Приветствую Вас, Гость
Главная » Решения по физике » Готовые решения по физике Часть 52
10:18

Готовые решения по физике Часть 52



Решение задач по физике
50 решенных задач по физике, с подробным решением и оформлением Часть 52
Все задачи оформлены в Microsoft Word с использованием редактора формул.


Стоимость решения задач 30 руб.

51. В вакууме распространяется плоская электромагнитная вол¬на. Амплитуда напряженности магнитного поля волны 0,1 А/м. Оп¬ределить энергию, переносимую этой волной через поверхность пло¬щадью 1 м2, расположенную перпендикулярно направлению рас¬пространения волны, за время t = 1 с. Период волны Т < < t Получить решение задачи

52. Какую наименьшую толщину должна иметь мыльная пленка, чтобы отраженные лучи имели красную окраску (λ = 0,63 мкм)? Белый луч падает на пленку под углом 30° (n = 1,33). Получить решение задачи

53. Для получения колец Ньютона используют плосковыпуклую линзу. Освещая ее монохроматическим светом с длиной волны 0,6 мкм, установили, что расстояние между 5 и 6 светлыми кольца¬ми в отраженном свете равно 0,56 мм. Определить радиус кривизны линзы. Получить решение задачи

54. Определить радиус 4-го темного кольца Ньютона в отражен¬ном свете, если между линзой с радиусом кривизны 5 м и плоской поверхностью, к которой она прижата, находится вода. Свет с дли¬ной волны 0,589 мкм падает нормально. Получить решение задачи

55. Монохроматический свет длиной волны 0,5 мкм падает на мыльную пленку (n = 1,3) толщиной 0,1 мкм, находящуюся в воздухе. Найти наименьший угол падения, при котором пленка в проходящем свете кажется темной. Получить решение задачи

56. На пленку из глицерина (n = 1,47) толщиной 0,1 мкм падает белый свет. Каким будет казаться цвет пленки в отраженном свете, если угол падения лучей 45°? Получить решение задачи

57. Радиус кривизны плосковыпуклой линзы 12,1 м. Диаметр второго светлого кольца Ньютона в отраженном свете равен 6,6 мм. Найти длину волны падающего света, если он падает нормально. Получить решение задачи

58. Расстояние между двумя когерентными источниками (опыт Юнга) 0,55 мм. Источники испускают свет длиной волны 550 нм. Каково расстояние от щелей до экрана, если расстояние между соседними темными полосами на нем 1 мм? Получить решение задачи

59. Найти длину волны света, падающего на установку в опыте Юнга, если при помещении на пути одного из интерферирующих лучей стеклянной пластинки (n = 1,52) толщиной 3 мкм картина интерференции на экране смещается на 3 светлые полосы. Получить решение задачи

60. Два когерентных источника, расстояние между которыми 0,2 мм, расположены от экрана на расстоянии 1,5 м. Найти длину световой волны, если 3-й интерференционный минимум расположен на расстоянии 12,6 мм от центра картины. Получить решение задачи

61. Найти угловое расстояние между соседними светлыми полосами в опыте Юнга, если известно, что экран отстоит от когерентных источников света на 1 м, а пятая светлая полоса на экране расположена на расстоянии 1,5 мм от центра интерференционной картины. Получить решение задачи

62. Для устранения отражения света от поверхности линзы на нее наносится тонкая пленка вещества с показателем преломления 1,25, меньшим, чем у стекла (просветление оптики). При какой наименьшей толщине пленки отражение света с длиной волны 0,72 мкм не будет наблюдаться, если угол падения лучей 60°? Получить решение задачи

63. Постоянная дифракционной решетки 2,5 мкм. Определить наибольший порядок спектра, общее число главных максимумов в дифракционной картине и угол дифракции в спектре 2-го порядка при нормальном падении монохроматического света с длиной волны 0,62 мкм. Получить решение задачи

64. Какую разность длин волн Δλ может разрешить дифракционная решетка с периодом 2,5 мкм шириной 1,5 см в спектре 3-го порядка для зеленых лучей (λ = 0,5 мкм)? Получить решение задачи

65. На дифракционную решетку с периодом 2 мкм нормально падает пучок света от разрядной трубки, наполненной гелием. Какую разность длин волн может разрешить эта решетка в области красного света (λ1 = 0,7 мкм) в спектре второго порядка, если ширина решетки 2,5 см? На какую длину волны в спектре второго порядка накладывается синяя линия (λ2 = 0,447 мкм) спектра третьего порядка? Получить решение задачи

66. Дифракционная решетка шириной 12 мм содержит 4800 штрихов. Определить число главных максимумов, наблюдаемых в спектре дифракционной решетки для длины волны 0,55 мкм. Получить решение задачи

67. На дифракционную решетку с периодом 4,8 мкм падает нормально естественный свет. Какие спектральные линии, соответствующие длинам волн в видимой области спектра, будут совпадать в направлении под углом 30°? Получить решение задачи

68. Период дифракционной решетки 0,005 мм. Определить число наблюдаемых главных максимумов в спектре для длины волны 0,445 мкм. Получить решение задачи

69. Экран, на котором наблюдается дифракционная картина, расположен на расстоянии 1 м от точечного источника монохроматического света (λ=0,5 мкм). Посередине между экраном и источником помещена диафрагма с круглым отверстием. При каком наименьшем диаметре отверстия центр дифракционной картины будет темным? Получить решение задачи

70. Свет от монохроматического источника (λ = 0,6 мкм) падает нормально на диафрагму с круглым отверстием r = 0,6 мм. Темным или светлым будет центр дифракционной картины на экране, находящемся на расстоянии b = 0,3 м от диафрагмы? Получить решение задачи

71. На узкую щель шириной 0,1 мм падает нормально плоская монохроматическая волна (λ = 0,585 мкм). Найти расстояние между первыми дифракционными минимумами на экране, удаленном от щели на 0,6 м. Получить решение задачи

72. На дифракционную решетку Д нормально падает монохроматический свет с длиной волны 0,65 мкм. На экране Э, расположенном параллельно решетке и отстоящем от нее на расстояние 0,5 м, наблюдается дифракционная картина. Расстояние между дифракционными максимумами первого порядка равно 10 см. Определить постоянную дифракционной решетки и общее число главных максимумов, получаемых с помощью этой решетки. Получить решение задачи

73. Постоянная дифракционной решетки 10 мкм, ее ширина 2 см. В спектре какого порядка эта решетка может разрешить дублет λ1= 486 нм и λ2 = 486,1 нм? Получить решение задачи

74. Определить расстояние между атомными плоскостями в кристалле каменной соли, если дифракционный максимум первого порядка наблюдается при падении рентгеновских лучей с длиной волны 0,147 нм под углом 15°12' к поверхности кристалла. Получить решение задачи

75. Интенсивность естественного света, прошедшего через поляризатор, уменьшилась в 2,3 раза. Во сколько раз она уменьшится, если за первым поставить второй такой же поляризатор так, чтобы угол между их главными плоскостями был равен 60°? Получить решение задачи

76. Естественный свет падает на поверхность диэлектрика под углом полной поляризации. Степень поляризации преломленного луча составляет 0,124. Найти коэффициент отражения света. Получить решение задачи

77. Какой угол образуют плоскости поляризации двух николей, если свет, вышедший из второго николя, был ослаблен в 5 раз? Учесть, что поляризатор поглощает 10, а анализатор 8% падающего на них света. Получить решение задачи

78. Угол между плоскостями поляризации двух поляроидов 70°. Как изменится интенсивность прошедшего через них света, если этот угол уменьшить в 5 раз? Получить решение задачи

79. Определить, во сколько раз уменьшится интенсивность естественного света, прошедшего через два николя, плоскости поляризации которых составляют угол 45°. Каждый николь поглощает 8% света, падающего на него. Получить решение задачи

80. Измерение дисперсии показателя преломления оптического стекла дало n1= 1,528 для λ1 = 0,434 мкм и n2 = 1,523 для λ2 = 0,486 мкм. Вычислить отношение групповой скорости к фазовой для света с длиной волны 0,434 мкм. Получить решение задачи

81. Дисперсия показателя преломления кварца представлена таб¬лицей:
l, нм 589,3 486,1 410,0
n 1,5442 1,5497 1,5565
Найти отношение фазовой и групповой скоростей света вблизи λ= 486,1? Получить решение задачи

82. Показатель преломления сероуглерода для света с длинами волн 509, 534 и 589 нм равен соответственно 1,647, 1,640 и 1,630. Вычислить фазовую и групповую скорости света вблизи длины вол¬ны 534 нм. Получить решение задачи

83. В черенковском счетчике из каменной соли релятивистские протоны излучают в конусе с раствором 82°. Определить кинетическую энергию протонов. Показатель преломления каменной соли 1,54. Получить решение задачи

84. При каких значениях кинетической энергии протона будет на¬блюдаться черенковское излучение, если протон движется с посто¬янной скоростью в среде с показателем преломления 1,6? Получить решение задачи

85. Абсолютно черное тело было нагрето от температуры 100 до 300 °С. Найти, во сколько раз изменилась мощность суммарного из¬лучения при этом. Получить решение задачи

86. Максимум энергии излучения абсолютно черного тела приходится на длину волны 450 нм. Определить температуру и энергетическую светимость тела. Получить решение задачи

87. Температура абсолютно черного тела понизилась с 1000 до 850 К. Определить, как и на сколько при этом изменилась длина волны, отвечающая максимуму распределения энергии. Получить решение задачи

88. Во сколько раз увеличится мощность излучения черного тела, если максимум энергии излучения сместится от красной границы видимого спектра к его фиолетовой границе? Получить решение задачи

89. На зачерненную поверхность нормально падает монохроматический свет с длиной волны 0,65 мкм, производя давление 5∙10-6 Па. Определить концентрацию фотонов вблизи поверхности и число фотонов, падающих на площадь 1 м2 в 1 с. Получить решение задачи

90. Пучок параллельных лучей света падает нормально на плоскую зеркальную поверхность. Определить силу давления, испытываемую этой поверхностью, если ее площадь 2 м2, а энергетическая освещенность поверхности 0,6 Вт/м2. Получить решение задачи

91. Определить давление, оказываемое светом с длиной волны 0,4 мкм на черную поверхность, если ежесекундно на 1 см2 поверхности нормально падает 6∙1016 фотонов. Получить решение задачи

92. Световое давление, испытываемое зеркальной поверхностью площадью 1 см2, равно 10-6 Па. Найти длину волны света, если на поверхность ежесекундно падает 5∙1016 фотонов. Получить решение задачи

93. Давление света на зеркальную поверхность, расположенную на расстоянии 2 м от лампочки, нормально падающим лучом, равно 10-8 Па. Определить мощность, расходуемую на излучение. Получить решение задачи

94. Давление света с длиной волны 0,55 мкм, нормально падающего на зеркальную поверхность, равно 9 мкПа. Определить концентрацию фотонов вблизи поверхности. Получить решение задачи

95. Красная граница фотоэффекта для никеля равна 0,257 мкм. Найти длину волны света, падающего на никелевый электрод, если фототок прекращается при задерживающей разности потенциалов, равной 1,5 В. Получить решение задачи

96. Для фотокатода, выполненного из вольфрама, работа выхода равна 4,5 эВ. Определить, при какой максимальной длине волны происходит фотоэффект. Получить решение задачи

97. Фотон с длиной волны 0,2 мкм вырывает с поверхности фотокатода электрон, кинетическая энергия которого 2 эВ. Определить работу выхода и красную границу фотоэффекта. Получить решение задачи

98. Какую часть энергии фотона составляет энергия, которая пошла на совершение работы выхода электронов из фотокатода, если красная граница для материала фотокатода равна 0,54 мкм, кинетическая энергия фотоэлектронов 0,5 эВ? Получить решение задачи

99. Кинетическая энергия электронов, выбитых из цезиевого катода, равна 3 эВ. Определить, при какой максимальной длине волны света выбиваются электроны. Работа выхода для цезия 1,8 эВ. Получить решение задачи

100. Облучение литиевого фотокатода производится фиолетовыми лучами, длина волны которых равна 0,4 мкм. Определить скорость фотоэлектронов, если длина волны красной границы фотоэффекта для лития равна 0,52 мкм. Получить решение задачи
Категория: Решения по физике | Просмотров: 1930 | Решения задач добавил: Massimo