Главная » Решения по физике » Готовые решения по физике Часть 63
 
 
 
 | 16:30  Готовые решения по физике Часть 63 | |
|  Решение задач по физике 50 решенных задач по физике, с подробным решением и оформлением Часть 63 Все задачи оформлены в Microsoft Word с использованием редактора формул. Стоимость решения задач 30 руб. 1. Плоский воздушный конденсатор емкостью С1 = 4 пФ заряжен до разности потенциалов U1 = 100 В. После отключения конденсатора от источника напряжения расстояние между обкладками конденсатора увеличили в два раза. Определите: 1) разность потенциалов U2 на обкладках конденсатора после их раздвижения: 2) работу внешних сил по раздвижению пластин. Получить решение задачи 2. Металлический шар радиусом R = 5 см с общим зарядом Q = 10 нКл окружен слоем эбонита толщиной d = 3 см. Определите энергию W электростатического поля, заключенного в слое диэлектрика. Диэлектрическая проницаемость эбонита ε = 3. Получить решение задачи 3. Сплошной шар из диэлектрика радиусом R = 5 см заряжен равномерно с объемной плотностью ρ = 5 нКл/м3. Определите энергию электростатического поля, заключенную в окружающем шар пространстве. Получить решение задачи 4. Плоскому конденсатору с площадью обкладок S и расстоянием между ними l сообщен заряд Q, после чего конденсатор отключен от источника напряжения. Определите силу притяжения F между обкладками конденсатора, если диэлектрическая проницаемость среды между обкладками равна ε. Получить решение задачи 5. Плоский конденсатор площадью обкладок S и расстоянием между ними l подключен к источнику постоянного напряжения U. Определите силу притяжения F между обкладками конденсатора, если диэлектрическая проницаемость среды между обкладками равна ε. Получить решение задачи 6. Пространство между обкладками плоского конденсатора площадью обкладок S = 100 см2 заполнено эбонитом (ε = 3). Определите поверхностную плотность σ’ связанных зарядов на эбоните, если обкладки конденсатора притягиваются друг к другу с силой F = 10 мН. Получить решение задачи 7. Сила тока в проводнике равномерно растет от I0 = 0 до Imax = 3 А за время τ = 6 с. Определите заряд Q, прошедший по проводнику. Получить решение задачи 8. По железному проводнику (ρ = 7,87 г/см3, М= 56·10-3 кг/моль) сечением S = 0,5 мм2 течет ток I = 0,1 А. Определите среднюю скорость упорядоченного (направленного) движения электронов, считая, что число n свободных электронов в единице объема проводника равно числу атомов n’ в единице объема проводника. Получить решение задачи 9. Сопротивление однородной проволоки R = 36 Ом. Определите, на сколько равных отрезков разрезали проволоку, если после их параллельного соединения сопротивление оказалось равным R1 = 1 Ом. Получить решение задачи 10. Определите общее сопротивление между точками А и В цепи проводников в виде шестиугольника (рис. а). Сопротивление каждой проволоки r = 1 Ом. Получить решение задачи 11. Определите плотность тока в медной проволоке длиной l = 100 м, если разность потенциалов на ее концах φ1 – φ2 = 10 В. Удельное сопротивление меди ρ = 17 нОм·м. Получить решение задачи 12. Через лампу накаливания течет ток I = 1 А. Температура t вольфрамовой нити диаметром d1 =0,2 мм равна 2000 °С. Ток подводится медным проводом сечением S2 = 5 мм2. Определите напряженность электростатического поля: 1) в вольфраме; 2) в меди. Удельное сопротивление вольфрама при 0 °С ρ0 = 55 нОм·м, его температурный коэффициент сопротивления α1 = 0,0045 град-1 удельное сопротивление меди ρ2 = 17 нОм·м. Получить решение задачи 13. Два цилиндрических проводника одинаковой длины и одинакового сечения, один из железа, а другой из алюминия, соединены сначала последовательно, а затем параллельно. Определите отношение мощностей для этих проводников при их соединении: 1) последовательно; 2) параллельно. Удельные сопротивления железа и алюминия соответственно 98 нОм·м и 26 нОм·м. Получить решение задачи 14. По проводнику сопротивлением R = 10 Ом течет ток, сила тока возрастает при этом линейно. Количество теплоты Q, выделившееся в проводнике за время τ = 10 с, равно 300 Дж Определите заряд q, прошедший за это время по проводнику, если в начальный момент времени сила тока в проводнике равна нулю. Получить решение задачи 15. Сопротивление второго проводника в пять раз больше, чем сопротивление первого. Их сначала включают в цепь последовательно, а затем – параллельно. Определите отношение количеств теплоты, выделившихся в этих проводниках, для обоих случаев. Получить решение задачи 16. Определите внутреннее сопротивление источника тока, если во внешней цепи при силе тока I1 =4 А развивается мощность Р1 = 10 Вт, а при силе тока I2 = 6 А – мощность Р2 = 12 Вт. Получить решение задачи 17. Определите мощность тока P1 во внешней цепи при силе тока I1 = 2 А, если при силе тока I2 = 3 А мощность Р2 = 6 Вт, а внутреннее сопротивление r источника тока равно 0,5 Ом. Получить решение задачи 18. Определите ток короткого замыкания Iкз для источника ЭДС, если полезная мощность P1 при токе в цепи I1 = 5 A равна 300 Вт, а при токе I2 = 1 А – полезная мощность Р2 = 100 Вт. Получить решение задачи 19. В цепь, состоящую из источника ЭДС и резистора сопротивлением R = 10 Ом, включают вольтметр, сначала параллельно, а затем последовательно резистору, причем показания вольтметра одинаковы. Определите внутреннее сопротивление r источника ЭДС, если сопротивление вольтметра RV = 500 Ом. Получить решение задачи 20. Источник ЭДС вначале замыкают на резистор сопротивлением R1, а затем – на резистор сопротивлением R2, при этом в обоих случаях выделяется одинаковое количество теплоты. Определите внутреннее сопротивление r источника ЭДС. Получить решение задачи 21. Из 200 одинаковых источников ЭДС составлена батарея так, что имеет¬ся n соединенных последовательно групп, в каждой из которых содержится m источников, соединенных параллельно. Внутреннее сопротивление r1 каждого из элементов равно 2 Ом. Батарея замкнута на внешнее сопротивление R = 98 Ом. Определите значения n и m, при которых сила тока в цепи максимальна. Получить решение задачи 22. Определите внутреннее сопротивление и ЭДС батареи, образованной тремя источниками ЭДС (см. рисунок), если ЭДС источников ε1 =2 В, ε2 = 4 В и ε3 = 6 В, а их внутренние сопротивления одинаковы и равны 0,2 Ом. Получить решение задачи 23. Два источника, ЭДС которых ε1 = 2 В ε2 = 4В, соединены, как показано на рис. а. Внешнее сопротивление R = 1 Ом, а внутренние сопротивления источников r1 = r2 = 0,5 Ом. Определите силы токов, протекающих через источники и внешнее сопротивление. Получить решение задачи 24. Два одинаковых резистора сопротивлением R1 = 10 Ом и резистор сопротивлением R2 = 20 Ом подключены к источнику ЭДС (см. рисунок). К участку АВ подключен плоский конденсатор емкостью С = 0,1 мкФ. Заряд Q на обкладках конденсатора равен 2 мкКл. Определите ЭДС источника, пренебрегая его внутренним сопротивлением. Получить решение задачи 25. Определите разность потенциалов на обкладках конденсатора в схеме, приведенной на рисунке. ЭДС источника ε = 20 В, сопротивления всех резисторов равны. Внутренним сопротивлением источника пренебречь. Получить решение задачи 26. В приведенной на рисунке электрической схеме моста Уитстона заданы сопротивления R2, R3, R4, электродвижущая сила ε источника тока и его внутреннее сопротивление r. Определите сопротивление R1 если известно, что ток в цепи гальванометра G отсутствует (IG = 0). Сопротивление гальванометра равно RG. Получить решение задачи 27. Прямоугольная рамка со сторонами а = 5 см и b = 10 см, состоящая из N = 20 витков, помещена во внешнее однородное магнитное поле с индукцией В = 0,2 Тл. Нормаль к рамке составляет с направлением магнитного поля угол α=π/6. Определите вращающий момент сил, действующих на рамку, если по ней течет ток I = 2 А. Получить решение задачи 28. Принимая, что электрон в атоме водорода движется по круговой орбите, определите отношение магнитного момента рm эквивалентного кругового тока к моменту импульса L орбитального движения электрона. Получить решение задачи 29. Используя закон Био – Савара – Лапласа, определите магнитную индукцию В поля, создаваемого бесконечно длинным прямым проводником с током I в точке A, находящейся от оси проводника на расстоянии R. Получить решение задачи 30. Используя закон Био – Савара – Лапласа, определите в вакууме магнитную индукцию В поля в центре кругового проводника радиусом R = 10 см, если сила тока I в проводнике равна 5 А. Получить решение задачи 31. По тонкому проволочному кольцу течет ток. Определите, во сколько раз изменится индукция в центре контура, если проводнику придать форму квадрата, не изменяя силы тока в проводнике. Получить решение задачи 32. Определите магнитную индукцию на оси кругового контура на рассто¬янии d = 3 см от его плоскости, если радиус контура R = 4 см, а сила тока I в контуре равна 5 А. Получить решение задачи 33. По двум бесконечно длинным прямым параллельным проводникам, находящимся в вакууме на расстоянии R = 30 см, текут одинаковые токи одного направления. Определите магнитную индукцию В поля, создаваемого токами в точке А, лежащей на прямой, соединяющей проводники и лежащей на расстоянии r = 20 см правее правого провода (см. рисунок). Сила тока в проводниках равна 20 А. Получить решение задачи 34. По двум бесконечно длинным прямым параллельным проводникам в вакууме, расстояние между которыми d = 15 см, текут токи I1 = 70 A и I2 = 50 А в одном направлении. Определите магнитную индукцию B в точке, удаленной на r1 = 10 см от первого и r2 = 20 см от второго проводников. Получить решение задачи 35. Вычислите значение магнитной постоянной μ0. Получить решение задачи 36. По прямому горизонтальному проводу пропускают ток I1 = 100 А. Под этим проводом на расстоянии R = 1 см расположен второй, параллельный ему медный провод, по которому пропускают ток I2 = 50 А. Определите, какова должна быть площадь поперечного сечения второго провода, чтобы он удерживался в состоянии равновесия незакрепленным. Плотность меди ρ = 8,93 г/см3. Получить решение задачи 37. По двум параллельным прямым проводникам длиной l = 2 м каждый, находящимся в вакууме на расстоянии d = 10 см друг от друга, в противоположных направлениях текут токи I1 = 50 A и I2 = 100 А. Определите силу взаимодействия токов. Получить решение задачи 38. В одной плоскости с бесконечно прямым проводником с током I = 10 А расположена прямоугольная проволочная рамка (стороны а = 25 см, b = 10 см), по которой протекает ток I1 = 2 А. Длинные стороны рамки параллельны прямому току, причем ближайшая из них находится от прямого тока на расстоянии с = 10 см и ток в ней сонаправлен току I. Определите силы, действующие на каждую из сторон рамки. Получить решение задачи 39. В однородном магнитном поле (В = 1 мТл) в плоскости, перпендикулярной линиям магнитной индукции, расположено тонкое проволочное полукольцо длиной l = 50 см, по которому течет ток I = 5 A. Определите результирующую силу, действующую на полукольцо. Получить решение задачи 40. Электрон в вакууме движется прямолинейно с постоянной скоростью υ = 5 км/с. Определите напряженность H магнитного поля, создаваемого электроном в точке, находящейся на расстоянии r = 16 нм от электрона и лежащей на прямой, проходящей через мгновенное положение электрона, под углом α = 30° к вектору скорости электрона. Получить решение задачи 41. Определите угловую скорость ω вращения протона по окружности, ко¬торую он описывает в однородном магнитном поле с индукцией В = 0,03 Тл. Получить решение задачи 42. Электрон, прошедший ускоряющую разность потенциалов U = 1 кВ, влетает в однородное магнитное поле с индукцией В = 3 мТл перпендикулярно линиям магнитной индукции. Определите: 1) силу, действующую на электрон; 2) радиус окружности, по которой электрон движется; 3) период обращения электрона. Получить решение задачи 43. Точка движется по окружности радиусом R = 8 м. В некоторый момент времени нормальное ускорение точки равно 4 м/с2, вектор полного ускорения образует в этот момент с вектором нормального ускорения угол 600. Найти линейную скорость и тангенциальное ускорение точки. Получить решение задачи 44. Тело движется по окружности с постоянным угловым ускорением 0,08 с-2. Через какое время после начала движения угол между полным ускорением и скоростью тела станет равным 600? Получить решение задачи 45. Определите число N атомов в 1 кг водорода и массу одного атома водорода Получить решение задачи 46. В закрытом сосуде вместимостью 20 л находятся водород массой 6 г и гелий массой 12 г. Определите: 1) давление; 2) молярную массу газовой смеси в сосуде, если температура смеси T=300 К. Получить решение задачи 47. Определите плотность смеси газов водорода массой m1=8 г и кислорода массой m2=64 г при температуре T=290 К и при давлении 0,1 МПа. Газы считать идеальными. Получить решение задачи 48. В баллоне вместимостью 15 л находится азот под давлением 100 кПа при температуре t1=27 0C. После того как из баллона выпустили азот массой 14 г, температура газа стала равной t2=17 0C. Определите давление азота, оставшегося в баллоне Получить решение задачи 49. Баллон вместимостью V=20 л содержит смесь водорода и азота при температуре 290 К и давлении 1 МПа. Определите массу водорода, если масса смеси равна 150 г. Получить решение задачи 50. Начертите графики изотермического, изобарного и изохорного процессов в координатах p и V, p и T, T и V. Получить решение задачи | |
| Категория: Решения по физике | Просмотров: 902 | | |

