s = ?$

У подножия горки обруч обладает запасом кинетической энергии:

$$W_{k} = W_{k1} + W_{k2}$$
 ,
$$\text{где: } W_{k1} = \frac{mv^{2}}{2} - \text{кинетическая}$$



энергия поступательного движения обруча,

$$W_{k2} = \frac{I\omega^2}{2} -$$
 кинетическая энергия вращательного движения.

Вкатившись на горку на максимально возможное расстояние (высота горки в этом месте h), обруч приобретет запас потенциальной энергии $W_p = mgh$, кинетическая энергия в этом положении равна нулю.

Пренебрегая трением, воспользуемся законом сохранения энергии:

$$W_{k1} + W_{k2} = W_{p}$$
,
 $\frac{mv^{2}}{2} + \frac{I\omega^{2}}{2} = mgh$.

Учтем, что момент инерции обруча относительно оси, проходящей через центр инерции: $I=mR^2$, где: m- масса обруча, R- радиус обруча. Угловая скорость обруча ω связана с линейной скоростью v' точек, лежащих на поверхности обруча: $\omega=v'/R$.

Поскольку за один полный оборот точка, лежащая на поверхности обруча, проходит путь $2\pi R$ и центр масс смещается тоже на расстояние $2\pi R$, то v'=v. Таким образом:

$$W_{k2} = \frac{I\omega^2}{2} = \frac{mR^2}{2} \cdot \left(\frac{v'}{R}\right)^2 = \frac{mv^2}{2}$$
.

Тогда:

$$\frac{mv^{2}}{2} + \frac{mv^{2}}{2} = mgh,$$

$$v^{2} = gh,$$

$$h = \frac{v^{2}}{g}.$$

Так как $\frac{h}{H} = \frac{s}{L}$ (рис.4), то:

$$s = h \frac{L}{H} = \frac{v^2}{g} \cdot \frac{L}{H} = 4,1(M)$$

Проверка размерности:

$$[s] = \frac{(M/C)^2}{M/C^2} \cdot \frac{M}{M} = M.$$

Otbet: s = 4,1 m.

ОСНОВЫ ТЕРМОДИНАМИКИ

Примеры решения задач.

Пример 6. Азот массой m =0,1 кг был изобарически нагрет от температуры T_1 = 200 К до температуры T_2 = 400 К. Определить работу A, совершенную газом, полученную им теплоту и изменение внутренней энергии азота.

into bity tperment	meprim asora.	1 -
Дано:	Решение:	[↑] P
m = 0,1 кг	Изобразим процесс на	$_{\rm P}$ $^{\rm T_1}$ $^{\rm T_2}$
$T_1 = 200 \text{ K}$	PV – диаграмме (рис.5).	
$T_1 = 400 \text{ K}$	Работа газа при изоба-	
2	рическом расширении	
$\mu = 28 \cdot 10^{-3}$ KT	$A = p(V_2 - V_1).$	<u> </u>
A = ?, Q = ?,	Из уравнения Менде-	V_1 V_2 V_3
$\Delta U = ?$	леева - Клапейрона:	Рис.5
	$pV_1 = \frac{m}{m}RT_1$	$_{\rm DV}$ $_{\rm -}$ $^{\rm m}$ $_{\rm DT}$
	$\mathbf{p} \mathbf{v}_1 = \frac{\mathbf{K} \mathbf{I}_1}{\mathbf{\mu}},$	$p \mathbf{v}_2 = -\mathbf{K} \mathbf{I}_2,$

поэтому:

$$A = \frac{m}{\mu} R(T_2 - T_1) = \frac{0.1}{28 \cdot 10^{-3}} \cdot 8,31 \cdot (400 - 200) = 5,94 \cdot 10^3 (Дж) .$$

Размерность:

$$[A] = \frac{\text{KP}}{\text{KP/MOJB}} \cdot \frac{\text{Дж}}{\text{МОЛЬ} \cdot \text{K}} \cdot \text{K} = \text{Дж}.$$

Изменение внутренней энергии газа определяется изменением его температуры:

$$\Delta U = \frac{m}{u} C_V (T_2 - T_1),$$

где: $C_V = \frac{i}{2} R$ — молярная теплоемкость газа при постоянном объеме, i — число степеней свободы молекулы (азот — двухатомный газ, поэтому i = 5). Тогда:

$$\Delta U = \frac{m}{\mu} \cdot \frac{i}{2} R(T_2 - T_1) = \frac{0.1 \cdot 5 \cdot 8.31 \cdot (400 - 200)}{28 \cdot 10^{-3} \cdot 2} = 14.8 \cdot 10^3 (\text{Дж}).$$

Размерность:
$$[\Delta U] = \frac{\kappa \Gamma}{\kappa \Gamma / \text{моль}} \cdot \frac{\text{Дж}}{\text{моль} \cdot \text{K}} \cdot \text{K} = \text{Дж}$$
.

На основании первого начала термодинамики определим теплоту, полученную газом:

$$Q = \Delta U + A = 5.9 \cdot 10^3 + 14.8 \cdot 10^3 = 20.7 \cdot 10^3 (Дж).$$

Размерность: [Q] = Дж + Дж = Дж.

Ответ:
$$A = 5.9 \cdot 10^3$$
 Дж, $\Delta U = 14.8 \cdot 10^3$ Дж, $Q = 20.7 \cdot 10^3$ Дж.

Пример 7. В сосуде находится водород массой m = 10 г. При изотермическом расширении объем водорода увеличивается в два раза. Считая водород идеальным газом, найти приращение его энтропии.

Дано:
$$V_2 = 2V_1$$
 $m = 10 \ \Gamma = 10^{-2} \ \text{K} \Gamma$ $\mu = 2 \cdot 10^{-3} \ \text{K} \Gamma$ $\Lambda S = ?$

Решение:

Согласно второму началу термодинамики изменение энтропии определяется начальным и конечным состоянием системы. Если процесс перехода системы из начального состояния в конечное обратимый, то:

$$\Delta S = S_2 - S_1 = \int_1^2 \frac{dQ}{T}.$$

По первому началу термодинамики:

$$dQ = dU + dA$$
.

При изотермическом процессе (T = const) изменение внутренней энергии равно нулю (dU = 0), поэтому:

$$dQ = dA = p \cdot dV$$
,

$$\Delta S = \int_{1}^{2} \frac{dQ}{T} = \frac{1}{T} \int_{1}^{2} dQ = \frac{1}{T} \int_{1}^{2} dA = \frac{1}{T} \int_{V_{1}}^{V_{2}} p \cdot dV,$$

Из уравнения Менделеева - Клапейрона: $p = \frac{m}{\mu} RT \frac{1}{V}$,

$$\begin{split} \Delta S &= \frac{1}{T} \int_{V_1}^{V_2} \frac{m}{\mu} R T \frac{dV}{V} = \frac{m}{\mu} R \int_{V_1}^{V_2} \frac{dV}{V} = \frac{m}{\mu} R \cdot ln \frac{V_2}{V_1} \,, \\ \Delta S &= \frac{m}{\mu} R \cdot ln \frac{V_2}{V_1} = \frac{10^{-2}}{2 \cdot 10^{-3}} \cdot 8,31 \cdot ln \, 2 = 28,8 \bigg(\frac{\cancel{\Pi} \times K}{K} \bigg) \,\,. \end{split}$$

Размерность: $\left[\Delta S\right] = \frac{\kappa \Gamma}{\kappa \Gamma / \text{моль}} \cdot \frac{\chi \pi}{\text{моль} \cdot \kappa} = \frac{\chi \pi}{\kappa}$.

Ответ: $\Delta S = 28.8 \frac{\text{Дж}}{\text{К}}$.

Пример 8. Один моль идеального газа с показателем адиабаты γ совершает политропический процесс, в результате которого абсолютная температура газа Т возрастает в η раз. Показатель политропы равен n. Найти приращение энтропии газа ΔS .

 Дано:
 Решение:

 γ , η Приращение энтропии при обратимом процессе:

 $\frac{T_2}{T_1} = \eta$ $\Delta S = \int_1^2 \frac{dQ}{T} = \int_{T_1}^{T_2} \frac{C \cdot dT}{T} = C \cdot \int_{T_1}^{T_2} \frac{dT}{T} = C \cdot \ln \frac{T_2}{T_1} = C \cdot \ln \eta$,

 $\Delta S = ?$ где: C – молярная теплоемкость идеального газа в этом процессе.

Политропический процесс описывается уравнением:

$$pV^n = const$$
,

где: n — показатель политропы, p — давление газа, V — объем, занимаемый газом.

Определим С из выражения для показателя политропы:

$$n = \frac{C_p - C}{C_V - C},$$

где: C_p , C_V – молярные теплоемкости при постоянном давлении и постоянном объеме соответственно. Тогда :

$$nC_v - nC = C_n - C$$

отсюда:

$$C = \frac{nC_V - C_p}{n-1} = \frac{n - \frac{C_p}{C_V}}{n-1} \cdot C_V = \frac{n-\gamma}{n-1} \cdot C_V \,.$$
 Так как $C_V = \frac{i}{2}R$ и $C_p = \frac{i+2}{2}R$, то
$$\gamma = \frac{C_p}{C} = \frac{i+2}{i} \,,$$

где: і – число степеней свободы,

R — универсальная газовая постоянная.

Определим і:

$$i = \frac{2}{\gamma - 1}.$$

Тогда:

$$C_V = \frac{i}{2}R = \frac{2}{2(\gamma - 1)}R = \frac{R}{\gamma - 1}$$
.

Следовательно, молярная теплоемкость С идеального газа в этом процессе:

$$C = \frac{n - \gamma}{n - 1} \cdot C_{V} = \frac{R}{\gamma - 1} \cdot \frac{n - \gamma}{n - 1}.$$

Приращение энтропии:

$$\Delta S = C \cdot \ln \eta = \frac{R}{\gamma - 1} \cdot \frac{n - \gamma}{n - 1} \cdot \ln \eta.$$

Размерность: $[\Delta S] = \frac{Дж}{MOЛь·K}$.

Otbet:
$$\Delta S = \frac{R}{\gamma - 1} \cdot \frac{n - \gamma}{n - 1} \cdot \ln \eta$$
.

ЭЛЕКТРОСТАТИКА.

Примеры решения задач.

Пример 9. Два точечных заряда $q_1 = 1$ нКл и $q_2 = -2$ нКл находятся на расстоянии d = 10 см друг от друга. Определить напряженность $\stackrel{\rightarrow}{E}$ и потенциал ϕ поля, создаваемого этими зарядами в точке A, удаленной от заряда q_1 на расстояние $r_1 = 9$ см и от заряда q_2 на расстояние $r_2 = 7$ см.

Дано:
$$q_1 = 1 \text{ HK} \pi = 10^{-9} \text{ K} \pi$$

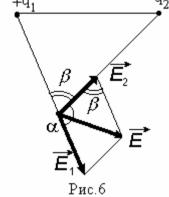
$$q_2 = -2 \text{ HK} \pi = -2 \cdot 10^{-9} \text{ K} \pi$$

$$d = 10 \text{ cm} = 0.1 \text{ M}$$

$$r_1 = 9 \text{ cm} = 0.09 \text{ M}$$

$$r_2 = 7 \text{ cm} = 0.07 \text{ M}$$

$$E = ?, \varphi = ?$$



Решение:

По принципу суперпозиции напряженность $\stackrel{\rightarrow}{E}$ электрического поля в искомой точке равна векторной сумме напряженностей $\stackrel{\rightarrow}{E_1}$ и $\stackrel{\rightarrow}{E_2}$ полей, создаваемых каждым зарядом в отдельности:

$$\vec{E} = \vec{E}_1 + \vec{E}_2$$
.

Вектор \vec{E}_1 направлен по силовой линии от заряда q_1 , так как заряд q_1 положителен; вектор \vec{E}_2 направлен по силовой линии к заряду q_2 , так как заряду q_2 отрицателен. Абсолютное значение вектора \vec{E} найдем по теореме косинусов:

$$E = \sqrt{E_1^2 + E_2^2 + 2E_1E_2\cos\alpha} = \sqrt{E_1^2 + E_2^2 - 2E_1E_2\cos\beta},$$

где: α – угол между векторами \vec{E}_1 и \vec{E}_2 , $\beta = \pi - \alpha$. Напряженность электрического поля в воздухе ($\epsilon = 1$), создаваемого точечными зарядами q_1 и q_2 равна:

$$E_1 = \frac{|q_1|}{4\pi\epsilon_0 r_1^2}, \qquad E_2 = \frac{|q_2|}{4\pi\epsilon_0 r_2^2},$$

где:
$$k = \frac{1}{4\pi\epsilon_0} = 9 \cdot 10^{-9} \frac{\text{H} \cdot \text{M}^2}{\text{Кл}^2}$$
.

Из треугольника со сторонами r_1 , r_2 , d:

$$d^{2} = r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}\cos\beta ,$$

$$\cos\beta = \frac{r_{1}^{2} + r_{2}^{2} - d^{2}}{2r_{1}r_{2}} = \frac{9^{2} + 7^{2} - 10^{2}}{2 \cdot 9 \cdot 7} = 0,238 .$$

Подставив, находим:

$$E = \frac{1}{4\pi\epsilon_0} \sqrt{\frac{q_1^2}{r_1^4} + \frac{q_2^2}{r_2^4} - 2\frac{q_1}{r_1^2} \frac{q_2}{r_2^2} \cos\beta} .$$

Размерность:

$$[E] = \frac{H \cdot M^2}{K \pi^2} \cdot \frac{K \pi}{M^2} = \frac{H}{K \pi} = \frac{\mathcal{J} \mathcal{K}}{M \cdot K \pi} = \frac{B}{M}.$$

Вычисления:

$$\begin{split} E &= 9 \cdot 10^9 \sqrt{\left(\frac{10^{-9}}{\left(9 \cdot 10^{-2}\right)^2}\right)^2 + \left(\frac{2 \cdot 10^{-9}}{\left(7 \cdot 10^{-2}\right)^2}\right)^2 - \frac{2 \cdot 10^{-9} \cdot 2 \cdot 10^{-9} \cdot 0,238}{\left(9 \cdot 10^{-2}\right)^2 \cdot \left(7 \cdot 10^{-2}\right)^2} \;, \\ E &= 3,58 \cdot 10^3 \left(\frac{\text{B}}{\text{M}}\right) = 3,58 \left(\frac{\text{KB}}{\text{M}}\right). \end{split}$$

По принципу суперпозиции потенциал электрического поля, созданного двумя зарядами q_1 и q_2 равен алгебраической сумме потенциалов полей, созданных каждым зарядом в отдельности:

$$\varphi = \varphi_1 + \varphi_2$$
.

Потенциалы электрических полей, созданных в воздухе точечными зарядами q_1 и q_2 :

$$\phi_1 = \frac{q_1}{4\pi\epsilon_0 r_1}, \qquad \phi_2 = \frac{q_2}{4\pi\epsilon_0 r_2}.$$

Подставим, получим:

$$\phi = \frac{q_1}{4\pi\epsilon_0 r_1} + \frac{q_2}{4\pi\epsilon_0 r_2} = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} \right).$$

Размерность:

$$\left[\phi\right] = \frac{H \cdot M^{2}}{K \pi^{2}} \cdot \frac{K \pi}{M} = \frac{H \cdot M}{K \pi} = \frac{\mathcal{J} \mathcal{K}}{K \pi} = B.$$

При вычислении ф следует учитывать знак заряда:

$$\varphi = 9 \cdot 10^9 \left(\frac{10^{-9}}{9 \cdot 10^{-2}} - \frac{2 \cdot 10^{-9}}{7 \cdot 10^{-2}} \right) = -157(B).$$

Otbet: $E = 3.58 \text{ kB/M}, \varphi = -157 \text{ B}.$

Пример 10. Ромб (рис.7) составлен из двух равносторонних треугольников со сторонами а = 0,25 м. В вершинах при острых углах ромба помещены заряды $q_1 = q_2 = 2.5 \cdot 10^{-9} \, \text{Кл. B}$ вершине при одном из тупых углов ромба помещен заряд $q_3 = -5 \cdot 10^{-9} \, \text{Кл.}$ Определить напряженность электрического поля в четвертой вершине ромба. Какая сила будет действовать на заряд $q_4 = -2 \cdot 10^{-9}$ Кл, помещенный в эту вершину.

a = 0.25 M $q_2 = -5.10^{-9} \text{ K}_{\pi}$

Решение: зиции напряженность $\stackrel{
ightarrow}{E}$ электрического поля в искомой точке равна

Дано: $q_1 = q_2 = 2,5 \cdot 10^{-9} \, \text{Kл}$ По принципу суперпо-

 $q_4 = -2 \cdot 10^{-9} \, \text{Kл}$ векторной сумме на- Рис.7 пряженностей \vec{E}_1 , \vec{E}_2 , \vec{E}_2 полей, создавае-

мых каждым зарядом в отдельности:

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3.$$

Модуль вектора É:

$$E = \sqrt{E_x^2 + E_y^2} ,$$

где: E_x и E_y проекции вектора \vec{E} на координатные оси.

При выбранном направлении осей:

$$E_x = E_1 \cos \alpha + E_2 \cos \alpha - E_3,$$

$$E_y = -E_1 \sin \alpha + E_2 \sin \alpha.$$

Напряженности полей, создаваемых зарядами q1, q2, q3 соответственно равны:

$$E_1 = \frac{|q_1|}{4\pi\epsilon_0 a^2}, \qquad E_2 = \frac{|q_2|}{4\pi\epsilon_0 a^2}, \qquad E_3 = \frac{|q_3|}{4\pi\epsilon_0 a^2}.$$

Учитывая, что $q_1 = q_2$, получим:

$$E_{x} = 2 \frac{|q_{1}|}{4\pi\epsilon_{0}a^{2}} \cos\alpha - \frac{|q_{3}|}{4\pi\epsilon_{0}a^{2}} = \frac{2|q_{1}|\cos\alpha - |q_{3}|}{4\pi\epsilon_{0}a^{2}}, \quad E_{y} = 0.$$

Следовательно:

$$E = \sqrt{E_x^2 + E_y^2} = |E_x|$$
.

Размерность:

$$[E] = \frac{H \cdot M^2}{K \pi^2} \cdot \frac{K \pi}{M^2} = \frac{H}{K \pi} = \frac{\mathcal{J} \mathcal{K}}{M \cdot K \pi} = \frac{B}{M}.$$

Вычисления:

$$E_{x} = \frac{9 \cdot 10^{9} \left(2 \cdot 2, 5 \cdot 10^{-9} \cdot 0, 5 - 5 \cdot 10^{-9}\right)}{\left(2, 5 \cdot 10^{-2}\right)^{2}} = -360 \left(\frac{B}{M}\right).$$

Знак минус указывает на то, что проекция Е, а следовательно и вектор É направлены противоположно оси X.

Сила, действующая на заряд q₄, равна:

$$F=q_4E=2\cdot 10^{-9}\cdot \text{Kj}\cdot 360\cdot \text{H/Kj}=0,72\cdot 10^{-6}\,\text{H}=0,72\,\text{mkH}\quad.$$
 Ответ: $E=360$ B/M, $F=0,72$ мкH.

Пример 11. Тонкий стержень длинной L=20 см несет равномерно распределенный заряд. На продолжении оси стержня на расстоянии a=10 см от ближайшего конца находится точечный заряд $q_1=40$ нКл, на который со стороны стержня действует сила F=6 мкН. Определить линейную плотность τ заряда на стержне.

Дано:
$$L = 20 \text{ cm} = 0.2 \text{ M}$$

$$a = 10 \text{ cm} = 0.1 \text{ M}$$

$$q_1 = 40 \text{ HK} \pi = 40 \cdot 10^{-9} \text{ K} \pi$$

$$F = 6 \text{ MKH} = 6 \cdot 10^{-6} \text{ H}$$

$$\tau = ?$$

Сила взаимодействия F заряженно-

го стержня с точечным зарядом q_1 зависит от линейной плотности τ заряда на стержне. При вычислении силы F следует иметь ввиду, что заряд на стержне не является точечным, поэтому закон Кулона непосредственно применить нельзя. В этом случае можно поступить следующим образом. Выделим на стержне (рис.8) малый участок dr с зарядом $dq = \tau \cdot dr$. Этот заряд можно рассматривать как точечный. Тогда, согласно закону Кулона:

$$dF = \frac{q_1 \tau dr}{4\pi \varepsilon_0 r^2}.$$

Интегрируя это выражение в пределах от а до a + L получим:

$$F = \frac{q_1 \tau}{4\pi \epsilon_0} \int_{a}^{a+L} \frac{dr}{r^2} = \frac{q_1 \tau}{4\pi \epsilon_0} \left(\frac{1}{a} - \frac{1}{a+L} \right) = \frac{q_1 \tau L}{4\pi \epsilon_0 a(a+L)} .$$

Отсюда линейная плотность заряда:

$$\tau = \frac{4\pi\epsilon_0 a (a+L) F}{q_1 L} \,, \quad \text{где:} \, \epsilon_0 = \frac{1}{4\pi \cdot 9 \cdot 10^9} \frac{\text{K} \pi^2}{\text{H} \cdot \text{M}^2} \ .$$

Размерность:

$$[\tau] = \frac{K\pi^2}{H \cdot M^2} \frac{M \cdot M \cdot H}{K\pi \cdot M} = \frac{K\pi}{M}.$$

Вычисления:
$$\tau = \frac{0.1 \cdot (0.1 + 0.2) \cdot 6 \cdot 10^{-6}}{9 \cdot 10^9 \cdot 40 \cdot 10^{-9} \cdot 0.2} = 2.5 \cdot 10^{-9} \left(\frac{\text{Кл}}{\text{м}}\right) = 2.5 \left(\frac{\text{нКл}}{\text{м}}\right).$$

Ответ: $\tau = 2.5 \text{ нКл/м}$.

Пример 12. Электрическое поле образованно положительно заряженной бесконечной нитью с линейной плотностью заряда $\tau = 2 \cdot 10^{-9}$ Кл/см. Какую скорость получит электрон, приблизившись к нити с расстояния $r_1 = 1$ см до расстояния $r_2 = 0.5$ см от нити.

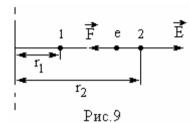
Дано:
$$\tau = 2 \cdot 10^{-9} \text{ Kл/cm} = 2 \cdot 10^{-7} \text{ Kл/m}$$

$$r_1 = 1 \text{ cm} = 10^{-2} \text{ M}$$

$$r_2 = 0.5 \text{ cm} = 0.5 \cdot 10^{-2} \text{ M}$$

$$e = -1.6 \cdot 10^{-19} \text{ Kл}$$

$$v_2 = ?$$



Систему заряженная нить-электрон можно рассматривать как замкнутую. Полная энергия электрона, двигающегося в потенциальном поле заряженной нити, будет постоянной:

$$W_k + W_p = const$$
,

где: $W_k = \frac{mv^2}{2}$ – кинетическая энергия электрона,

 $W_{_{p}} = e\phi - потенциальная энергия электрона.$

На основании закона сохранения энергии:

$$\frac{mv_1^2}{2} + e\phi_1 = \frac{mv_2^2}{2} + e\phi_2 \quad .$$

Учитывая, что $v_1 = 0$, получим:

$$v_2 = \sqrt{\frac{2e(\phi_1 - \phi_2)}{m}} .$$

Для определения разности потенциалов используем связь между напряженностью поля и изменением потенциала:

$$\vec{E} = -grad\varphi$$
 .

Для поля с осевой симметрией, каким является поле заряженной бесконечной нити, это соотношение можно записать в виде:

$$E = -\frac{d\phi}{dr}$$
, откуда $d\phi = -Edr$.

Интегрируя это выражение, найдем разность потенциалов, двух точек отстоящих на расстояния r_1 и r_2 от нити:

$$\phi_2 - \phi_1 = -\int_{r_1}^{r_2} E dr$$
.

Напряженность поля, создаваемого бесконечно длинной нитью:

$$\begin{split} E &= \frac{\tau}{2\pi\epsilon_0 r}\,,\\ \phi_2 - \phi_1 &= -\frac{\tau}{2\pi\epsilon_0} \int\limits_{r_1}^{r_2} \frac{dr}{r} = -\frac{\tau}{2\pi\epsilon_0} \Big(ln\, r_2 - ln\, r_1 \Big) = -\frac{\tau}{2\pi\epsilon_0} ln \bigg(\frac{r_2}{r_1} \bigg)\,,\\ v_2 &= \sqrt{\frac{2e}{m} \frac{\tau}{2\pi\epsilon_0} ln \bigg(\frac{r_2}{r_1} \bigg)}\,. \end{split}$$

Размерность:

$$\left[\mathbf{v}_{2}\right] = \sqrt{\frac{\mathbf{K}\boldsymbol{\Pi}}{\mathbf{K}\boldsymbol{\Gamma}} \cdot \frac{\mathbf{K}\boldsymbol{\Pi}}{\mathbf{M}} \cdot \frac{\mathbf{H} \cdot \mathbf{M}^{2}}{\mathbf{K}\boldsymbol{\Pi}^{2}}} = \sqrt{\frac{\mathbf{H} \cdot \mathbf{M}}{\mathbf{K}\boldsymbol{\Gamma}}} = \sqrt{\frac{\mathbf{K}\boldsymbol{\Gamma} \cdot \mathbf{M}}{\mathbf{C}^{2}} \cdot \frac{\mathbf{M}}{\mathbf{K}\boldsymbol{\Gamma}}} = \sqrt{\frac{\mathbf{M}^{2}}{\mathbf{C}^{2}}} = \frac{\mathbf{M}}{\mathbf{C}} \; .$$

Вычисления:

$$\mathbf{v}_2 = \sqrt{\frac{2 \cdot 1, 6 \cdot 10^{-19} \cdot 2 \cdot 9 \cdot 10^9 \cdot 2 \cdot 10^{-7} \ln 2}{9,11 \cdot 10^{-31}}} = 2,96 \cdot 10^7 \left(\frac{\mathbf{M}}{\mathbf{C}}\right).$$

Otbet: $v_2 = 29.6 \text{ Mm/c}$.

Пример 13. Расстояние между пластинами плоского конденсатора d = 4 см. Электрон начинает двигаться от отрицательной пластины в тот момент, когда от положительной пластины начинает двигаться протон. На каком расстоянии от положительной пластины они встретятся?

Дано:
$$d = 4 \text{ см}$$
 частицу в элек ческом поле де вует сила Кулов
$$m_e = 9,11\cdot 10^{-31} \text{ кг}$$

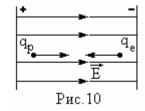
$$m_p = 1,67\cdot 10^{-27} \text{ кг}$$

$$x = ?$$

$$F = q \stackrel{?}{E}$$
.

На заряженную частицу в электрическом поле действует сила Кулона:

$$\vec{F} = \vec{q} \vec{E}$$
.



Силой тяжести пренебрегаем, т.к. $m_e g << q_e E$, $m_n g << q_n E$.

По второму закону Ньютона, т.к. силы не зависят от времени, движение электрона и протона равноускоренное. Начальная скорость обеих частиц равна нулю. Обозначим путь, пройденный протоном через x, тогда электрон до встречи пройдет путь d-x:

$$x = \frac{a_p t^2}{2}$$
, $d - x = \frac{a_e t^2}{2}$,

где: t- время движения частиц.

Найдем ускорение частиц: $\stackrel{\rightarrow}{a} = \frac{\stackrel{\rightarrow}{F}}{\stackrel{}{-}}$, следовательно

$$a_{p} = \frac{F}{m_{p}} = \frac{q_{p}E}{m_{p}}, \quad a_{e} = \frac{F}{m_{e}} = \frac{q_{e}E}{m_{e}}.$$

Тогда:

$$x = \frac{q_p E}{m_p} \frac{t^2}{2}, \quad d - x = \frac{q_e E}{m_e} \frac{t^2}{2}.$$

Составим соотношение:

$$\frac{x}{d-x} = \frac{q_p E}{m_p} \frac{t^2}{2} \cdot \frac{m_e}{q_e E} \frac{2}{t^2} = \frac{m_e}{m_p},$$

откуда:

$$x \cdot m_{p} = d \cdot m_{e} - x \cdot m_{e} ,$$

$$x = \frac{m_{e}}{m_{p} + m_{e}} d .$$

Проверка размерности:

$$[x] = \frac{\kappa \Gamma \cdot M}{\kappa \Gamma - \kappa \Gamma} = M .$$

Подставим числовые значения и произведем вычисления:

$$x = \frac{9,11 \cdot 10^{-31} \cdot 4 \cdot 10^{-2}}{1.67 \cdot 10^{-27} + 9.11 \cdot 10^{-31}} = 2,2 \cdot 10^{-6} \, (\text{M}) = 2,2 \, (\text{Mkm}) \, .$$

Otbet: x = 2.2 MKM.

Пример 14. Протон и α - частица, двигаясь с одинаковой скоростью, влетают в плоский конденсатор параллельно его пластинам. Во сколько раз отклонение протона полем конденсатора будет больше отклонения α - частицы.

Дано: $v_{0\alpha} = v_{0p}$ $m_{\alpha} = 4m_{p}$ $q_{\alpha} = 2q_{p}$ $\frac{y_{p}}{y_{\alpha}} = ?$

Решение:

Заряженная частица, влетев в конденсатор параллельно пластинам (вдоль оси X) со скоро-

+q V_{0x}

F E

стью \overrightarrow{V}_{0x} , испытывает

со стороны поля конденсатора действие куло-

новской силы $\acute{F}=q\,\acute{E}$, направленной перпендикулярно пластинам конденсатора (вдоль оси Y). Согласно 2-му закону Ньютона движение частицы вдоль оси Y будет равноускоренным:

$$a_y = \frac{F}{m} = \frac{qE}{m} .$$

Отклонение частицы перпендикулярно пластинам (вдоль оси Y):

$$y = v_{0x}t + \frac{a_y t^2}{2}.$$

Так как $v_{0y} = 0$, то:

$$y = \frac{a_y t^2}{2} .$$

Движение частицы параллельно пластинам равномерное (вдоль оси X), поэтому время движения частицы в конденсаторе:

$$t = \frac{L}{v_{0x}},$$

где: L – длина пластины конденсатора,

 v_{0x} – скорость движения частицы параллельно пластинам.

Тогда отклонение частицы полем конденсатора примет вид:

$$y = \frac{a_y t^2}{2} = \frac{qE}{2m} \left(\frac{L}{v_{0x}}\right)^2 = \frac{qE}{2m} \frac{L^2}{v_{0x}^2}$$
,

$$\begin{split} y_{p} &= \frac{q_{p}E}{2m_{p}} \frac{L^{2}}{v_{0p}^{2}} \,, \qquad y_{\alpha} = \frac{q_{\alpha}E}{2m_{\alpha}} \frac{L^{2}}{v_{0\alpha}^{2}} \,, \\ &\frac{y_{p}}{y_{\alpha}} = \frac{q_{p}E}{2m_{p}} \frac{L^{2}}{v_{0p}^{2}} \cdot \frac{2m_{\alpha}}{q_{\alpha}E} \frac{v_{0\alpha}^{2}}{L^{2}} = \frac{q_{p}}{m_{p}} \frac{m_{\alpha}}{q_{\alpha}} = \frac{q_{p}}{q_{\alpha}} \frac{m_{\alpha}}{m_{p}} = \frac{4}{2} = 2 \ . \end{split}$$

Отклонение протона полем конденсатора в два раза больше отклонения α - частицы, при условии, что обе частицы влетели в конденсатор параллельно пластинам с одинаковой скоростью.

Пример 15. Электрон влетает в плоский горизонтальный конденсатор параллельно его пластинам со скоростью $v_{0x} = 10^7$ м/с. Напряженность поля в конденсаторе E = 100 В/см, длина конденсатора L = 5 см. Найти величину и направление скорости электрона при вылете его из конденсатора.

Дано:
$$q = 1,6 \cdot 10^{-19} \text{ Kл}$$

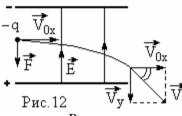
$$m = 9,11 \cdot 10^{-31} \text{ Kr}$$

$$v_{0x} = 10^7 \text{ M/c}$$

$$E = 100 \text{ B/cm} = 10000 \text{ B/m}$$

$$L = 5 \text{ cm} = 5 \cdot 10^{-2} \text{ M}$$

$$v = ?, \alpha = ?$$



Решение:

 $v = ?, \alpha = ?$ Пусть напряженность электрического поля в конденсаторе направлена сверху вниз. Тогда на электрон,

влетевший в конденсатор параллельно его пластинам со скоростью $\overset{\rightarrow}{v_{0x}}$, будет действовать кулоновская сила $\vec{F}=q\vec{E}$. В результате движение электрона по вертикали будет равноускоренным, а по горизонтали – по-прежнему равномерным. При вылете из конденсатора скорость электрона:

$$v = \sqrt{v_x^2 + v_y^2} ,$$

где: $v_x = v_{0x}$ — скорость движения параллельно пластинам, $v_y = v_{0y} + a_y t = a_y t$ — скорость перпендикулярно пластинам.

Ускорение электрона:

$$a_y = \frac{F}{m} = \frac{qE}{m}$$
.

Время движения электрона в конденсаторе:

в конденса:
$$t = \frac{L}{v_{0x}}.$$

Тогда:

$$v_{y} = \frac{qE}{m} \frac{L}{v_{0x}} .$$

Скорость электрона при вылете:

$$V = \sqrt{V_{0x}^2 + \left(\frac{qE}{m} \frac{L}{V_{0x}}\right)^2} \ .$$

Проверим размерность:

$$[v_y] = \frac{K_{\Pi} \cdot \frac{B}{M} \cdot M}{K_{\Gamma} \cdot \frac{M}{C}} = \frac{K_{\Pi} \cdot B}{K_{\Gamma} \cdot \frac{M}{C}} = \frac{\mathcal{J}_{\mathcal{K}}}{K_{\Gamma} \cdot \frac{M}{C}} = \frac{\frac{K_{\Gamma} \cdot M^2}{C^2}}{K_{\Gamma} \cdot \frac{M}{C}} = \frac{M}{C} .$$

Вычисления:

$$v_{y} = \sqrt{(10^{7})^{2} + \left(\frac{1.6 \cdot 10^{-19} \cdot 10^{4} \cdot 5 \cdot 10^{-2}}{9.11 \cdot 10^{-31} \cdot 10^{7}}\right)^{2}} = 1.33 \cdot 10^{7} \left(\frac{M}{C}\right).$$

Угловое отклонение электрона от горизонтального направления:

$$\begin{split} tg\alpha = & \frac{v_y}{v_{0x}} = \frac{qEL}{mv_{0x}^2} \ , \\ \alpha = & \arctan \frac{qEL}{mv_{0x}^2} = \arctan \frac{1,6 \cdot 10^{-19} \cdot 10^4 \cdot 5 \cdot 10^{-2}}{9,11 \cdot 10^{-31} \cdot \left(10^7\right)^2} \approx 41^0 \ . \end{split}$$

Other: $v_v = 1.33 \cdot 10^7 \text{ m/c}, \alpha = 41^0$.

Пример 16. Конденсаторы с емкостями $C_1 = C_2 = C_4 = 2$ мкФ. $C_3 =$ 3 мкФ соединены так, как показано на рисунке (рис.13а). Напряжение на обкладках 4-го конденсатора $U_4 = 50 \text{ B}$. Найти заряды и разности потенциалов на обкладках каждого конденсатора, а также общий заряд и разность потенциалов батареи.

Дано:
$$C_1 = C_2 = C_4 = 2 \text{ мк}\Phi$$

$$C_3 = 3 \text{ мк}\Phi$$

$$U_4 = 50 \text{ B}$$

$$C = ?, q = ?, U = ?$$

$$q_1, q_2, q_3, q_4 = ?$$

$$U_1, U_2, U_3 = ?$$

Решение: Вычислим электроемкость батареи. $U_4 = 50 \text{ B}$ Преобразуем исход- C = ?, q = ?, U = ? ную схему (рис. 13 а) φ_1 ную схему (рис. 13 б, в, г). Конденсаторы С2 и

С3 соединены последовательно:

$$\frac{1}{C_{23}} = \frac{1}{C_2} + \frac{1}{C_3},$$

$$C_{23} = \frac{C_2C_3}{C_2 + C_3} = \frac{2 \cdot 3}{2 + 3} = 1,2(\text{MK}\Phi).$$

Эквивалентный конденсатор С23 соединен с конденсатором С₄ параллельно, поэтому:

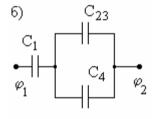
$$C_{234} = C_{23} + C_4 = 1,2 + 2 = 3,2 (\text{Mk}\Phi)$$
.

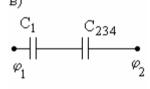
Эквивалентный конденсатор С234 соединен последовательно с конденсатором С1:

$$C = \frac{C_1 C_{234}}{C_1 + C_{234}} = \frac{2 \cdot 3,2}{2 + 3,2} = 1,23 (мк\Phi).$$

Заряд на конденсаторе связан с разностью потенциалов (напряжением) между его обкладками, поэтому:

a)
$$C_2$$
 C_3 C_4 φ_2





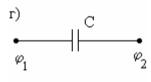


Рис. 13

$$q_4 = C_4 U_4 = 2 \cdot 10^{-6} \, \Phi \cdot 50 B = 100 \cdot 10^{-6} \, \text{Kp} = 100 \text{MkKp}.$$

При параллельном соединение напряжения на конденсаторах одинаковые, поэтому:

$$U_{234} = U_{23} = U_4 = 50B$$
.

При последовательном соединении заряд на каждом из конденсаторов одинаковый, то есть:

$$q_2 = q_3 = q_{23} = C_{23}U_{23} = 1,2 \cdot 50 = 60$$
(мкКл).

Зная заряды, найдем напряжения:

$$U_2 = \frac{q_2}{C_2} = \frac{60 \cdot 10^{-6} \,\text{K} \text{J}}{2 \cdot 10^{-6} \,\Phi} = 30 \,\text{B},$$

$$U_3 = \frac{q_3}{C_3} = \frac{60 \cdot 10^{-6} \,\text{K} \text{J}}{3 \cdot 10^{-6} \,\Phi} = 20 \,\text{B}.$$

Общий заряд q равен заряду первого конденсатора q_1 , который равен заряду эквивалентного конденсатора C_{234} , который в свою очередь равен сумме зарядов конденсаторов C_{23} и C_4 :

$$q = q_1 = q_{234} = q_{23} + q_4 = 60$$
мкКл $+ 100$ мкКл $= 160$ мкКл

Напряжение на первом конденсаторе:

$$U_1 = \frac{q_1}{C_1} = \frac{160 \cdot 10^{-6} \,\mathrm{Km}}{2 \cdot 10^{-6} \,\Phi} = 80 \,\mathrm{B} \,.$$

Общее напряжение или разность потенциалов батареи:

$$U = \frac{q}{C} = \frac{160 \cdot 10^{-6} \text{ Km}}{1.23 \cdot 10^{-6} \Phi} = 130 \text{ B}.$$

Ответ: C=1,23 мк Φ , q=160 мкKл, U=130 B, $q_1=160$ мкKл, $q_2=q_3=60$ мкKл, $q_4=100$ мкKл, $U_1=80$ B, $U_2=30$ B, $U_3=20$ B.

Пример 17. Плоский конденсатор, площадь каждой пластины которого $S=400~{\rm cm}^2$, заполнен двумя слоями диэлектрика. Граница между ними параллельна обкладкам. Первый слой — парафин ($\epsilon_1=2$) толщины $d_1=0,2~{\rm cm}$, второй слой стекло ($\epsilon_2=7$) толщины $d_2=0,3~{\rm cm}$. Конденсатор заряжен до разности потенциалов $U=600~{\rm B}$. Найти ёмкость конденсатора, напряженность электрического поля и падение потенциала в каждом слое, энергию конденсатора.

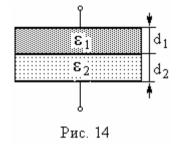
Дано: $S = 4 \cdot 10^{-2} \text{ M}^2$ $d_1 = 2 \cdot 10^{-3} \text{ M}$
$\varepsilon_1 = 2$
$d_2 = 3 \cdot 10^{-3} \text{ M}$
$\varepsilon_2 = 7$ U = 600 B
C - ?
$E_1, E_2 - ?$
$U_1, U_2 - ?$
W - ?

Решение: Ёмкость конденсатора:

$$C = \frac{q}{\varphi_1 - \varphi_2} = \frac{q}{U}.$$

В плоском конденсаторе в пределах каждого диэлектрика электрическое поле однородно, поэтому:

$$U = E_1 d_1 + E_2 d_2$$



Напряженность поля в каждом слое:

$$E_1 = \frac{\sigma}{\varepsilon_0 \varepsilon_1}$$
, $E_2 = \frac{\sigma}{\varepsilon_0 \varepsilon_2}$,

где: $\sigma = \frac{q}{S}$ — поверхностная плотность заряда на обкладках конденсатора.

Следовательно:
$$C = \frac{\sigma S}{\frac{\sigma d_1}{\epsilon_0 \epsilon_1} + \frac{\sigma d_2}{\epsilon_0 \epsilon_2}} = \frac{1}{\frac{d_1}{\epsilon_0 \epsilon_1 S} + \frac{d_2}{\epsilon_0 \epsilon_2 S}}$$
.

Из полученного выражения следует, что данный конденсатор с двумя слоями диэлектрика можно рассматривать как 2 последовательно соединенных конденсатора, ёмкости которых:

$$C_1 = \frac{\varepsilon_0 \varepsilon_1 S}{d_1}$$
, $C_2 = \frac{\varepsilon_0 \varepsilon_2 S}{d_2}$.

Подставив числовые данные, получим $C = 0.25 \cdot 10^{-9} \, \Phi$.

Граница раздела диэлектрика параллельна обкладкам и, следовательно, перпендикулярна силовым линиям поля. Поэтому электрическое смещение $D_1 = D_2$, то есть

$$\begin{split} & \epsilon_1 \mathbf{E}_1 = \epsilon_2 \mathbf{E}_2 \Longrightarrow \mathbf{E}_2 = \frac{\epsilon_1}{\epsilon_2} \mathbf{E}_1, \\ & \mathbf{U} = \mathbf{E}_1 \mathbf{d}_1 + \mathbf{E}_2 \mathbf{d}_2 = \mathbf{E}_1 \mathbf{d}_1 + \frac{\epsilon_1}{\epsilon_2} \mathbf{E}_1 \mathbf{d}_2. \end{split}$$

Поэтому:

$$\begin{split} E_1 &= \frac{\varepsilon_2 U}{\varepsilon_2 d_1 + \varepsilon_1 d_2}, \ U_1 = E_1 d_1; \\ E_2 &= \frac{\varepsilon_1}{\varepsilon_2} E_1 = \frac{\varepsilon_1 U}{\varepsilon_2 d_1 + \varepsilon_1 d_2}, \ U_2 = E_2 d_2. \end{split}$$

Произведя вычисления, получим: $E_1 = 2,1 \cdot 10^5 \; \mathrm{B/m}; \; E_2 = 0,6 \cdot 10^5 \; \mathrm{B/m}, \; U_1 = 420 \; \mathrm{B}, \; U_2 = 180 \; \mathrm{B}.$

Энергия заряженного конденсатора:

$$W = \frac{\text{CU}^2}{2},$$

$$W = (0.25 \cdot 10^{-9} \cdot 600^2) / 2 = 4.5 \cdot 10^{-5} (Дж).$$

Энергию конденсатора можно найти и по общей формуле для энергии электрического поля

$$W = \int_{V} W_{9} dV,$$

где: $\mathbf{w}_9 = \frac{\varepsilon_0 \varepsilon \mathbf{E}^2}{2}$ - плотность энергии электрического поля,

V – объём, в котором существует электрическое поле.

В данном случае поле однородное, поэтому:

$$W = w_{_{91}}V_{_{1}} + w_{_{92}}V_{_{2}} = \frac{\epsilon_{_{0}}\epsilon E_{_{1}}^{^{2}}}{2}Sd_{_{1}} + \frac{\epsilon_{_{0}}\epsilon E_{_{2}}^{^{2}}}{2}Sd_{_{2}}.$$

Ответ:
$$C=0.25 \cdot \text{H}$$
Ф, $E_1=210 \cdot \text{к}$ В/м; $E_2=60 \cdot \text{к}$ В/м, $U_1=420$ В, $U_2=180$ В, $W=45 \cdot \text{м}$ кДж.

Пример 18. Коаксиальный электрический кабель состоит из центральной жилы и концентрической по отношению к ней цилиндрической оболочки, между которыми находится изоляция $\varepsilon = 3.2$. Найти ёмкость единицы длины такого кабеля, если радиус жилы 1,3 см, радиус оболочки 3,0 см.

Дано:

$$R_1 = 1,3 \cdot 10^{-2} \text{ M}$$

 $R_1 = 3,0 \cdot 10^{-2} \text{ M}$
 $\epsilon = 3,2$
 $C_1 - ?$

Решение:

Кабель можно рассматривать $R_1 = 3.0 \cdot 10^{-2} \, \text{M}$ как цилиндрический конденсатор. Ёмкость конденсатора:

$$C = \frac{q}{\varphi_1 - \varphi_2},$$

где: q - 3аряд на жиле, $(\phi_1 - \phi_2) -$ разность потенциалов между жилой и оболочкой.

Ёмкость единицы длины кабеля:

$$C_1 = \frac{C}{L} = \frac{q}{L(\phi_1 - \phi_2)} = \frac{\tau}{\phi_1 - \phi_2},$$

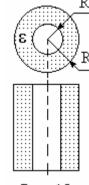


Рис. 15

где: т - линейная плотность заряда. Разность потенциалов связана с напряженностью É электрического поля, направленного вдоль радиальных прямых от жилы к оболочке:

$$\varphi_1 - \varphi_2 = \int_{\mathbf{r}} \overrightarrow{\mathbf{E}} \, d \overrightarrow{\mathbf{r}} = \int_{\mathbf{r}} \mathbf{E}_{\mathbf{r}} d\mathbf{r} = \int_{\mathbf{R}_1}^{\mathbf{R}_2} \mathbf{E} d\mathbf{r} .$$

Напряженность поля заряженной жилы (нити): $E = \frac{\tau}{2\pi\epsilon_0\epsilon r}$.

Тогда:
$$\phi_1 - \phi_2 = \int\limits_{R_1}^{R_2} \frac{\tau}{2\pi\epsilon_0 \epsilon r} \cdot \frac{dr}{r} = \frac{\tau}{2\pi\epsilon_0 \epsilon r} \cdot \ln \frac{R_2}{R_1} \,.$$
 Следовательно:
$$C_1 = \frac{\tau}{\frac{\tau}{2\pi\epsilon_0 \epsilon} \cdot \ln \frac{R_2}{R_1}} = \frac{2\pi\epsilon_0 \epsilon}{\ln \frac{R_2}{R_1}} = 2,14 \cdot 10^{-10} \, \frac{\Phi}{_M} \,.$$

Ответ: $C_1 = 214 \, \text{п}\Phi/\text{м}$.

Пример 19. Как изменится энергия заряженного плоского конденсатора ($\varepsilon = 1$) при уменьшении расстояния между его пластинами, если 1) конденсатор заряжен и отключен от источника напряжения; 2) конденсатор подключен к источнику постоянного напряжения. Как зависит сила притяжения F между пластинами от расстояния между ними?

Решение:

Решение:

1. Если конденсатор отключен от источника напряжения, то заряд на его обкладках не будет изменяться при сближении пластин, то есть q = const, а ёмкость увеличится, так как:

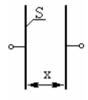


Рис. 16

$$C = \frac{\varepsilon_0 \varepsilon S}{d} = \frac{\varepsilon_0 \varepsilon S}{x}.$$

Энергия конденсатора выражается через его заряд и ёмкость:

$$W = \frac{q^2}{2C} = \frac{q^2}{2\varepsilon_0 \varepsilon S} \cdot x .$$

Видим, что при сближении пластин отключенного конденсатора его энергия уменьшается. За счет убыли энергии конденсатора совершается работа сил притяжения обкладок при их сближении:

$$A = -\Delta W$$
.

Сила притяжения:

$$F = \frac{dA}{dx} = -\frac{dW}{dx} = -\frac{d}{dx}(\frac{q^2 \cdot x}{2\epsilon_0 \epsilon S})$$
 или $F = -\frac{q^2}{2\epsilon_0 \epsilon S}$.

Знак минус указывает на то, что сила направлена в сторону уменьшения х, то есть является силой притяжения.

2. Согласно условию, U = const. Поэтому воспользуемся формулой, в которой энергия конденсатора выражается через напряжение и ёмкость:

$$W = \frac{CU^2}{2} = \frac{\varepsilon_0 \varepsilon SU^2}{2d} = \frac{\varepsilon_0 \varepsilon SU^2}{2x} .$$

Следовательно, при сближении пластин конденсатора, подключенного к источнику напряжения, энергия конденсатора увеличится на

$$\Delta W = \Delta \left(\frac{CU^2}{2}\right) = \frac{\Delta C \cdot U^2}{2}.$$

Возрастание ёмкости конденсатора при постоянном напряжении означает увеличение заряда на его пластинах. Значит, при сближении пластин на них дополнительно перейдут от источника напряжения заряды Да. Сообщение одной пластине положительного заряда Δq , а другой отрицательного заряда - Δq эквивалентно перемещению заряда Δq с одной обкладки на другую, то есть источник напряжения совершает работу:

$$A_{\text{uct}} = \Delta qU = \Delta(CU)U = \Delta CU^2$$
.

Видим, что работа, совершаемая при сближении пластин источником напряжения, в 2 раза больше прироста энергии конденсатора. Таким образом, теперь за счет энергии источника напряжения увеличивается энергия конденсатора ΔW, а также совершается работа А сил напряжения пластин. По закону сохранения энергии:

$$A_{\text{HCT}} = \Delta W + A$$
.

Отсюда:
$$A = A_{\text{ист}} - \Delta W = \Delta C U^2 - \frac{\Delta C U^2}{2} = \frac{\Delta C U^2}{2} = \Delta W$$
.

Сила притяжения:

$$F = \frac{dA}{dx} = \frac{dW}{dx} = \frac{d}{dx} \left(\frac{\varepsilon_0 \varepsilon SU^2}{2x} \right) = -\frac{\varepsilon_0 \varepsilon SU^2}{2x^2}.$$

Видим, что сила притяжения пластин обратно пропорциональна квадрату расстояния между пластинами.

Ответ: При уменьшении расстояния между пластинами конденсатора: 1) при отключенном источнике напряжения энергия конденсатора уменьшается, сила притяжения между пластинами постоянна; 2) при подключенном источнике напряжения энергия конденсатора увеличивается, сила притяжения между пластинами увеличивается.

Пример 20. Объёмная плотность энергии электрического поля внутри заряженного плоского конденсатора с твердым диэлектриком ($\varepsilon = 6,0$) равна 2,5 Дж/м³. Найти давление, производимое пластинами площадью S = 20 см² на диэлектрик, а также силу, которую необходимо приложить к пластинам для их отрыва от диэлектрика.

Дано: $w = 2.5 \text{ Дж/м}^3$ $\varepsilon = 6.0$ $S = 2 \cdot 10^{-3} \text{ m}^2$ $\overline{p - ?}$ $F_{\text{orp}} - ?$

Решение:

Притягиваясь друг к другу с силой F, пластины конденсатора сжимают диэлектрик, заключенный между ними. Давление:

$$p = \frac{F}{S}$$
 , где $F = -\frac{dW}{dx}$, так как $q = const.$

Изменение энергии dW при перемещении пла-

стин конденсатора на расстояние dx равно:

$$dW = wdV = wSdx$$
.

Следовательно, сила притяжения:

$$F = -\frac{dW}{dx} = -\frac{wSdx}{dx} = -wS$$
,

давление: $p = \frac{F}{S} = -w = -2.5 \text{ Дж/м}^3$.

Знак минус означает, что величины F и p направлены в сторону уменьшения расстояния х.

Убедимся в правильности размерности искомой величины:

$$[p] = \Pi x/M^3 = H/M^2 = \Pi a.$$

Под действием внешней силы $F_{\text{отр}}$, направленной наружу, пластина, отрываясь от диэлектрика, переместится на расстояние dx, образуя зазор. Работа силы $F_{\text{отр}}$ пойдет на увеличение энергии:

$$dA = dW = F_{orp} dx$$
 , следовательно $F_{orp} = \frac{dW}{dx}$.

Прирост энергии конденсатора, связанный с увеличением его объёма, равен

$$dW = w_0 S dx$$
,

где: w_0 – объёмная плотность энергии поля в зазоре.

Следовательно:

$$F_{orp} = \frac{dW}{dx} = W_0 S.$$

Так как индукция D_0 в зазоре ($\epsilon = 1$) равна индукции D в диэлектрике, то:

$$\mathbf{w}_0 = \frac{\mathbf{D}_0^2}{2\epsilon_0}, \ \mathbf{w} = \frac{\mathbf{D}^2}{2\epsilon_0 \epsilon}, \$$
следовательно $\mathbf{w}_0 = \epsilon \mathbf{w}$.

Тогда получим:

$$F_{orp} = \varepsilon w S$$
.

Сделаем проверку размерности:

$$[F_{\text{orp}}] = \frac{\cancel{\Pi} \cancel{x}}{\cancel{M}^3} \cancel{M}^2 = \frac{\cancel{\Pi} \cancel{x}}{\cancel{M}} = \mathbf{H} .$$

Подставим числовые значения и произведем вычисления:

$$F_{orp} = 6.2, 5.2 \cdot 10^{-3} = 3.10^{-3} (H)$$

Ответ: $p = -2,5 \cdot \Pi a$, $F_{orp} = 3$ мН.

постоянный ток.

Примеры решения задач.

Пример 21. В данной схеме (рис.17) батарея с ЭДС равной E = 100 B, $R_1 = R_3 = 40 \text{ Ом}$, $R_2 = 80 \text{ Ом}$, $R_4 = 34 \text{ Ом}$. Найти силу тока, текущего через сопротивление R_2 и падение напряжения на этом сопротивлении. Сопротивлением батареи пренебречь.

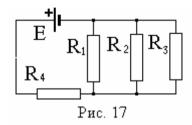
Дано:
E = 100 B
r = 0
$R_1 = R_3 = 40 \text{ Om}$
$R_2 = 80 \text{ Om}$
R ₄ =34 Ом
$\overline{I_2-?}$
$U_2-?$

Решение:

По закону Ома для замкнутой цепи:

$$I = I_4 = \frac{E}{R+r} = \frac{E}{R},$$

где: R – полное сопротивление цепи.



Резисторы R_1 , R_2 , R_3 соединены параллельно и все вместе последовательно с R_4 .

При параллельном соединении падение потенциала на каждом резисторе одинаковое, т.е. $U_1 = U_2 = U_3$; а сопротивление:

$$R_{123} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}.$$

Подстановка данных даёт $R_{123} = 16 \text{ Om.}$

Полное сопротивление цепи:

$$R = R_{123} + R_4 = 16 + 34 = 50$$
 (O_M).

По закону Ома $I = \frac{E}{R}$, получим I = 2 A. Но:

$$E = I \cdot R = I(R_{123} + R_4) = I \cdot R_{123} + I \cdot R_4 = U_2 + I \cdot R_4, U_2 = E - I \cdot R_4.$$

После подстановки числовых данных получим: $U_2 = 32 \ B.$

Сила тока, текущего через сопротивление R₂:

$$I_2 = \frac{U_2}{R_2}$$
, $I_2 = 0.4 A$.

Ответ: $U_2 = 32 B$, $I_2 = 0,4 A$.

Пример 22. Два гальванических элемента $E_1 = 5$ B, $r_1 = 0.3$ Ом, $E_2 = 4$ B, $r_2 = 0.2$ Ом соединены параллельно и замкнуты на резистор R = 1.88 Ом. Определить силу тока через каждый элемент схемы.

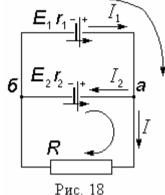
Дано: $E_1 = 5 B$ $r_1 = 0,3 OM$ $E_2 = 4 B$ $r_2 = 0,2 OM$ R = 1,88 OM $I. I_1, I_2 = ?$

Решение: Решим задачу, исполь-

зуя правила Кирхгофа. Для этого укажем предположительное направление токов и направления действия сторонних сил.

Первое правило Кирхгофа для узла (а): $-I_2 + I_1 - I = 0$

Второе правило Кирхгофа применим для контуров а $\epsilon_2 bR$ и а $\epsilon_1 bR$ при направлении обхода по часовой стрелке:



$$I \cdot R - I_2 r_2 = E_2$$
, (1)
 $I_1 r_1 + I \cdot R = E_1$. (2)

Умножив уравнение (1) на r_1 , а уравнение (2) — на r_2 , сложим их почленно:

$$(I_1-I_2)r_1r_2 + I\cdot R(r_1+r_2) = E_1r_2 + E_2r_1$$

Учитывая, что:

$$I_1 - I_2 = I$$
,

получим:

$$I = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2 + R(r_1 + r_2)} = 2,2(A).$$

Тогда:

$$I_1 = \frac{E_1 - I \cdot R}{r_1} = 2.9(A),$$

$$I_2 = \frac{I \cdot R - E_2}{r_2} = 0.7(A).$$

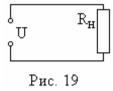
Otbet: I = 2,2 A, $I_1 = 2,9 A$, $I_2 = 0,7 A$.

Пример 23. От источника, разность потенциалов на клеммах которого $U = 10^5$ В, требуется передать мощность $P = 5 \cdot 10^3$ кВт на расстояние L = 5 км. Допустимая «потеря» напряжения в проводах k = 1%. Рассчитать минимальное сечение S провода, пригодного для этой цели.

Дано: $U = 10^5 \text{ B}$ $P = 5 \cdot 10^6 \text{ BT}$ $L = 5 \cdot 10^3 \text{ M}$ k = 0.01 $\rho = 1.7 \cdot 10^{-8} \text{ Ом·м}$ S - ?

Решение:

Схема передачи энергии от источника к потребителю, сопротивление которого $R_{\rm H}$ представлены на рис.19.



Напряжение U, снимается с клемм источника, частично «падая» на проводах, подается потребителю:

$$U = kU + U_H$$
.

Ток в нагрузке $R_{\rm H}$ и в проводах один и тот же, т.к. $R_{\rm H}$ и провода соединены последовательно. Он может быть определен из соотношения:

$$P = IU$$
, следовательно $I = \frac{P}{II}$.

«Потерю напряжения» в проводниках можно найти по закону Ома для участка цепи:

$$U_1 = kU = IR$$
, где $R = \rho \frac{2L}{S}$,

(длина равна 2L, т.к. для передачи мощности на расстояние L используются 2 провода, соединенных последовательно). Тогда:

$$kU = \frac{P}{U} \cdot \rho \cdot \frac{2L}{S}$$
, откуда $S = \frac{P \cdot \rho \cdot 2L}{kU^2}$.

Произведем проверку размерности:

$$[S] = \frac{B_T \cdot O_M \cdot M \cdot M}{B^2} = \frac{B \cdot A \cdot O_M \cdot M^2}{B^2} = M^2.$$

После подстановки данных получим $S = 8.5 \cdot 10^{-6} \text{ m}^2$.

Ответ: $S = 8,5 \cdot MM^2$.

Пример 24. Сколько ватт потребляет нагреватель электрического чайника, если 1 л воды закипает через 3 мин? Каково сопротивление нагревателя, если напряжение в сети 220В. Начальная температура воды 5°С. Коэффициент полезного действия нагревателя 80%.

Мощность нагревателя: $P = \frac{A}{t}$,

где: А –работа электрического тока. Полезная работа численно равна теплоте, необходимой для нагревания воды:

$$A_{\text{пол}} = cm(T_2 - T_1) = c \cdot \rho V \cdot \Delta T$$

где: c — удельная теплоемкость воды,

 ρ – плотность воды.

Коэффициент полезного действия нагре-

вателя
$$\eta = \frac{A_{\text{пол}}}{A}$$
, следовательно:

$$A = \frac{A_{\text{пол}}}{\eta} = \frac{c \cdot \rho V \cdot \Delta T}{\eta}.$$

Тогда мощность нагревателя:

$$P = \frac{A}{t} = \frac{c \cdot \rho V \cdot \Delta T}{t \cdot \eta} = \frac{4,19 \cdot 10^3 \cdot 10^3 \cdot 10^{-3} \cdot 95}{180 \cdot 0.8} = 2,76 \cdot 10^3.$$

Проверка размерности:

$$[P] = \frac{\mathcal{I}_{\mathcal{K}}}{\kappa_{\Gamma} \cdot \kappa} \cdot \frac{\kappa_{\Gamma}}{M^{3}} \kappa \cdot \frac{1}{c} = \frac{\mathcal{I}_{\mathcal{K}}}{c} = B_{T}.$$

Мощность электрического тока $P = \frac{U^2}{R}$. Выразим отсюда сопро-

тивление нагревателя:

$$R = \frac{U^2}{P} = \frac{(220B)^2}{2.76 \cdot 10^3 BT} = 17.5 (Om).$$

Ответ: P = 2,76 кBT, R = 17,5 Ом.

ЭЛЕКТРОМАГНЕТИЗМ.

Примеры решения задача.

Пример 25. По двум прямолинейным проводам, находящимся на расстоянии 5 см друг от друга, текут токи по 10 А в каждом. Определить напряженность магнитного поля, создаваемого токами в точке, лежащей посередине между проводами, в случаях:

- а) провода параллельны, токи текут в одном направлении;
- б) провода параллельны, токи текут в противоположных направлениях;
- в) провода перпендикулярны, направление токов указано на рисунке 22.

Дано: a = 0.05 м $I_1 = I_2 = 10 \text{ A}$ H - ?

Решение:

Согласно принципу суперпозиции результирующая напряженность магнитного поля равна векторной сумме напряженностей полей, создаваемых каждым током в отдельности:

$$\vec{H} = \vec{H}_1 + \vec{H}_2,$$

где: \vec{H}_1 — напряженность поля, создаваемого током I_1 ,

 \vec{H}_2 – напряженность поля, создаваемого током I_2 .

Для определения величины и направления вектора \vec{H} во всех трех случаях необходимо определить величину и направление векторов \vec{H}_1 и \vec{H}_2 .

Величина напряженности поля, созданного бесконечно длинным прямым проводником с током I_1 на расстоянии r от провода, определяется формулой:

$$H = \frac{1}{2\pi r} .$$

В данной задаче абсолютная величина напряженностей \vec{H}_1 и \vec{H}_2 будет одинакова, т.к. по проводам идут одинаковые токи и точка выбрана на равном расстоянии от проводов r=a/2.

Следовательно:

$$H_1 = H_2 = \frac{I}{2\pi r} = \frac{2I}{2\pi a} = \frac{I}{\pi a}$$
.

С помощью правила буравчика определяется направление линии напряженности, по касательной в выбранной точке, к которой направлен вектор напряженности.

На рис.20 изображено сечение проводников плоскостью, перпендикулярной проводникам. Пусть токи уходят за плоскость чертежа. По правилу буравчика находим направление \vec{H}_1 и \vec{H}_2 . Векторы \vec{H}_1 и \vec{H}_2 направлены по одной прямой в противоположные стороны. Если считать направление вектора \vec{H}_1 положительным, то $H = H_1 - H_2$. Учитывая, что $H_1 = H_2$, имеем H = 0.

На рис.21 ток I_1 направлен за плоскость чертежа, I_2 — из-за плоскости чертежа. Вектора напряженности \vec{H}_1 и \vec{H}_2 направлены по одной прямой в одну сторону, т.е.

H = H + H = 2H =
$$\frac{2I}{\pi a}$$
, [H] = $\frac{A}{M}$.
H = $\frac{2 \cdot 10^{-2}}{3,14 \cdot 5 \cdot 10^{-2}} = 128 \left(\frac{A}{M}\right)$.

На рис.22 проводники находятся во взаимно перпендикулярных плоскостях. Вектора напряженности также перпендикулярны.

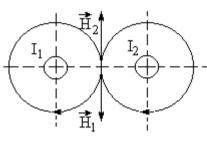
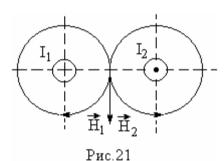
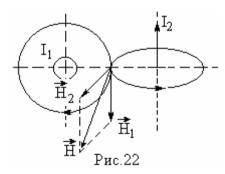


Рис.20





$$H = \sqrt{H_1^2 + H_2^2} = \sqrt{2H_1^2} = \sqrt{2} \cdot H_1 = \frac{\sqrt{2} \cdot I}{\pi a} = \frac{1,4 \cdot 10}{3.14 \cdot 5 \cdot 10^{-2}} = 89 \left(\frac{A}{M}\right).$$

Otbet: a) H = 0 A/M, б) H = 128 A/M, в) H = 89 A/M.

Пример 26. По проводу, согнутому в виде квадрата, сторона которого a = 10 см, течет ток с силой I = 100 A. Найти магнитную индукцию в точке пересечения диагоналей квадрата.

Дано:

$$a = 10 \text{ см} = 0,01 \text{ м}$$

 $I = 100 \text{ A}$
 $B = ?$

Решение:

Расположим квадратный виток в плоскости чертежа рис.23. Согласно принципу суперпозиции

магнитных полей:

$$\vec{B} = \vec{B}_1 + \vec{B}_2 + \vec{B}_3 + \vec{B}_4$$
,

где: \vec{B}_1 , \vec{B}_2 , \vec{B}_3 , \vec{B}_4 – магнитные индукции полей, создаваемых токами, протекающими по каждой стороне квадрата.

Рис.23

В точке пересечения диагоналей квадрата все векторы индукции будут направлены перпендикулярно плоскости витка «к нам». Кроме того, из соображений симметрии следует, что модули этих векторов одинаковы: $B_1 = B_2 = B_3 = B_4$. Это позволяет векторное равенство заменить скалярными: $B = 4B_1$.

Магнитная индукция поля, создаваемого отрезком прямолинейного провода с током, выражается формулой:

$$B_1 = \frac{\mu_0}{4\pi} \frac{I}{r} (\cos \alpha_1 - \cos \alpha_2),$$

где: r - кратчайшее расстояние от точки, в которой определяется индукция, до проводника,

 α_1 и α_2 – углы, образованные радиусом вектором, проведенным в рассматриваемую точку соответственно из начала и конца проводника, с направлением тока.

Учитывая, что, $\alpha_2 = \pi - \alpha_1 \mu \cos \alpha_2 = -\cos \alpha_1$, формулу можно переписать в виде:

$$B_1 = \frac{\mu_0 I \cos \alpha_1}{2\pi r}$$
, тогда $B = 4B_1 = \frac{2\mu_0 I \cos \alpha_1}{\pi r_0}$.

Заметив, что $r = \frac{a}{2}$ и $\cos \alpha_1 = \frac{\sqrt{2}}{2}$, (так как $\alpha_1 = \frac{\pi}{4}$), получим:

$$B = \frac{2\sqrt{2}\mu_0 I}{\pi a} = \frac{2\sqrt{2} \cdot 10^{-7} \cdot 10^2}{0,1} = 1,13 \cdot 10^{-3}.$$

Проверка размерности: $[B] = \frac{\Gamma_H \cdot A}{MM} = \frac{\Gamma_H \cdot A}{M^2} = \frac{B6}{M^2} = T_{\pi}$.

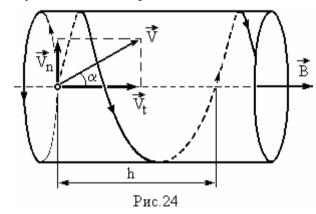
Ответ: В= 1,13 мТл.

Пример 27. Протон, обладающий скоростью v = 3000 км/с, влетел в однородное магнитное поле с индукцией $B = 2 \cdot 10^{-2}$ Тл, под углом 30° к направлению поля. Определить радиус и шаг винтовой линии, по которой будет двигаться протон.

Дано:

$$v = 3.10^6 \text{ м/c}$$

 $B = 2.10^{-2} \text{ Тл}$
 $\alpha = 30^\circ$
 $R - ?$



Решение:

На заряженную частицу, влетевшую в магнитное поле, действует сила Лоренца

$$\vec{F}_{\pi} = q[\vec{v} \times \vec{B}],$$

где: q — заряд частицы, \vec{v} — скорость частицы, \vec{B} — индукция магнитного поля.

Если частица имеет положительный заряд, то направление силы Лоренца совпадает с направлением векторного произведения скорости движения \vec{v} и индукции магнитного поля \vec{B} .

Абсолютная величина силы Лоренца определяется формулой:

$$F_{\pi} = qvB\sin(\alpha)$$
, где $\alpha = \angle \vec{v}, \vec{B}$.

Так как сила Лоренца всегда перпендикулярна скорости, то величина скорости не будет изменяться под действием этой силы. Но при постоянной скорости будет оставаться постоянной и сила Лоренца. Из механики известно, что сила, постоянная по величине и перпендикулярная скорости, вызывает равномерное движение по окружности.

Следовательно, протон, влетевший в магнитное поле, будет двигаться по окружности в плоскости, перпендикулярной полю со скоростью, равной нормальной составляющей начальной скорости v_n , перпендикулярной к силовым линиям.

Одновременно протон будет двигаться и вдоль поля со скоростью v_t , равной тангенциальной составляющей начальной скорости направленной вдоль силовых линий.

В результате одновременного движения по окружности и по прямой протон будет двигаться по винтовой линии (рис.24).

Определим радиус и шаг винтовой линии.

Радиус окружности, по которой движется протон, найдем следующим образом. Сила Лоренца вызывает движение по окружности, следовательно, она сообщает протону нормальное ускорение:

$$a_n = \frac{v_n^2}{R}.$$

На основании 2-го закона Ньютона:

$$F_{n} = ma_{n} = m \frac{v_{n}^{2}}{R},$$

где: т – масса протона,

 $v_{\text{n.}} = v \cdot \sin(\alpha)$ – нормальная составляющая вектора скорости,

R – радиус окружности.

Поэтому можно записать равенство:

$$qvB \sin(\alpha) = m \frac{v_n^2}{R},$$

$$qvB \sin(\alpha) = m \frac{v^2 \sin^2(\alpha)}{R},$$

Откуда:

$$R = \frac{mv \sin(\alpha)}{qB}.$$

$$[R] = \frac{\kappa \Gamma \cdot M / c}{K\pi \cdot T\pi} = \frac{\kappa \Gamma \cdot M}{A \cdot c \cdot c \cdot H / (A \cdot M)} = M$$

Шаг винтовой линии будет равен пути, пройденному протоном вдоль поля со скоростью $v_t = v \cdot cos(\alpha)$ за время, которое понадобится протону для того, чтобы совершить один оборот:

$$h = v_t \cdot T$$

где: $T = \frac{2\pi R}{v_{\perp}}$ — период обращения протона.

$$\begin{split} T &= \frac{2\pi R}{v_n} = \frac{2\pi}{v_n} \frac{mv_n}{qB} = \frac{2\pi m}{qB} \;, \\ h &= v_t T = v_t \frac{2\pi m}{qB} = \frac{2\pi m v \cos(\alpha)}{qB} \;, \\ \left[h \right] &= \frac{\kappa \Gamma \cdot m / c}{K \pi \cdot H / (A \cdot m)} = \frac{\kappa \Gamma \cdot m \cdot A \cdot m}{A \cdot c \cdot c \cdot H} = m \;. \end{split}$$

Подставив табличные значения массы и заряда протона (m = $1,67\cdot10^{-27}$ кг, q = $1,6\cdot10^{-19}$ Кл) в формулы и произведя вычисления, получим:

$$\begin{split} R &= \frac{mv \, sin(\alpha)}{qB} = \frac{1,\!67 \cdot \!10^{-27} \cdot \!3 \cdot \!10^6 \cdot \!0,\!5}{1,\!6 \cdot \!10^{-19} \cdot \!2 \cdot \!10^{-2}} = 0,\!75 (\text{m}) \,, \\ h &= \frac{2\pi mv \, cos(\alpha)}{qB} = \frac{2 \cdot \!3,\!14 \cdot \!1,\!67 \cdot \!10^{-27} \cdot \!3 \cdot \!10^6 \cdot \!0,\!866}{1,\!6 \cdot \!10^{-19} \cdot \!2 \cdot \!10^{-2}} = 8,\!7 (\text{m}) \,\,. \end{split}$$

Ответ: R = 0.75 M, h = 8.7 M.

Дано: I = 20 A $S = 2 \text{ мм}^2 =$ $= 2 \cdot 10^{-6} \text{ m}^2$ H - ?

Решение:

На проводник действует сила тяжести и сила Ампера. Проводник будет находиться в равновесии, если равнодействующая действующих сил

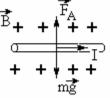


Рис.25

равна нулю, т.е.

$$m\vec{g} + \vec{F}_{_A} = 0$$
, или $m\vec{g} = -\vec{F}_{_A}$.

Сила Ампера должна быть равна по величине силе тяжести и противоположно ей направлена.

В условиях данной задачи проводник расположен перпендикулярно вектору индукции \vec{B} , поэтому для определения направления вектора \vec{F}_A можно применить правило левой руки.

Абсолютная величина вектора силы Ампера

$$F_a = I \cdot L \cdot B \cdot \sin \angle (\vec{L}, \vec{B}) = I \cdot L \cdot B$$
, где $\angle (\vec{L}, \vec{B}) = 90^\circ$.

Выразим индукцию магнитного поля через напряжённость:

$$B = \mu_0 \mu H$$
,

где: μ — относительная магнитная проницаемость среды. В нашем случае среда немагнитная μ = 1;

$$\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma_H/M -$$
магнитная постоянная.

На основании условия равновесия

$$mg = I \cdot L \cdot \mu_0 \mu H$$
.

Выразим массу через плотность вещества и объём провода:

$$m = \rho V = \rho LS$$
,

Тогда:

$$\begin{split} \rho L S g &= I \cdot L \cdot \mu_0 \mu H \ , \\ H &= \frac{\rho S g}{\mu \ I} \ . \end{split}$$

$$[H] = \frac{\kappa \Gamma / M^{3} \cdot M^{2} \cdot M / C^{2}}{\Gamma H / M \cdot A} = \frac{\kappa \Gamma \cdot M}{C^{2} \cdot B \cdot C / A \cdot A} = \frac{H \cdot M}{B \cdot C \cdot M} = \frac{B \cdot A \cdot C}{B \cdot C \cdot M} = \frac{A}{M}$$

Плотность меди найдём в таблице $\rho = 8,9\cdot10^3$ Кл/м³. Произведя вычисления получим $H = 6,9\cdot10^3$ А/м.

Otbet: $H = 6.9 \cdot 10^3 \text{ A/m}$.

Пример 29. По витку радиусом 10 см течёт ток 50 А. Виток помещён в однородном магнитном поле индукцией 0,2 Тл. Определить момент сил, действующих на виток, если плоскость витка составляет угол 30^0 с линиями индукции.

Дано:

$$R = 10 \text{ cm} =$$

 $= 0.1 \text{ m}$
 $I = 50 \text{ A}$
 $B = 0.2 \text{ Tл}$
 $\alpha = 30^{\circ}$
 $M - ?$

Решение:

На виток с током в магнитном поле действует момент сил:

$$\overrightarrow{\mathbf{M}} = [\overrightarrow{\mathbf{P}_{\mathbf{m}}} \times \overrightarrow{\mathbf{B}}],$$

где: \vec{P}_{m} – вектор магнитного момента витка, направление

которого определяется по правилу буравчика а абсолютная величина формулой $P_m = IS$, здесь $S = \pi R^2 -$ площадь витка.

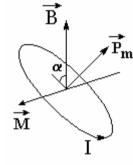


Рис.26

Направление момента сил \vec{M} совпадает с направлением векторного произведения $[P_m^{\rightarrow} \times \vec{B}]$.

Абсолютная величина вектора момента сил определяется формулой:

$$M = P_m B \sin \angle (\overrightarrow{P_m}, \overrightarrow{B})$$
, где $\angle (\overrightarrow{P_m}, \overrightarrow{B}) = 90^\circ - \alpha$.
$$M = I\pi R^2 B \sin(90^\circ - \alpha) = I\pi R^2 B \cos \alpha$$

Проверка размерности:

$$[M] = A \cdot M^2 \cdot T \pi = A \cdot M^2 \cdot \frac{H}{A \cdot M} = H \cdot M.$$

Ответ: $M = 0.27 \text{ H} \cdot \text{м}$.

Пример 30. Плоский квадратный контур со стороной а = 10 см, по которому течёт ток I = 100 А, свободно установился в однородном магнитном поле (В = 1 Тл). Определить работу А, совершаемую внешними силами при повороте контура относительно оси, проходящей через середину его противоположных сторон, на угол $\alpha = 90^{\circ}$. При повороте контура сила тока поддерживается в нём неизменной.

Дано: a = 10 cm == 0.01 MI = 100 A $B = 1 T_{\pi}$ $\alpha = 90^{0}$ A-?

Решение:

Работа внешних сил по перемещению контура с током в магнитном поле равна работе сил поля, взятой с обратным знаком.

$$A = -I\Delta\Phi = I(\Phi_1 - \Phi_2),$$

где: Φ_1 – магнитный поток, про-

низывающий контур до перемещения;

 Φ_2 – магнитный поток, пронизывающий контур после перемещения.

Рис.27

Поскольку в начальный момент контур свободно установился в однородном магнитном поле (находится в состоянии устойчивого равновесия), угол между нормалью к контуру и вектором \vec{B} равен $\alpha = 0^{\circ}$, магнитный поток

$$\Phi_1 = BS\cos 0^\circ = BS = Ba^2.$$

При повороте контура на 90° угол $\alpha = 90^{\circ}$ и магнитный поток $\Phi_{2} = BS\cos 90^{\circ} = 0$.

Следовательно, искомая работа равна:

$$A = IBS = IBa^2$$
.

Проверка размерности:

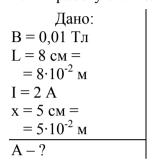
$$[A] = A \cdot T \pi \cdot M^2 = A \cdot \frac{B6}{M^2} \cdot M^2 = A \cdot B \cdot C = Дж$$
.

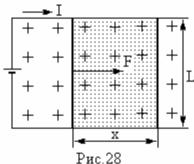
Произведя вычисления, получим:

$$A = 100 \cdot 1 \cdot 0,01 = 1$$
 (Дж).

Ответ: А=1Дж.

Пример 31. В однородном магнитном поле с индукцией В = 0.01 Тл находится прямой проводник длинной L = 8 см, расположенный перпендикулярно к линиям индукции. По проводнику течёт ток I = 2 A, величина которого поддерживается постоянной. Под действием сил поля проводник переместился на расстояние 5 см. Найти работу сил поля.





Решение:

Поскольку проводник прямой, а поле однородное, то:

$$A = I\Delta\Phi$$
,

где: $\Delta \Phi$ – поток магнитной индукции через поверхность ΔS , которую описал проводник при своём движении. В данном случае $\Delta S = Lx$.

По определению потока:

$$\Delta \Phi = B\Delta S \cos \angle (\vec{n}, \vec{B}),$$

где: $\angle(\vec{n}, \vec{B})$ – угол между нормалью к поверхности и вектором магнитной индукции. По условию проводник расположен перпендикулярно к линиям индукции, следовательно,

$$\cos \angle (\vec{n}, \vec{B}) = 1,$$

 $\Delta \Phi = B\Delta S = BLx$

Подставив $\Delta\Phi$ в выражение для работы, будем иметь

$$A = I \cdot B \cdot L \cdot x = 2 \cdot 0.01 \cdot 0.08 \cdot 0.05 = 80 \cdot 10^{-6}$$
.

Проверка размерности:

$$[A] = A \cdot T_{J} \cdot M \cdot M = A \cdot H / M \cdot M^2 = H \cdot M = Дж.$$

Ответ: A = 80 мкДж.

Пример 32. На соленоид длинной 20 см и площадью поперечного сечения 30 см^2 надет проволочный виток. Соленоид имеет 320 витков, и по нему идёт ток 3 A. Какая средняя ЭДС индуцируется в надетом на соленоид витке, когда ток в соленоиде выключается в течение $0{,}001 \text{ c}$? Какое количество электричества протечёт через виток, если сопротивление проволочного витка $R = 0{,}001 \text{ См}$?

Дано: L = 20 cm = = 0,20 m $S = 30 \text{ cm}^2 =$ $= 0,003 \text{ m}^2$ N = 320 I = 3 A $\Delta t = 0,001 \text{ c}$ R = 0,001 Om E - ?q - ?

Решение:

Согласно закону электромагнитной индукции средняя ЭДС, индуцируемая в надетом на соленоид витке, определяется средней скоростью изменения магнитного потока через поверхность, ограниченную витком, т.е.

$$\langle E_i \rangle = -\frac{\Delta \Phi}{\Delta t} = -\frac{\Phi_2 - \Phi_1}{\Delta t} = \frac{\Phi_1 - \Phi_2}{\Delta t}$$
.

По условию задачи $\Phi_2 = 0$.

Определим Φ_1 :

$$\Phi_1 = BS \cos \angle (\vec{n}, \vec{B}).$$

Учтём, что

$$\cos \angle (\vec{n}, \vec{B}) = 1,$$

 $B = \mu_0 \mu H.$

Напряжённость магнитного поля на оси длинного соленоида $H = n \cdot I$,

где: $n = \frac{N}{L}$ — число витков на единицу длины соленоида.

Таким образом,

$$\Phi_1 = \mu_0 \mu \frac{N}{L} IS ,$$

$$\langle E_i \rangle = \mu_0 \mu \frac{NIS}{L \Delta t} .$$

Проверка размерности:

$$[E] = \frac{\Gamma_H}{M} \cdot \frac{A \cdot M^2}{M \cdot C} = B.$$

Подставляя числовые данные и учитывая, что для немагнитной среды $\mu = 1$, вычисляем

$$<$$
E_i $>=4\pi\cdot10^{-4}\frac{320\cdot3\cdot0,003}{0,20\cdot0,001}=0,018(B).$

Полный заряд, протекший по витку за всё время изменения магнитного потока:

$$q = \int_{0}^{t} Idt.$$

Согласно закону Ома

$$I = \frac{E_i}{R}$$
,

а так как

$$E_{i} = -\frac{d\Phi}{dt},$$

$$I = -\frac{1}{R}\frac{d\Phi}{dt}.$$

Тогда:

$$q = \int_{0}^{t} I dt = -\int_{0}^{t} \frac{1}{R} \frac{d\Phi}{dt} dt = -\frac{1}{R} \int_{\Phi_{1}}^{\Phi_{2}} d\Phi = \frac{\Phi_{1} - \Phi_{2}}{R}.$$

В данном случае $\Phi_2 = 0$, $\Phi_1 = \mu_0 \mu \frac{N}{L} IS$,

$$q = \mu_0 \mu \frac{NIS}{LR} .$$

Проверка размерности:

$$[q] = \frac{\Gamma_{H} \cdot A \cdot M^{2}}{M \cdot M \cdot O_{M}} = \frac{B \cdot c \cdot A}{A \cdot O_{M}} = A \cdot c = K_{J}.$$

Подставим данные и произведем вычисления:

$$q = \frac{4\pi \cdot 10^{-7} \cdot 320 \cdot 3 \cdot 0,03}{0.2 \cdot 0.001} = 0,02(K\pi)$$

Ответ: q = 0.02 Kл.

Пример 33. В однородном магнитном поле (В = 0,1 Тл) равномерно с частотой n = 10 об/с вращается катушка, содержащая N = 1000 витков, плотно прилегающих друг к другу. Площадь катушки $S = 150 \text{ см}^2$. Ось вращения перпендикулярна оси вращения катушки и направлению магнитного поля. Найти максимальную ЭДС индукции во вращающейся катушке.

Дано: $B = 0.1 \text{ T}_{\text{J}}$ n = 10 ob/cN = 1000 $S = 150 \text{ cm}^2 =$ $\frac{=0.015 \,\mathrm{m}^2}{\mathrm{E}_{\mathrm{max}} - ?}$

Решение

Мгновенное значение ЭДС индукции определяется основным законом электромагнитной индукции:

$$E_i = -\frac{d\Psi}{dt},$$

где: Ч – потокосцепление, которое связано с магнитным потоком Ф и числом витков N соот-

ношением $\Psi = N\Phi$. Следовательно

$$E_i = -N \frac{d\Phi}{dt}.$$

При вращении рамки магнитный поток, пронизывающий рамку, изменяется со временем по закону

$$\Phi = BS \cdot cos(\omega t)$$
,

где: В – магнитная индукция, S - площадь рамки, ω – угловая скорость вращения рамки, $\alpha = \omega t$ – угол между нормалью к поверхности рамки и вектором магнитной индукции.

Учтя сказанное, получим:

$$E = -N \frac{d}{dt} (BS \cos \omega t) = \omega NBS \sin \omega t.$$

Угловая скорость ω связана с частотой вращения и соотношением: $\omega = 2\pi n$. Таким образом,

$$E_i = 2\pi n \cdot NBS \cdot \sin \omega t$$
.

ЭДС будет иметь максимальное значение при $\sin(\omega t) = 1$.

$$E_{\text{max}} = 2\pi n \cdot \text{NBS} = 1000 \cdot 0.1 \cdot 0.015 \cdot 2 \cdot 3.14 = 94.2(B)$$

 $E_{max}=2\pi n\cdot NBS=1000\cdot 0,1\cdot 0,015\cdot 2\cdot 3,14=94,2(B).$ Проверка размерности: $[E]=T\pi\cdot m^2\cdot c^{-1}=B6/c=B.$ Ответ: $E_{max} = 94,2 B.$

Пример 34. Скорость горизонтально летящего самолёта v = 900 км/ч. Найти ЭДС индукции Е_і, возникающую на концах крыльев самолёта, если вертикальная составляющая индукции магнитного поля Земли равна $0.5 \cdot 10^{-4}$ Тл, размах крыльев самолёта L = 12.5м.

Дано:	Решение:					
v = 900 km/q =	Крылья самолёта буд	цем рассматривать как				
= 250 m/c	проводник. Поскольку	проводник движется				
$B = 0.5 \cdot 10^{-4} \text{ T}_{\text{T}}$	равномерно, то					
L = 12,5 M	$E_i = -$	$\Delta\Phi$				
E-?	$E_i = -$	$\overline{\Delta t}$,				
	v	v				

где: $\Delta\Phi$ –поток магнитной индукции, пересекаемый проводником за время Δt .

Проводник длиной L, перемещаясь за время Δt на расстояние Δx , пересекает магнитный поток:

$$\Delta \Phi = BL\Delta x \cos \angle(\vec{n}, \vec{B})$$
.

Подставляя это выражение в формулу закона электромагнитной индукции и учитывая, что $\frac{\Delta x}{\Delta t} = v$, $\cos \angle (\vec{n}, \vec{B}) = 1$, получим

$$E_i = BL \frac{\Delta x}{\Delta t} = BLv$$
.

Ответ: E = 0.15 B.

Пример 35. Соленоид с сердечником из немагнитного материала содержит N = 1200 витков провода, плотно прилегающих друг к другу. При силе тока I = 4 A магнитный поток $\Phi = 6$ мкВб. Найти индуктивность соленоида и энергию его магнитного поля.

Дано:
N = 1200
I = 4 A
$\Phi = 6 \text{ MKBG} =$
$= 6.10^{-6} \text{ Bf}$
L-?, W – ?

Решение:

Индуктивность связана с потокосцеплением ψ и силой тока I соотношением ψ = LI. Потокосцепление может быть выражено через магнитный поток Ф и число витков N (при условии, что витки плотно прилегают друг к другу) соотношением $\psi = N\Phi$.

Следовательно, индуктивность соленоида:

$$L = \frac{N\Phi}{I}$$
.

Проверим размерность:

$$\begin{split} \left[L\right] &= \frac{B\delta}{A} = \Gamma_{\rm H} \,. \\ L &= \frac{1,\!2\cdot\!10^3\cdot\!6\cdot\!10^{-6}}{4} = 1,\!8\cdot\!10^{-3} (\Gamma_{\rm H}) \,. \end{split}$$

Энергия магнитного поля соленоида с индуктивностью L при токе I, протекающем по его обмотке, может быть вычислена по формуле:

$$W = \frac{LI^2}{2}.$$

Подставим в эту формулу полученное ранее выражение индуктивности:

$$W = \frac{N\Phi}{I} \frac{I^2}{2} = \frac{N\Phi I}{2}.$$

Проверим размерность:

$$[W] = Bб \cdot A = Дж.$$

Произведём вычисления:

$$W = 1/2 \cdot 1, 2 \cdot 10^3 \cdot 6 \cdot 10^{-6} \cdot 4 = 1,44 \cdot 10^{-2}$$
 (Дж).

Ответ: L = 1.8 мГн, W = 14.4 мДж.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Маховик насажен на горизонтальную ось. На обод маховика намотан шнур, к которому привязан груз массой 800 г. Опускаясь равноускоренно, груз прошел 160 см за 2 с. Радиус маховика 20 см. Определить момент инерции маховика.
- 2. На обод маховика диаметром D=60 см намотан шнур, к концу которого привязан груз массой m=2 кг. Определить момент инерции маховика, если он, вращаясь равноускоренно, за время t=3 с приобрел угловую скорость $\omega=9$ рад/с.
- 3. Нить с привязанными к ее концам грузами массой $m_1 = 50$ г и $m_2 = 60$ г перекинута через блок диаметром D = 4 см. Определить момент инерции блока, если под действием силы натяжения нити он получил угловое ускорение $\varepsilon = 1,5$ рад/с.
- 4. Блок, имеющий форму диска массой m=0,4 кг, вращается под действием силы натяжения нити, к концам которой подвещены грузы массой $m_1=0,3$ кг и $m_2=0,6$ кг. Определить силы T_1 и T_2 натяжения нити по обе стороны блока.
- 5. Два груза массой $m_1 = 2$ кг и $m_2 = 1$ кг соединены нитью и перекинуты через блок массой M = 1 кг. Найти ускорение a, с которым движутся грузы и натяжения нити T_1 и T_2 , к которой подвешены грузы. Блок считать однородным диском. Трением пренебречь.
- 6. На барабан массой M=9 кг намотан шнур, к концу которого привязан груз массой m=2 кг. Найти ускорение груза. Барабан считать однородным цилиндром. Трением пренебречь.
- 7. На барабан радиусом R=0.5 м намотан шнур, к концу которого привязан груз массой m=10 кг. Найти момент инерции барабана, если груз опускается с ускорением a=2 м/с².
- 8. На барабан радиусом R=20 см, момент инерции которого равен J=0,1 кг·м², намотан шнур, к которому привязан груз m=0,5 кг. До начала вращения барабана высота груза над полом была h=1 м. Найти: 1) натяжение нити, 2) через сколько времени груз опустится до пола.

- 9. Два груза разной массы соединены нитью и перекинуты через блок, момент инерции которого $J=50~{\rm kr\cdot m^2}$ и радиус $R=20~{\rm cm}$. Блок вращается с трением и момент сил трения равен $M_{\rm rp}=98,1~{\rm h\cdot m}$. Найти разность натяжения нити T_1-T_2 по обе стороны блока, если известно, что блок вращается с постоянным угловым ускорением $\epsilon=2,36~{\rm pag/c^2}$.
- 10. На обод шкива, насаженного на общую ось с маховым колесом, намотана нить, к концу которой подвешен груз массой $m=1~\rm kr$. На какое расстояние должен опуститься груз, чтобы колесо со шкивом получило скорость 60 об/мин? Момент инерции колеса со шкивом $J=0.42~\rm kr\cdot m^2$, радиус шкива $R=10~\rm cm$.
- 11. В лодке массой $m_1=240$ кг стоит человек массой $m_2=60$ кг. Лодка плывет со скоростью $V_1=2$ м/с. Человек прыгает с лодки в горизонтальном направлении со скоростью $V_2=4$ м/с (относительно лодки). Найти скорость движения лодки после прыжка человека: 1) вперед по движению лодки; 2) в сторону, противоположную движению лодки.
- 12. Орудие, закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом $\alpha = 30^0$ к линии горизонта. Определить скорость отката платформы, если снаряд вылетает со скоростью V = 480 м/с. Масса платформы с орудием и снарядом M = 18 т, масса снаряда m = 60 кг.
- 13. Платформа в виде диска радиусом 1 м вращается по инерции, делая 6 об/мин. На краю платформы стоит человек, масса которого 80 кг. Масса платформы 200 кг. Сколько оборотов в минуту будет делать платформа, если человек перейдет в ее центр? Момент инерции человека следует рассчитывать как момент инерции материальной точки.
- 14. На краю горизонтальной платформы, имеющей форму диска радиусом 2 м, стоит человек. Масса платформы 200 кг, масса человека 80 кг. Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью будет вращаться платформа, если человек будет идти вдоль ее края со скоростью 2 м/с относительно платформы.

- 15. Тело массой в 6 кг ударяется о неподвижное тело массой 2,5 кг, которое после удара начинает двигаться с кинетической энергией в 5 Дж. Считая удар центральным и неупругим, найти кинетическую энергию первого тела до и после удара.
- 16. Тело массой в 5 кг ударяется о неподвижное тело массой в 2,5 кг. Кинетическая энергия системы этих двух тел непосредственно после удара стала равна 5 Дж. Считая удар центральным и неупругим, найти кинетическую энергию первого тела до удара.
- 17. Тело массой в 3 кг движется со скоростью 4 м/с и ударяется о неподвижное тело такой же массы. Считая удар центральным и неупругим, найти количество тепла, выделившееся при ударе.
- 18. Шар массой m=1 кг., катящийся без скольжения, ударяется о стенку и откатывается от нее. Скорость шара до удара о стенку $v_1=0,1$ м/с, после удара $v_2=0,08$ м/с. Найти количество тепла Q, выделявшееся при ударе.
- 19. Обруч и диск имеют одинаковую массу и катятся без скольжения с одинаковой линейной скоростью v. Кинетическая энергия обруча $W_1 = 40$ Дж. Найти кинетическую энергию диска.
- 20. Стальной шарик массой m = 0.02 кг, падает с высоты $h_1 = 1$ м на стальную плиту, отскакивает от нее на высоту $h_2 = 0.81$ м. Найти: 1) импульс силы, полученный за время удара, 2) количество тепла, выделившегося при ударе.
- 21. В закрытом сосуде объемом 2,50 л находится водород при температуре 17 0 С и давлении 15,0 кПа. Водород охлаждают до температуры 0 0 С. Найти приращение внутренней энергии водорода ΔU , приращение энтропии, ΔS количество отданного газом тепла Q.
- 22. 1 кмоль газа, находящийся при температуре $T_1 = 300~\mathrm{K}$, охлаждается изохорически, вследствии чего его давление уменьшается в два раза. Затем газ изобарически расширяется так, что в конечном состоянии его температура равна первоначальной. Изобразить процесс на диаграмме P,V. Найти приращение энтропии ΔS , приращение внутренней энергии ΔU , совершаемую работу A.

- 23. 14 г азота адиабатически расширяется так, что давление уменьшается в пять раз, и затем изотермически сжимается до первоначального давления. Начальная температура азота $T_1 = 420$ К. Изобразить процесс на диаграмме P,V. Найти приращение энтропии ΔS , приращение внутренней энергии газа ΔU , совершенную газом работу A.
- 24. вычислить приращение энтропии ΔS при расширении 0,2 г водорода от объема 1,5 л до объема 4,5 л, если процесс расширения происходит: 1) при постоянном давлении; 2) при постоянной температуре.
- 25. 6,5 г водорода, находящегося при температуре 27 ⁰C, расширяется вдвое при P const за счет притока тепла извне. Найти: 1) работу расширения; 2) изменение внутренней энергии; 3) количество тепла, сообщенного газу и приращение энтропии.
- 26. Вычислить приращение энтропии ΔS при нагревании 1 кмоля трехатомного идеального газа от 0 до 500 0 C, если процесс нагревания происходит: а) при постоянном объеме; б) при постоянном давлении. Считать молекулы газа жесткими.
- $27.\ 2$ кг кислорода при давлении $100\$ кПа занимают объем $1,5\$ м $^3.\$ В результате расширения объем газа увеличился в $2,5\$ раза, а давление уменьшилось в $3\$ раза. Найти приращение внутренней энергии ΔU и энтропии ΔS газа.
- $28.\ 2$ кмоля углекислого газа нагреваются при постоянном давлении на 50° . Найти: 1) изменение его внутренней энергии,2) работу расширения, 3) количество тепла, сообщенного газу.
- 29. 1 л гелия, находящегося при нормальных условиях, изотермически расширяется за счет полученного тепла до объема 2 л. Найти: 1) работу, совершенную газом при расширении, 2) количество сообщенного газу тепла, 3) приращение энтропии.
- 30. В одном сосуде, объем которого $V_1=1,6$ л, находится $m_1=14$ мг азота. В другом сосуде, объем которого $V_2=3,40$ л, находится $m_2=16$ мг кислорода. Температуры газов равны. Сосуды соединяют, и газы перемешиваются. Найти приращение энтропии при этом процессе.

- 31. Точечные заряды $Q_1 = 20$ мкКл и $Q_2 = -10$ мкКл находятся на расстоянии d = 5 см друг от друга. Определить напряженность поля в точке, удаленной на $r_1 = 3$ см от первого и $r_2 = 4$ см от второго заряда. Определить также силу F, действующую в этой точке на точечный заряд Q = 1 мкКл.
- 32. Тонкий длинный стержень несет заряд, равномерно распределенный по его длине. Напряженность поля в точке, лежащей на продолжении стержня на расстоянии a=1 м от его конца равна 36 В/м. Определить линейную плотность заряда τ стержня.
- 33. На расстоянии d=20 см находятся два точечных заряда $Q_1=-50$ нКл и $Q_2=100$ нКл. Определить силу F, действующую на заряд $Q_3=-10$ нКл, удаленный от обоих зарядов на одинаковое расстояние, равное d.
- 34. Расстояние d между двумя точечными зарядами $Q_1 = 2$ нКл и $Q_2 = 4$ нКл равно 60 см. Определить точку, в которую нужно поместить третий заряд Q_3 так, чтобы система зарядов находилась в равновесии. Определить величину и знак заряда. Устойчивое или неустойчивое будет равновесие?
- 35. Три одинаковых точечных заряда $Q_1 = Q_2 = Q_3 = 2$ нКл находятся в вершинах равностороннего треугольника со стороной a = 10 см. Определить по величине и направлению силу F, действующую на один из зарядов со стороны двух других.
- 36. Четыре одинаковых заряда $Q_1 = Q_2 = Q_3 = Q_4 = 40$ нКл закреплены в вершинах квадрата со стороной a = 10 см. Найти силу F, действующую на один из этих зарядов.
- 37. В вершинах квадрата находятся одинаковые заряды $Q_1 = Q_2 = Q_3 = Q_4 = 8 \cdot 10^{-10}$ Кл. Какой отрицательный заряд нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда?
- 38. Тонкий прямой стержень длиной 15 см заряжен с линейной плотностью заряда 10 Кл/м. На продолжении оси стержня, на расстоянии 5 см от ближнего конца, находится точечный заряд 10^{-8} Кл. Определить силу взаимодействия стержня и заряда.

- 39. Определить напряженность Е поля, создаваемого зарядом, равномерно распределенным по тонкому прямому стержню с линейной плотностью заряда $\tau=200$ нКл/м, в точке, лежащей на продолжении оси стержня на расстоянии a=20 см от ближнего конца. Длина стержня l=20 см.
- 40. На продолжении оси тонкого прямого стержня, равномерно заряженного, с линейной плотностью заряда $\tau = 15$ нКл/см на расстоянии a = 40 см от конца стержня находится точечный заряд Q = 10 мкКл. Второй конец стержня уходит в бесконечность. Определить силу, действующую на заряд Q.
- 41. Электрическое поле образовано бесконечно длинной нитью с равномерно распределенным зарядом 10^{-10} Кл на каждый метр длины проводника. Определить разность потенциалов двух точек поля, отстоящих от нити на 5 и 10 см.
- 42. Электрическое поле образовано бесконечно длинной нитью с линейной плотностью заряда 10^{-10} Кл/м. Какая работа совершается при переносе точечного заряда $3,2\cdot 10^{-10}$ Кл из точки В в точку С? Точки В и С расположены на расстоянии 1 см и 9 см от нити.
- 43. На расстоянии $r_1=4$ см от бесконечно длинной заряженной нити находится точечный заряд $Q=2\cdot 10^{-9}$ Кл. Под действием поля заряд перемещается до расстояния $r_2=2$ см, а при этом совершается работа $A=5\cdot 10^{-6}$ Дж. Найти линейную плотность заряда нити.
- 44. Электрическое поле образовано положительно заряженной бесконечной нитью с линейной плотностью заряда в $2 \cdot 10^{-9}$ Кл/см. Какую скорость получит электрон под действием поля, приблизившись к нити с расстояния в 1 см до расстояния 0,5 см. Масса электрона $9.1 \cdot 10^{-31}$ кг. Заряд электрона $1.6 \cdot 10^{-19}$ Кл.
- 45. Электрическое поле создано бесконечной равномерно заряженной плоскостью. Поверхностная плотность заряда 10^{-8} Кл/м². Найти работу, необходимую для перемещения точечного заряда $1,6\cdot10^{-16}$ Кл из точки, лежащей на расстоянии 5 см, в точку на расстоянии 13 см от плоскости.

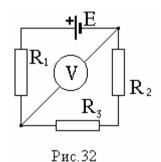
- 46. Поле образовано бесконечной равномерно заряженной плоскостью с поверхностной плотностью заряда $10^{-8}~{\rm K}_{\rm Л}/{\rm m}^2$. Определить разность потенциалов двух точек поля, отстоящих от плоскости на 5 и 10 см.
- 47. Электрон с энергией W = 400 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R = 10 см. Определить минимальное расстояние a, на которое приблизится электрон к поверхности сферы, если заряд ее Q = -10 нКл.
- 48. Пылинка массой 10^{-5} г, имея заряд 10^{-8} Кл влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов 150 В пылинка имела скорость 20 м/с. Какая была скорость пылинки до того, как она влетела в поле?
- 49. Ион атома водорода (H^+) прошел ускоряющую разность потенциалов 100 B, ион атома калия (K^+) 200 B. Найти отношение скоростей этих ионов.
- 50. Электрон, обладающий кинетической энергией 5 эВ влетел в однородное электрическое поле в направлении силовых линий поля. Какой скоростью будет обладать электрон, пройдя в этом поле разность потенциалов 2 В?
- 51. Два плоских воздушных конденсатора емкостью по C = 100 пФ каждый соединены последовательно. Определить, на сколько изменится емкость батареи, если пространство между пластинами одного из конденсаторов заполнить парафином.
- 52. Два конденсатора емкостью $C_1 = 5$ мкФ и $C_2 = 8$ мкФ соединены последовательно и присоединены к батарее с ЭДС равной E = 80 В. Определить заряд Q_1 и Q_2 каждого из конденсаторов и разности потенциалов U_1 и U_2 между их обкладками.
- 53. Между пластинами плоского конденсатора, находящимися на расстоянии 5 мм друг от друга, приложена разность потенциалов 150 В. К одной из пластин прилегает плоскопараллельная пластинка фарфора толщиной 3 мм. Найти: 1) напряженность электрического поля в воздухе и фарфоре; 2) падение потенциала в каждом слое; 3) емкость конденсатора, если площадь пластин S = 100 см².

- 54. Плоский воздушный конденсатор состоит из двух круглых пластин радиусом 10 см каждая. Расстояние между пластинами 1см. Конденсатор зарядили до разности потенциалов в 1200 В и отключили от источника напряжения. Какую работу нужно совершить, чтобы раздвинуть пластины до расстояния 3 см?
- 55. Разность потенциалов между пластинами плоского конденсатора равна 900 В, емкость конденсатора 2 мк Φ ; диэлектрик стекло (ϵ = 6). Конденсатор отключили от источника напряжения. Какую работу нужно совершить, чтобы вынуть стекло из конденсатора? Трением пренебрегаем.
- 56. К батарее с ЭДС E = 300 В подключены два плоских конденсатора емкостью $C_1 = 2$ пФ и $C_2 = 3$ пФ. Определить заряд Q и напряжение U на пластинах конденсаторов в двух случаях: 1) при последовательном соединении; 2) при параллельном соединении.
- 57. Площадь пластин плоского воздушного конденсатора равна 100 см^2 и расстояние между ними 5 мм. К пластинам приложена разность потенциалов 300 B. После отключения конденсатора от источника напряжения пространство между пластинами заполняется эбонитом (ε =2,6). 1)Какова будет разность потенциалов между пластинами после заполнения? 2) Какова емкость конденсатора до и после заполнения? 3) Какова энергия конденсатора до и после заполнения?
- 58. На систему конденсаторов рис.29 подано напряжение U=200~B. Заряд, сообщенный системе, оказался равным $Q=6\cdot10^{-4}~K\pi$. Емкости конденсаторов $C_1=4~\text{мк}\Phi$ и $C_2=8~\text{мк}\Phi$. Определить емкость конденсатора C_3 и энергию каждого конденсатора.
- 59. Плоский конденсатор имеет в качестве изолирующего слоя стеклянную пластинку толщиной d=2 мм и площадью S=300 см². Конденсатор заряжен до разности потенциалов U=100 В, после чего отключен от источника напряжения. Определить работу, которую нужно совершить, чтобы вынуть стеклянную пластинку из конденсатора (трение не учитывать). Диэлектрическая проницаемость стекла $\varepsilon=7$.

- 60. На плоский воздушный конденсатор с площадью пластин $S=0,48~{\rm cm}^2$ и с расстоянием между ними $d=1~{\rm cm}$ подана разность потенциалов $U=5~{\rm kB}$. Затем расстояние между пластинами увеличили до $2~{\rm cm}$ (без отключения от источника напряжения). Определить работу по раздвижению пластин.
- 61. Расстояние между пластинами плоского конденсатора d=2 см, разность потенциалов U=6 кВ. Заряд каждой пластины Q=10 нКл. Определить энергию W поля конденсатора и силу F вза-имного притяжения пластин.
- 62. Расстояние между пластинами плоского конденсатора 4 см. Электрон начинает двигаться от отрицательной пластины в тот момент, когда от положительной пластины начинает двигаться протон. На каком расстоянии от положительной пластины они встретятся?
- 63. Расстояние между пластинами плоского конденсатора равно 1 см. От одной из пластин одновременно начинают двигаться протон и α -частица. Какое расстояние пройдет α -частица за то время, в течение которого протон пройдет весь путь от одной пластины до другой?
- 64. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобретает скорость 10^8 см/с. Расстояние между пластинами 5,3 мм. Найти: 1) разность потенциалов между пластинами, 2) напряженность электрического поля внутри конденсатора, 3) поверхностную плотность заряда на пластинах.
- 65. Электрическое поле образовано двумя параллельными пластинами, находящимися на расстоянии 2 см друг от друга; разность потенциалов между ними 120 В. Какую скорость получит электрон под действием поля, пройдя по силовой линии расстояние в 3 мм?
- 66.Электрон, находящийся в однородном электрическом поле, получает ускорение, равное 10^{14} см/с². Найти: 1) напряженность электрического поля, 2) скорость, которую получит электрон за 10^{-6} с своего движения, если начальная его скорость равна нулю, 3) работу сил электрического поля за это время, 4) разность потенциалов, пройденную при этом электроном.

- 67. Электрон летит от одной пластины плоского конденсатора до другой. Разность потенциалов между пластинами равна 3 кВ. Расстояние между пластинами 5 мм. Найти: 1) силу, действующую на электрон, 2) ускорение электрона, 3) скорость, с которой электрон приходит ко второй пластине, 4) поверхностную плотность заряда на пластинах конденсатора.
- 68. Протон и α-частица, двигаясь с одинаковой скоростью, влетают в плоский конденсатор параллельно пластинам. Во сколько раз отклонение протона полем конденсатора будет больше отклонения α-частицы.
- 69. Протон и α-частица, ускоренные одинаковой разностью потенциалов, влетают в плоский конденсатор параллельно пластинам. Во сколько раз отклонение протона полем конденсатора будет больше отклонения α-частицы.
- 70. Электрон влетает в плоский горизонтальный конденсатор параллельно его пластинам со скоростью $V_x = 10^7$ м/с. Напряженность поля в конденсаторе E = 100 В/см, длина конденсатора l = 5 см. Найти величину и направление скорости электрона при вылете его из конденсатора.
- 71. Протон влетает в плоский горизонтальный конденсатор параллельно его пластинам со скорость $1,2\cdot 10^5$ м/с. Напряженность поля внутри конденсатора 3 кВ/м; длина пластин конденсатора 10 см. Во сколько раз скорость протона при вылете из конденсатора будет больше его начальной скорости?
- 72. В схеме на рис.30, E батарея с ЭДС, равной 120 B, R_3 =20 Ом, R_4 = 25 Ом. Падение потенциала на сопротивлении R_1 равно 40 B. Амперметр показывает 2 A. Найти сопротивление R_2 . Сопротивлением батареи и амперметра пренебречь.
- 73. 1) Какую силу тока показывает амперметр в схеме на рис.30, если E=10 В, КПД $\eta=0.8$ и r=1 Ом? 2) Чему равно падение потенциала на сопротивлении R_2 , если известно, что падение потенциала на сопротивлении R_1 равно 4 В и на сопротивлении R_4 равно 2 В?

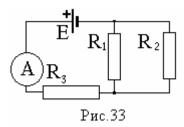
- 74. Элементы цепи, схема которой изображена на рис.31, имеют следующие параметры: E_1 = 1,5 B, E_2 = 1,6 B, R_1 = 1 кОм, R_2 = 2 кОм. Определить показания вольтметра, если его сопротивление R_v = 2 кОм. Сопротивлением источников тока и соединительных проводов пренебречь.
- 75. В схеме на рис.32 Е батарея с ЭДС, равной 100 В, $R_1 = 200$ Ом, $R_2 = 200$ Ом, $R_3 = 300$ Ом. Какое напряжение показывает вольтметр, если его сопротивление равно 2000 Ом? Сопротивлением батареи пренебречь.
- 76. В представленной на рис.32 схеме $R_1 = R_2 = R_3 = 200$ Ом. Вольтметр показывает 100 В, сопротивление вольтметра $R_v = 1000$ Ом. Найти ЭДС батареи. Сопротивлением батареи пренебречь.
- 77. Батарея с ЭДС в 6 В и внутренним сопротивлением 1,4 Ом питает внешнюю
- цепь, состоящую из двух параллельно соединенных резисторов 2 Ом и 8 Ом. Определить разность потенциалов на зажимах батареи и силы токов в резисторах. С каким КПД работает батарея?
- 78. ЭДС батареи 6 В. При замыкании ее на внешнее сопротивление в 1 Ом она дает ток в 3 А. Какова будет сила тока при коротком замыкании этой батареи?
- 79. При сопротивлении внешней цепи в 1 Ом разность потенциалов на зажимах аккумулятора 1,5 В, при сопротивлении в 2 Ом 2,0 В. Определить ЭДС и внутреннее сопротивление аккумулятора.
- 80. При подключении к батарее гальванических элементов сопротивления в 16 Ом сила тока в цепи была 1 А, а при подключении сопротивления в 8 Ом сила тока стала 1,8 А. Найти ЭДС и внутреннее сопротивление батареи.



64

- 81. Элемент, амперметр и некоторое сопротивление включены последовательно. Сопротивление сделано из медной проволоки длиной в 100 м и поперечным сечением в 2 мм², сопротивление амперметра 0,05 Ом; амперметр показывает 1,43 А. Если же взять сопротивление из алюминиевой проволоки длиной в 57,3 м и поперечным сечением в 1 мм², то амперметр покажет 1 А. Найти ЭДС элемента и его внутреннее сопротивление.
- 82. Для нагревания 4,5 л волы от 23 0 С до кипения нагреватель потребляет 0,5 кВт-ч электрической энергии. Чему равен КПД нагревателя?
- 83. Электрический чайник с 1,2 л воды при 9 ⁰C, сопротивление обмотки которого равно 16 Ом, забыли выключить. Через сколько времени после включения вся вода в чайнике выкипит? Напряжение в сети 220 В, КПД чайника 60%.
- 84. Сколько надо заплатить за использование электрической энергии в месяц (30 дней), если ежедневно по 6 ч горит электрическая лампочка, потребляющая при 220В ток 0,5 А? Кроме того, ежедневно кипятится 3 л волы (начальная температура воды 10 °C). Стоимость 1 кВт-ч энергии принять равной 120 руб. КПД нагревателя 80%.
- 85. Найти внутреннее сопротивление генератора, если известно, что мощность, выделяемая во внешней цепи, одинакова при двух значениях внешнего сопротивления $R_1 = 5~\mathrm{Om}$ и $R_2 = 0.2~\mathrm{Om}$. Найти КПД генератора в каждом из этих случаев.
- 86. Имеется 120-вольтовая лампочка мощностью 40 Вт. Какое добавочное сопротивление надо включить последовательно с лампочкой, чтобы она давала нормальный накал при напряжении в сети 220 В? Сколько метров нихромовой проволоки диаметров 0,3 мм надо взять, чтобы получить такое сопротивление?
- 87. Сколько параллельно включенных электрических лампочек, рассчитанных на 100 В и потребляющих мощность в 50 Вт каждая, могут гореть полным накалом при питании их от батареи с ЭДС, равной 120 В и внутренним сопротивлением r = 10 Ом?

88. В схеме на рис.33 ЭДС батареи 120 В, $R_3 = 30$ Ом, $R_2 = 60$ Ом. Амперметр показывает 2 А. Найти мощность, выделяющуюся в сопротивлении R_1 . Сопротивлением батареи и амперметра пренебречь.



89. Проводка от магистрали в здании осуществлена проводом, сопротивление которого $R=0.5~\rm Om$. Напряжение в магистрали постоянно и равно $U=127~\rm B$. Какова максимально допустимая потребляемая в здании мощность, если напряжение на включенных в сеть приборах не должно падать ниже $U_{\rm H}=120~\rm B$?

- 90. Сколько ламп мощностью по 300 Вт каждая, рассчитанных на напряжение $U_{\pi}=110$ В, можно установить в здании, если проводка от магистрали сделана медным проводом общей длиной l=100 м и сечением S=9 мм 2 и если напряжение в магистрали поддерживается U=122 В?
- 91. Ток от магистрали к потребителю подводится по медным проводам, общая длина которых l=49 м и сечение S=2,5 мм 2 . Напряжение в магистрали U=120 В. Потребителем является печь мощностью 600 Вт. Каково сопротивление печи?
- 92. По проводнику сопротивлением R=8 Ом течет равномерно возрастающий ток. За время t=8 с в проводнике выделилась теплота Q=500 Дж. Определить заряд q, протекающий за это время по проводнику. В момент времени, принятый за начальный, ток в проводнике был равен нулю.
- 93. Ток в проводнике изменяется по закону $I = (0,4t + 0,2t^2)A$. Сечение проводника 8 мм². Определить заряд протекающий через сечение проводника за промежуток времени от $t_1 = 2$ с до $t_2 = 4$ с.
- 94. Миллиамперметр с сопротивлением $R_A = 9.9$ Ом может измерять токи не более 10 мА. Что нужно сделать для того, чтобы этим прибором измерять: а) токи до 1 A, б) напряжение до 1 B.
- 95. Ток от магистрали к потребителю идет по медным проводам ($\rho = 1,7 \cdot 10^{-8} \text{ Ом·м}$) общая длина которых l = 49 м и сечение S = 2,5 мм², напряжение в магистрали U₀ =120 В. Потребителем является печь мощностью 60 Вт. Найти сопротивление печи?

- 96. По двум длинным параллельным проводам, расстояние между которыми равно 10 см, текут токи по 600 А в одном направлении. Найти напряженность суммарного поля токов в точке, удаленной от одного провода на 8 см и от другого на 6 см.
- 97. По двум параллельным проводам идут в противоположных направлениях токи $I_1 = 20$ A и $I_2 = 60$ A. Расстояние между проводами 8 см. На каком расстоянии от первого и второго провода находится точка, где напряженность поля токов равна нулю?
- 98. Бесконечно длинный провод образует круговую петлю, касательную к проводу. По проводу идет ток силой 5 А. Найти радиус петли, если известно, что напряженность магнитного поля в центре петли равна 41 А/м.
- 99. В плоскости кругового витка на расстоянии 30 см от его центра расположен прямой бесконечный провод, по которому течет ток 5 А. Ток в витке равен 2 А, радиус витка 10 см. Определить индукцию магнитного поля в центре витка при двух направлениях тока в витке.
- 100. Ток 20 А течет по длинному проводу, согнутому под углом 60^0 . Определить напряженность магнитного поля в точке, находящейся на биссектрисе угла и отстоящей от его вершины на расстоянии 10 см.
- 101. По бесконечно длинному прямому проводу, согнутому под углом 120^0 , течет ток I=50 А. Найти магнитную индукцию в точках, лежащих на биссектрисе угла и удаленных от вершины его на расстояние a=5 см.
- 102. Ток в 20 А идет по длинному прямому проводнику, согнутому под прямым углом. Найти напряженность магнитного поля в точке, лежащей на биссектрисе этого угла и отстоящей от вершины угла на расстоянии 10 см.
- 103.По прямому проводу, согнутому в виде правильного шестиугольника с длиной стороны 20 см, течет ток 50 А. Определить напряженность поля в центре шестиугольника. Для сравнения вычислить напряженность поля при той же силе тока в центре кругового провода, совпадающего с окружностью, описанной около данного шестиугольника.

- 104. По проводу, согнутому в виде квадрата с длиной стороны 20 см, течет ток 100 А. Определить напряженность поля в центре квадрата.
- 105. По контуру в виде равностороннего треугольника идет ток I = 40 А. Сторона треугольника a = 30 см. Определить магнитную индукцию в точке пересечения высот.
- 106. Электрон, ускоренный разностью потенциалов 300 В движется параллельно прямолинейному длинному проводу на расстоянии 4 мм от него. Какая сила подействует на электрон, если по проводнику пустить ток 5 А?.
- 107. Электрон движется по окружности в однородном магнитном поле напряженностью $H = 10^4$ А/м. Вычислить период T обращения электрона ($e = 1,6 \cdot 10^{-19}$ Кл, $m_e = 9,11 \cdot 10^{-31}$ кг).
- 108. Определить частоту обращения электрона по круговой орбите в магнитном поле, индукция которого 0,2 Тл.
- 109. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией 0,5 Тл. Определить момент импульса, которым обладала частица при движении в магнитном поле, если траектория ее представляла дугу окружности радиусом 0,2 см ($e = 1,6 \cdot 10^{-19}$ Кл).
- 110. Электрон и α -частица, двигаясь с одинаковой скоростью, влетают в однородное магнитное поле, перпендикулярное направлению их движения. Найти отношение радиусов кривизны траектории частиц и периодов их обращения в магнитном поле ($m_e = 9,11\cdot10^{-31}$ кг, $m_\alpha = 6,64\cdot10^{-27}$ кг).
- 111. Два иона, имеющие одинаковый заряд и прошедшие одинаковую ускоряющую разность потенциалов, влетают в однородное магнитное поле. Первый ион описал дугу окружности радиусом 7,1 см, второй -10 см. Определить отношение масс ионов.
- 112. Заряженная частица прошла ускоряющую разность потенциалов U=104~B и влетела в скрещенные под прямым углом электрическое (E=100~B/m) и магнитное ($B=0,1~T\pi$) поля. Определить отношение заряда частицы к ее массе, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории.

- 113. Перпендикулярно магнитному полю напряженностью $H=10^4~A/M$ возбуждено электрическое поле напряженностью E=1000~B/cM. Перпендикулярно обоим полям движется, не отклоняясь от прямолинейной траектории, заряженная частица. Определить скорость V частицы.
- 114. В однородном магнитном поле с индукцией B=2 Тл движется протон. Траектория его движения представляет собой винтовую линию с радиусом R=10 см и шагом h=60 см. Определить кинетическую энергию протона $(m_p=1,67\cdot10^{-27}~{\rm kr})$.
- 115. Электрон движется в однородном магнитном поле с индукцией $9 \cdot 10^{-3}$ Тл по винтовой линии, радиус которой 1 см и шаг 7,8 см. Определить период обращения электрона и его скорость (е = $1.6 \cdot 10^{-19}$ Кл, $m_e = 9.11 \cdot 10^{-31}$ кг).
- 116. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи силой 100 А. Определить силу, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.
- 117. В горизонтальном однородном магнитном поле находится в равновесии незакрепленный горизонтальный прямолинейный проводник из меди с поперечным сечением 1 мм 2 . Какой ток течет по проводнику при индукции поля 10^{-2} Тл? Проводник расположен перпендикулярно полю. Плотность меди 8930 кг/м 3 .
- 118. Длинный прямолинейный провод, по которому протекает ток, закреплен горизонтально. Параллельно ему внизу на расстоянии 2 см расположен второй провод с током 100 А. Оба провода лежат в вертикальной плоскости. При каком токе в верхнем проводнике нижний будет висеть в воздухе без опоры? Вес единицы длины нижнего провода 0,2 Н/м.
- 119. Максимальный вращающий момент, действующий на соленоид, имеющий 800 витков диаметром по 2 см, при токе 2 А равен $0,6~{\rm H\cdot m}$. Определить магнитный момент соленоида и индукцию магнитного поля.

- 120. Определить магнитный момент катушки гальванометра, состоящей из 400 витков проволоки, намотанной на прямоугольный каркас сечением 4 см 2 при токе 10^{-7} А. Какой вращающий момент действует на катушку в однородном магнитном поле с индукцией 0,1 Тл, если плоскость катушки составляет 60^0 с направлением магнитного поля.
- 121. Виток диаметром 20 см может вращаться около вертикальной оси, совпадающей с одним из диаметров витка. Виток установили в плоскости магнитного меридиана и пустили по нему ток силой 10 А. Какой вращающий момент нужно приложить к витку, чтобы удержать его в начальном положении? Горизонтальная составляющая напряженности магнитного поля Земли равна 15 А/м.
- 122. Виток радиусом R = 10 см, по которому течет ток силой I = 20 A, свободно установился в однородном магнитном поле напряженностью $H = 10^3$ A/м. Виток повернули относительно диаметра на угол $\varphi = 60^0$. Определить совершенную работу.
- 123. Квадратный контур со стороной a=20 см, в котором течет ток силой I=5 A, находится в магнитном поле с индукцией B = 0,5 Тл под углом $\alpha=30^{0}$ к линиям индукции. Какую работу нужно совершить, чтобы при неизменной силе тока в контуре изменить его форму с квадрата на окружность?
- 124. В однородном магнитном поле перпендикулярно к линии индукции расположен плоский контур площадью $S=400~{\rm cm}^2$. Поддерживая в контуре постоянную силу тока $I=20~{\rm A}$, его переместили из поля в область пространства, где поле отсутствует. Определить индукцию В магнитного поля, если при перемещении контура была совершена работа $A=0,2~{\rm Дж}$.
- 125. Виток, в котором поддерживается постоянная сила тока I=50~A свободно установился в однородном магнитном поле (B=25~mTл). Диаметр витка d=20~cm. Какую работу A нужно совершить для того, чтобы повернуть виток относительно оси, совпадающей с диаметром, на угол $\alpha=\pi$?

- 126. На соленоид длиной 20 см и площадью поперечного сечения 30 см² надет проволочный виток. Соленоид имеет 320 витков, и по нему идет ток в 3 А. Найти среднюю ЭДС индукции в витке, когда ток в соленоиде выключается в течение 0,001 с?
- 127. Рамка, содержащая N = 1500 витков площадью S = 50 см², равномерно вращается с частотой n = 960 об/мин в магнитном поле напряженностью $H = 10^5$ А/м. Ось вращения лежит в плоскости рамки и перпендикулярна линиям напряженности. Определить максимальную ЭДС индукции, возникающую в рамке.
- 128. Рамка площадью $S=200~\text{cm}^2$ равномерно вращается с частотой $n=10~\text{c}^{-1}$ относительно оси, лежащей в плоскости рамки и перпендикулярной линиям индукции магнитного поля (B=0,2 Тл). Определить среднее значение ЭДС индукции за время, в течение которого магнитный поток, пронизывающий рамку, изменился от нуля до максимального значения.
- 129. В однородном магнитном поле, индукция которого B=1 Тл, находится прямой проводник длиной l=20 см. Концы проводника замкнуты проводом, находящимся вне поля. Сопротивление всей цепи R=0,1 Ом. Найти силу, которую нужно приложить к проводнику, чтобы перемещать его перпендикулярно линиям индукции со скоростью V=2,5 м/с.
- 130. В однородном магнитном поле напряженностью H = 2000 А/м, равномерно с частотой n = 10 с⁻¹ вращается стержень длиной l = 20 см так, что плоскость его вращения перпендикулярна линиям напряженности, а ось вращения проходит через один из его концов. Определить разность потенциалов на концах стержня.
- 131. Горизонтальный стержень длиной 1 м вращается вокруг вертикальной оси, проходящей через один из его концов. Ось вращения параллельна силовым линиям магнитного поля, индукция которого равна $5\cdot10^{-5}$ Тл. При каком числе оборотов в секунду разность потенциалов на концах стержня будет равна 1 мВ?
- 132. Проволочное кольцо радиусом R=10 см лежит на столе. Какой заряд q протечет по кольцу, если его повернуть с одной стороны на другую? Сопротивление кольца 1 Ом. Вертикальная составляющая магнитного поля Земли $B=5\cdot 10^{-5}$ Тл.

- 133. Медный обруч массой m=5 кг расположен в плоскости магнитного меридиана. Какой заряд индуцируется в нем, если его повернуть вокруг вертикальной оси на 90^{0} ? Горизонтальная составляющая магнитного поля Земли $B_{\Gamma}=32\cdot10^{-5}$ Тл (плотность меди $\rho=8,9\cdot10^{3}$ кг/м 3 , удельное сопротивление $1,7\cdot10^{-8}$ Ом·м).
- 134. Круглый виток радиусом R, сделанный из медного провода, площадью поперечного сечения S, находится в однородном магнитном поле, напряженность которого за некоторое время меняется от нуля до H. Сколько электронов пройдет через поперечное сечение провода за время существования тока?
- 135. Тонкий медный проводник массой m=1 г согнут в виде квадрата и концы его замкнуты. Квадрат помещен в однородное магнитное поле (B=0,1 Тл) так, что его плоскость перпендикулярна линиям поля. Определить заряд q, который протечет по проводнику, если квадрат, потянув за противоположные вершины, вытянуть в линию. (Плотность меди $\rho=8,9\cdot10^3$ кг/м 3 , удельное сопротивление $1,7\cdot10^{-8}$ Ом·м).
- 136. Обмотка соленоида содержит n=10 витков на каждый сантиметр длины. При какой силе тока объемная плотность энергии магнитного поля 1 Дж/м³? Сердечник выполнен из немагнитного материала, магнитное поле во всем объеме однородно.
- 137. Соленоид имеет длину l=1 м и сечение $S=20~{\rm cm}^2$. При некоторой силе тока, протекающего по обмотке, в соленоиде создается магнитный поток $\Phi=80~{\rm mkB}$ б. Чему равна энергия магнитного поля соленоида? Сердечник выполнен из немагнитного материала и магнитное поле во всем объеме однородно.
- 138. Обмотка тороида имеет n=8 витков/см (по средней линии тороида). Вычислить объемную плотность энергии магнитного поля при силе тока I=20 А. Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно.
- 139. Магнитный поток соленоида сечением $S = 10 \text{ см}^2$ равен 10 мкВб. Определить объемную плотность энергии магнитного поля соленоида. Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно.

- 140. Тороид диаметром (по средней линии) D=40 см и площадью поперечного сечения S=10 см 2 содержит N=1200 витков. Вычислить энергию магнитного поля тороида при силе тока I=10 А. Сердечник выполнен из немагнитного материала и магнитное поле во всем объеме однородно.
- 141. Соленоид содержит N=800 витков. При силе тока I=1 А магнитный поток $\Phi=0,1$ мВб. Определить энергию магнитного поля соленоида. Сердечник выполнен из немагнитного материала и магнитное поле во всем объеме однородно.
- 142. Определить плотность W энергии магнитного поля в центре кольцевого проводника, имеющего радиус r=25 см и содержащего N=100 витков. Сила тока в проводнике I=2 A.
- 143. При какой силе тока в прямолинейном бесконечно длинном проводнике плотность энергии W магнитного поля на расстоянии r = 1 см от проводника равна 0,1 Дж/м³?
- 144. Однородное магнитное поле в воздухе действует с силой 0,01 H на 1 см длины провода с током 1000 A, расположенного перпендикулярно полю. Найти объемную плотность энергии поля.
- 145. Обмотка электромагнита, индуктивность которого 0,4 Гн, находится под постоянным напряжением. В течение 0,02 с в обмотке его выделяется столько же тепла, сколько энергии содержит магнитное поле сердечника. Найти сопротивление обмотки.

Таблица заданий для Контрольной работы №1.

Номер варианта	Номера задач						
0	1	20	26	31	41	55	69
1	2	19	27	32	42	56	68
2	3	18	28	33	43	57	67
3	4	17	29	34	44	58	66
4	5	16	30	35	45	59	65
5	6	15	21	36	46	60	64
6	7	14	22	32	47	51	63
7	8	13	23	38	48	52	62
8	9	12	24	39	49	53	70
9	10	11	25	40	50	54	71

Таблица заданий для Контрольной работы №2.

Номер вариант	Номера задач						
0	80	84	96	115	125	134	142
1	79	85	97	114	116	135	143
2	78	88	98	113	117	126	144
3	77	91	99	112	118	127	145
4	76	82	100	111	119	128	136
5	75	83	101	110	120	129	137
6	74	87	102	109	121	130	138
7	73	86	103	108	122	131	139
8	72	89	104	107	123	132	140
9	81	90	105	106	124	133	141