Приветствую Вас, Гость
Главная » Решения по физике » Готовые решения по физике Часть 86
16:46

Готовые решения по физике Часть 86



Решение задач по физике
50 решенных задач по физике, с подробным решением и оформлением Часть 86
Все задачи оформлены в Microsoft Word с использованием редактора формул.


Стоимость решения задач 30 руб.

51. Электрон находится в одномерной прямоугольной "потенциальной яме" шириной l с бесконечно высокими "стенками". Определите вероятность W обнаружения электрона в средней трети "ямы", если электрон находится в возбужденном состоянии (n = 3). Поясните физический смысл полученного результата, изобразив графически плотность вероятности обнаружения электрона в данном состоянии. Получить решение задачи

52. Частица в одномерной прямоугольной "потенциальной яме" шириной l с бесконечно высокими "стенками" находится в возбужденном состоянии (n = 3). Определите, в каких точках "ямы" (0 ≤ х ≤ l) плотность вероятности обнаружения частицы: 1) максимальна; 2) минимальна. Поясните полученный результат графически. Получить решение задачи

53. Определите, при какой ширине одномерной прямоугольной "потенциальной ямы" с бесконечно высокими "стенками" дискретность энергетического спектра электрона сравнима с его средней кинетической энергией при температуре T. Получить решение задачи

54. Прямоугольный потенциальный барьер имеет ширину l = 0,1 нм. Определите в электрон-вольтах разность энергий U – E, при которой вероятность прохождения электрона сквозь барьер составит 0,5. Получить решение задачи

55. Электрон с энергией E = 5 эВ движется в положительном направлении оси x, встречая на своем пути прямоугольный потенциальный барьер высотой U = 10 эВ и шириной l = 0,1 нм. Определите коэффициент D прозрачности потенциального барьера. Получить решение задачи

56. Прямоугольный потенциальный барьер имеет ширину l = 0,1 нм. Разность между высотой потенциального барьера и энергией движущегося в положительном направлении оси x электрона U – E = 5 эВ. Определите, во сколько раз изменится коэффициент прозрачности D потенциального барьера для электрона, если разность U – E возрастает в 4 раза. Получить решение задачи

57. Частица с энергией E = 50 эВ, двигаясь в положительном направлении оси x, встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 20 эВ. Определите вероятность отражения частицы от этого барьера. Получить решение задачи

58. Электрон с длиной волны λ де Бройля, равной 120 пм, движется в положительном направлении оси х и встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 200 эВ. Определите коэффициент отражения R волн де Бройля на границе потенциального барьера. Получить решение задачи

59. Математический маятник можно рассматривать в качестве гармонического осциллятора. Определите в электрон-вольтах энергию нулевых колебаний для маятника длиной l = 1 м, находящегося в поле тяготения Земли. Получить решение задачи

60. Рассматривая математический маятник массой m = 100 г и длиной l = 0,5 м в виде гармонического осциллятора, определите классическую амплитуду A маятника, соответствующую энергии нулевых колебаний этого маятника. Получить решение задачи

61. Представьте: 1) уравнение Шредингера для стационарных состояний электрона, находящегося в атоме водорода; 2) собственные значения энергии, удовлетворяющие уравнению; 3) график потенциальной энергии взаимодействия электрона с ядром; 4) возможные дискретные значения энергии на этом графике. Получить решение задачи

62. Волновая функция, описывающая 1s-состояние электрона в атоме водорода, имеет вид ψ(r ) = C•e-r/a, где r – расстояние электрона от ядра, a – первый боровский радиус. Определите нормированную волновую функцию, отвечающую этому состоянию. Получить решение задачи

63. Предполагая, что нормированная волновая функция, описывающая 1s-состояние электрона в атоме водорода, известна ψ100 (r ) = 1/√(πa3)e-r/a, определите среднее значение функции 1/r, принимая во внимание, что <1/r> = ∫(1/rψ•ψdV). Получить решение задачи

64. Нормированная волновая функция, описывающая 1s-состояние электрона в атоме водорода, имеет вид ψ100 (r ) = 1/√(πa3)e-r/a, где a – первый боровский радиус. Определите: 1) вероятность W обнаружения электрона на расстоянии от r до r + dr от ядра; 2) расстояния от ядра, на которых электрон может быть обнаружен с наибольшей вероятностью. Получить решение задачи

65. Нормированная волновая функция, описывающая 1s-состояние электрона в атоме водорода, имеет вид ψ100(r ) = 1/√(πa3)e-r/a, где a – первый боровский радиус. Определите среднюю потенциальную энергию электрона в поле ядра. Получить решение задачи

66. Нормированная волновая функция, описывающая 1s -состояние в атоме водорода, имеет вид ψ100 (r ) = 1/√(πa3)e-r/a, где a – первый боровский радиус. Определите среднее значение модуля кулоновской силы, действующей на электрон. Получить решение задачи

67. Электрон в атоме находится в f-состоянии. Определите возможные значения (в единицах h) проекции момента импульса Llz орбитального движения электрона в атоме на направление внешнего магнитного поля. Получить решение задачи

68. Электрон в атоме находится в d-состоянии. Определите: 1) момент импульса (орбитальный) Ll электрона; 2) максимальное значение проекции момента импульса (Llz)max на направление внешнего магнитного поля. Получить решение задачи

69. Определите, во сколько раз орбитальный момент импульса Ll электрона, находящегося в f-состоянии, больше, чем для электрона в p-состоянии. Получить решение задачи

70. 1s электрон атома водорода, поглотив фотон с энергией E = 12,1 эВ, перешел в возбужденное состояние с максимально возможным орбитальным квантовым числом. Определите изменение момента импульса ΔLl орбитального движения электрона. Получить решение задачи

71. Учитывая принцип Паули, определите максимальное число электронов, находящихся в состояниях, определяемых данным главным квантовым числом. Получить решение задачи

72. Заполненной электронной оболочке соответствует главное квантовое число n = 3 . Определите число электронов на этой оболочке, которые имеют одинаковые квантовые числа: 1) ms = −1/2; 2) ml = 0; 3) ml= −1, ms = 1/2. Получить решение задачи

73. Заполненной электронной оболочке соответствует главное квантовое число n = 4. Определите число электронов на этой оболочке которые имеют одинаковые квантовые числа: 1) ml = −3; 2) ms = 1/2, l = 2; 3) ms = −1/2 , ml = 1. Получить решение задачи

74. Пользуясь периодической системой элементов Д.И. Менделеева, запишите символически электронную конфигурацию следующих атомов в основном состоянии: 1) неон; 2) аргон; 3) криптон. Получить решение задачи

75. Определите наименьшую длину волны рентгеновского излучения, если рентгеновская трубка работает при напряжении U = 150 кВ. Получить решение задачи

76. Пользуясь периодической системой элементов Д.И. Менделеева, запишите символически электронную конфигурацию атома меди в основном состоянии Получить решение задачи

77. Минимальная длина волны рентгеновских лучей, полученных от трубки, работающей при напряжении U = 60 кВ, равна 20,7 пм. Определите по этим данным постоянную Планка. Получить решение задачи

78. Определите длину волны коротковолновой границы сплошного рентгеновского спектра, если скорость υ электронов, бомбардирующих анод рентгеновской трубки, составляет 0,8c. Получить решение задачи

79. Определите длину волны коротковолновой границы сплошного рентгеновского спектра, если при увеличении напряжения на рентгеновской трубке в два раза она изменилась на 50 пм. Получить решение задачи

80. Определите порядковый номер элемента в периодической системе элементов Д.И. Менделеева, если граничная частота K-серии характеристического рентгеновского излучения составляет 5,55•1018 Гц. Получить решение задачи

81. Определите длину волны самой длинноволновой линии K-серии характеристического рентгеновского спектра, если анод рентгеновской трубки изготовлен из платины. Постоянную экранирования принять равной единице. Получить решение задачи

82. Определите порядковый номер элемента в периодической системе элементов Д. И. Менделеева, если длина волны λ линии Kα характеристического рентгеновского излучения составляет 72 пм. Получить решение задачи

83. Определите постоянную экранирования σ для L-серии рентгеновского излучения, если при переходе электрона в атоме вольфрама с M-оболочки на L-оболочку длина волны λ испущенного фотона составляет 140 пм. Получить решение задачи

84. В атоме вольфрама электрон перешел с M-оболочки на L-оболочку. Принимая постоянную экранирования σ = 5,63, определите энергию испущенного фотона. Получить решение задачи

85. Определите в электрон-вольтах максимальную энергию Е фонона, который может возбуждаться в кристалле NaCl, характеризуемом температурой Дебая TD = 320 К. Фотон какой длины волны λ обладал бы такой энергией? Получить решение задачи

86. Германиевый образец нагревают от 0 до 17 °С. Принимая ширину запрещенной зоны германия ΔE = 0,72 эВ, определите, во сколько раз возрастает его удельная проводимость. Получить решение задачи

87. Удельная проводимость кремневого образца при нагревании от t1=0°С до t2=18°С увеличилась в 4,24 раза. Определить ширину запрещенной зоны кремния. Получить решение задачи

88. Определите ширину запрещенной зоны собственного полупроводника, если при температуре T1 и T2 (T2T1) его сопротивление соответственно равно R1 и R2. Получить решение задачи

89. Определите массу нейтрального атома 5424Cr. Получить решение задачи

90. Определите число протонов и нейтронов, входящих в состав ядер трех изотопов бора 1) 95B; 2) 105B; 3) 115B. Получить решение задачи

91. Определите число протонов и нейтронов, входящих в состав ядер трех изотопов кислорода 1) 168O; 2) 178O; 3) 188O. Получить решение задачи

92. Определите, какая энергия в электрон-вольтах соответствует дефекту массы Δm = 3•10-20 мг. Получить решение задачи

93. Определите энергию связи ядра атома гелия 42He. Масса нейтрального атома гелия равна 6,6467•10−27кг. Получить решение задачи

94. Определите удельную энергию связи δEсв (энергию связи, отнесенную к одному нуклону) для ядер: 1) 42He; 2) 126C. Массы нейтральных атомов гелия и углерода соответственно равны 6,6467•10−27 и 19,9272•10−27 кг. Получить решение задачи

95. Определите массу изотопа, если изменение массы при образовании ядра 157N составляет 0,2058•10−27 кг. Получить решение задачи

96. При отрыве нейтрона от ядра гелия 42He образуется ядро 32He. Определите энергию связи, которую необходимо для этого затратить. Масса нейтральных атомов 42He и 32He соответственно равна 6,6467•10−27кг и 5,0084•10−27 кг. Получить решение задачи

97. Энергия связи Eсв ядра, состоящего из трех протонов и четырех нейтронов, равна 39,3 МэВ. Определите массу m нейтрального атома, обладающего этим ядром. Получить решение задачи

98. Определите, какую долю кинетической энергии теряет нейтрон при упругом столкновении с покоящимся ядром углерода 126C, если после столкновения частицы движутся вдоль одной прямой. Массу нейтрального атома углерода принять равной 19,9272•10−27 кг. Получить решение задачи

99. Определите, во сколько раз магнетон Бора (единица магнитного момента электрона) больше ядерного магнетона (единица магнитного момента ядра). Получить решение задачи

100. Считая постоянную λ радиоактивного распада известной и используя закон радиоактивного распада, выведите выражение: 1) для периода полураспада T1/2 радиоактивного ядра; 2) для среднего времени жизни τ радиоактивного ядра. Получить решение задачи
Категория: Решения по физике | Просмотров: 886 | Решения задач добавил: Massimo