| Решаем задания со сборника задач Чертов А.Г., Воробьев А.А. | 
|  | 
| 
| Massimo | Дата: Понедельник, 18.11.2013, 15:08 | Сообщение # 11 |  | Полковник Группа: Администраторы Сообщений: 183 Репутация: 0 Статус: Offline | Решаем задания со сборника задач Чертов А.Г., Воробьев А.А. Стоимость: 10-30 рублей за 1 задачу. (Webmoney, Yandex)
 
 Срок решения 2-3 дня, зависит от количества заданий (Заказы принимаются по почте PMaxim2006@mail.ru или ICQ 624177127)
 Примерное решение и оформление заданий вы можете посмотреть на странице Примеры решений
 
 Связь между напряженностью и индукцией
 магнитного поля в вакууме
 21.1. Напряженность Н магнитного поля равна 79,6 кА/м. Определить магнитную индукцию В0 этого поля в вакууме.
 21.2. Магнитная индукция В поля в вакууме равна 10 мТл. Найти напряженность Н магнитного поля.
 21.3. Вычислить напряженность Н магнитного поля, если его индукция в вакууме В0=0,05 Тл.
 Поле кругового тока и соленоида
 21.4. Найти магнитную индукцию в центре тонкого кольца, которому идет ток I=10 А. Радиус r кольца равен 5 см.
 21.5. По обмотке очень короткой катушки радиусом r=16 см течет ток I=5 А. Сколько витков N проволоки намотано на катушку, если напряженность H магнитного поля в ее центре равна 800 А/м?
 21.6. Напряженность Н магнитного поля в центре кругового витка радиусом r=8 см равна 30 А/м. Определить напряженность H1.
 21.7. При какой силе тока I, текущего по тонкому проводящему кольцу радиусом R=0,2 м, магнитная индукция В в точке, равноудаленной от всех точек кольца на расстояние г=0,3 м, станет равной 20 мкТл?
 21.8. По проводнику в виде тонкого кольца радиусом R = 10 см течет ток. Чему равна сила тока I, если магнитная индукция В поля в точке А (рис. 21.10) равна 1 мкТл? Угол β=10°.
 21.9. Катушка длиной l=20 см содержит N=100 витков. По обмотке катушки идет ток 1=5 А. Диаметр d катушки равен 20 см. Определить магнитную индукцию В в точке, лежащей на оси катушки на расстоянии а=10 см от ее конца.
 21.10. Длинный прямой соленоид из проволоки диаметром d=0,5 мм намотан так, что витки плотно прилегают друг к другу.
 Какова напряженность Н магнитного поля внутри соленоида при силе тока I=4 А? Толщиной изоляции пренебречь.
 21.11. Обмотка катушки диаметром d=10 см состоит из плотно прилегающих друг к другу витков тонкой проволоки. Определить минимальную длину lmin катушки, при которой магнитная индукция в середине ее отличается от магнитной индукции бесконечного соленоида, содержащего такое же количество витков на единицу длины, не более чем на 0,5 %. Сила тока, протекающего по обмотке, в обоих случаях одинакова.
 21.12. Обмотка соленоида выполнена тонким проводом с плотно прилегающими друг к другу витками. Длина l катушки равна 1 м, ее диаметр d=2 см. По обмотке идет ток. Вычислить размеры участка на осевой линии, в пределах которого магнитная индукция может быть вычислена по формуле бесконечного соленоида с погрешностью, не превышающей 0,1 %.
 21.13. Тонкая лента шириной l=40 см свернута в трубку радиусом R=30 см. По ленте течет равномерно распределенный по ее ширине ток I=200 А (рис. 21.11). Определить магнитную индукцию В на оси трубки в двух точках: 1) в средней точке; 2) в точке, совпадающей с концом трубки.
 
 Поле прямого тока
 21.14. По прямому бесконечно длинному проводнику течет ток I=50 А. Определить магнитную индукцию В в точке, удаленной на расстояние r=5 см от проводника.
 21.15. Два длинных параллельных провода находятся на расстоянии r=5 см один от другого. По проводам текут в противоположных направлениях одинаковые токи I=10 А каждый. Найти напряженность H магнитного поля в точке, находящейся на расстоянии r1=2 см от одного и г2=3 см от другого провода.
 21.16. Расстояние d между двумя длинными параллельными проводами равно 5 см. По проводам в одном направлении текут одинаковые токи I=30 А каждый. Найти напряженность Н магнитного поля в точке, находящейся на расстоянии г1=4 см от одного и г2=3 см от другого провода.
 21.17. По двум бесконечно длинным прямым параллельным проводам текут токи I=50 А и I2=100 А в противоположных направлениях. Расстояние d между проводами равно 20 см. Определить магнитную индукцию В в точке, удаленной на г1=25 см от первого и на r2=40 см от второго провода.
 21.18. По двум бесконечно длинным прямым параллельным проводам текут токи I1=20 А и I2=30 А в одном направлении. Расстояние d между проводами равно 10 см. Вычислить магнитную индукцию В в точке, удаленной от обоих проводов на одинаковое расстояние г=10 см.
 21.19. Два бесконечно длинных прямых провода скрещены под прямым углом (рис. 21.12). По проводам текут токи I1=80 А и I2=60 А. Расстояние d между проводами равно 10 см. Определит магнитную индукцию В в точке А, одинаково удаленной от обоих проводников.
 
 21.20. По двум бесконечно длинным прямым проводам, скрещенным под прямым углом, текут токи I1=30 А и I2=40 А. Расстояние d между проводами равно 20 см. Определить магнитную индукцию В в точке С (рис. 21.12), одинаково удаленной от обоих проводов на расстояние, равное d.
 21.21. Бесконечно длинный прямой провод согнут под прямым углом. По проводнику течет ток I=20 А. Какова магнитная индукция В в точке А (рис. 21.13), если г=5 см?
 21.22. По бесконечно длинному прямому проводу, изогнутому так, как это показано на рис. 21.14, течет ток I=100 А Определить магнитную индукцию В в точке О, если г=10см.
 21.23. Бесконечно длинный прямой провод согнут под прямым углом. По проводу течет ток I=100 А. Вычислить магнитную индукцию В в точках, лежащих на биссектрисе угла и удаленных от вершины угла на а=10 см.
 21.24. По бесконечно длинному прямому проводу, согнутому под углом α=120°, течет ток I=50 А. Найти магнитную индукцию В в точках, лежащих на биссектрисе угла и удаленных от вершины его на расстояние а=5 см.
 21.25. По контуру в виде равностороннего треугольника идет ток I=40 А. Длина а стороны треугольника равна 30 см. Определить магнитную индукцию В в точке пересечения высот.
 21.26. По контуру в виде квадрата идет ток I=50 А. Длина а стороны квадрата равна 20 см. Определить магнитную индукцию В в точке пересечения диагоналей.
 21.27. По тонкому проводу, изогнутому в виде прямоугольника, течет ток I=60 А. Длины сторон прямоугольника равны а=30 см и b=40 см. Определить магнитную индукцию В в точке пересечения диагоналей.
 21.28. Тонкий провод изогнут в виде правильного шестиугольника. Длина d стороны шестиугольника равна 10 см. Определить магнитную индукцию В в центре шестиугольника, если по проводу течет ток I=25А
 21.29. По проводу, согнутому в виде правильного шестиугольника с длиной а стороны, равной 20 см, течет ток I=100 А. Найти напряженность H магнитного поля в центре шестиугольника. Для сравнения определить напряженность H0 поля в центре кругового провода, совпадающего с окружностью, описанной около данного шестиугольника.
 21.30. По тонкому проволочному кольцу течет ток. Не изменяя силы тока в проводнике, ему придали форму квадрата. Во сколько раз изменилась магнитная индукция в центре контура?
 21.31. Бесконечно длинный тонкий проводник с током I=50 А имеет изгиб (плоскую петлю) радиусом R = 10 см. Определить в точке О магнитную индукцию В поля, создаваемого этим током, в случаях а—е, изображенных на рис. 21.15.
 21.32. По плоскому контуру из тонкого провода течет ток I=100 А. Определить магнитную индукцию В поля, создаваемого этим током в точке О, в случаях а—е, изображенных на рис. 21.16. Радиус R изогнутой части контура равен 20 см.
 
 Поле движущегося заряда
 21.33. Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом r=53 пм. Вычислить силу эквивалентного кругового тока I и напряженность H поля в центре окружности.
 21.34. Определить максимальную магнитную индукцию Bmax поля, создаваемого электроном, движущимся прямолинейно со скоростью υ=10 Мм/с, в точке, отстоящей от траектории на расстоянии d=1 нм.
 
 21.35. На расстоянии г=10 нм от траектории прямолинейно движущегося электрона максимальное значение магнитной индукции Вmax=160 мкТл. Определить скорость υ электрона.
 Сила Ампера
 22.1. Прямой провод, по которому течет ток 1=1 кА, расположен в однородном магнитном поле перпендикулярно линиям индукции. С какой силой F действует поле на отрезок провода длиной l=1 м если магнитная индукция В равна 1 Тл?
 22.2. Прямой провод длиной l=10 см, по которому течет ток I=20 А, находится в однородном магнитном поле с индукцией В =0,01 Тл. Найти угол α между направлениями вектора В и тока, если на провод действует сила F=10 мН.
 22.3. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I= 1 кА. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.
 22.4. Тонкий провод в виде дуги, составляющей треть кольца радиусом R= 15 см, находится в однородном магнитном поле (В=20 мТл). По проводу течет ток I=30 А. Плоскость, в которой лежит дуга, перпендикулярна линиям магнитной индукции, и подводящие провода находятся вне поля. Определить силу F, действующую на провод.
 22.5. По тонкому проводу в виде кольца радиусом R=20 см течет ток I=100 А. Перпендикулярно плоскости кольца возбуждено однородное магнитное поле с индукцией В=20 мТл. Найти силу F, растягивающую кольцо.
 22.6. Двухпроводная линия состоит из длинных параллельных прямых проводов, находящихся на расстоянии d=4мм друг от друга. По проводам текут одинаковые токи I=50 А. Определить силу взаимодействия токов, приходящуюся на единицу длины провода.
 22.7. Шины генератора представляют собой две параллельные медные полосы длиной l=2 м каждая, отстоящие друг от друга на расстоянии d=20 см. Определить силу F взаимного отталкивания шин в случае короткого замыкания, когда по ним течет ток I = 10 кА.
 22.8. По двум параллельным проводам длиной l=1 м каждый текут одинаковые токи. Расстояние d между проводами равно 1 см. Токи взаимодействуют с силой F=1 мН. Найти силу тока I в проводах.
 22.9. По трем параллельным прямым проводам, находящимся на одинаковом расстоянии а=10 см друг от друга, текут одинаковые токи I=100 А. В двух проводах направления токов совпадают. Вычислить силу F, действующую на отрезок длиной l= 1 м каждого провода.
 22.10. По двум тонким проводам, изогнутым в виде кольца радиусом R = 10 см, текут одинаковые токи I= 10 А в каждом. Найти силу F взаимодействия этих колец, если плоскости, в которых лежат кольца, параллельны, а расстояние d между центрами колец равно 1 мм.
 22.11. По двум одинаковым квадратным плоским контурам со стороной а=20 см текут токи I=10 А в каждом. Определить силу F взаимодействия контуров, если расстояние d между соответственными сторонами контуров равно 2 мм.
 
 Магнитный момент
 22.12. По витку радиусом г=5 см течет ток I=10 А. Определить магнитный момент рт кругового тока.
 22.13. Очень короткая катушка содержит N=1000 витков тонкого провода. Катушка имеет квадратное сечение со стороной длиной а=10 см. Найти магнитный момент Pm катушки при силе тока I= 1 А.
 22.14. Магнитный момент рт витка равен 0,2 Дж/Тл. Определить силу тока I в витке, если его диаметр d= 10 см.
 22.15. Напряженность H магнитного поля в центре круговой витка равна 200 А/м. Магнитный момент рт витка равен 1 А·м2 Вычислить силу тока I в витке и радиус R витка.
 22.16. По кольцу радиусом R течет ток. На оси кольца на расстоянии d= 1 м от его плоскости магнитная индукция В= 10 нТл. Определить магнитный момент рт кольца с током. Считать R много меньшим d.
 22.17. Электрон в невозбужденном атоме водорода движется во круг ядра по окружности радиусом r=53 пм. Вычислить магнитный момент рт эквивалентного кругового тока и механический момент М, действующий на круговой ток, если атом помещен в магнитное поле, линии индукции которого параллельны плоскости орбиты электрона. Магнитная индукция В поля равна 0,1 Тл.
 22.18. Электрон в атоме водорода движется вокруг ядра по круговой орбите некоторого радиуса. Найти отношение магнитного момента рт эквивалентного кругового тока к моменту импульса L орбитального движения электрона. Заряд электрона и его массу считать известными. Указать направления векторов рm и L.
 22.19. По тонкому стержню длиной l=20 см равномерно распределен заряд Q=240 нКл. Стержень приведен во вращение с постоянной угловой скоростью ω = 10 рад/с относительно оси, перпендикулярной стержню и проходящей через его середину. Определить: 1) магнитный момент pm, обусловленный вращением заряженного стержня; 2) отношение магнитного момента к моменту импульса (pm/L) если стержень имеет массу m=12 г.
 22.20. Тонкое кольцо радиусом R = 10 см несет заряд Q=10 нКл. Кольцо равномерно вращается с частотой n=10 c1 относительно оси, перпендикулярной плоскости кольца и проходящей через ее центр. Найти: 1) магнитный момент рт кругового тока, создаваемого кольцом; 2) отношение магнитного момента к моменту импульса (pm/L), если масса т кольца равна10г.
 22.21. То же, что и в предыдущей задаче, но относительно oси совпадающей с одним из диаметров кольца.
 22.22. Диск радиусом R = 10 см несет равномерно распределенный по поверхности заряд Q=0,2 мкКл. Диск равномерно вращаете с частотой n=20 с1 относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Определить: 1) магнитный момент рт кругового тока, создаваемого диском; 2) отношение магнитного момента к моменту импульса (pm/L), если масса m диска равна 100 г.
 22.23. Тонкостенная металлическая сфера радиусом R = 10 см несет равномерно распределенный по ее поверхности заряд Q=3 мКл. Сфера равномерно вращается с угловой скоростью ω=10 рад/с относительно оси, проходящей через центр сферы. Найти: 1) магнитный момент рт кругового тока, создаваемый вращением сферы; 2) отношение магнитного момента к моменту импульса (pm/L), если масса m сферы равна 100 г.
 22.24. Сплошной шар радиусом R = 10 см несет заряд Q=200 нКл, равномерно распределенный по объему. Шар вращается относительно оси, проходящей через центр шара, с угловой скоростью ω= 10 рад/с. Определить: 1) магнитный момент рт кругового тока, обусловленного вращением шара; 2) отношение магнитного момента к моменту импульса (pm/L), если масса m шара равна 10 кг.
 Контур в магнитном поле
 22.25. Проволочный виток радиусом R=5 см находится в однородном магнитном поле напряженностью H=2 кА/м. Плоскость витка образует угол α=60° с направлением поля. По витку течет ток I=4 А. Найти механический момент М, действующий на виток.
 22.26. Виток диаметром d=20 см может вращаться около вертикальной оси, совпадающей с одним из диаметров витка. Виток установили в плоскости магнитного меридиана и пустили по нему ток I=10 А. Найти механический момент M, который нужно приложить к витку, чтобы удержать его в начальном положении *.
 22.27. Рамка гальванометра длиной а=4 см и шириной b = 1,5 см, содержащая N=200 витков тонкой проволоки, находится в магнитном поле с индукцией B=0,1 Тл. Плоскость рамки параллельна линиям индукции. Найти: 1) механический момент М, действующий на рамку, когда по витку течет ток I=1 мА; 2) магнитный момент рт рамки при этом токе.
 22.28. Короткая катушка площадью S поперечного сечения, равной 150 см2, содержит N=200 витков провода, по которому течет ток I=4 А. Катушка помещена в однородное магнитное поле напряженностью H=8 кА/м. Определить магнитный момент рт катушки, а также вращающий момент М, действующий на нее со стороны поля, если ось катушки составляет угол α=60° с линиями индукции.
 22.29. Рамка гальванометра, содержащая N=200 витков тонкого провода, подвешена на упругой нити. Площадь S рамки равна 1 см2. Нормаль к плоскости рамки перпендикулярна линиям магнитной индукции (В=5 мТл). Когда через гальванометр был пропущен ток I=2 мкА, то рамка повернулась на угол α=30°. Найти постоянную кручения С нити.
 22.30. По квадратной рамке из тонкой проволоки массой т=2 г пропущен ток I=6 А. Рамка свободно подвешена за середину одной из сторон на неупругой нити. Определить период Т малых колебаний такой рамки в однородном магнитном поле с индукцией В=2 мТл. Затуханием колебаний пренебречь.
 _____________
 * Горизонтальную составляющую ВГ магнитной индукции поля Земли принять равной 20 мкТл.
 
 22.31. Тонкий провод в виде кольца массой т=3 г свободно подвешен на неупругой нити в однородном магнитном поле. По кольцу течет ток I=2 А. Период Т малых крутильных колебаний относительно вертикальной оси равен 1,2 с. Найти магнитную индукцию В поля.
 22.32. На оси контура с током, магнитный момент которого рm равен 10 мА·м2, находится другой такой же контур. Вектор магнитного момента второго контура перпендикулярен оси. Вычислит механический момент М, действующий на второй контур. Расстояние d между контурами равно 50 см. Размеры контуров малы по сравнению с расстоянием между ними.
 22.33. Магнитное поле создано кольцевым проводником радиусом R=20 см, по которому течет ток I=100 А. На оси кольца расположено другое кольцо малых размеров с магнитным моментом рт = 10 мА·м2. Плоскости колец параллельны, а расстояние d между центрами равно 1 см. Найти силу, действующую на малое кольцо.
 
 Магнитный диполь
 22.34. Магнитное поле создано бесконечно длинным проводнике с током I=100 А. На расстоянии а=10 см от проводника находите точечный диполь, вектор магнитного момента (рт=1 мА·м2) которого лежит в одной плоскости с проводником и перпендикулярен ему. Определить силу F, действующую на магнитный диполь.
 22.35. Определить степень неоднородности магнитного поля (dB/dx), если максимальная сила Ртax действующая на точечный магнитный диполь, равна 1 мН. Магнитный момент рт точечного диполя равен 2 мА·м2.
 22.36. Проволочный виток радиусом R=20 см расположен в плоскости магнитного меридиана. В центре витка установлен компас. Какой ток I течет по витку, если магнитная стрелка компаса отклонена на угол α=9° от плоскости магнитного меридиана *?
 22.37. Определить число N витков катушки тангенсгальванометра, при котором сила тока, текущего по обмотке, численно равна тангенсу угла отклонения магнитной стрелки, помещенной в центре обмотки? Радиус r катушки равен 25 см. Ось катушки перпендикулярна плоскости магнитного меридиана *.
 22.38. Длинный прямой соленоид, содержащий п=5 витков каждый сантиметр длины, расположен перпендикулярно плоскости магнитного меридиана *. Внутри соленоида, в его средней части находится магнитная стрелка, установившаяся в магнитном по Земли. Когда по соленоиду пустили ток, стрелка отклонилась на угол α=60°. Найти силу тока I.
 22.39. Короткий прямой магнит расположен перпендикуляр плоскости магнитного меридиана. На оси магнита на расстоянии r=50 см от его середины (которое много больше длины магнита) находится магнитная стрелка. Вычислить магнитный момент pm магнита, если стрелка отклонена на угол α =6о от плоскости магнитного меридиана*.
 __________
 *См. сноску к задаче 22.26.
 
 22.40. Конденсатор электроемкостью С=50 мкФ заряжается от источника тока, ЭДС E которой равна 80 В, и с помощью особого переключателя полностью разряжается 100 раз в секунду через обмотку тангенсгальванометра, расположенного в плоскости магнитного меридиана *. На какой угол а отклонится магнитная стрелка, находящаяся в центре тангенсгальванометра, если его обмотка имеет N=10 витков радиусом r=25 см?
 22.41. Магнитная стрелка, помещенная в центре кругового провода радиусом R=10 см, образует угол α=20° с вертикальной плоскостью, в которой находится провод. Когда по проводу пустили ток I=3А, то стрелка повернулась в таком направлении, что угол α увеличился. Определить угол поворота стрелки.
 Сила Лоренца
 23.1. Определить силу Лоренца F, действующую на электрон, влетевший со скоростью =4 Мм/с в однородное магнитное поле под углом =30° к линиям индукции. Магнитная индукция В поля равна 0,2 Тл.
 23.2. Вычислить радиус R дуги окружности, которую описывает протон в магнитном поле с индукцией В=15 мТл, если скорость  протона равна 2 Мм/с.
 23.3. Двукратно ионизированный атом гелия (частица) движется в однородном магнитном поле напряженностью H=100 кА/м по окружности радиусом R=\0 см. Найти скорость   частицы.
 23.4. Ион, несущий один элементарный заряд, движется в однородном магнитном поле с индукцией B=0,015 Тл по окружности радиусом R=\ 0 см. Определить импульс р иона.
 23.5. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией B=0,5 Тл. Определить момент импульса L, которым обладала частица при движении в магнитном поле, если ее траектория представляла дугу окружности радиусом R=0,2 см.
 23.6. Электрон движется в магнитном поле с индукцией B =0,02 Тл по окружности радиусом R=1 см. Определить кинетическую энергию Т электрона (в джоулях и электронвольтах).
 23.7. Заряженная частица влетела перпендикулярно линиям индукции в однородное магнитное поле, созданное в среде. В результате взаимодействия с веществом частица, находясь в поле, потеряла половину своей первоначальной энергии. Во сколько раз будут отличаться радиусы кривизны R траектории начала и конца пути?
 23.8. Заряженная частица, двигаясь в магнитном поле по дуге окружности радиусом R1 =2 см, прошла через свинцовую пластину, расположенную на пути частицы. Вследствие потери энергии частицей радиус кривизны траектории изменился и стал равным R2 =\ см. Определить относительное изменение энергии частицы.
 23.9. Протон, прошедший ускоряющую разность потенциалов U=600 В, влетел в однородное магнитное поле с индукцией B =0,3 Тл и начал двигаться по окружности. Вычислить ее радиус R..
 23.10. Заряженная частица, обладающая скоростью =2106 м/с, влетела в однородное магнитное поле с индукцией B=0,52 Тл. Найти отношение Q/m заряда частицы к ее массе, если частица в поле описала дугу окружности радиусом R =4 см. По этому отношению определить, какая это частица.
 23.11. Заряженная частица, прошедшая ускоряющую разность потенциалов U=2 кВ, движется в однородном магнитном поле с индукцией B=15,1 мТл по окружности радиусом R=l см. Определить отношение \е\/m заряда частицы к ее массе и скорость  частицы.
 23.12. Заряженная частица с энергией T= 1 кэВ движется в однородном магнитном поле по окружности радиусом R=l мм. Найти силу F, действующую на частицу со стороны поля.
 23.13. Электрон движется в однородном магнитном поле с индукцией B=0,1 Тл перпендикулярно линиям индукции. Определить силу F, действующую на электрон со стороны поля, если радиус R кривизны траектории равен 0,5 см.
 23.14. Электрон движется в однородном магнитном поле напряженностью H=4 кА/м со скоростью =10 Мм/с. Вектор скорости направлен перпендикулярно линиям напряженности. Найти силу F, с которой поле действует на электрон, и радиус R окружности, по которой он движется.
 23.15. Протон с кинетической энергией Т=1 МэВ влетел воднородное магнитное поле перпендикулярно линиям индукции (B =1 Тл). Какова должна быть минимальная протяженность l поля в направлении, по которому летел протон, когда он находился вне поля, чтобы оно изменило направление движения протона на противоположное?
 23.16. Электрон движется по окружности в однородном магнитном поле напряженностью H =10 кА/м. Вычислить период Т вращения электрона.
 23.17. Определить частоту п вращения электрона по круговой орбите в магнитном поле, индукция В которого равна 0,2 Тл.
 23.18. Электрон в однородном магнитном поле с индукцией B=0,1 Тл движется по окружности. Найти силу I эквивалентного кругового тока, создаваемого движением электрона.
 23.19. Электрон, влетев в однородное магнитное поле с индукцией B=0,2 Тл, стал двигаться по окружности радиусом R=5 см. Определить магнитный момент рm эквивалентного кругового тока.
 23.20. Два однозарядных иона, пройдя одинаковую ускоряющую разность потенциалов, влетели в однородное магнитное поле перпендикулярно линиям индукции. Один ион, масса т1 которого равна 12 а. е. м. *, описал дугу окружности радиусом R1 =4 см. Определить массу m2 другого иона, который описал дугу окружности радиусом R2 =6 см.
 _______________________________________________________
 *А. е. м.— обозначение атомной единицы массы
 
 23.21. Два иона, имеющие одинаковый заряд, но различные массы, влетели в однородное магнитное поле. Первый ион начал двигаться по окружности радиусом R1=5 см, второй ион — по окружности радиусом R2 =2,5 см. Найти отношение m1/m2 масс ионов, если они прошли одинаковую ускоряющую разность потенциалов.
 23.22. В однородном магнитном поле с индукцией В=100 мкТл движется электрон по винтовой линии. Определить скорость  электрона, если шаг h винтовой линии равен 20 см, а радиус R=5 см.
 23.23. Электрон движется в однородном магнитном поле с индукцией В =9 мТл по винтовой линии, радиус R которой равен 1 см и шаг h=7,8 см. Определить период Т обращения электрона и его скорость .
 23.24. В однородном магнитном поле с индукцией В=2 Тл движется протон. Траектория его движения представляет собой винтовую линию с радиусом R =10 см и шагом h=60 см. Определить кинетическую энергию Т протона.
 23.25. Электрон влетает в однородное магнитное поле напряженностью H =16 кА/м со скоростью =8 Мм/с. Вектор скорости составляет угол  =60° с направлением линий индукции. Определить радиус R и шаг h винтовой линии, по которой будет двигаться электрон в магнитном поле. Определить также шаг винтовой линии для электрона, летящего под малым углом к линиям индукции.
 23.26. Определить энергию , которую приобретает протон, сделав N=40 оборотов в магнитном поле циклотрона, если максимальное значение Umax переменной разности потенциалов между дуантами равно 60 кВ. Определить также относительное увеличение m/m0 массы протона в сравнении с массой покоя, а также скорость v протона.
 23.27. Вычислить скорость v и кинетическую энергию Т частиц, выходящих из циклотрона, если, подходя к выходному окну, ионы движутся по окружности радиусом R=50 см. Индукция В магнитного поля циклотрона равна 1,7 Тл.
 23.28. Индукция В магнитного поля циклотрона равна 1 Тл. Какова частота  ускоряющего поля между дуантами, если в циклотроне ускоряются дейтоны?
 23.29. В циклотроне требуется ускорять ионы гелия (Не++ ). Частота  переменной разности потенциалов, приложенной к дуантам, равна 10 МГц. Какова должна быть индукция В магнитного поля, чтобы период Т обращения ионов совпадал с периодом изменения разности потенциалов?
 23.30. Определить число N оборотов, которые должен сделать протон в магнитном поле циклотрона, чтобы приобрести кинетическую энергию T=10МэВ, если при каждом обороте протон проходит между дуантами разность потенциалов U=30 кВ.
 23.31. Электрон движется по окружности в однородном магнитном поле со скоростью =0,8 с (с — скорость света в вакууме). Магнитная индукция В поля равна 0,01 Тл. Определить радиус окружности в двух случаях: 1) не учитывая увеличение массы со скоростью; 2) учитывая это увеличение.
 23.32. Электрон движется в магнитном поле по окружности радиусом R=2 см. Магнитная индукция В поля равна 0,1 Тл. Определить кинетическую энергию Т электрона *.
 ______________
 *При решении задач 23.32—23.35 учесть изменение массы частицы от ее скорости.
 23.33. Электрон, влетевший в камеру Вильсона, оставил след в виде дуги окружности радиусом R=10 см. Камера находится в однородном магнитном поле с индукцией В= 10 Тл. Определить кинетическую энергию Т электрона *.
 23.34. Кинетическая энергия Т частицы равна 500 МэВ. Частица движется в однородном магнитном поле по окружности радиусом R=80 см. Определить магнитную индукцию В поля *.
 23.35. Электрон, имеющий кинетическую энергию Т=1,5 МэВ, движется в однородном магнитном поле по окружности. Магнитная индукция В поля равна 0,02 Тл. Определить период  обращения *.
 Движение заряженных частиц в совместных магнитном и электрическом полях
 23.36. Перпендикулярно магнитному полю с индукцией В=0,1 Тл возбуждено электрическое поле напряженностью Е= 100 кВ/м. Перпендикулярно обоим полям движется, не отклоняясь от прямолинейной траектории, заряженная частица. Вычислить скорость  частицы.
 23.37. Заряженная частица, двигаясь перпендикулярно скрещенным под прямым углом электрическому (E=400 кВ/м) и магнитному (В=0,25 Тл) полям, не испытывает отклонения при определенной скорости . Определить эту скорость и возможные отклонения  от нее, если значения электрического и магнитного полей могут быть обеспечены с точностью, не превышающей 0,2 %.
 23.38. Протон, пройдя ускоряющую разность потенциалов U=800 В, влетает в однородные, скрещенные под прямым углом магнитное (В=50 мТл) и электрическое поля. Определить напряженность Е электрического поля, если протон движется в скрещенных полях прямолинейно.
 23.39. Заряженная частица движется по окружности радиусом R=1 см в однородном магнитном поле с индукцией В =0,1 Тл. Параллельно магнитному полю возбуждено электрическое поле напряженностью E=100 В/м. Вычислить промежуток времени t, в течение которого должно действовать электрическое поле, для того чтобы кинетическая энергия частицы возросла вдвое.
 23.40. Протон влетает со скоростью =100 км/с в область пространства, где имеются электрическое (E=210 В/м) и магнитное (В =3,3 мТл) поля. Напряженность Е электрического поля и магнитная индукция В совпадают по направлению. Определить ускорение протона для начального момента движения в поле, если направление вектора его скорости : 1) совпадает с общим направлением векторов Е и В; 2) перпендикулярно этому направлению.
 |  |  |  |  | 
| 
| Massimo | Дата: Понедельник, 18.11.2013, 15:09 | Сообщение # 12 |  | Полковник Группа: Администраторы Сообщений: 183 Репутация: 0 Статус: Offline | Закон полного тока 
 4.1. По соленоиду длиной l=1 м без сердечника, имеющему N =103 витков (рис. 24.2), течет ток I=20 А. Определить циркуляцию вектора магнитной индукции вдоль контура, изображенного на рис. 24.3, а, б
 
 24.2. Вычислить циркуляцию вектора индукции вдоль контура, охватывающего токи I1= 10 А, I2= 15 А, текущие в одном направлении, и ток I3=20 А, текущий в противоположном направлении.
 24.3. По сечению проводника равномерно распределен ток плотностью j=2 МА/м2. Найти циркуляцию вектора напряженности вдоль окружности радиусом R=5 мм, проходящей внутри проводника и ориентированной так, что ее плоскость составляет угол =30° с вектором плотности тока.
 24.4. Диаметр D тороида без сердечника по средней линии равен 30 см. В сечении тороид имеет круг радиусом r=5 см. По обмотке тороида, содержащей N=2000 витков, течет ток I= 5 А (рис. 24.4). Пользуясь законом полного тока, определить максимальное и минимальное значение магнитной индукции В в тороиде.
 Магнитный поток
 
 24.5. Найти магнитный поток Ф, создаваемый соленоидом сечением S= 10 см2, если он имеет п = 10 витков на каждый сантиметр его длины при силе тока I=20 А.
 24.6. Плоский контур, площадь S которого равна 25 см2, находится в однородном магнитном поле с индукцией B=0,04 Тл. Определить магнитный поток Ф, пронизывающий контур, если плоскость его составляет угол =30° с линиями индукции.
 24.7. При двукратном обводе магнитного полюса вокруг проводника с током I=100 А была совершена работа A=1 мДж. Найти магнитный поток Ф, создаваемый полюсом.
 24.8. Соленоид длиной l=1 м и сечением S= 16 см2 содержит N=2000 витков. Вычислить потокосцепление  при силе тока I в обмотке 10 А.
 24.9. Плоская квадратная рамка со стороной а=20 см лежит в одной плоскости с бесконечно длинным прямым проводом, по которому течет ток I =100 А. Рамка расположена так, что ближайшая к проводу сторона параллельна ему и находится на расстоянии I=10 см от провода. Определить магнитный поток Ф, пронизывающий рамку.
 24.10. Определить, во сколько раз отличаются магнитные потоки, пронизывающие рамку при двух ее положениях относительно прямого проводника с током, представленных на рис. 24.5.
 24.11. Квадратная рамка со стороной длиной а=20 см расположена в одной плоскости с прямым бесконечно длинным проводом с током. Расстояние l от провода до середины рамки равно 1 м. Вычислить относительную погрешность, которая будет допущена при расчете магнитного потока, пронизывающего рамку, если поле в пределах рамки считать однородным, а магнитную индукцию — равной значению ее в центре рамки.
 24.12. Тороид квадратного сечения содержит N=l000 витков. Наружный диаметр D тороида равен 40 см, внутренний d=20 см. Найти магнитный поток Ф в тороиде, если сила тока I, протекающего по обмотке, равна 10 А.
 Указание. Учесть, что магнитное поле тороида неоднородно.
 
 Магнитная индукция в ферромагнетике
 24.13. Железный сердечник находится в однородном магнитном поле напряженностью H=1 кА/м. Определить индукцию В магнитного поля в сердечнике и магнитную проницаемость  железа *.
 24.14. На железное кольцо намотано в один слой N=500 витков провода. Средний диаметр d кольца равен 25 см. Определить магнитную индукцию В в железе и магнитную проницаемость  железа *, если сила тока I в обмотке: 1) 0,5 А; 2) 2,5 А.
 24.15. Замкнутый соленоид (тороид) со стальным сердечником* имеет п=10 витков на каждый сантиметр длины. По соленоиду течет ток I=2 А. Вычислить магнитный поток Ф в сердечнике, если его сечение S=4 см2.
 24.16. Определить магнитодвижущую силу Fm необходимую для получения магнитного потока Ф=0,3 мВб в железном * сердечнике замкнутого соленоида (тороида). Длина l средней линии сердечника равна 120 см, площадь сечения S=2,5 см2.
 24.17. Соленоид намотан на чугунное * кольцо сечением S=5 см2. При силе тока I=1А магнитный поток Ф=250 мкВб. Определить число п витков соленоида, приходящихся на отрезок длиной 1 см средней линии кольца.
 Магнитные цепи
 24.18. Электромагнит изготовлен в виде тороида. Сердечник тороида со средним диаметром d=51 см имеет вакуумный зазор длиной l0 =2мм. Обмотка тороида равномерно распределена по всей его длине. Во сколько раз уменьшится индукция магнитного поля в зазоре, если, не изменяя силы тока в обмотке, зазор увеличить в n==3 раза? Рассеянием магнитного поля вблизи зазора пренебречь. Магнитную проницаемость  сердечника считать постоянной и принять равной 800.
 24.19. Определить магнитодвижущую силу F m необходимую для создания магнитного поля индукцией В=1,4 Тл в электромагните с железным * сердечником длиной l=90 см и воздушным промежутком длиной l0=5мм. Рассеянием магнитного потока в воздушном промежутке пренебречь.
 
 24.20. В железном * сердечнике соленоида индукция В=1,3 Тл. Железный сердечник заменили стальным. Определить, во сколько раз следует изменить силу тока в обмотке соленоида, чтобы индукция в сердечнике осталась неизменной.
 24.21. Стальной * сердечник тороида, длина l которого по средней линии равна 1 м, имеет вакуумный зазор длиной l0 =4 мм. Обмотка содержит п=8 витков на 1 см. При какой силе тока I индукция В в зазоре будет равна 1 Тл?
 24.22. Обмотка тороида, имеющего стальной * сердечник с узким вакуумным зазором, содержит N=1000 витков. По обмотке течет ток I=1 А. При какой длине l0 вакуумного зазора индукция В магнитного поля в нем будет равна 0,5 Тл? Длина l тороида по средней линии равна 1 м.
 24.23. Определить магнитодвижущую силу, при которой в узком вакуумном зазоре длиной l0= 3,6 мм тороида с железным * сердечником, магнитная индукция В равна 1,4 Тл. Длина l тороида по средней линии равна 0,8 м.
 24.24. Длина l чугунного * тороида по средней линии равна 1,2 м, сечение S==20 см2. По обмотке тороида течет ток, создающий в узком вакуумном зазоре магнитный поток Ф=0,5 мВб. Длина l0 зазора равна 8 мм. Какова должна быть длина зазора, чтобы магнитный поток в нем при той же силе тока увеличился в два раза?
 
 *Для определения магнитной проницаемости воспользоваться графиком (см. рис. 24.1). Явление гистерезиса не учитывать.
 25.1. В однородном магнитном поле с индукцией B=0,01 Тл находится прямой провод длиной l=8 см, расположенный перпендикулярно линиям индукции. По проводу течет ток I=2 А. Под действием сил поля провод переместился на расстояние s=5 см. Найти работу A сил поля.
 25.2. Плоский контур, площадь S которого равна 300 см2, находится в однородном магнитном поле с индукцией В =0,01 Тл. Плоскость контура перпендикулярна линиям индукции. В контуре поддерживается неизменный ток I=10 А. Определить работу А внешних сил по перемещению контура с током в область пространства, магнитное поле в которой отсутствует.
 25.3. По проводу, согнутому в виде квадрата со стороной длиной а =10 см, течет ток I=20 А, сила которого поддерживается неизменной. Плоскость квадрата составляет угол =20° с линиями индукции однородного магнитного поля (В =0,1 Тл). Вычислить работу A, которую необходимо совершить для того, чтобы удалить провод за пределы поля.
 25.4. По кольцу, сделанному из тонкого гибкого провода радиусом R=10 см, течет ток I=100 А. Перпендикулярно плоскости кольца возбуждено магнитное поле с индукцией B=0,1 Тл, по направлению совпадающей с индукцией B1 собственного магнитного поля кольца. Определить работу А внешних сил, которые, действуя на провод, деформировали его и придали ему форму квадрата. Сила тока при этом поддерживалась неизменной. Работой против упругих сил пренебречь.
 
 * Перемещение проводника или контура с током в магнитном поле считать настолько медленным, что возникающими индукционными токами можно пренебречь.
 
 25.5(1). Виток, по которому течет ток I=20 А, свободно установился в однородном магнитном поле с индукцией В=0,016 Тл. Диаметр d витка равен 10 см. Определить работу A, которую нужно совершить, чтобы повернуть виток на угол =/2 относительно оси, совпадающей с диаметром. То же, если угол =2 .
 25.5(2). Квадратная рамка со стороной а=10см, по которой течет ток I=200 А, свободно установилась в однородном магнитном поле (B=0,2 Тл). Определить работу, которую необходимо совершить при повороте рамки вокруг оси, лежащей в плоскости рамки и перпендикулярной линиям магнитной индукции, на угол  =2/З.
 
 Электродвижущая сила индукции
 25.6. Магнитный поток Ф=40 мВб пронизывает замкнутый контур. Определить среднее значение ЭДС индукции < >, возникающей в контуре, если магнитный поток изменится до нуля за время t=2 мс.
 25.7. Прямой провод длиной l=40 см движется в однородном магнитном поле со скоростью =5 м/с перпендикулярно линиям индукции. Разность потенциалов U между концами провода равна 0,6 В. Вычислить индукцию В магнитного поля.
 25.8. В однородном магнитном поле с индукцией В=1 Тл находится прямой провод длиной l=20 см, концы которого замкнуты вне поля. Сопротивление R всей цепи равно 0,1 Ом. Найти силу F, которую нужно приложить к проводу, чтобы перемещать его перпендикулярно линиям индукции со скоростью =2,5 м/с.
 25.9. Прямой провод длиной l=10 см помещен в однородном магнитном поле с индукцией В=1 Тл. Концы его замкнуты гибким проводом, находящимся вне поля. Сопротивление R всей цепи равно 0,4 Ом. Какая мощность Р потребуется для того, чтобы двигать провод перпендикулярно линиям индукции со скоростью =20 м/с?
 25.10. К источнику тока с ЭДС =0,5 В и ничтожно малым внутренним сопротивлением присоединены два металлических стержня, расположенные горизонтально и параллельно друг другу. Расстояние l между стержнями равно 20 см. Стержни находятся в однородном магнитном поле, направленном вертикально. Магнитная индукция В= 1,5 Тл. По стержням под действием сил поля скользит со скоростью =l м/с прямолинейный провод сопротивлением R=0,02 Ом. Сопротивление стержней пренебрежимо мало. Определить: 1) ЭДС индукции 2) силу F, действующую на провод со стороны поля; 3) силу тока I в цепи; 4) мощность P1, расходуемую на движение провода; 5) мощность Р2, расходуемую на нагревание провода; 6) мощность Р3, отдаваемую в цепь источника тока.
 25.11. В однородном магнитном поле с индукцией B=0,4 Тл в плоскости, перпендикулярной линиям индукции поля, вращается
 стержень длиной l=10 см. Ось вращения проходит через один из концов стержня. Определить разность потенциалов U на концах стержня при частоте вращения n=16 с1.
 25.12. Рамка площадью S=200 см2 равномерно вращается с частотой n=10 с1 относительно оси, лежащей в плоскости рамки и перпендикулярно линиям индукции однородного магнитного поля (B=0,2 Тл). Каково среднее значение ЭДС индукции <i> за время, в течение которого магнитный поток, пронизывающий рамку, изменится от нуля до максимального значения?
 25.13. В однородном магнитном поле с индукцией B=0,35 Тл равномерно с частотой n=480 мин1 вращается рамка, содержащая N=500 витков площадью S=50 см2. Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Определить максимальную ЭДС индукции εmax, возникающую в рамке.
 25.14. Рамка площадью S=100 см2 содержит N=103 витков провода сопротивлением R1=l2 Ом. К концам обмотки подключено внешнее сопротивление R2=20 Ом. Рамка равномерно вращается в однородном магнитном поле (B=0,1 Тл) с частотой n=8 с1. Определить максимальную мощность Pmax переменного тока в цепи.
 25.15. Магнитная индукция B поля между полюсами двухполюсного генератора равна 0,8 Тл. Ротор имеет N=100 витков площадью S=400 см2. Определить частоту п вращения якоря, если максимальное значение ЭДС индукции i =200 В.
 25.16. Короткая катушка, содержащая N=1000 витков, равномерно вращается в однородном магнитном поле с индукцией B=0,04 Тл с угловой скоростью ω=5 рад/с относительно оси, совпадающей с диаметром катушки и перпендикулярной линиям индукции поля. Определить мгновенное значение ЭДС индукции i для тех моментов времени, когда плоскость катушки составляет угол α=60° линиями индукции поля. Площадь S катушки равна 100 см2.
 
 Количество электричества, протекающее в контуре при изменении магнитного потока*
 25.17. Проволочный виток радиусом r=4 см, имеющий сопротивление R=0,01 Ом, находится в однородном магнитном поле с индукцией B=0,04 Тл. Плоскость рамки составляет угол α=30° с линиями индукции поля. Какое количество электричества Q протечет по витку, если магнитное поле исчезнет?
 25.18. Проволочное кольцо радиусом r=10 см лежит на столе. Какое количество электричества Q протечет по кольцу, если его повернуть с одной стороны на другую? Сопротивление R кольца равно 1 Ом. Вертикальная составляющая индукции В магнитного поля Земли равна 50 мкТл.
 25.19. В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. По цепи протекло количество электричества Q=10 мкКл. Определить магнитный поток Ф, пересеченный кольцом, если сопротивление R цепи гальванометра равно 30 Ом.
 25.20. Между полюсами электромагнита помещена катушка, соединенная с баллистическим гальванометром. Ось катушки параллельна линиям индукции. Катушка сопротивлением R1=4 Ом имеет N=15 витков площадью S=2 см2. Сопротивление R2 гальванометра равно 46 Ом. Когда ток в обмотке электромагнита выключили, по цепи гальванометра протекло количество электричества Q=90 мкКл. Вычислить магнитную индукцию В поля электромагнита.
 25.21. Рамка из провода сопротивлением R=0,01 Ом равномерно вращается в однородном магнитном поле с индукцией B=0,05 Тл. Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Площадь S рамки равна 100 см2. Найти, какое количество электричества Q протечет через рамку за время поворота ее на угол α=30° в следующих трех случаях: 1) от α0=0 до α1=30°; 2) от α1 до α2=60°; 3) от α3=90°.
 25.22. Тонкий медный провод массой т=1г согнут в виде квадрата, и концы его замкнуты. Квадрат помещен в однородное магнитное поле (B=0,1 Тл) так, что плоскость его перпендикулярна линиям индукции поля. Определить количество электричества Q, которое протечет по проводнику, если квадрат, потянув за противоположные вершины, вытянуть в линию.
 25.23. На расстоянии а= 1 м от длинного прямого провода с током I=кА находится кольцо радиусом r=1 см. Кольцо расположено так, что поток, пронизывающий его, максимален. Определить количество электричества Q, которое протечет по кольцу, когда ток в проводнике будет выключен. Сопротивление R кольца 10 Ом.
 Указание. Поле в пределах кольца считать однородным.
 25.24. По длинному прямому проводу течет ток. Вблизи провода расположена квадратная рамка из тонкого провода сопротивлением R=0,02 Ом. Провод лежит в плоскости рамки и параллелен двум ее сторонам, расстояния до которых от провода соответственно равны a1=10 см, a2=20 см. Найти силу тока I в проводе, если при его включении через рамку протекло количество электричества Q=693 мкКл.
 Самоиндукция и взаимоиндукция
 25.25. По катушке индуктивностью L=0,03 мГн течет ток I=0,6 А. При размыкании цепи сила тока изменяется практически до нуля за время Δt=120 мкс. Определить среднюю ЭДС самоиндукции <i>, возникающую в контуре.
 25.26. С помощью реостата равномерно увеличивают силу тока в катушке на ΔI=0,1 А в 1 с. Индуктивность L катушки равна 0,01 Гн. Найти среднее значение ЭДС самоиндукции <i>.
 25.27. Индуктивность L катушки равна 2 мГн. Ток частотой υ=50 Гц, протекающий по катушке, изменяется по синусоидальному закону. Определить среднюю ЭДС самоиндукции <i>, возникающую за интервал времени Δt, в течение которого ток в катушке изменяется от минимального до максимального значения. Амплитудное значение силы тока I0=10 А.
 25.28. Катушка сопротивлением R1=0,5 Ом с индуктивностью L=4 мГн соединена параллельно с проводом сопротивлением R2=2,5 Ом, по которому течет постоянный ток I=1 А. Определить количество электричества Q, которое будет индуцировано в катушке при размыкании цепи ключом К (рис. 25.2).
 
 25.29. На картонный каркас длиной l=50 см и площадью S сечения, равной 4 см2, намотан в один слой провод диаметром d=0,2 мм так, что витки плотно прилегают друг к другу (толщиной изоляции пренебречь). Вычислить индуктивность L получившегося соленоида.
 25.30. Индуктивность L соленоида длиной l=1 м, намотанного в один слой на немагнитный каркас, равна 1,6 мГн. Площадь S сечения соленоида равна 20 см2. Определить число п витков на каждом сантиметре длины соленоида.
 25.31. Сколько витков проволоки диаметром d=0,4 мм с изоляцией ничтожной толщины нужно намотать на картонный цилиндр диаметром D=2 см, чтобы получить однослойную катушку с индуктивностью L=l мГн? Витки вплотную прилегают друг к другу.
 25.32. Катушка, намотанная на немагнитный цилиндрический каркас, имеет N1=750 витков и индуктивность L1=25 мГн. Чтобы увеличить индуктивность катушки до L2=36 мГн, обмотку с катушки сняли и заменили обмоткой из более тонкой проволоки с таким расчетом, чтобы длина катушки осталась прежней. Определить число N2 витков катушки после перемотки.
 25.33. Определить индуктивность L двухпроводной линии на участке длиной l=1 км. Радиус R провода равен 1 мм, расстояние d между осевыми линиями равно 0,4 м.
 Указание. Учесть только внутренний магнитный поток, т. е. поток, пронизывающий контур, ограниченный проводами.
 25.34. Соленоид индуктивностью L=4 мГн содержит N=600 витков. Определить магнитный поток Ф, если сила тока I, протекающего по обмотке, равна 12 А.
 25.35. Индуктивность L катушки без сердечника равна 0,02 Гн. Какое потокосцепление ψ создается, когда по обмотке течет ток I= 5 А?
 25.36. Длинный прямой соленоид, намотанный на немагнитный каркас, имеет N=1000 витков и индуктивность L=3 мГн. Какой магнитный поток Ф и какое потокосцепление ψ создает соленоид при силе тока I=1 А?
 25.37. Соленоид, площадь S сечения которого равна 5 см2, содержит N=1200 витков. Индукция В магнитного поля внутри соленоида при силе тока I=2 А равна 0,01 Тл. Определить индуктивность L соленоида.
 25.38. Соленоид содержит N=1000 витков. Площадь S сечения сердечника равна 10 см2. По обмотке течет ток, создающий поле с индукцией В==1,5 Тл. Найти среднюю ЭДС индукции <ei>, возникающей в соленоиде, если ток уменьшится до нуля за время t=500 мкс.
 25.39. Обмотка соленоида с железным сердечником содержит N=500 витков. Длина l сердечника равна 50 см. Как и во сколько раз изменится индуктивность L соленоида, если сила тока, протекающего по обмотке, возрастет от I1=0,l А до I2=1 А (см. рис. 24.1).
 25.40. Две катушки расположены на небольшом расстоянии одна от другой. Когда сила тока в первой катушке изменяется с быстротой 5 А/с, во второй катушке возникает ЭДС индукции ei=0,1 В. Определить коэффициент М взаимной индукции катушек.
 25.41. Обмотка тороида с немагнитным сердечником имеет N1=251 виток. Средний диаметр <D> тороида равен 8 см, диаметр d витков равен 2 см. На тороид намотана вторичная обмотка, имеющая N2=100 витков. При замыкании первичной обмотки в ней в течение t=1 мс устанавливается сила тока I=3 А. Найти среднюю ЭДС индукции <ei>, возникающей на вторичной обмотке.
 
 Экстратоки замыкания и размыкания
 25.42. В цепи шел ток I=50 А. Источник тока можно отключить от цепи, не разрывая ее. Определить силу тока I в этой цепи через t=0,01 с после отключения ее от источника тока. Сопротивление R цепи равно 20 Ом, ее индуктивность L=0,l Гн.
 25.43. Источник тока замкнули на катушку с сопротивлением R=10 Ом и индуктивностью L=l Гн. Через сколько времени сила тока замыкания достигнет 0,9 предельного значения?
 25.44. Цепь состоит из катушки индуктивностью L=l Гн и сопротивлением R=10 Ом. Источник тока можно отключать, не разрывая цепи. Определить время t, по истечении которого сила тока уменьшится до 0,001 первоначального значения.
 25.45. К источнику тока с внутренним сопротивлением Ri=2 Ом подключают катушку индуктивностью L=0,5 Гн и сопротивлением R=8 Ом. Найти время t, в течение которого ток в катушке, нарастая, достигнет значения, отличающегося от максимального на 1 %.
 25.46. В цепи (см. рис. 25.1) R1=5 Ом, R2=95 Ом, L=0,34 Гн, e=38 В. Внутреннее сопротивление r источника тока пренебрежимо мало. Определить силу тока I в резисторе сопротивлением R2 в следующих трех случаях: 1) до размыкания цепи ключом К; 2) в момент размыкания (t1=0); 3) через t2=0,01 с после размыкания.
 
 Бетатрон
 25.47. Средняя скорость изменения магнитного потока <ΔФ/Δt> в бетатроне, рассчитанном на энергию Т=60 МэВ, составляет 50 Вб/с. Определить: 1) число N оборотов электрона на орбите за время ускоренного движения; 2) путь l, пройденный электроном, если радиус r орбиты равен 20 см.
 25.48. В бетатроне скорость изменения магнитной индукции *=60 Тл/с. Определить: 1) напряженность Е вихревого электрического поля на орбите электрона, если ее радиус r=0,5 м; 2) силу F, действующую на электрон.
 25.49. Электрон в бетатроне движется по орбите радиусом r=0,4 м и приобретает за один оборот кинетическую энергию T=20 эВ. Вычислить скорость изменения магнитной индукции d<B>/dt, считая эту скорость в течение интересующего нас промежутка времени постоянной.
 Энергия магнитного поля соленоида и тороида
 26.1. По обмотке соленоида индуктивностью L=0,2 Гн течет ток I=10 А. Определить энергию W магнитного поля соленоида.
 26.2. Индуктивность L катушки (без сердечника) равна 0,1 мГн. При какой силе тока I энергия W магнитного поля равна 100 мкДж?
 26.3. Соленоид содержит N=1000 витков. Сила тока I в его обмотке равна 1 А, магнитный поток Ф через поперечное сечение соленоида равен 0,1 мВб. Вычислить энергию W магнитного поля.
 26.4. На железное кольцо намотано в один слой N =200 витков. Определить энергию W магнитного поля, если при токе I =2,5 А магнитный поток Ф в железе равен 0,5 мВб.
 26.5. По обмотке тороида течет ток силой I =0,6 А. Витки провода диаметром d=0,4 мм плотно прилегают друг к другу (толщиной изоляции пренебречь). Найти энергию W магнитного поля в стальном сердечнике тороида, если площадь S сечения его равна 4 см2, диаметр D средней линии равен 30 см *.
 Объемная плотность энергии
 26.6. При индукции В поля, равной 1 Тл, плотность энергии ω магнитного поля в железе равна 200 Дж/м3. Определить магнитную проницаемость μ, железа в этих условиях *.
 26.7. Определить объемную плотность энергии ω магнитного поля в стальном сердечнике, если индукция В магнитного поля равна 0,5 Тл*.
 26.8. Индукция магнитного поля тороида со стальным сердечником возросла от B1=0,5 Тл до B2=1 Тл. Найти, во сколько раз изменилась объемная плотность энергии ω магнитного поля *.
 26.9. Вычислить плотность энергии ω магнитного поля в железном сердечнике замкнутого соленоида, если напряженность Н намагничивающего поля равна 1,2 кА/м *.
 26.10. Напряженность магнитного поля тороида со стальным сердечником возросла от H1=200 А/м до H2=800 А/м. Определить, во сколько раз изменилась объемная плотность энергии ω магнитного поля*.
 26.11. При некоторой силе тока I плотность энергии ω магнитного поля соленоида (без сердечника) равна 0 2 Дж/м3. Во сколько раз увеличится плотность энергии поля при той же силе тока, если соленоид будет иметь железный сердечник?
 26.12. Найти плотность энергии ω магнитного поля в железном сердечнике соленоида, если напряженность Н намагничивающего поля равна 1,6 кА/м*.
 26.13. Обмотка тороида с немагнитным сердечником имеет n=10 витков на каждый сантиметр длины. Определить плотность энергии ω поля, если по обмотке течет ток I=16 А.
 26.14. Обмотка тороида содержит n=10 витков на каждый сантиметр длины. Сердечник немагнитный. При какой силе тока I в обмотке плотность энергии ω магнитного поля равна 1 Дж/м3?
 26.15. Катушка индуктивностью L=l мГн и воздушный конденсатор, состоящий из двух круглых пластин диаметром D=20 см каждая, соединены параллельно. Расстояние d между пластинами равно 1 см. Определить период Т колебаний.
 26.16. Конденсатор электроемкостью C=500 пФ соединен параллельно с катушкой длиной l=40 см и площадью S сечения, равной 5 см2. Катушка содержит N=1000 витков. Сердечник немагнитный. Найти период Т колебаний.
 26.17. Колебательный контур состоит из катушки индуктивностью L=20 мкГн и конденсатора электроемкостью С=80 нФ. Величина емкости может отклоняться от указанного значения на 2 %. Вычислить, в каких пределах может изменяться длина волны, на которую резонирует контур.
 26.18. Колебательный контур имеет индуктивность L=1,6 мГн, электроемкость С=0,04 мкФ и максимальное напряжение Umax. нa зажимах, равное 200 В. Определить максимальную силу тока Imax в контуре. Сопротивление контура ничтожно мало.
 26.19. Колебательный контур содержит конденсатор электроемкостью С=8 пФ и катушку индуктивностью L=0,5 мГн. Каково максимальное напряжение Umax.на обкладках конденсатора, если максимальная сила тока Imax=40 мА?
 26.20. Катушка (без сердечника) длиной l=50 см и площадью S1 сечения, равной 3 см2, имеет N=1000 витков и соединена параллельно с конденсатором. Конденсатор состоит из двух пластин площадью S2=75 см2 каждая. Расстояние d между пластинами равно 5 мм. Диэлектрик — воздух. Определить период Т колебаний контура.
 26.21. Колебательный контур состоит из параллельно соединенных конденсатора электроемкостью С=1 мкФ и катушки индуктивностью L=1 мГн. Сопротивление контура ничтожно мало. Найти частоту υ колебаний.
 26.22. Индуктивность L колебательного контура равна 0,5 мГн. Какова должна быть электроемкость С контура, чтобы он резонировал на длину волны λ=300 м?
 26.23. На какую длину волны λ будет резонировать контур, состоящий из катушки индуктивностью L=4 мкГн и конденсатора электроемкостью С=1,11 нФ?
 26.24. Для демонстрации опытов Герца с преломлением электромагнитных волн иногда берут большую призму, изготовленную из парафина. Определить показатель преломления парафина, если его диэлектрическая проницаемость ε=2 и магнитная проницаемость μ=1.
 26.25. Два параллельных провода, погруженных в глицерин, индуктивно соединены с генератором электромагнитных колебаний частотой υ=420 МГц. Расстояние l между пучностями стоячих волн на проводах равно 7 см. Найти диэлектрическую проницаемость ε глицерина. Магнитную проницаемость μ принять равной единице.
 Намагниченность. Магнитная восприимчивость
 27.1. Определить намагниченность J тела при насыщении, если магнитный момент каждого атома равен магнетону Бора μB и концентрация атомов 6*l028 м3.
 27.2. Магнитная восприимчивость χ марганца равна 1,21*104. Вычислить намагниченность J, удельную намагниченность Jуд и молярную намагниченность Jm марганца в магнитном поле напряженностью H=100 кА/м. Плотность марганца считать известной.
 27.3. Найти магнитную восприимчивость χ AgBr, если его молярная магнитная восприимчивость χm=7,5*1010 м3/моль.
 27.4. Определить магнитную восприимчивость χ и молярную магнитную восприимчивость χm платины, если удельная магнитная восприимчивость χm=1,30*109 м3/кг.
 27.5. Магнитная восприимчивость χ алюминия равна 2,1*105. Определить его удельную магнитную χуд и молярную χm восприимчивости.
 27.6. Висмутовый шарик радиусом R=1 см помещен в однородное магнитное поле (В0=0,5 Тл). Определить магнитный момент pm приобретенный шариком, если магнитная восприимчивость χ висмута равна 1,5*104.
 27.7. Напряженность Н магнитного поля в меди равна 1 МА/м. Определить намагниченность J меди и магнитную индукцию В, если известно, что удельная магнитная восприимчивость χуд=1,1*109 м3/кг.
 
 Диа и парамагнетизм
 27.8. Определить частоту ωL ларморовой прецессии электронной орбиты в атоме, находящемся в магнитном поле Земли (В=50 мкТл).
 27.9. Атом водорода находится в магнитном поле с индукцией B=1 Тл. Вычислить магнитный момент μM, обусловленный прецессией электронной орбиты. Принять, что среднее значение квадрата расстояния <r2> электрона от ядра равно (r1 — радиус первой боровской орбиты).
 27.10. Молярная магнитная восприимчивость χm оксида хрома CrО3 равна 5,8*108 м3/моль. Определить магнитный момент μM молекулы Cl2O3 (в магнетонах Бора), если температура Т=300 К.
 27.11. Удельная парамагнитная восприимчивость χуд трехоксида ванадия (V2O3) при t=17 °С равна 1,89*101 м3/кг. Определить магнитный момент μM (в магнетонах Бора), приходящийся на молекулу V2O3, если плотность ρ трехоксида ванадия равна 4,87*103 кг/м3.
 27.12. Молекула кислорода имеет магнитный момент μM=2,8 μB (где μB — магнетон Бора). Определить намагниченность J газообразного кислорода при нормальных условиях в слабом магнитном поле (В0=10 мТл) и в очень сильном поле.
 27.13. Определить, при каком наибольшем значении магнитной индукции В уже следует пользоваться не приближенным выражением функции Ланжевена L(a) a/3, а точным, чтобы погрешность вычислений не превышала 1 %. Для расчетов принять магнитный момент молекул равным магнетону Бора. Температура T=300 К.
 27.14. Определить наибольшее значение величины а, при котором погрешность, вызванная заменой точного выражения функции Ланжевена приближенным L(a) a/3, не превышает 1 %.
 27.15. Определить температуру Т, при которой вероятность того, что данная молекула имеет отрицательную проекцию магнитного момента на направление внешнего магнитного поля, будет равна 103. Магнитный момент молекулы считать равным одному магнетону Бора, а магнитную индукцию В поля — равной 8 Тл.
 27.16. Определить, во сколько раз число молекул, имеющих положительные проекции магнитного момента на направление вектора магнитной индукции внешнего поля (B=1 Тл), больше числа молекул, имеющих отрицательную проекцию, в двух случаях: 1) T1=300 К; 2) T2=1 К. Магнитный момент молекулы принять равным магнетону Бора.
 27.17. При температуре T1=300 К и магнитной индукции B1=0,5, Тл была достигнута определенная намагниченность J парамагнетика. Определить магнитную индукцию В2, при которой сохранится та же намагниченность, если температуру повысить до T2=450 К.
 Ферромагнетизм
 27.18. Кусок стали внесли в магнитное поле напряженностью H=1600 А/м. Определить намагниченность J стали.
 Указание. Необходимо воспользоваться графиком на рис. 24.1 (с. 288).
 27.19. Прямоугольный ферромагнитный брусок объемом V=10 см3 приобрел в магнитном поле напряженностью Н=800 А/м магнитный момент pm=0,8 А*м2. Определить магнитную проницаемость μ ферромагнетика.
 27.20. Вычислить среднее число <n> магнетонов Бора, приходящихся на один атом железа, если при насыщении намагниченность железа равна 1,84 МА/м.
 27.21. На один атом железа в незаполненной 3 dоболочке приходится четыре неспаренных электрона. Определить теоретическое значение намагниченности Jнас железа при насыщении.
 |  |  |  |  | 
| 
| Massimo | Дата: Понедельник, 18.11.2013, 15:09 | Сообщение # 13 |  | Полковник Группа: Администраторы Сообщений: 183 Репутация: 0 Статус: Offline | Отражение и преломление света 28.1. Два плоских прямоугольных зеркала образуют двугранный угол φ=179°. На расстоянии l=10 см от линии соприкосновения зеркал и на одинаковом расстоянии от каждого зеркала находится точечный источник света. Определить расстояние d между мнимыми изображениями источника в зеркалах.
 28.2. На сферическое зеркало падает луч света. Найти построением ход луча после отражения в двух случаях: а) от вогнутого зеркала (рис. 28.4, а); б) от выпуклого зеркала (рис. 28.4, б). На рисунке: Р — полюс зеркала; О — оптический центр.
 28.3. Вогнутое сферическое зеркало дает на экране изображение предмета, увеличенное в Г=4 раза. Расстояние а от предмета до зеркала равно 25 см. Определить радиус R кривизны зеркала.
 28.4. Фокусное расстояние f вогнутого зеркала равна 15 см. Зеркало дает действительное изображение предмета, уменьшенное в три раза. Определить расстояние а от предмета до зеркала.
 28.5. На рис. 28.5, а, б указаны положения главной оптической оси MN сферического зеркала, светящейся точки 5 и ее изображения S'. Найти построением положения оптического центра О зеркала, его полюса Р и главного фокуса F. Определить, вогнутым или выпуклым является данное зеркало. Будет ли изображение действительным или мнимым?
 28.6. Вогнутое зеркало дает на экране изображение Солнца в виде кружка диаметром d=28 мм. Диаметр Солнца на небе в угловой мере β=32'. Определить радиус R кривизны зеркала.
 
 28.7. Радиус R кривизны выпуклого зеркала равен 50 см. Предмет высотой h=15 см находится на расстоянии и, равном 1 м, от зеркала. Определить расстояние b от зеркала до изображения и его высоту Н.
 28.8. На рис. 28,6, а, б указаны положения главной оптической оси MN сферического зеркала и ход луча 1. Построить ход луча 2 после отражения его от зеркала.
 28.9. На столе лежит лист бумаги. Луч света, падающий на бумагу под углом ε=30°, дает на ней светлое пятно. Насколько сместится это пятно, если на бумагу положить плоскопараллельную стеклянную пластину толщиной d=5 см?
 28.10. Луч падает под углом ε=60° на стеклянную пластинку толщиной d=30 мм. Определить боковое смещение Δx; луча после выхода из пластинки.
 28.11. Пучок параллельных лучей падает на толстую стеклянную пластину под углом ε=60°, и преломляясь переходит в стекло. Ширина а пучка в воздухе равна 10 см. Определить ширину b пучка в стекле.
 28.12. Луч света переходит из среды с показателем преломления n1 в среду с показателем преломления n2. Показать, что если угол между отраженным и преломленным лучами равен π/2, то выполняется условие tgε1==n2/n1 (ε1 — угол падения).
 28.13. Луч света падает на грань призмы с показателем преломления п под малым углом. Показать, что если преломляющий угол θ призмы мал, то угол отклонения σ лучей не зависит от угла падения и равен θ(n — 1).
 28.14. На стеклянную призму с преломляющим углом θ=60° падает луч света. Определить показатель преломления п стекла, если при симметричном ходе луча в призме угол отклонения σ =40°.
 28.15. Преломляющий угол θ стеклянной призмы равен 30°. Луч света падает на грань призмы перпендикулярно ее поверхности и выходит в воздух из другой грани, отклоняясь на угол σ=20° от первоначального направления. Определить показатель преломления п стекла.
 28.16. Луч света падает на грань стеклянной призмы перпендикулярно ее поверхности и выходит из противоположной грани, отклонившись на угол σ=25° от первоначального направления. Определить преломляющий угол θ призмы.
 28.17. На грань стеклянной призмы с преломляющим углом θ=60° падает луч света под углом ε1=45°. Найти угол преломления ε2’, луча при выходе из призмы и угол отклонения σ луча от первоначального направления.
 28.18. Преломляющий угол θ призмы равен 60°. Угол наименьшего отклонения луча от первоначального направления σ =30°. Определить показатель преломления п стекла, из которого изготовлена призма.
 28.19. Преломляющий угол θ призмы, имеющей форму острого клина, равен 2°. Определить угол наименьшего отклонения σmin луча при прохождении через призму, если показатель преломления п стекла призмы равен 1,6.
 Оптические системы
 28.20. На тонкую линзу падает луч света. Найти построением ход луча после преломления его линзой: а) собирающей (рис. 28.7, а); б) рассеивающей (рис. 28,7 б). На рисунке: O — оптический центр линзы; F — главный фокус.
 28.21. На рис. 28.8, а, б, указаны положения главной оптической оси MN линзы и ход луча 1. Построить * ход луча 2 после преломления его линзой.
 28.22. Найти построением положение светящейся точки, если известен ход лучей после преломления их в линзах: а) собирающей (рис. 28.9, а); б) рассеивающей (рис. 28.9, б). На рисунке: О — оптический центр линзы; F — ее главный фокус.
 
 28.23. На рис. 28.10, а, б указаны положения главной оптической оси MN тонкой линзы, светящейся точки S и ее изображения S'. Найти построением * положения оптического центра О линзы и ее фокусов F. Указать, собирающей или рассеивающей будет данная линза. Будет ли изображение действительным или мнимым?
 28.24. Линза, расположенная на оптической скамье между лампочкой и экраном, дает на экране резко увеличенное изображение лампочки. Когда Лампочку передвинули Δl=40 см ближе к экрану, на нем появилось резко уменьшенное, изображение лампочки. Определить фокусное расстояние f линзы, если расстояние l от лампочки до экрана равно 80 см.
 
 28.25. Каково наименьшее возможное расстояние l между предметом и его действительным изображением, создаваемым собирающей линзой с главным фокусным расстоянием f=12 см?
 28.26. Человек движется вдоль главной оптической оси объектива фотоаппарата со скоростью v=5 м/с. С какой скоростью и необходимо перемещать матовое стекло фотоаппарата, чтобы изображение человека на нем все время оставалось резким. Главное фокусное расстояние f объектива равно 20 см. Вычисления выполнить для случая, когда человек находился на расстоянии а=10 м от фотоаппарата.
 28.27. Из стекла требуется изготовить плосковыпуклую линзу, оптическая сила Ф которой равна 5 дптр. Определить радиус R кривизны выпуклой поверхности линзы.
 28.28. Двояковыпуклая линза имеет одинаковые радиусы кривизны поверхностей. При каком радиусе кривизны R поверхностей линзы главное фокусное расстояние f ее будет равно 20 см?
 28.29. Отношение k радиусов кривизны поверхностей линзы равно 2. При каком радиусе кривизны R. выпуклой поверхности оптическая сила Ф линзы равна 10 дптр?
 28.30. Определить радиус R кривизны выпуклой поверхности линзы, если при отношении k радиусов кривизны поверхностей линзы, равном 3, ее оптическая сила Ф=8 дптр.
 28.31. Из двух часовых стекол с одинаковыми радиусами R кривизны, равными 0,5 м, склеена двуяковогнутая «воздушная» линза. Какой оптической силой Ф будет обладать такая линза в воде?
 28.32. Линза изготовлена из стекла, показатель преломления которого для красных лучей nк=1,50, для фиолетовых nф=1,52. Радиусы кривизны R обеих поверхностей линзы одинаковы и равны 1 м. Определить расстояние Δf между фокусами линзы для красных и фиолетовых лучей.
 28.33. Определить главное фокусное расстояние f плосковыпуклой линзы, диаметр d которой равен 10 см. Толщина h в центре линзы равна 1 см, толщину у краев можно принять равной нулю.
 28.34. Определить оптическую силу Ф мениска*, если радиусы кривизны R1 и R2 его выпуклой и вогнутой поверхностей равны соответственно 1 м и 40 см.
 28.35. Главное фокусное расстояние f собирающей линзы в воздухе равно 10 см. Определить, чему оно равно: 1) в воде; 2) в коричном масле.
 28.36. У линзы, находящейся в воздухе, фокусное расстояние f1=5 см, а погруженной в раствор сахара f2=35 см. Определить показатель преломления n раствора.
 28.37. Тонкая линза, помещенная в воздухе, обладает оптической силой Ф1=5 дптр, а в некоторой жидкости Ф2=0,48 дптр. Определить показатель преломления n2 жидкости, если показатель преломления n1 стекла, из которого изготовлена линза, равен 1,52.
 28.38. Доказать, что оптическая сила Ф системы двух сложенных
 вплотную тонких линз равна сумме оптических сил Ф1 и Ф2 каждой из этих линз.
 28.39. В вогнутое сферическое зеркало радиусом R=20 см налит тонким слоем глицерин. Определить главное фокусное расстояние f такой системы.
 28.40. Плосковыпуклая линза имеет оптическую силу Ф1=4 дптр. Выпуклую поверхность линзы посеребрили. Найти оптическую силу Ф2 такого сферического зеркала.
 
 28.41. Поверх выпуклого сферического зеркала радиусом кривизны R=20 см налили тонкий слой воды. Определить главное фокусное расстояние f такой системы.
 28.42. Человек без очков читает книгу, располагая ее перед собой на расстоянии а=12,5 см. Какой оптической силы Ф очки следует ему носить?
 28.43. Пределы аккомодации глаза близорукого человека без очков лежат между a1=16 см и a2=80 см. В очках он хорошо видит удаленные предметы. На каком минимальном расстоянии d он может держать книгу при чтении в очках?
 28.44. Лупа, представляющая собой двояковыпуклую линзу, изготовлена из стекла с показателем преломления n=1,6. Радиусы кривизны R поверхностей линзы одинаковы и равны 12 см. Определить увеличение Г лупы.
 28.45. Лупа дает увеличение Г=2. Вплотную к ней приложили собирательную линзу с оптической силой Ф1=20 дптр. Какое увеличение Г2 будет давать такая составная лупа?
 28.46. Оптическая сила Ф объектива телескопа равна 0,5 дптр. Окуляр действует как лупа, дающая увеличение Г1=10. Какое увеличение Г2 дает телескоп?
 28.47. При окуляре с фокусным расстоянием f=50 мм телескоп дает угловое увеличение Г1==60. Какое угловое увеличение Г2 даст один объектив, если убрать окуляр и рассматривать действительное изображение, созданное объективом, невооруженным глазом с расстояния наилучшего зрения?
 28.48. Фокусное расстояние f1 объектива телескопа равно 1 м. В телескоп рассматривали здание, находящееся на расстоянии а= 1 км. В каком направлении и на сколько нужно передвинуть окуляр, чтобы получить резкое изображение в двух случаях: 1) если после здания будут рассматривать Луну; 2) если вместо Луны будут рассматривать близкие предметы, находящиеся на расстоянии a1= =100 м?
 28.49. Телескоп наведен на Солнце. Фокусное расстояние f1 объектива телескопа равно 3 м. Окуляр с фокусным расстоянием f2=50 мм проецирует действительное изображение Солнца, созданное объективом, на экран, расположенный на расстоянии b=60 см от окуляра. Плоскость экрана перпендикулярна оптической оси телескопа. Определить линейный диаметр d изображения Солнца на экране, если диаметр Солнца на небе виден невооруженным глазом под углом α=32'.
 28.50. Фокусное расстояние f1 объектива микроскопа равно 8 мм, окуляра f2==4 см. Предмет находится на Δа=0,5 мм дальше от объектива, чем главный фокус. Определить увеличение Г микроскопа.
 28.51. Фокусное расстояние f1 объектива микроскопа равно 1 см, окуляра f2=2 см. Расстояние от объектива до окуляра L=23 см. Какое увеличение Г дает микроскоп? На каком расстоянии а от объектива находится предмет?
 28.52. Расстояние δ между фокусами объектива и окуляра внутри микроскопа равно 16 см. Фокусное расстояние f1 объектива равно 1 мм. С каким фокусным расстоянием f2 следует взять окуляр, чтобы получить увеличение Г=500?
 Световой поток, и сила света
 29.1. Определить силу света I точечного источника, полный световой поток Ф которого равен 1 лм.
 29.2. Лампочка, потребляющая мощность Р=75 Вт, создает на расстоянии r=3 м при нормальном падении лучей освещенность E=8 лк. Определить удельную мощность р лампочки (в ваттах на канделу) и световую отдачу η лампочки (в люменах на ватт).
 29.3. В вершине кругового конуса находится точечный источник света, посылающий внутри конуса световой поток Ф==76 лм. Сила света I источника равна 120 кд. Определить телесный угол ω и угол раствора 2 конуса.
 29.4. Какую силу тока I покажет гальванометр, присоединенный к селеновому фотоэлементу, если на расстоянии r=75 см от него поместить лампочку, полный световой поток Ф0 которой равен 1,2 клм? Площадь рабочей поверхности фотоэлемента равна 10 см2, чувствительность i=300 мкА/лм.
 Освещенность
 29.5. Лампочка силой света I=80 кд находится на расстоянии а=2 м от собирательной линзы с диаметром d=12 см и главным фокусным расстоянием f=40 см. Линза дает на экране, расположенном на расстоянии b=30 см от линзы, круглое светлое пятно. Найти освещенность Е экрана на месте этого пятна. Поглощением света в линзе пренебречь.
 29.6. При печатании фотоснимка негатив освещался в течение t1=3 с лампочкой силой света I1==15 кд с расстояния r1=50 см. Определить время t2, в течение которого нужно освещать негатив лампочкой силой света I2=60 кд с расстояния r2==2 м, чтобы получить отпечаток с такой же степенью почернения, как и в первом случае?
 29.7. На высоте h=3 м над землей и на расстоянии r=4 м от стены висит лампа силой света I=100 кд. Определить освещенность Е1 стены и Е2 горизонтальной поверхности земли у линии их пересечения.
 29.8. На мачте высотой h=8 м висит лампа силой света I=1 ккд. Принимая лампу за точечный источник света, определить, на каком расстоянии l от основания мачты освещенность Е поверхности земли равна 1 лк.
 29.9. Над центром круглой площадки висит лампа. Освещенность E1 в центре площадки равна 40 лк, Е2 на краю площадки равна 5 лк. Под каким углом в падают лучи на край площадки?
 29.10. Над центром круглого стола радиусом r=80 см на высоте h=60 см висит лампа силой света I=100 кд. Определить: 1) освещенность E1 в центре стола; 2) освещенность E2 на краю стола; 3) световой поток Ф, падающий на стол; 4) среднюю освещенность <E> стола.
 29.11. На какой высоте h над центром круглого стола радиусом г=\ м нужно повесить лампочку, чтобы освещенность на краю стола была максимальной?
 Яркость и светимость
 29.12. Отверстие в корпусе фонаря закрыто плоским молочным стеклом размером 10х15 см. Сила света I фонаря в направлении, составляющем угол φ=60° с нормалью, равна 15 кд. Определить яркость L стекла.
 29.13. Вычислить и сравнить между собой силы света раскаленного металлического шарика яркостью L1=3 Мкд/м2 и шарового светильника яркостью L2=5 ккд/м2, если их диаметры d1 и d2 соответственно равны 2 мм и 20 см.
 29.14. Светильник из молочного стекла имеет форму шара диаметром d=20 см. Сила света I шара равна 80 кд. Определить полный световой поток Ф, светимость М и яркость L светильника.
 29.15. Солнце, находясь вблизи зенита, создает на горизонтальной поверхности освещенность E=0,1 Млк. Диаметр Солнца виден под углом α =32'. Определить видимую яркость L Солнца.
 29.16. Длина l раскаленной добела металлической нити равна 30 см, диаметр d=0,2 мм. Сила света I нити в перпендикулярном ей направлении равна 24 кд. Определить яркость L нити.
 29.17. Яркость L светящегося куба одинакова во всех направлениях и равна 5 ккд/м2. Ребро а куба равно 20 см. В каком направлении сила света I куба максимальна? Определить максимальную силу света Imах куба.
 29.18. Светящийся конус имеет одинаковую во всех направлениях яркость B=2 ккд/м2. Основание конуса не светится. Диаметр d основания равен 20 см, высота h=15 см. Определить силу света I конуса в направлениях: 1) вдоль оси; 2) перпендикулярном оси.
 29.19. На высоте h=1 м над горизонтальной плоскостью параллельно ей расположен небольшой светящийся диск. Сила света I0 диска в направлении его оси равна 100 кд. Принимая диск за точечный источник с косинусным распределением силы света, найти освещенность Е горизонтальной плоскости в точке А, удаленной на расстояние r=3 м от точки, расположенной под центром диска.
 29.20. На какой высоте h над горизонтальной плоскостью (см. предыдущую задачу) нужно поместить светящийся диск, чтобы освещенность в точке А была максимальной?
 29.21. Определить освещенность Е, светимость М и яркость L киноэкрана, равномерно рассеивающего свет во всех направлениях, если световой поток Ф, падающий на экран из объектива киноаппарата (без киноленты), равен 1,75 клм. Размер экрана 5х3,6 м, коэффициент отражения ρ=0,75.
 29.22. На какой высоте h нужно повесить лампочку силой света I=10 кд над листом матовой белой бумаги, чтобы яркость L бумаги была равна 1 кд/м2, если коэффициент отражения ρ бумаги равен 0,8?
 29.23. Освещенность Е поверхности, покрытой слоем сажи, равна 150 лк, яркость L одинакова во всех направлениях и равна 1 кд/м2. Определить коэффициент отражения ρ сажи.
 Интерференция волн от двух когерентных источников
 30.1. Сколько длин волн монохроматического света с частотой колебаний υ=5*1014 Гц уложится на пути длиной l=1,2 мм: 1) в вакууме; 2) в стекле?
 30.2. Определить длину l1 отрезка, на котором укладывается столько же длин волн в вакууме, сколько их укладывается на отрезке l2=3 мм в воде.
 30.3. Какой длины l1 путь пройдет фронт волны монохроматического света в вакууме за то же время, за какое он проходит путь длиной l2=1 м в воде?
 30.4. На пути световой волны, идущей в воздухе, поставили стеклянную пластинку толщиной h=1 мм. На сколько изменится оптическая длина пути, если волна падает на пластинку: 1) нормально; 2) под углом ε=30°?
 30.5. На пути монохроматического света с длиной волны λ=0,6 мкм находится плоскопараллельная стеклянная пластина толщиной d=0,l мм. Свет падает на пластину нормально. На какой угол φ следует повернуть пластину, чтобы оптическая длина пути L изменилась на λ/2?
 
 30.6. Два параллельных пучка световых волн I и II падают на стеклянную призму с преломляющим углом θ=30° и после преломления выходят из нее (рис. 30.6). Найти оптическую разность хода Δ световых волн после преломления их призмой.
 30.7. Оптическая разность хода Δ двух интерферирующих волн монохроматического света равна 0,3λ. Определить разность фаз Δφ.
 30.8. Найти все длины волн видимого света (от 0,76 до 0,38 мкм), которые будут: 1) максимально усилены; 2) максимально ослаблены при оптической разности хода Δ интерферирующих волн, равной 1,8 мкм.
 30.9. Расстояние d между двумя когерентными источниками света (λ=0,5 мкм) равно 0,1 мм. Расстояние b между интерференционными полосами на экране в средней части интерференционной картины равно 1 см. Определить расстояние l от источников до экрана.
 30,10. Расстояние d между двумя щелями в опыте Юнга равно 1мм, расстояние l от щелей до экрана равно 3 м. Определить длину
 волны λ, испускаемой источником монохроматического света, если ширина b полос интерференции на экране равна 1,5 мм.
 30.11. В опыте Юнга расстояние d между щелями равно 0,8 мм. На каком расстоянии l от щелей следует расположить экран, чтобы ширина b интерференционной полосы оказалась равной 2 мм?
 
 30.12. В опыте с зеркалами Френеля расстояние d между мнимыми изображениями источника света равно 0,5 мм, расстояние l от них до экрана равно 3 м. Длина волны λ=0,6 мкм. Определить ширину b полос интерференции на экране.
 30.13. Источник S света (λ=0,6 мкм) и плоское зеркало М расположены, как показано на рис. 30.7 (зеркало Ллойда). Что будет наблюдаться в точке Р экрана, где сходятся лучи SP и SMP,— свет или темнота, если |SP|=r=2 м, a=0,55 мм, |SM|=|MP|?
 Интерференция света в тонких пленках
 30.14. При некотором расположении зеркала Ллойда ширина b интерференционной полосы на экране оказалась равной 1 мм. После того как зеркало сместили параллельно самому себе на расстояние Δd=0,3 мм, ширина интерференционной полосы изменилась. В каком направлении и на какое расстояние Δl следует переместить экран, чтобы ширина интерференционной полосы осталась прежней? Длина волны λ монохроматического света равна 0,6 мкм.
 
 30.15. Плоскопараллельная стеклянная пластинка толщиной d=1,2 мкм и показателем преломления n=1,5 помещена между двумя средами с показателями преломления n1 и n2 (рис. 30.8). Свет с длиной волны λ=0,6 мкм падает нормально на пластинку. Определить оптическую разность хода Δ волн 1 и 2, отраженных от верхней и нижней поверхностей пластинки, и указать, усиление или ослабление интенсивности света происходит при интерференции в следующих случаях: 1) n1<.п<n2; 2) n1>n>n2; 3) п1<п>п2; 4) n1>n<n2.
 30.16. На мыльную пленку (n=1,3), находящуюся в воздухе, падает нормально пучок лучей белого света. При какой наименьшей толщине d пленки отраженный свет с длиной волны λ=0,55 мкм окажется максимально усиленным в результате интерференции?
 30.17. Пучок монохроматических (λ=0,6 мкм) световых волн падает под углом ε1=30° на находящуюся в воздухе мыльную пленку (n=1,3). При какой наименьшей толщине d пленки отраженные световые волны будут максимально ослаблены интерференцией? максимально усилены?
 30.18. На тонкий стеклянный клин (n=1,55) падает нормально монохроматический свет. Двугранный угол α между поверхностями клина равен 2'. Определить длину световой волны λ, если расстояние b между смежными интерференционными максимумами в отраженном свете равно 0,3 мм.
 30.19. Поверхности стеклянного клина образуют между собой угол θ=0,2'. На клин нормально к его поверхности падает пучок лучей монохроматического света с длиной волны λ=0,55 мкм. Определить ширину b интерференционной полосы.
 30.20. На тонкий стеклянный клин в направлении нормали к его поверхности падает монохроматический свет (λ=600 нм). Определить угол θ между поверхностями клина, если расстояние b между смежными интерференционными минимумами в отраженном свете равно 4 мм.
 30.21. Между двумя плоскопараллельными стеклянными пластинками положили очень тонкую проволочку, расположенную параллельно линии соприкосновения пластинок и находящуюся на расстоянии l=75 мм от нее. В отраженном свете (λ=0,5 мкм) на верхней пластинке видны интерференционные полосы. Определить диаметр d поперечного сечения проволочки, если на протяжении а=30 мм насчитывается m=16 светлых полос.
 30.22. Две плоскопараллельные стеклянные пластинки приложены одна к другой так, что между ними образовался воздушный клин с углом θ, равным 30". На одну из пластинок падает нормально монохроматический свет (λ=0,6 мкм). На каких расстояниях l1 и l2 от линии соприкосновения пластинок будут наблюдаться в отраженном свете первая и вторая светлые полосы (интерференционные максимумы)?
 30.23. Две плоскопараллельные стеклянные пластинки образуют клин с углом θ=30'. Пространство между пластинками заполнено глицерином. На клин нормально к его поверхности падает пучок монохроматического света с длиной волны λ=500 нм. В отраженном свете наблюдается интерференционная картина. Какое число N темных интерференционных полос приходится на 1 см длины клина?
 30.24. Расстояние Δr2,1 между вторым и первым темным кольцами Ньютона в отраженном свете равно 1 мм. Определить расстояние Δr10,9 между десятым и девятым кольцами.
 30.25. Плосковыпуклая линза выпуклой стороной лежит на стеклянной пластинке. Определить толщину d слоя воздуха там, где в отраженном свете (λ=0,6 мкм) видно первое светлое кольцо Ньютона.
 30.26. Диаметр d2 второго светлого кольца Ньютона при наблюдении в отраженном свете (λ=0,6 мкм) равен 1,2 мм. Определить оптическую силу D плосковыпуклой линзы, взятой для опыта.
 30.27. Плосковыпуклая линза с оптической силой Ф=2 дптр выпуклой стороной лежит на стеклянной пластинке. Радиус r, четвертого темного кольца Ньютона в проходящем свете равен 0,7 мм. Определить длину световой волны.
 30.28. Диаметры di и dk двух светлых колец Ньютона соответственно равны 4,0 и 4,8 мм. Порядковые номера колец не определялись, но известно, что между двумя измеренными кольцами расположено три светлых кольца. Кольца наблюдались в отраженном свете (λ=500 нм). Найти радиус кривизны плосковыпуклой линзы, взятой для опыта.
 30.29. Между стеклянной пластинкой и лежащей на ней плосковыпуклой стеклянной линзой налита жидкость, показатель преломления которой меньше показателя преломления стекла. Радиус r8 восьмого темного кольца Ньютона при наблюдении в отраженном свете (λ=700 нм) равен 2 мм. Радиус R кривизны выпуклой поверхности линзы равен 1 м. Найти показатель преломления n жидкости.
 30.30. На установке для наблюдения колец Ньютона был измерен в отраженном свете радиус третьего темного кольца (k=3). Когда пространство между плоскопараллельной пластиной и линзой заполнили жидкостью, то тот же радиус стало иметь кольцо с номером, на единицу большим. Определить показатель преломления п жидкости.
 30.31. В установке для наблюдения колец Ньютона свет с длиной волны λ=0,5 мкм падает нормально на плосковыпуклую линзу с радиусом кривизны R1=1 м, положенную выпуклой стороной на вогнутую поверхность плосковогнутой линзы с радиусом кривизны R2=2 м. Определить радиус r3 третьего темного кольца Ньютона, наблюдаемого в отраженном свете.
 30.32. Кольца Ньютона наблюдаются с помощью двух одинаковых плосковыпуклых линз радиусом R кривизны равным 1м, сложенных вплотную выпуклыми поверхностями (плоские поверхности линз параллельны). Определить радиус r2 второго светлого кольца, наблюдаемого в отраженном свете (λ=660 нм) при нормальном падении света на поверхность верхней линзы.
 Интерференционные приборы
 30.33. На экране наблюдается интерференционная картина от двух когерентных источников света с длиной волны λ=480 нм. Когда на пути одного из пучков поместили тонкую пластинку из плавленого кварца с показателем преломления n=1,46, то интерференционная картина сместилась на m=69 полос. Определить толщину d кварцевой пластинки.
 30.34. В оба пучка света интерферометра Жамена были помещены цилиндрические трубки длиной l=10 см, закрытые с обоих концов плоскопараллельными прозрачными пластинками; воздух из трубок был откачан. При этом наблюдалась интерференционная картина в виде светлых и темных полос. В одну из трубок был впущен водород, после чего интерференционная картина сместилась на m=23,7 полосы. Найти показатель преломления п водорода. Длина волны λ света равна 590 нм.
 30.35. В интерферометре Жамена две одинаковые трубки длиной l=15 см были заполнены воздухом. Показатель преломления n1 воздуха равен 1,000292. Когда в одной из трубок воздух заменили ацетиленом, то интерференционная картина сместилась на m=80 полос. Определить показатель преломления n2 ацетилена, если в интерферометре использовался источник монохроматического света с длиной волны λ=0,590 мкм.
 30.36. Определить перемещение зеркала в интерферометре Майкельсона, если интерференционная картина сместилась на т=100 полос. Опыт проводился со светом с длиной волны λ=546 нм.
 30.37. Для измерения показателя преломления аргона в одно из плеч интерферометра Майкельсона поместили пустую стеклянную трубку длиной l=12 см с плоскопараллельными торцовыми поверхностями. При заполнении трубки аргоном (при нормальные условиях) интерференционная картина сместилась на m=106 полос. Определить показатель преломления п аргона, если длина волны λ света равна 639 нм.
 30.38. В интерферометре Майкельсона на пути одного из интерферирующих пучков света (λ=590 нм) поместили закрытую с обеих сторон стеклянную трубку длиной l=10 см, откачанную до высокого вакуума. При заполнении трубки хлористым водородом произошло смещение интерференционной картины. Когда хлористый водород был заменен бромистым водородом, смещение интерференционной картины возросло на Δm=42 полосы. Определить разность Δn показателей преломления бромистого и хлористого водорода.
 |  |  |  |  | 
| 
| Massimo | Дата: Понедельник, 18.11.2013, 15:10 | Сообщение # 14 |  | Полковник Группа: Администраторы Сообщений: 183 Репутация: 0 Статус: Offline | Зоны Френеля 31.1. Зная формулу радиуса kй. зоны Френеля для сферической волны (ρk= ), вывести соответствующую формулу для плоской волны.
 31.2. Вычислить радиус ρ5 пятой зоны Френеля для плоского волнового фронта (λ=0,5 мкм), если построение делается для точки наблюдения, находящейся на расстоянии b=1 м от фронта волны.
 31.3. Радиус ρ4 четвертой зоны Френеля для плоского волнового фронта равен 3 мм. Определить радиус ρ6 шестой зоны Френеля.
 31.4. На диафрагму с круглым отверстием диаметром d=4 мм падает нормально параллельный пучок лучей монохроматического света (λ=0,5 мкм). Точка наблюдения находится на оси отверстия на расстоянии b=1 м от него. Сколько зон Френеля укладывается в отверстии? Темное или светлое пятно получится в центре дифракционной картины, если в месте наблюдений поместить экран?
 31.5. Плоская световая волна (λ=0,5 мкм) падает нормально на диафрагму с круглым отверстием диаметром d=l см. На каком расстоянии b от отверстия должна находиться точка наблюдения, чтобы отверстие открывало: 1) одну зону Френеля? 2) две зоны Френеля?
 31.6. Плоская световая волна падает нормально на диафрагму с круглым отверстием. В результате дифракции в некоторых точках оси отверстия, находящихся на расстояниях bi, от его центра, наблюдаются максимумы интенсивности. 1. Получить вид функции b=f(r, λ, п), где r — радиус отверстия; λ — длина волны; п — число зон Френеля, открываемых для данной точки оси отверстием. 2. Сделать то же самое для точек оси отверстия, в которых наблюдаются минимумы интенсивности.
 
 31.7. Плоская световая волна (λ=0,7 мкм) падает нормально на диафрагму с круглым отверстием радиусом r=1,4 мм. Определить расстояния b1, b2, b3 от диафрагмы до трех наиболее удаленных от нее точек, в которых наблюдаются минимумы интенсивности.
 31.8. Точечный источник S света (λ=0,5 мкм), плоская диафрагма с круглым отверстием радиусом r=1 мм и экран расположены, как это указано на рис. 31.4 (а=1 м). Определить расстояние b от экрана до диафрагмы, при котором отверстие открывало бы для точки Р три зоны Френеля.
 31.9. Как изменится интенсивность в точке Р (см. задачу 31.8), если убрать диафрагму?
 Дифракция на щели. Дифракционная решетка
 31.10. На щель шириной а=0,05 мм падает нормально монохроматический свет (λ=0,6 мкм). Определить угол φ между первоначальным направлением пучка света и направлением на четвертую темную дифракционную полосу.
 31.11. На узкую щель падает нормально монохроматический свет. Угол φ отклонения пучков света, соответствующих второй светлой дифракционной полосе, равен 1°. Скольким длинам волн падающего света равна ширина щели?
 31.12. На щель шириной а=0,1 мм падает нормально монохроматический свет (λ=0,5 мкм). За щелью помещена собирающая линза, в фокальной плоскости которой находится экран. Что будет наблюдаться на экране, если угол φ дифракции равен: 1) 17'; 2) 43'.
 31.13. Сколько штрихов на каждый миллиметр содержит дифракционная решетка, если при наблюдении в монохроматическом свете (λ=0,6 мкм) максимум пятого порядка отклонен на угол φ=18°?
 31.14. На дифракционную решетку, содержащую n=100 штрихов на 1 мм, падает нормально монохроматический свет. Зрительная труба спектрометра наведена на максимум третьего порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на угол Δφ=20°. Определить длину волны λ света.
 31.15. Дифракционная решетка освещена нормально падающим монохроматическим светом. В дифракционной картине максимум второго порядка отклонен на угол φ1=14°. На какой угол φ2 отклонен максимум третьего порядка?
 31.16. Дифракционная решетка содержит n=200 штрихов на 1 мм. На решетку падает нормально монохроматический свет (λ=0,6 мкм). Максимум какого наибольшего порядка дает эта решетка?
 31.17. На дифракционную решетку, содержащую n=400 штрихов на 1 мм, падает нормально монохроматический свет (λ=0,6 мкм). Найти общее число дифракционных максимумов, которые дает эта решетка. Определить угол φ дифракции, соответствующий последнему максимуму.
 31.18. При освещении дифракционной решетки белым светом спектры второго и третьего порядков отчасти перекрывают друг друга. На какую длину волны в спектре второго порядка накладывается фиолетовая граница (λ=0,4 мкм) спектра третьего порядка?
 31.19. На дифракционную решетку, содержащую n=500 штрихов на 1 мм, падает в направлении нормали к ее поверхности белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить ширину b спектра первого порядка на экране, если расстояние L линзы до экрана равно 3 м. Границы видимости спектра λкр=780 им, λФ=400 нм.
 31.20. На дифракционную решетку с периодом d=10 мкм под углом α=30° падает монохроматический свет с длиной волны λ=600 нм. Определить угол φ дифракции, соответствующий второму главному максимуму.
 31.21. Дифракционная картина получена с помощью дифракционной решетки длиной l=1,5 см и периодом d=5 мкм. Определить, в спектре какого наименьшего порядка этой картины получатся раздельные изображения двух спектральных линий с разностью длин волн Δλ=0,1 нм, если линии лежат в крайней красной части спектра (λ 760 нм).
 31.22. Какой наименьшей разрешающей силой R должна обладать дифракционная решетка, чтобы с ее помощью можно было разрешить две спектральные линии калия (λ1=578 нм и λ2=580 нм)? Какое наименьшее число N штрихов должна иметь эта решетка, чтобы разрешение было возможно в спектре второго порядка?
 31.23. С помощью дифракционной решетки с периодом d=20 мкм требуется разрешить дублет натрия (λ1=589,0 нм и λ2=589,6 нм) в спектре второго порядка. При какой наименьшей длине l решетки это возможно?
 31.24. Угловая дисперсия Dφ дифракционной решетки для излучения некоторой длины волны (при малых углах дифракции) составляет 5 мин/нм. Определить разрешающую силу R этой решетки для излучения той же длины волны, если длина l решетки равна 2 см.
 31.25. Определить угловую дисперсию Dφ дифракционной решетки для угла дифракции φ==30° и длины волны λ=600 нм. Ответ выразить в единицах СИ и в минутах на нанометр.
 31.26. На дифракционную решетку, содержащую n=500 штрихов на 1 мм, падает нормально монохроматический свет с длиной волны λ=700 нм. За решеткой помещена собирающая линза с главным фокусным расстоянием f=50 см. В фокальной плоскости линзы расположен экран. Определить линейную дисперсию Dl такой системы для максимума третьего порядка. Ответ выразить в миллиметрах на нанометр.
 31.27. Нормально поверхности дифракционной решетки падает пучок света. За решеткой помещена собирающая линза с оптической силой Ф=1 дптр. В фокальной плоскости линзы расположен экран. Определить число п штрихов на 1 мм этой решетки, если при малых углах дифракции линейная дисперсия Dl=1 мм/нм.
 31.28. На дифракционную решетку нормально ее поверхности падает монохроматический свет (λ=650 нм). За решеткой находится линза, в фокальной плоскости которой расположен экран. На экране наблюдается дифракционная картина под углом дифракции φ=30°. При каком главном фокусном расстоянии f линзы линейная дисперсия Dl=0,5 мм/нм?
 Дифракция на кристаллической решетке
 31.29. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения (λ=147 пм). Определить расстояние d между атомными плоскостями кристалла, если дифракционный максимум второго порядка наблюдается, когда излучение падает под углом =31°30' к поверхности кристалла.
 31.30. Какова длина волны λ монохроматического рентгеновского излучения, падающего на кристалл кальцита, если дифракционный максимум первого порядка наблюдается, когда угол между направлением падающего излучения и гранью кристалла равен 3°?
 Расстояние d между атомными плоскостями кристалла принять равным 0,3 нм.
 31.31. Параллельный пучок рентгеновского излучения падает на грань кристалла. Под углом =65° к плоскости грани наблюдается максимум первого порядка. Расстояние d между атомными плоскостями кристалла 280 пм. Определить длину волны λ рентгеновского излучения.
 Разрешающая сила объектива телескопа
 31.32. Диаметр D объектива телескопа равен 8 см. Каково наименьшее угловое расстояние β между двумя звездами, дифракционные изображения которых в фокальной плоскости объектива получаются раздельными? При малой освещенности глаз человека наиболее чувствителен к свету с длиной волны λ=0,5 мкм.
 31.33. На шпиле высотного здания укреплены одна под другой две красные лампы (λ=640 нм). Расстояние d между лампами 20 см. Здание рассматривают ночью в телескоп с расстояния r=15 км. Определить наименьший диаметр Dmin объектива, при котором в. его фокальной плоскости получатся раздельные дифракционные изображения.
 Закон Брюстера. Закон Малюса
 32.1. Пучок света, идущий в воздухе, падает на поверхность жидкости под углом ε1=54°. Определить угол преломления ε`2 пучка, если отраженный пучок полностью поляризован.
 32.2. На какой угловой высоте φ над горизонтом должно находиться Солнце, чтобы солнечный свет, отраженный от поверхности воды, был полностью поляризован?
 32.3. Пучок естественного света, идущий в воде, отражается от грани алмаза, погруженного в воду. При каком угле падения εв =отраженный свет полностью поляризован?
 32.4. Угол Брюстера εв при падении света из воздуха на кристалл каменной соли равен 57°. Определить скорость света в этом кристалле.
 32.5. Предельный угол ε`1 полного отражения пучка света на границе жидкости с воздухом равен 43°. Определить угол Брюстера εв для падения луча из воздуха на поверхность этой жидкости.
 32.6. Пучок естественного света падает на стеклянную (n=1,6) призму (рис. 32.3). Определить двугранный угол θ призмы, если отраженный пучок максимально поляризован.
 32.7. Алмазная призма находится в некоторой среде с показателем преломления n1. Пучок естественного света падает на призму так, как это показано на рис. 32.4. Определить показатель преломления n1 среды, если отраженный пучок максимально поляризован.
 
 32.8. Параллельный пучок естественного света падает на сферическую каплю воды. Найти угол α между отраженным и падающим пучками в точке А (рис. 32.5).
 
 32.9. Пучок естественного света падает на стеклянный шар (п= 1,54). Найти угол γ между преломленным и падающим пучками в точке А (рис. 32.6).
 32.10. Пучок естественного света падает на стеклянный шар, находящийся в воде. Найти угол φ между отраженным и падающим пучками в точке А (рис. 32.7). Показатель преломления n стекла принять равным 1,58.
 32.11. Анализатор в k=2 раза уменьшает интенсивность света, приходящего к нему от поляризатора. Определить угол α между плоскостями пропускания поляризатора и анализатора. Потерями интенсивности света в анализаторе пренебречь.
 
 32.12. Угол α между плоскостями пропускания поляризатора и анализатора равен 45°. Во сколько раз уменьшится интенсивность света, выходящего из анализатора, если угол увеличить до 60°?
 
 32.13. Во сколько раз ослабляется интенсивность света, проходящего через два николя, плоскости пропускания которых образуют угол α=30°, если в каждом из николей в отдельности теряется 10 % интенсивности падающего на него света?
 Рис. 32.7
 32.14. В фотометре одновременно рассматривают две половины поля зрения: в одной видна эталонная светящаяся поверхность с яркостью L1=5 ккд/м2, в другой — испытуемая поверхность, свет от которой проходит через два николя. Граница между обеими половинами поля зрения исчезает, если второй николь повернуть относительно первого на угол
 α=45°. Найти яркость L2 испытуемой поверхности, если известно, что в каждом из николей интенсивность падающего на него света уменьшается на 8 %.
 Степень поляризации света
 32.15. В частичнополяризованном свете амплитуда светового вектора, соответствующая максимальной интенсивности света, в n=2 раза больше амплитуды, соответствующей минимальной интенсивности. Определить степень поляризации Р света.
 32.16. Степень поляризации Р частичнополяризованного света
 равна 0,5. Во сколько раз отличается максимальная интенсивность света, пропускаемого через анализатор, от минимальной?
 32.17. На пути частичнополяризованного света, степень поляризации Р которого равна 0,6, поставили анализатор так, что интенсивность света, прошедшего через него, стала максимальной. Во сколько раз уменьшится интенсивность света, если плоскость пропускания анализатора повернуть на угол α =30°?
 32.18. На николь падает пучок частичнополяризованного света. При некотором положении николя интенсивность света, прошедшего через него, стала минимальной. Когда плоскость пропускания николя повернули на угол β =45°, интенсивность света возросла в k = 1,5 раза. Определить степень поляризации Р света.
 Вращение плоскости поляризации
 32.19. Пластинку кварца толщиной d1=2 мм, вырезанную перпендикулярно оптической оси, поместили между параллельными николями, в результате чего плоскость поляризации света повернулась на угол φ =53°. Определить толщину d2 пластинки, при которой данный монохроматический свет не проходит через анализатор.
 32.20. Никотин (чистая жидкость), содержащийся в стеклянной трубке длиной d=8 см, поворачивает плоскость поляризации желтого света натрия на угол φ =137°. Плотность никотина ρ=1,01*103 кг/м3. Определить удельное вращение [α] никотина.
 32.21. Раствор глюкозы с массовой концентрацией Ci=280 кг/м3, содержащийся в стеклянной трубке, поворачивает плоскость поляризации монохроматического света, проходящего через этот раствор, на угол φ =32°. Определить массовую концентрацию С2 глюкозы в другом растворе, налитом в трубку такой же длины, если он поворачивает плоскость поляризации на угол φ =24°.
 32.22. Угол φ поворота плоскости поляризации желтого света натрия при прохождении через трубку с раствором сахара равен 40°. Длина трубки d=15 см. Удельное вращение [α] сахара равно 1.17*102 рад*м3/(м*кг). Определить плотность ρ раствора.
 Эффект Доплера
 33.1. При какой предельной скорости v (в долях скорости света) источника можно вместо релятивистской формулы для эффекта Доплера пользоваться приближенным выражением υυ0(lβ), если погрешность в определении частоты не должна превышать 1 %?
 
 33.2. Для определения угловой скорости вращения солнечного диска измеряли относительный сдвиг ∆λ/λ спектральных линий от восточного и западного краев Солнца. Он оказался равным 1,5*105. Определить угловую скорость  вращения солнечного диска. Радиус R Солнца считать известным.
 33.3. Космический корабль удаляется от Земли со скоростью v=10 км/с. Частота υ0 электромагнитных волн, излучаемых антенной корабля, равна 30 МГц. Определить доплеровское смещение ∆υ частоты, воспринимаемой приемником.
 33.4. При изучении спектра излучения некоторой туманности линия излучения водорода (λα = 656,3 нм) оказалась смещенной на ∆λ=2,5 нм в область с большей длиной волны (красное смещение). Найти скорость v движения туманности относительно Земли и указать, удаляется она от Земли или приближается к ней.
 33.5. Определить обусловленное эффектом Доплера уширение ∆λ/λ спектральных линий излучения атомарного водорода, находящегося при температуре Т =300 К.
 33.6. В результате эффекта Доплера происходит уширение линий γизлучения ядер. Оценить уширение ∆λ/λ линий γизлучения ядер кобальта, находящихся при температуре; 1) комнатной (T=290 К); 2) ядерного взрыва (T=10 МК).
 33.7. Два космических корабля движутся вдоль одной прямой. Скорости v1 и v2 их в некоторой инерциальной системе отсчета соответственно 12 и 8 км/с. Определить частоту υ сигнала электромагнитных волн, воспринимаемых вторым космическим кораблем, если антенна первого корабля излучает электромагнитные волны частотой υ0=l МГц. Рассмотреть следующие случаи: 1) космические корабли движутся навстречу друг другу; 2) космические корабли удаляются друг от друга в противоположных направлениях; 3) первый космический корабль нагоняет второй; 4) первый космический корабль удаляется от второго, движущегося в том же направлении.
 33.8. Монохроматический свет с длиной волны λ=600 нм падает на быстро вращающиеся в противоположных направлениях зеркала (опыт А. А. Белопольского). После N=10 отражений от зеркал пучок света попадает в спектрограф. Определить изменение ∆λ длины волны света, падающего на зеркала нормально их поверхности. Линейная скорость v зеркал равна 0,67 км/с. Рассмотреть два случая, когда свет отражается от зеркал: 1) движущихся навстречу одно другому; 2) удаляющихся одно от другого.
 33.9. Плоское зеркало удаляется от наблюдателя со скоростью v вдоль нормали к плоскости зеркала. На зеркало посылается пучок света длиной волны λ0 нм. Определить длину волны λ света, отраженного от зеркала, движущегося со скоростью: 1) 0,2с (с — скорость в вакууме); 2) 9 км/с.
 33.10. Приемник радиолокатора регистрирует частоты биений между частотой сигнала, посылаемого передатчиком, и частотой сигнала, отраженного от движущегося объекта. Определить скорость v приближающейся по направлению к локатору ракеты, если он работает на частоту v0=600 МГц и частота v1 биений равна 4 кГц.
 33.11. Рассказывают, что известный физик Роберт Вуд, проехав однажды на автомашине на красный свет светофора, был остановлен блюстителем порядка. Роберт Вуд, сославшись на эффект. Доплера, уверял, что он ехал достаточно быстро и красный свет светофора для него изменился на зеленый. Оценить скорость v, с которой должна была бы двигаться автомашина, чтобы красный сигнал светофора (λ1=650 нм) воспринимался как зеленый (λ2=550 нм).
 33.12. Длины волн излучения релятивистских атомов, движущихся по направлению к наблюдателю, оказались в два раза меньше, чем соответствующие длины волн нерелятивистских атомов. Определить скорость v (в долях скорости света) релятивистских атомов.
 33.13. Наиболее короткая длина волны λ1 в спектре излучения водорода равна 410 нм.
 С какой скоростью v должно удаляться от нас скопление атомов водорода, чтобы их излучение оказалось вследствие эффекта Доплера за пределами видимой части спектра. Граница видимой части спектра соответствует длине волны λ2=760 нм.
 33.14. На некотором расстоянии l от наблюдателя (рис. 33.1) прямолинейно со скоростью v=0,6 с движется источник радиоизлучения, собственная частота υ0 которого равна 4 ГГц. В каких пределах изменяется частота υ сигнала, воспринимаемого наблюдателем, если наблюдение ведется в течение всего времени движения источника из положения 1 в положение 2? Углы указаны в системе отсчета, связанной с наблюдателем.
 Эффект Вавилова—Черенкова
 33.15. Какой наименьшей скоростью v должен обладать электрон, чтобы в среде с показателем преломления п= 1,60 возникло черенковское излучение?
 33.16. При какой скорости v электронов (в долях скорости света) черенковское излучение происходит в среде с показателем преломления n=1,80 под углом =20° к направлению их движения?
 33.17. Найти наименьшую ускоряющую разность потенциалов Umin
 которую должен пройти электрон, чтобы в среде с показателем преломления n=1,50 возникло черенковское излучение.
 33.18. Известно, что быстрые частицы, входящие в состав космического излучения, могут вызывать эффект Вавилова — Черенкова в воздухе (п= 1,00029). Считая, что такими частицами являются электроны, определить их минимальную кинетическую энергию.
 33.19. Электрон с кинетической энергией T=0,51 МэВ движется в воде. Определить угол , составляемый черенковским излучением с направлением движения электрона.
 33.20. Импульс релятивистского электрона равен m0c. При каком минимальном показателе преломления nmin среды уже можно наблюдать эффект Вавилова — Черенкова?
 33.21. Мю и пимезоны имеют одинаковые импульсы р= 100 МэВ/с. В каких пределах должен быть заключен показатель преломления п среды, чтобы для  мезонов черенковское излучение наблюдалось, а для π мезонов — нет.
 |  |  |  |  | 
| 
| Massimo | Дата: Понедельник, 18.11.2013, 15:10 | Сообщение # 15 |  | Полковник Группа: Администраторы Сообщений: 183 Репутация: 0 Статус: Offline | Закон Стефана—Больцмана 34.1. Определить температуру Т, при которой энергетическая светимость Me черного тела равна 10 кВт/м2 .
 34.2. Поток энергии Фе, излучаемый из смотрового окошка плавильной печи, равен 34 Вт. Определить температуру Т печи, если площадь отверстия S = 6 см2.
 34.3. Определить энергию W излучаемую за время t= 1 мин из смотрового окошка площадью S=8 см2 плавильной печи, если ее температура T=1,2 кК.
 34.4. Температура Т верхних слоев звезды Сириус равна 10 кК, Определить поток энергии Фе, излучаемый с поверхности площадью S=1 км2 этой звезды.
 34.5. Определить относительное увеличение ∆ Me/Me энергетической светимости черного тела при увеличении его температуры на 1%.
 34.6. Во сколько раз надо увеличить термодинамическую температуру черного тела, чтобы его энергетическая светимость Me возросла в два раза?
 34.7. Принимая, что Солнце излучает как черное тело, вычислить его энергетическую светимость Me и температуру Т его поверхности. Солнечный диск виден с Земли под углом  =32’. Солнечная постоянная *С=1,4 кДж/(м2*с).
 * Солнечной постоянной называется величина, равная поверхностной плотности потока энергии излучения Солнца вне земной атмосферы на среднем расстоянии от Земли до Солнца.
 34.8. Определить установившуюся температуру Т зачерненной металлической пластинки, расположенной перпендикулярно солнечным лучам вне земной атмосферы на среднем расстоянии от Земли до Солнца. Значение солнечной постоянной приведено в предыдущей задаче.
 34.9. Принимая коэффициент теплового излучения в угля при температуре T=600 К равным 0,8, определить: 1) энергетическую светимость Me угля; 2) энергию W, излучаемую с поверхности угля с площадью S = 5 см2 за время t=10 мин.
 34.10. С поверхности сажи площадью S = 2 см2 при температуре T=400 К за время t=5 мин излучается энергия W=83 Дж. Определить коэффициент теплового излучения ε сажи.
 34.11. Муфельная печь потребляет мощность Р=1 кВт. Температура Т ее внутренней поверхности при открытом отверстии площадью S=25 см2 равна 1,2 кК. Считая, что отверстие печи излучает как черное тело, определить, какая часть  мощности рассеивается стенками.
 34.12. Можно условно принять, что Земля излучает как серое тело, находящееся при температуре T=280 К. Определить коэффициент теплового излучения ε Земли, если энергетическая светимость Me ее поверхности равна 325 кДж/(м2*ч).
 34.13. Мощность Р излучения шара радиусом R= 10 см при некоторой постоянной температуре Т равна 1 кВт. Найти эту температуру, считая шар серым телом с коэффициентом теплового излучения ε =0,25.
 Закон Вина. Формула Планка
 34.14. На какую длину волны λm приходится максимум спектральной плотности энергетической светимости (Mλ,T)max черного тела при температуре t=0°С?
 34.15. Температура верхних слоев Солнца равна 5,3 кК. Считая Солнце черным телом, определить длину волны λm , которой соответствует максимальная спектральная плотность энергетической светимости (Mλ,T)max Солнца.
 34.16. Определить температуру Т черного тела, при которой максимум спектральной плотности энергетической светимости (Mλ,T)max приходится на красную границу видимого спектра (λ1 =750 нм); на фиолетовую (λ2=380 нм).
 34.17. Максимум спектральной плотности энергетической светимости (Mλ,T)max яркой звезды Арктур приходится на длину волны λm =580 нм. Принимая, что звезда излучает как черное тело, определить температуру Т поверхности звезды.
 34.18. Вследствие изменения температуры черного тела максимум спектральной плотности (Mλ,T)max сместился с λ1=2,4 мкм на λ2=0,8 мкм. Как и во сколько раз изменились энергетическая светимость Me тела и максимальная спектральная плотность энергетической светимости?
 34.19. При увеличении термодинамической температуры. Т черного тела в два раза длина волны λm на которую приходится максимум спектральной плотности энергетической светимости (Mλ,T)max , уменьшилась на ∆λ =400 нм. Определить начальную и конечную температуры T1 и T2.
 34.20. Эталон единицы силы света — кандела — представляет собой полный (излучающий волны всех длин) излучатель, поверхность которого площадью S = 0,5305 мм2 имеет температуру t затвердевания платины, равную 1063 °С. Определить мощность Р излучателя.
 34.21. Максимальная спектральная плотность энергетической светимости (Mλ,T)max черного тела равна 4,16*1011 (Вт/м2)/м. На какую длину волны λm она приходится?
 34.22. Температура Т черного тела равна 2 кК. Определить:
 1) спектральную плотность энергетической светимости (Mλ,T) для длины волны λ=600 нм; 2) энергетическую светимость Me в интервале длин волн от λ1=590 нм до λ2 =610 нм. Принять, что средняя спектральная плотность энергетической светимости тела в этом интервале равна значению, найденному для длины волны λ=600 нм.
 Задачи
 35.1. Определить работу выхода А электронов из натрия, если красная граница фотоэффекта λ0=500 нм.
 35.2. Будет ли наблюдаться фотоэффект, если на поверхность серебра направить ультрафиолетовое излучение с длиной волны λ = 300 нм?
 35.3. Какая доля энергии фотона израсходована на работу вырывания фотоэлектрона, если красная граница фотоэффекта λ0 = 307 нм и максимальная кинетическая энергия Тmах фотоэлектрона равна 1 эВ?
 35.4. На поверхность лития падает монохроматический свет (λ=310 нм) Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов U не менее 1,7 В. Определить работу выхода А.
 35.5. Для прекращения фотоэффекта, вызванного облучением ультрафиолетовым светом платиновой пластинки, нужно приложить задерживающую разность потенциалов U1=3,7 В. Если платиновую пластинку заменить другой пластинкой, то задерживающую разность потенциалов придется увеличить до 6 В. Определить работу А выхода электронов с поверхности этой пластинки.
 35.6. На цинковую пластинку падает монохроматический свет с длиной волны λ=220 нм. Определить максимальную скорость vmax фотоэлектронов.
 35.7. Определить длину волны λ ультрафиолетового излучения, падающего на поверхность некоторого металла, при максимальной скорости фотоэлектронов, равной 10 Мм/с. Работой выхода электронов из металла пренебречь.
 35.8. Определить максимальную скорость vmax фотоэлектронов, вылетающих из металла под действием γизлучения с длиной волны λ=0,3 нм.
 35.9. Определить максимальную скорость vmax фотоэлектронов, вылетающих из металла при облучении γфотонами с энергией ε = =1,53МэВ.
 35.10. Максимальная скорость vmax фотоэлектронов, вылетающих из металла при облучении его γфотонами, равна 291 Мм/с. Определить энергию ε γфотонов.
 Задачи
 36.1. Определить давление р солнечного излучения на зачерненную пластинку, расположенную перпендикулярно солнечным лучам и находящуюся вне земной атмосферы на среднем расстоянии от Земли до Солнца (см. сноску к задаче 34.7).
 36.2. Определить поверхностную плотность I потока энергии излучения, падающего на зеркальную поверхность, если световое давление р при перпендикулярном падении лучей равно 10 мкПа.
 36.3. Поток энергии Фе, излучаемый электрической лампой, равен 600 Вт. На расстоянии r = 1 м от лампы перпендикулярно падающим лучам расположено круглое плоское зеркальце диаметром d=2см. Принимая, что излучение лампы одинаково во всех направлениях и что зеркальце полностью отражает падающий на него свет, определить силу F светового давления на зеркальце.
 36.4. На зеркальце с идеально отражающей поверхностью площадью S=1,5 см2 падает нормально свет от электрической дуги. Определить импульс р, полученный зеркальцем, если поверхностная плотность потока излучения φ, падающего на зеркальце, равна 0,1 МВт/м2. Продолжительность облучения t = 1с.
 36.5. Спутник в форме шара движется вокруг Земли на такой высоте, что поглощением солнечного света в атмосфере можно пренебречь. Диаметр спутника d=40 м. Зная солнечную постоянную (см. задачу 34.7) и принимая, что поверхность спутника полностью отражает свет, определить силу давления F солнечного света на спутник.
 36.6. Определить энергию 8, массу т и импульс р фотона, которому соответствует длина волны λ=380 нм (фиолетовая граница видимого спектра).
 36.7. Определить длину волны λ, массу т и импульс р фотона с энергией ε =1 МэВ. Сравнить массу этого фотона с массой покоящегося электрона.
 36.8. Определить длину волны λ фотона, импульс которого равен импульсу электрона, обладающего скоростью v =10 Мм/с.
 36.9. Определить длину волны λ фотона, масса которого равна массе покоя: 1) электрона; 2) протона.
 36.10. Давление р монохроматического света (λ=600 нм) на черную поверхность, расположенную перпендикулярно падающим лучам, равно 0,1 мкПа. Определить число N фотонов, падающих за время t=1 с на поверхность площадью S=1 см2.
 36.11. Монохроматическое излучение с длиной волны λ=500 нм падает нормально на плоскую зеркальную поверхность и давит на нее с силой F=10 нН. Определить число N1 фотонов, ежесекундно падающих на эту поверхность.
 36.12. Параллельный пучок монохроматического света (λ=662 нм) падает на зачерненную поверхность и производит на нее давление р=0,3 мкПа. Определить концентрацию п фотонов в световом пучке.
 Задачи
 37.1. Рентгеновское излучение длиной волны λ =55,8 пм рассеивается
 плиткой графита (комптонэффект). Определить длину волны λ' света, рассеянного под углом θ=60° к направлению падающего пучка света.
 37.2. Определить максимальное изменение длины волны при комптонов
 ском рассеянии: 1) на свободных электронах; 2) на свободных протонах.
 37.3. Определить угол θ рассеяния фотона, испытавшего соударение со
 свободным электроном, если изменение длиныволны ∆λ при рассеянии равно 3,62 пм.
 37.4. Фотон с энергией ε =0,4 мэВ рассеялся под углом θ=90° на свобод
 ном электроне. Определить энергию ε’ рассеянного фотона и кинетическую энергию Т электрона отдачи.
 
 37.5. Определить импульс р электрона отдали при эффекте Комптона, если фотон с энергией, равной энергии покоя электрона, был рассеян на угол θ=180°.
 37.6. Какая доля энергии фотона при эффекте Комптона приходится на электрон отдачи, если фотон претерпел рассеяние на угол θ=180°? Энергия ε фотона до рассеяния равна 0,255 МэВ.
 37.7. Фотон с энергией ε = 0,25 МэВ рассеялся на свободном электроне. Энергия ε' рассеянного фотона равна 0,2МэВ. Определить угол рассеяния θ.
 37.8. Угол рассеяния θ фотона равен 90°. Угол отдачи φ электрона равен 30°. Определить энергию ε падающего фотона.
 37.9. Фотон (λ = 1 пм) рассеялся на свободном электроне под углом θ=90° Какую долю своей энергии фотон передал электрону?
 37.10. Длина волны λ фотона равна комптоновской длине λс электрона. Определить энергию ε и импульс р фотона.
 37.11. Энергия ε падающего фотона равна энергии покоя электрона. Определить долю 1 энергии падающего фотона, которую сохранит рассеянный фотон, и долю 2 этой энергии, полученную электроном отдачи, если угол рассеяния θ равен: 1) 60°; 2) 90°; 3) 180°.
 Задачи
 38.1. Вычислить радиусы r2 и r3 второй и третьей орбит в атоме водорода.
 38.2. Определить скорость v электрона на второй орбите атома водорода.
 38.3. Определить частоту обращения электрона на второй орбите атома водорода.
 38.4. Определить потенциальную П, кинетическую Т и полную Е энергии электрона, находящегося на первой орбите атома водорода.
 38.5. Определить длину волны λ, соответствующую третьей спектральной линии в серии Бальмера.
 38.6. Найти наибольшую λmax наименьшую λmin длины волн в первой инфракрасной серии спектра водорода (серии Пашена).
 38.7. Вычислить энергию ε фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на первый.
 38.8. Определить наименьшую εmin и наибольшую εmax энергии фотона в ультрафиолетовой серии спектра водорода (серии Лаймана).
 38.9. Атомарный водород, возбужденный светом определенной длины волны, при переходе в основное состояние испускает только три спектральные линии. Определить длины волн этих линий и указать, каким сериям они принадлежат.
 38.10. Фотон с энергией ε =16,5 эВ выбил электрон из невозбужденного атома водорода. Какую скорость v будет иметь электрон вдали от ядра атома?
 38.11. Вычислить длину волны λ, которую испускает ион гелия Не+ при переходе со второго энергетического уровня на первый. Сделать такой же подсчет для иона лития Li++.
 38.12. Найти энергию Ei и потенциал Ui ионизации ионов He+ и Li++.
 38.13. Вычислить частоты f1 и f2 вращения электрона в атоме водорода на второй и третьей орбитах. Сравнить эти частоты с частотой υ излучения при переходе электрона с третьей на вторую орбиту.
 38.14. Атом водорода в основном состоянии поглотил квант света с длиной волны λ= 121,5 нм. Определить радиус r электронной орбиты возбужденного атома водорода.
 38.15. Определить первый потенциал Ui возбуждения атома водорода.
 Задачи
 39.1. Определить скорость v электронов, падающих на антикатод рентгеновской трубки, если минимальная длина волны λmin в сплошном спектре рентгеновского излучения равна 1 нм.
 39.2. Определить коротковолновую границу λmin сплошного спектра рентгеновского излучения, если рентгеновская трубка работает под напряжением U=30 кВ.
 39.3. Вычислить наибольшую длину волны λmax в Kсерии характеристического рентгеновского спектра скандия.
 39.4. При исследовании линейчатого рентгеновского спектра некоторого элемента было найдено, что длина волны λ линии Кα равна 76 пм. Какой это элемент?
 39.5. Какую наименьшую разность потенциалов Umin нужно приложить к рентгеновской трубке, антикатод которой покрыт ванадием (Z=23), чтобы в спектре рентгеновского излучения появились все линии Kсерии ванадия? Граница Kсерии ванадия λ=226 пм.
 39.6. Определить энергию ε фотона, соответствующего линии Ка в характеристическом спектре марганца (Z=25).
 39.7. В атоме вольфрама электрон перешел с Mслоя на Lслой. Принимая постоянную экранирования  равной 5,5, определить длину волны λ испущенного фотона.
 39.8. Рентгеновская трубка работает под напряжением U=1 MB. Определить наименьшую длину волны λmin рентгеновского излучения.
 39.9. Вычислить длину волны λ и энергию ε фотона, принадлежащего Kαлинии в спектре характеристического рентгеновского излучения платины.
 39.10. При каком наименьшем напряжении Umin рентгеновской трубке начинают появляться линии серии Kα, меди?
 |  |  |  |  |