Главная » Решения по физике » Готовые решения по физике Часть 49
 
 
 
 | 11:05  Готовые решения по физике Часть 49 | |
|  Решение задач по физике 50 решенных задач по физике, с подробным решением и оформлением Часть 49 Все задачи оформлены в Microsoft Word с использованием редактора формул. Стоимость решения задач 30 руб. 1. Естественный свет падает на поверхность диэлектрика под углом полной поляризация. Коэффициент отражения света равен 0,085. Найти степень поляризации преломленного луча. Получить решение задачи 2. Естественный свет падает на поверхность диэлектрика под углом полной поляризации. Коэффициент пропускания света равен 0,92. Найти степень поляризации преломленного луча. Получить решение задачи 3. Вычислить групповую и фазовую скорости света с длиной волны 643,8 нм в воде, если известно, что показатель преломления для этой длины волны равен 1,3314, а для волны длиной 656,3 нм он равен 1,3311. Получить решение задачи 4. Какой кинетической энергией должны обладать протоны, чтобы при их движении в сероуглероде наблюдалось черенковское свечение. Получить решение задачи 5. Пучок релятивистских электронов движется в глицерине. Будет ли наблюдаться черенковское свечение, если кинетическая энергия электронов равна 0,34 МэВ? Получить решение задачи 6. В черенковском счетчике, заполненном водой, пучок релятивистских протонов излучает свет в конусе с раствором 70°. Определить кинетическую энергию протонов. Получить решение задачи 7. В черенковский счетчик из каменной соли влетает пучок релятивистских электронов с кинетической энергией 0,511 МэВ. Определить угол раствора конуса излучения света. Получить решение задачи 8. Определить длину волны, отвечающую максимуму испускательной способности черного тела при температуре 37 °С и энергетическую светимость тела. Получить решение задачи 9. Максимум испускательной способности Солнца приходится на длину волны 0,5 мкм. Считая, что Солнце излучает как черное тело, определить температуру его поверхности и мощность излучения. Получить решение задачи 10. Считая, что Солнце излучает как черное тело, вычислить насколько уменьшается масса Солнца за год вследствие излучения и сколько это составляет процентов. Температуру поверхности Солнца принять равной 5780 К. Получить решение задачи 11. Вычислить температуру поверхности Земли, считая ее постоянной, в предположении, что Земля как черное тело излучает столько энергии, сколько получает от Солнца. Интенсивность солнечного излучения вблизи Земли принять равной 1,37 кВт/м2. Получить решение задачи 12. Определить давление солнечных лучей, нормально падающих на зеркальную поверхность. Интенсивность солнечного излучения принять равной 1,37 кВт/м2. Получить решение задачи 13. Плотность потока энергии в импульсе излучения лазера может достигать значения 1020 Вт/м2. Определить давление такого излучения нормально падающего на черную поверхность. Получить решение задачи 14. Давление света с длиной волны 0,6 мкм, падающего нормально на черную поверхность, равно 1 мкПа. Определить число фотонов, падающих за секунду на 1 см2 этой поверхности. Получить решение задачи 15. Давление света, нормально падающего на поверхность, равно 2 мкПа. Определить концентрацию фотонов вблизи поверхности, если длина волны света равна 0,45 мкм, а коэффициент отражения 0,5. Получить решение задачи 16. Определить максимальную скорость фотоэлектронов, вылетающих из вольфрамового электрода, освещаемого ультрафиолетовым светом с длиной волны 0,2 мкм. Получить решение задачи 17. Катод вакуумного фотоэлемента освещается светом с длиной волны 0,38 мкм. Фототок прекращается при задерживающей разности потенциалов равной 1,4 В. Найти работу выхода электронов из катода. Получить решение задачи 18. Цинковый электрод освещается монохроматическим светом. Фототок прекращается при задерживающей разности потенциалов 0,4 В. Вычислить длину волны света, применявшегося при освещении. Получить решение задачи 19. Красной границе фотоэффекта соответствует длина волны 0,332 мкм. Найти длину монохроматической световой волны, падающей на электрод, если фототок прекращается при задерживающей разности потенциалов, равной 0,4 В. Получить решение задачи 20. Найти величину задерживающей разности потенциалов для фотоэлектронов, испускаемых при освещении цезиевого электрода ультрафиолетовыми лучами с длиной волны 0,3 мкм. Получить решение задачи 21. В результате комптоновского рассеяния на свободном электроне длина волны гамма – фотона увеличилась в два раза. Найти кинетическую энергию и импульс электрона отдачи, если угол рассеяния фотона равен 60°. До столкновения электрон покоился. Получить решение задачи 22. В результате комптоновского рассеяния на свободном электроне энергия гамма – фотона уменьшилась в три раза. Угол рассеяния фотона равен 60°. Найти кинетическую энергию и импульс электрона отдачи. До столкновения электрон покоился. Получить решение задачи 23. Гамма – фотон с длиной волны 2,43 пм испытал комптоновское рассеяние на свободном электроне строго назад. Определить кинетическую энергию и импульс электрона отдачи. До столкновения электрон покоился. Получить решение задачи 24. Первоначально покоившийся свободный электрон в результате комптоновского рассеяния на нем гамма – фотона с энергией 0,51 МэВ приобрел кинетическую энергию 0,06 МэВ. Чему равен угол рассеяния фотона? Получить решение задачи 25. Масса движущегося электрона в три раза больше его массы покоя. Вычислить дебройлевскую длину волны электрона. Получить решение задачи 26. Чему равна дебройлевская длина волны протона, движущегося со скоростью 0,6 с (с — скорость света в вакууме)? Получить решение задачи 27. Вычислить дебройлевскую длину волны электрона, прошедшего ускоряющую разность потенциалов 511 кВ. Получить решение задачи 28. Чему равна дебройлевская длина волны теплового нейтрона, обладающего энергией, равной средней энергии теплового движения при температуре 300 К. Получить решение задачи 29. Средняя кинетическая энергия электрона в невозбужденном атоме водорода равна 13,6 эВ. Вычислить дебройлевскую длину волны электрона. Получить решение задачи 30. Кинетическая энергия нейтрона равна его энергии покоя. Определить дебройлевскую длину волны нейтрона. Получить решение задачи 31. Среднее расстояние электрона от ядра в невозбужденном атоме водорода равно 52,9 пм. Вычислить минимальную неопределенность скорости электрона в атоме. Получить решение задачи 32. Используя соотношение неопределенностей, показать, что в ядре не могут находиться электроны. Линейные размеры ядра принять равными 5,8∙10-15 м. Получить решение задачи 33. Чему равна минимальная неопределенность координаты покоящегося электрона? Получить решение задачи 34. Вычислить минимальную неопределенность координаты покоящегося протона? Получить решение задачи 35. Масса движущегося электрона в два раза больше его массы покоя. Вычислить минимальную неопределенность координаты электрона. Получить решение задачи 36. Чему равна минимальная неопределенность координаты фотона, соответствующего видимому излучению с длиной волны 0,55 мкм. Получить решение задачи 37. Среднее время жизни эта-мезона составляет 2,4 • 10-19 с, а его энергия покоя равна 549 МэВ. Вычислить минимальную неопределенность массы частицы. Получить решение задачи 38. Среднее время жизни возбужденного состояния атома равно 12 нс. Вычислить минимальную неопределенность длины волны λ = 0,12 мкм излучения при переходе атома в основное состояние. Получить решение задачи 39. Естественная ширина спектральной линии λ = 0,55 мкм, соответствующей переходу атома в основное состояние, равна 0,01 пм. Определить среднее время жизни возбужденного состояния атома. Получить решение задачи 40. Альфа-частица находится в бесконечно глубокой одномерной потенциальной яме. Чему равна ширина ямы, если минимальная энергия частицы составляет 6 МэВ. Получить решение задачи 41. Электрон находится в бесконечно глубокой одномерной потенциальной яме шириной 0,1 нм. Вычислить длину волны излучения при переходе электрона со второго на первый энергетический уровень. Получить решение задачи 42. Протон находится в бесконечно глубокой одномерной потенциальной яме шириной 0,01 пм. Вычислить длину волны излучения при переходе протона с третьего на второй энергетический уровень. Получить решение задачи 43. Атом водорода находится в бесконечно глубокой одномерной потенциальной яме шириной 0,1 м. Вычислить разность энергий соседних уровней, соответствующих средней энергии теплового движения атома при температуре 300 К. Получить решение задачи 44. Частица находится в бесконечно глубокой одномерной потенциальной яме шириной l в первом возбужденном состоянии. В каких точках ямы плотность вероятности обнаружения частицы максимальна, а в каких – минимальна. Получить решение задачи 45. Частица находится в бесконечно глубокой одномерной потенциальной яме шириной l на втором энергетическом уровне. Определить вероятность обнаружения частица в пределах от 0 до l/3. Получить решение задачи 46. Частица находится в бесконечно глубокой одномерной потенциальной яме шириной l. Вычислить отношение вероятностей нахождения частицы в пределах от 0 до l/4 для первого и второго энергетических уровней. Получить решение задачи 47. Сколько линий спектра атома водорода попадает в видимую область (λ = 0,40 – 0,76 мкм)? Вычислить длины волн этих линий. Каким цветам они соответствуют? Получить решение задачи 48. Чему равен боровский радиус однократно ионизированного атома гелия? Получить решение задачи 49. Найти потенциал ионизации двукратно ионизированного атома лития? Получить решение задачи 50. Вычислить постоянную Ридберга и боровский радиус для мезоатома – атома, состоящего из протона (ядра атома водорода) и мюона (частицы, имеющей такой же заряд, как у электрона, и массу, равную 207 массам электрона). Получить решение задачи | |
| Категория: Решения по физике | Просмотров: 2297 | | |

