| 16:45  Готовые решения по физике Часть 81 | |
|  Решение задач по физике 50 решенных задач по физике, с подробным решением и оформлением Часть 81 Все задачи оформлены в Microsoft Word с использованием редактора формул. Стоимость решения задач 30 руб. 1. Разность фаз двух одинаково направленных гармонических колебаний одинакового периода T = 4 с и одинаковой амплитуды A = 5 см составляет π/4. Напишите уравнение движения, получающегося в результате сложения этих колебаний, если начальная фаза одного из них равна нулю. Получить решение задачи 2. Написать уравнение движения, получающегося в результате сложения двух одинаково направленных гармонических колебательных движений с одинаковым периодом T = 8 с и одинаковой амплитудой А = 0,02 м. Разность фаз между этими колебаниями φ2 – φ1 = π/4. Начальная фаза одного из этих колебаний равна нулю. Получить решение задачи 3. Частоты колебаний двух одновременно звучащих камертонов строены на 560 и 560,5 Гц. Определите период биений. Получить решение задачи 4. Два камертона звучат одновременно. Частоты ν1 и ν2 их колебаний соответственно равны 440 и 440,5 Гц. Определить период T биений. Получить решение задачи 5. В результате сложения двух колебаний, период одного из которых T1 = 0,02 с. получают биения с периодом Tб = 0,2 с. Определите период T2 второго складываемого колебания. Получить решение задачи 6. Складываются два гармонических колебания одного направления, имеющие одинаковые амплитуды и одинаковые начальные фазы, с периодами T1 = 2 с и T2 = 2,05 с. Определите: 1) период результирующего колебания; 2) период биения. Получить решение задачи 7. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x = Asinωt и y = Вcosωt, где A, B и ω — положительные постоянные. Определите уравнение траектории точки, вычертите ее с нанесением масштаба, указав направление ее движения по этой траектории. Получить решение задачи 8. Точка участвует в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями х = cos2πt и y = cosπt. Определите уравнение траектории точки и вычертите ее с нанесением масштаба. Получить решение задачи 9. Амплитуда затухающих колебаний маятника за t = 2 мин уменьшилась в 2 раза. Определите коэффициент затухания δ. Получить решение задачи 10. За время t=8 мин амплитуда затухающих колебаний маятника уменьшилась в три раза. Определить коэффициент затухания δ. Получить решение задачи 11. Амплитуда затухающих колебаний маятника за время t1=5 мин уменьшилась в два раза. За какое время t2, считая от начального момента, амплитуда уменьшится в восемь раз? Получить решение задачи 12. Тело массой m = 0,6 кг, подвешенное к спиральной пружине жесткостью k = 30 Н/м, совершает в некоторой среде упругие колебания. Логарифмический декремент колебаний Θ = 0,01. Определите: 1) время, за которое амплитуда колебаний уменьшится в 3 раза; 2) число полных колебаний, которые должна совершить гиря, чтобы произошло подобное уменьшение амплитуды. Получить решение задачи 13. Амплитуда колебаний маятника длиной l=1 м за время t=10 мин уменьшилась в два раза. Определить логарифмический декремент колебаний θ. Получить решение задачи 14. Логарифмический декремент колебаний θ маятника равен 0,003. Определить число N полных колебаний, которые должен сделать маятник, чтобы амплитуда уменьшилась в два раза. Получить решение задачи 15. Найти логарифмический декремент затухания математического маятника, если за время t = 1 мин амплитуда колебаний уменьшилась в 2 раза. Длина маятника l = 1 м. Получить решение задачи 16. Математический маятник длиной l = 24,7 см совершает затухающие колебания. Через какое время t энергия колебаний маятника уменьшится в 9,4 раза? Задачу решить при значении логарифмического декремента затухания: а) N = 0,01; б) N = 1. Получить решение задачи 17. Амплитуда затухающих колебаний математического маятника за время t = 1 мин уменьшилась вдвое. Во сколько раз уменьшится амплитуда за время t = 3 мин? Получить решение задачи 18. Колебательная система совершает затухающие колебания с частотой ν=1000 Гц. Определить частоту ν0 собственных колебаний, если резонансная частота νрез=998 Гц. Получить решение задачи 19. Колебательный контур содержит катушку индуктивностью L = 25 мГн, конденсатор емкостью C = 10 мкФ и резистор сопротивлением R = 1 Ом. Конденсатор заряжен количеством электричества Qm = 1 мКл. Определите: 1) период колебаний контура; 2) логарифмический декремент затухания колебаний; 3) уравнение зависимости изменения напряжения на обкладках конденсатора от времени. Получить решение задачи 20. Колебательный контур состоит из катушки индуктивности L= 25 мГн, емкости С= 10 мкФ и резистора сопротивлением R= 10 Ом. Конденсатор заряжен зарядом q0m= 5 мкКл. Найти: 1) период затухающих колебаний, 2) коэффициент затухания, 3) критическое сопротивление, 4) записать уравнение колебания напряжения на конденсаторе. Получить решение задачи 21. Колебательный контур содержит катушку индуктивностью L = 6 мкГн, конденсатор емкостью C = 10 нФ и резистор сопротивлением R=10 Ом. Определите для случая максимума тока отношение энергии магнитного поля катушки к энергии электрического поля. Получить решение задачи 22. Определите добротность Q колебательного контура, состоящего из катушки индуктивностью L = 2 мГн, конденсатора емкостью C = 0,2 мкФ и резистора сопротивлением R = 1 Ом. Получить решение задачи 23. Определите добротность колебательного контура, состоящего из резистора сопротивлением 35 Ом, катушки индуктивностью 0,02Гн, и конденсатора емкостью 67 мкФ. Получить решение задачи 24. Частота ν затухающих колебаний в колебательном контуре с добротностью Q = 2500 равна 550 кГц. Определите время, за которое амплитуда силы тока в этом контуре уменьшится в 4 раза. Получить решение задачи 25. Частота затухающих колебаний в колебательном контуре с добротностью 2500 равна 250 кГц. Определить время, за которое амплитуда тока уменьшится в 4 раза. Получить решение задачи 26. В контуре, добротность которого Q = 50 и собственная частота колебаний ν0 = 5,5 кГц, возбуждаются затухающие колебания. Через сколько времени энергия, запасенная в контуре, уменьшится в η = 2,0 раза? Получить решение задачи 27. Колебательный контур состоит из конденсатора емкости C = 4,0 мкФ и катушки с индуктивностью L = 2,0 мГн и активным сопротивлением R = 10 Ом. Найти отношение энергии магнитного поля катушки к энергии электрического поля конденсатора в момент максимума тока. Получить решение задачи 28. Колебательный контур содержит конденсатор емкостью С = 1,2 нФ и катушку с индуктивностью L=6,0 мкГн и активным сопротивлением R=0,50 Ом. Какую среднюю мощность нужно подводить к контуру, чтобы поддерживать в нем незатухающие гармонические колебания с амплитудой напряжения на конденсаторе UCm = 10 В? Получить решение задачи 29. Какую среднюю мощность должен потреблять колебательный контур с активным сопротивлением R=0,45 Ом, чтобы в нем поддерживались незатухающие гармонические колебания с амплитудой тока Im = 30 мА? Получить решение задачи 30. Найти добротность контура с емкостью С = 2,0 мкФ и индуктивностью L=5,0 мГн, если на поддержание в нем незатухающих колебаний с амплитудой напряжения на конденсаторе Um=1,0 В необходимо подводить мощность =0,10 мВт. Затухание колебаний в контуре достаточно мало. Получить решение задачи  | |
| Категория: Решения по физике | Просмотров: 1346 | | | |

