Главная » Решения по физике » Готовые решения по физике Часть 35
 
 
 
 | 22:42  Готовые решения по физике Часть 35 | |
|  Решение задач по физике 50 решенных задач по физике, с подробным решением и оформлением Часть 35 Все задачи оформлены в Microsoft Word с использованием редактора формул. Стоимость решения задач 30 руб. 1. Определить расстояние g от предмета до зеркала, если фокусное расстояние вогнутого зеркала равно 10 см и зеркало дает действительное изображение предмета, уменьшенное в два раза. Построить изображение B предмета G в вогнутом зеркале. Получить решение задачи 2. Построить изображение предмета в выпуклом зеркале. Получить решение задачи 3. Человек, стоящий на берегу пруда, смотрит на камень, находящийся на дне. Глубина пруда h =1м. На каком расстоянии h’ от поверхности воды увидит человек камень, если луч составляет с вертикалью угол i = 60°? Получить решение задачи 4. Луч света падает на плоскопараллельную пластинку (n = 1,6) под углом i = 45. Определить толщину d пластинки, если вышедший из пластинки луч смещен относительно продолжения падающего луча на расстояние h = 2 см. Получить решение задачи 5. Две среды разделены плоскопараллельной пластинкой (см. рис.). Показатели преломления первой среды, второй среды и пластинки соответственно равны n1, n2, n (n > n1). Луч света падает из первой среды на пластинку под углом i1. Определить угол i2, под которым луч выйдет из пластинки. Получить решение задачи 6. Наблюдатель рассматривает светящуюся точку через плоскопараллельную стеклянную пластинку (n = 1,5) толщиной d = 3 см так, что луч зрения нормален к пластинке. Определить расстояние между точкой S и ее изображением S’. Получить решение задачи 7. На грань стеклянной призмы с преломляющим углом θ = 60° падает луч света под углом α1 = 45°. Найти угол преломления β2 луча при выходе из призмы и угол отклонения δ луча от первоначального направления. Получить решение задачи 8. На грань стеклянной призмы с преломляющим углом θ =100° падает луч света под углом α1 = 65°. Построить ход луча через призму и найти угол преломления луча γ3 при выходе (n = 1,812) из призмы. Получить решение задачи 9. Воздушная линза, образованная двумя часовыми стеклами с различными радиусами кривизны, помещена в воду. Найти фокусное расстояние этой линзы, зная, что стеклянная линза такой же формы имеет в воздухе фокусное расстояние 40 см. Абсолютные показатели преломления стекла и воды равны соответственно n = 3/2 и n = 4/3. Получить решение задачи 10. На рисунке (а-г) показаны положения предмета AB. Построить изображения предмета. Получить решение задачи 11. Найти построением положение святящейся точки, если известен ход лучей после их преломления в линзе. Один из этих лучей пересекается с главной оптической осью собирающей линзы в ее фокусе (рис. 1(а)). В случае с рассеивающей линзой (рис. 1(б)) один из лучей после преломления в линзе идет так, что его продолжение пересекается с главной оптической осью линзы в ее фокусе. Получить решение задачи 12. Собирающая линза дает действительное увеличение в два раза изображение предмета. Определить фокусное расстояние линзы, если расстояние между линзой и изображением предмета 24 см. Построить изображение предмета в линзе. Получить решение задачи 13. Найти фокусное расстояние F2 двояковыпуклой стеклянной линзы, погруженной в воду, если известно, что фокусное расстояние F1 в воздухе 20 см. Получить решение задачи 14. Горизонтально расположенное вогнутое зеркало заполнено водой на небольшую глубину. Радиус зеркала 60 см. Каково фокусное расстояние F такой системы? Получить решение задачи 15. В вогнутое зеркало радиусом кривизны наливают воду. Оптическая сила D полученной системы 5,3 дптр. Вычислить главное фокусное расстояние F водяной линзы. Получить решение задачи 16. Поверх выпуклого сферического зеркала радиусом кривизны R = 20 см налили тонкий слой воды. Определить главное фокусное расстояние F такой системы. Получить решение задачи 17. Микроскоп состоит из объектива и окуляра, расстояние между главными фокусами которых, 18 см. Найти увеличение Г, даваемое микроскопом, если фокусные расстояния объектива и окуляра соответственно 2 и 40 мм. Построить изображение предмета. Получить решение задачи 18. Определить длину l1 отрезка, на который укладывается столько же длин волн в вакууме, сколько их укладывается на отрезке l2 = 3 мм в воде. Получить решение задачи 19. Усилится или ослабнет свет в точке A, если длина волны λ когерентных лучей равна 0,4∙10-6 м, а разность хода между ними составляет 2,0∙10-6 м. Получить решение задачи 20. На экране наблюдается интерференционная картина от 2-х когерентных источников света с длиной волны λ = 0,75∙10-6 м. Когда на пути одного из лучей поместили стеклянную пластинку толщиной d =12∙10-6 м с показателем преломления n = 1,5 , интерференционная картина сместилась. На сколько полос сместилась интерференционная картина и в каком направлении: вверх или вниз? Получить решение задачи 21. От двух когерентных источников S1 и S2 лучи попадают на экран (см. рис.). На экране наблюдается интерференционная картина. Когда на пути одного из лучей перпендикулярно ему поместили мыльную пленку, интерференционная картина изменилась на противоположную. При какой наименьшей толщине dmin пленки это возможно? Получить решение задачи 22. Опыт Юнга был проведен в прозрачной жидкости вначале с монохроматическим светом длины волны λ1 = 600 нм, а затем – со светом другой длины волны λ2. Определить длину волны во втором случае, если 7 -я светлая полоса в первом случае совпадает с 10-й темной полосой во втором случае. Получить решение задачи 23. Расстояние между двумя когерентными источниками d = 0,9 мм. Источники, испускающие монохроматический свет с длиной волны λ = 640 нм, расположены на расстоянии l = 3,5 м от экрана. Определить число светлых полос, располагающихся на 1 см длины экрана. Получить решение задачи 24. На зеркала Френеля, угол между которыми α = 10’, падает монохроматический свет от узкой щели S , находящейся на расстоянии r = 0,1 м от линии их пересечения. Отраженный от зеркал свет дает интерференционную картину на экране Э, отстоящем на расстоянии a = 2,7м от линии их пересечения, причем расстояние между интерференционными полосами равно ∆x = 2,9∙10-3 м. Определить длину волны λ света. Получить решение задачи 25. В просветленной оптике для устранения отражения света на поверхность линзы наносится тонкая пленка вещества с показателем преломления 1,26, меньшим, чем у стекла. При какой толщине пленки отражение света от линзы не будет наблюдаться? Длина волны падающего света 0,55 мкм, угол падения 30. Получить решение задачи 26. На стеклянный клин с малым углом нормально к его грани падает параллельный пучок лучей монохроматического света с длиной волны λ = 0,6 мкм. Число m возникающих при этом интерференционных полос, приходящихся на отрезок клина длиной l, равно 10. Определить угол α клина (рис.). Получить решение задачи 27. Установка для наблюдения колец Ньютона в отраженном свете освещается монохроматическим светом (λ =5∙10-7м), падающим нормально к поверхности пластинки. Пространство между линзой и стеклянной пластинкой заполнено водой. Найти толщину слоя d воды между линзой и пластинкой в том месте, где наблюдается третье светлое кольцо. Получить решение задачи 28. Плосковыпуклая линза (n =1,6) выпуклой стороной прижата к стеклянной пластинке. Расстояние между первыми двумя кольцами Ньютона, наблюдаемыми в отраженном свете, равно 0,5 мм. Определить оптическую силу D линзы, если освещение производится монохроматическим светом с λ = 550нм, падающим нормально. Получить решение задачи 29. Для измерения показателей преломления прозрачных веществ используют интерферометр. Здесь S - узкая щель, освещаемая монохроматическим светом (λ0=0,589 мкм); 1 и 2 – две одинаковые кюветы с воздухом, длина каждой из которых l = 10 см; Д – диафрагма с двумя щелями. Когда воздух в кювете 2 заменили аммиаком, то ранее наблюдавшаяся на экране Э интерференционная картина сместилась вверх на N = 17 полос. Определить показатель преломления n’ аммиака, если для воздуха n = 1,00029. Получить решение задачи 30. Зонная пластинка дает изображение источника, удаленного от нее на 1м на расстояние 0,5м от своей поверхности. Где получится изображение источника, если его удалить в бесконечность? Получить решение задачи 31. Каково соотношение площадей 6-й и 5-й зон Френеля для плоского фронта с λ = 0,5мкм, если экран расположен в 1 метре от фронта волны? Найдите радиусы указанных зон. Получить решение задачи 32. Дифракция наблюдается на расстоянии 2 метра от точечного источника монохроматического света с λ = 0,5 мкм. Посередине между источником света и экраном находится диафрагма с круглым отверстием. Каково соотношение 6-ой и 5-ой зон Френеля для сферического фронта волны? Найдите радиусы указанных зон. Получить решение задачи 33. На диафрагму с круглым отверстием радиусом r = 1мм падает нормально параллельный пучок света длиной волны λ = 0,5мкм. На пути лучей, прошедших через отверстие, помещают экран. Определить максимальное расстояние bmax от центра отверстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пятно. Получить решение задачи 34. На щель шириной a = 0,1мм падает нормально монохроматический свет (λ = 0,6мкм). Экран, на котором наблюдается дифракционная картина, расположен параллельно щели на расстоянии l = 1м. Определите расстояние b между первыми дифракционными минимумами, расположенными по обе стороны фраунгоферова максимума. Получить решение задачи 35. На узкую щель шириной a = 0,05мм падает нормально монохроматический свет с длиной волны λ = 694 нм. Определите направление света на вторую дифракционную полосу (по отношению к первоначальному направлению света). Получить решение задачи 36. На узкую длинную щель шириной 2 мкм падает нормально параллельный пучок монохроматического света с длиной волны λ = 0,599 мкм. Найти углы φi в направлении которых будут наблюдаться минимумы света. Получить решение задачи 37. Монохроматический свет с длиной волны λ = 0,6 мкм падает на длинную прямоугольную щель шириной a = 12 мкм под углом α0 = 45° к ее нормали. Определите угловое положение первых минимумов, расположенных по обе стороны центрального фраунгоферова максимума. Получить решение задачи 38. На дифракционную решетку нормально к ее поверхности падает параллельный пучок света с длиной волны λ = 0,5мкм. Помещенная вблизи решетки линза проецирует дифракционную картину на плоский экран, удаленный от линзы на l = 1м. Расстояние b между двумя максимумами интенсивности первого порядка, наблюдаемыми на экране, равно 20,2 см Определить: 1. постоянную d дифракционной решетки; 2. число n штрихов на 1 см; 3. число максимумов, которое при этом дает дифракционная решетка 4. максимальный угол φmax отклонения лучей, соответствующих последнему дифракционному максимуму. Получить решение задачи 39. Период дифракционной решетки d =0,005 мм. Определить число наблюдаемых главных максимумов в спектре дифракционной решетки для монохроматического света с длинами волн λ1 = 760 нм, λ2 = 440 нм. Получить решение задачи 40. На дифракционную решетку в направлении нормали к ее поверхности падает монохроматический свет. Период решетки d = 2мкм. Какого наибольшего порядка дифракционный максимум дает эта решетка в случае красного света (λ1=0,7 мкм) и в случае фиолетового (λ2=0,41 мкм)? Получить решение задачи 41. На дифракционную решетку нормально падает монохроматический свет с длиной волны λ = 0,5мкм. На экран, находящийся от решетки на расстоянии L = 1м, с помощью линзы, расположенной вблизи решетки, проецируется дифракционная картина, причем первый главный максимум наблюдается на расстоянии l = 15см от центрального. Определите число штрихов на 1см дифракционной решетки. Получить решение задачи 42. Определите длину волны монохроматического света, падающего нормально на дифракционную решетку, имеющую 300 штрихов на 1 мм, если угол между направлениями на максимумы первого и второго порядка составляет 12°. Получить решение задачи 43. На дифракционную решетку с постоянной d = 5мкм под углом β = 30° падает монохроматический свет с длиной волны λ = 0,5мкм. Определите угол φ дифракции для правого максимума третьего порядка. Получить решение задачи 44. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения (λ = 147 пм). Определить расстояние d между атомными плоскостями кристалла, если дифракционный максимум 2 – го порядка наблюдается, когда излучение падает под углом θ = 31°30’ к поверхности кристалла. Получить решение задачи 45. Узкий пучок рентгеновского излучения с длиной волны λ = 245пм падает под некоторым углом скольжения θ на естественную грань монокристалла NaCl (M = 58,5 г/моль), плотность которого ρ = 2,16 г/см3. Определите угол скольжения θ, если при зеркальном отражении от этой гран и наблюдается максимум 2 – го порядка. Получить решение задачи 46. Диаметр D объектива телескопа равен 10см. Определите наименьшее угловое расстояние φ между двумя звездами, при котором в фокальной плоскости объектива получается их разрешимые дифракционные изображения. Считайте, что длина волны света λ = 0,55мкм. Получить решение задачи 47. На дифракционную решетку нормально падает монохроматический свет с λ = 0,6 мкм. Угол дифракции для пятого максимума равен 30°, а минимальная разрешаемая решеткой разность длин волн составляет δλ = 0,2 нм. Определите длину l дифракционной решетки. Получить решение задачи 48. Определите постоянную дифракционной решетки d , если она в первом порядке разрешает две спектральные линии калия (λ1=578 нм и λ2=580 нм). Длина решетки l = 1см. Получить решение задачи 49. Дифракционная решетка имеет N = 1000 штрихов и постоянную d = 10мкм. Определите угловую дисперсию Dφ для угла дифракции φ = 30° в спектре третьего порядка. Найдите разрешающую способность R дифракционной решетки в спектре пятого порядка. Получить решение задачи 50. Угловая дисперсия Dφ дифракционной решетки для λ=6,68∙10-7 м в спектре первого порядка равна 2,02∙105 рад/м. Найти линейную дисперсию Dl (в мм/м) и период дифракционной решетки d, если фокусное расстояние линзы, проектирующей спектр на экран, f = 40см. Получить решение задачи | |
| Категория: Решения по физике | Просмотров: 926 | | |

