Главная » Решения по физике » Готовые решения по физике Часть 110
 
 
 
 | 08:34  Готовые решения по физике Часть 110 | |
|  Решение задач по физике 50 решенных задач по физике, с подробным решением и оформлением Часть 110 Все задачи оформлены в Microsoft Word с использованием редактора формул. Стоимость решения задач 30 руб. 51. Постоянная дифракционной решетки в n=4 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол α между двумя первыми симметричными дифракционными максимумами. Получить решение задачи 52. Постоянная дифракционной решетки в n = 5 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол α между двумя первыми симметричными дифракционными максимумами. Получить решение задачи 53. На дифракционную решетку падает нормально монохроматический свет (λ=410 нм). Угол Δφ между направлениями на максимумы первого и второго порядков равен 2°21'. Определить число n штрихов на 1 мм дифракционной решетки. Получить решение задачи 54. Определить длину волны монохроматического света, падающего нормально на дифракционную решетку с периодом d = 2,2 мкм, если угол между направлениями на фраунгоферовы максимумы первого и второго порядков Δθ = 15°. Получить решение задачи 55. На дифракционную решетку, содержащую n=100 штрихов на 1 мм, нормально падает монохроматический свет. Зрительная труба спектрометра наведена на максимум второго порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на угол Δφ=16°. Определить длину волны λ света, падающего на решетку. Получить решение задачи 56. На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна (λ=600 нм). Угол отклонения лучей, соответствующих второму дифракционному максимуму, φ=20°. Определить ширину a щели. Получить решение задачи 57. На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна (λ = 500 нм). Угол отклонения лучей, соответствующих первому дифракционному максимуму, φ = 30°. Определить ширину a щели. Получить решение задачи 58. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние d между атомными плоскостями равно 280 пм. Под углом θ=65° к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны λ рентгеновского излучения. Получить решение задачи 59. На дифракционную решетку, содержащую n=600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L=1,2 м. Границы видимого спектра: λкр =780 нм, λф=400 нм. Получить решение задачи 60. На дифракционную решетку, содержащую n = 500 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L = 1 м. Границы видимого спектра: λкр = 780 нм, λф = 400 нм. Получить решение задачи 61. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четвертого порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница (λ=780 нм) спектра третьего порядка? Получить решение задачи 62. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры второго и третьего порядка частично накладываются друг на друга. На какую длину волны в спектре второго порядка накладывается граница (λ = 400 нм) спектра третьего порядка? Получить решение задачи 63. На поверхность дифракционной решетки нормально к ее поверхности падает монохроматический свет. Постоянная дифракционной решетки в n=4,6 раза больше длины световой волны. Найти общее число М дифракционных максимумов, которые теоретически можно наблюдать в данном случае. Получить решение задачи 64. На дифракционную решетку нормально падает пучок света от разрядной трубки, наполненной гелием. На какую линию λ2 в спектре третьего порядка накладывается красная линия гелия (λ1 = 670 нм) спектра второго порядка? Получить решение задачи 65. Какое наименьшее число Nmin штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн λ1=589,0 нм и λ2=589,6 нм? Какова длина l такой решетки, если постоянная решетки d=5 мкм? Получить решение задачи 66. Какое наименьшее число штрихов должна содержать дифракционная решетка, чтобы две составляющие желтой линии натрия с длинами волн 588,0 нм и 588,6 нм можно было наблюдать раздельно в спектре первого порядка? Получить решение задачи 67. Период дифракционной решетки d = 0,01 мм. Какое наименьшее число штрихов должна содержать решетка, чтобы две составляющие желтой линии натрия (λ1 = 589,0 нм, λ2 = 589,6 нм) можно было видеть раздельно в спектре первого порядка? Определить наименьшую длину L решетки. Получить решение задачи 68. Период дифракционной решетки равен 0,009 мм. Какое наименьшее число штрихов должна содержать решетка, чтобы две составляющие с длинами волн 6004 Ǻ и 6027 Ǻ можно было наблюдать раздельно в спектре 3-го порядка? Получить решение задачи 69. Какое наименьшее число штрихов должна содержать решетка, чтобы в спектре первого порядка можно было видеть раздельно две желтые линии натрия с длинами волн λ1 = 589,0 нм и λ2 = 589,6 нм? Какова длина l такой решетки, если расстояние между штрихами b = 10 мкм? Получить решение задачи 70. Электрон с кинетической энергией 20 эВ находится в металлической пылинке диаметром 2 мкм. Оценить (в % ) относительную погрешность с которой может быть определена скорость электрона из соотношения неопределенностей. Получить решение задачи 71. Вычислить дефект массы ядра изотопа 2010Ne Получить решение задачи 72. Какой изотоп образуется из 83Li после одного β-распада и одного α-распада Получить решение задачи 73. Диск радиусом R = 20 см и массой m = 7 кг вращается согласно уравнению φ = A+Bt+Ct3, где А = 3 рад; В = –1 рад/с; С = 0,1 рад/с3. Найти закон, по которому меняется вращающий момент, действующий на диск. Определить момент сил М в момент времени t = 2 с. Получить решение задачи 74. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом (λ=590 нм). Определить толщину d3 воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо. Получить решение задачи 75. Между двумя плоскопараллельными пластинами на расстоянии L=10 см от границы их соприкосновения находится проволока диаметром d=0,01 мм, образуя воздушный клин. Пластины освещаются нормально падающим монохроматическим светом (λ=0,6 мкм). Определить ширину b интерференционных полос, наблюдаемых в отраженном свете. Получить решение задачи 76. Плосковыпуклая стеклянная линза с f=1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r5=1,1 мм. Определить длину световой волны λ. Получить решение задачи 77. Плосковыпуклая линза с фокусным расстоянием f = 2 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r5 = 1,5 мм. Определить длину световой волны λ. Получить решение задачи 78. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны λ=500 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b=0,5 мм. Определить угол α между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин n=1,6. Получить решение задачи 79. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны λ = 600 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b = 0,4 мм. Определить угол α между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин, n = 1,5. Получить решение задачи 80. На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления n=1,3. Пластинка освещена параллельным пучком монохроматического света с длиной волны λ=640 нм, падающим на пластинку нормально. Какую минимальную толщину dmin должен иметь слой, чтобы отраженный пучок имел наименьшую яркость? Получить решение задачи 81. На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления n = 1,4. Пластинка освещена параллельным пучком монохроматического света с длиной волны λ = 540 нм, падающим на пластинку нормально. Какую минимальную толщину dmin должен иметь слой, чтобы отраженный пучок имел наименьшую яркость? Получить решение задачи 82. На поверхность стеклянного объектива нанесена тонкая прозрачная пленка с показателем преломления 1,3. При какой наименьшей ее толщине произойдет максимальное ослабление отраженного света, длина волны которого 0,56 мкм приходится на среднюю часть видимого спектра? Считать, что лучи падают нормально к поверхности объектива. Получить решение задачи 83. На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны λ=500 нм. Найти радиус R линзы, если радиус четвертого, темного кольца Ньютона в отраженном свете r4=2 мм. Получить решение задачи 84. На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны λ = 600 нм. Найти радиус R линзы, если радиус восьмого темного кольца Ньютона в отраженном свете r8 = 2,4 мм. Получить решение задачи 85. Расстояние L от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной l=1 см укладывается N=10 темных интерференционных полос. Длина волны λ=0,7 мкм. Получить решение задачи 86. Расстояние L от щелей до экрана в опыте Юнга равно 1,5 м. Определить расстояние между щелями, если на отрезке длиной l = 1 см укладывается N = 8 темных интерференционных полос. Длина волны λ = 0,6 мкм. Получить решение задачи 87. На мыльную пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны λ = 600 нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину dмин пленки. Показатель преломления мыльной воды n = 1,30. Получить решение задачи 88. Между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r3 третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны λ=0,6 мкм равен 0,82 мм. Радиус кривизны линзы R=0,5 м. Получить решение задачи 89. Найти показатель преломления жидкости, заполняющей пространство между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой, если при наблюдении в отраженном свете радиус 7-го темного кольца Ньютона оказался равным 2,221 мм. Радиус кривизны выпуклой поверхности линзы равен 263 см. Установка освещается светом с длиной волны 661 нм. Линза и пластинка изготовлены из стекла одного сорта. Получить решение задачи 90. Вычислить по теории Бора радиус r2 второй стационарной орбиты и скорость υ2 электрона на этой орбите для атома водорода. Получить решение задачи 91. Вычислить по теории Бора радиус второй стационарной (боровской) орбиты и скорость электрона на этой орбите для трехзарядного иона бериллия (Z = 4). Получить решение задачи 92. Вычислить по теории Бора радиус второй стационарной (боровской) орбиты и скорость электрона на этой орбите для двухзарядного иона лития (Z = 3). Получить решение задачи 93. Вычислить по теории Бора радиус второй стационарной орбиты и скорость электрона на этой орбите для однозарядного иона гелия. Получить решение задачи 94. Вычислить по теории Бора радиус четвертой стационарной (боровской) орбиты и скорость электрона на этой орбите для трехзарядного иона бериллия (Z = 4). Получить решение задачи 95. Вычислить по теории Бора радиус третьей стационарной (боровской) орбиты и скорость электрона на этой орбите для трехзарядного иона бериллия (Z = 4). Получить решение задачи 96. Вычислить по теории Бора радиус пятой стационарной (боровской) орбиты и скорость электрона на этой орбите для трехзарядного иона бериллия (Z = 4). Получить решение задачи 97. Вычислить по теории Бора радиус r3 третьей боровской орбиты и скорость υ электрона на этой орбите для атома водорода. Получить решение задачи 98. Вычислить по теории Бора период T вращения электрона в атоме водорода, находящегося в возбужденном состоянии, определяемом главным квантовым числом n=2. Получить решение задачи 99. Вычислить по теории Бора период вращения электрона в атоме водорода, находящегося на втором энергетическом уровне. Получить решение задачи 100. Определить изменение энергии ΔE электрона в атоме водорода при излучении атомом фотона с частотой ν=6,28•1014 Гц. Получить решение задачи | |
| Категория: Решения по физике | Просмотров: 763 | | |

