Приветствую Вас, Гость
[Решения по физике · Решения ИДЗ Рябушко · Решения по физике (школьный курс) · Решения по химии · ТВ и МС · Решебник Арутюнова]
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 4
  • 1
  • 2
  • 3
  • 4
  • »
Решаем задания со сборника задач Чертов А.Г., Воробьев А.А.
MassimoДата: Понедельник, 18.11.2013, 15:00 | Сообщение # 1
Полковник
Группа: Администраторы
Сообщений: 183
Репутация: 0
Статус: Offline
Решаем задания со сборника задач Чертов А.Г., Воробьев А.А.
Стоимость: 10-30 рублей за 1 задачу. (Оплата Webmoney, ЮMoney, Банковская карта (МИР/VISA/Mastercard), Сбербанк Онлайн)


Срок решения 2-3 дня, зависит от количества заданий (Заказы принимаются по почте PMaxim2006@mail.ru)
Примерное решение и оформление заданий вы можете посмотреть на странице Примеры решений
Найти готовые задания вы можете по ссылке Решенные задания по физике. Справа есть форма поиска "Поиск в магазине"
База готовых решений в магазине постоянно пополняется.

Сборник задач по физике Чертов А.Г., Воробьев А.А. 1988


1.1. Две прямые дороги пересекаются под углом =60°. От перекрестка по ним удаляются машины: одна со скоростью v1=60 км/ч, другая со скоростью v2=80 км/ч. Определить скорости v' и v", с которыми одна машина удаляется от другой. Перекресток машины прошли одновременно.
1.2. Точка двигалась в течение t1=15 c со скоростью v1=5 м/с, в течение t2=10 с со скоростью v2=8 м/с и в течение t3=6 с со скоростью v3=20 м/с. Определить среднюю путевую скорость <v> точки.
1.3. Три четверти своего пути автомобиль прошел со скоростью v1=60 км/ч, остальную часть пути — со скоростью v2=80 км/ч. Какова средняя путевая скорость <v> автомобиля?
1.4. Первую половину пути тело двигалось со скоростью v1=2 м/с, вторую — со скоростью v2=8 м/с. Определить среднюю путевую скорость <v> .
1.5. Тело прошло первую половину пути за время t1=2 с, вторую — за время t2=8 с. Определить среднюю путевую скорость <v> тела, если длина пути s=20 м.
1.6. -Зависимость скорости от времени для движения некоторого тела представлена на рис. 1.4. Определить среднюю путевую скорость <v> за время t=14 с.
1.7. Зависимость ускорения от времени при некотором движении тела представлена на рис. 1.5. Определить среднюю путевую скорость <v> за время t=8 с. Начальная скорость v0=0.
1.8. Уравнение прямолинейного движения имеет вид x=At+Bt2, где A=3 м/с, B=—0,25 м/с2. Построить графики зависимости координаты и пути от времени для заданного движения.
1.9. На рис. 1.5 дан график зависимости ускорения от времени для некоторого движения тела. Построить графики зависимости скорости и пути от времени для этого движения, если в начальный момент тело покоилось.
1.10. Движение материальной точки задано уравнением x=At+Bt2, где A =4 м/с, В=—0,05 м/с2. Определить момент времени, в который скорость v точки равна нулю. Найти координату и ускорение в этот момент. Построить графики зависимости координаты, пути, скорости и ускорения этого движения от времени.
1.11. Написать кинематическое уравнение движения x=f(t) точки для четырех случаев, представленных на рис. 1.6. На каждой
позиции рисунка — а, б, в, г — изображена координатная ось Ох, указаны начальные положение x0 и скорость v0 материальной точки А, а также ее ускорение а.
1.12. Прожектор О (рис. 1.7) установлен на расстоянии l==100 м от стены АВ и бросает светлое пятно на эту стену. Прожектор вращается вокруг вертикальной оси, делая один оборот за время Т=20 с. Найти: 1) уравнение движения светлого пятна по стене в течение первой четверти оборота; 2) скорость v, с которой светлое пятно движется по стене, в момент времени t=2 с. За начало отсчета принять момент, когда направление луча совпадает с ОС.
1.13. Рядом с поездом на одной линии с передними буферами паровоза стоит человек. В тот момент, когда поезд начал двигаться с ускорением а=0,1 м/с2, человек начал идти в том же направлении со скоростью v=1,5 м/с. Через какое время t поезд догонит человека? Определить скорость v1 поезда в этот момент и путь, пройденный за это время человеком.
1.14. Из одного и того же места начали равноускоренно двигаться в одном направлении две точки, причем вторая начала свое движение через 2 с после первой. Первая точка двигалась с начальной скоростью v1==l м/с и ускорением a1=2 м/с2, вторая — с начальной скоростью v2=10 м/с и ускорением а2=1 м/с2. Через сколько времени и на каком расстоянии от исходного положения вторая точка догонит первую?
1.15. Движения двух материальных точек выражаются уравнениями:
x1=A1+B1t+C1t2, x2=A2+B2t+C2t2,
где A1=20 м, A2=2 м, B1=B2=2 м/с, C1= — 4 м/с2, С2=0,5 м/с2.
В какой момент времени t скорости этих точек будут одинаковыми? Определить скорости v1 и v2 и ускорения a1 и а2 точек в этот момент:
1.16. Две материальные точки движутся согласно уравнениям; x1=A1t+B1t2+C1t3, x2=A2t+B2t2+C2t3, где A1=4 м/c, B1=8 м/с2, C1= — 16 м/с3, A2=2 м/с, B2= - 4 м/с2, С2=1м/с3 В какой момент времени t ускорения этих точек будут одинаковы? Найти скорости v1 и v2 точек в этот момент.
1.17. С какой высоты Н упало тело, если последний метр своего пути оно прошло за время t=0,1 с?
1.18. Камень падает с высоты h=1200 м. Какой путь s пройдет камень за последнюю секунду своего падения?
1.19. Камень брошен вертикально вверх с начальной скоростью v0==20 м/с. По истечении какого времени камень будет находиться на высоте h=15м? Найти скорость v камня на этой высоте. Сопротивлением воздуха пренебречь. Принять g=10 м/с2.
1.20. Вертикально вверх с начальной скоростью v0=20 м/с брошен камень. Через =1 с после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте h встретятся камни?
1.21. Тело, брошенное вертикально вверх, находилось на одной и той же высоте h=8,6 м два раза с интервалом t=3 с. Пренебрегая сопротивлением воздуха, вычислить начальную скорость брошенного тела.
1.22. С балкона бросили мячик вертикально вверх с начальной скоростью v0=5 м/с. Через t=2 с мячик упал на землю. Определить высоту балкона над землей и скорость мячика в момент удара о землю.
1.23. Тело брошено с балкона вертикально вверх со скоростью v0=10 м/с. Высота балкона над поверхностью земли h=12,5 м. Написать уравнение движения и определить среднюю путевую скорость <v> с момента бросания до момента падения на землю.
1.24. Движение точки по прямой задано уравнением x=At+Bt2, где A =2 м/с, В=—0,5 м/с2. Определить среднюю путевую скорость <v> движения точки в интервале времени от t1=l с до t2=3 с.
1.25. Точка движется по прямой согласно уравнению x=At+Bt3, где A=6 м/с, В == —0,125 м/с3. Определить среднюю путевую скорость <v> точки в интервале времени от t1=2 с до t2=6 с. Криволинейное движение
1.26. Материальная точка движется по плоскости согласно уравнению r(t)=iAt3+jBt2. Написать зависимости: 1) v(t); 2) a(t).
1.27. Движение материальной точки задано уравнением r(t)=A (icos t - j sin t), где A =0,5 м, =5 рад/с. Начертить траекторию точки. Определить модуль скорости |v| и модуль нормального ускорения |an|.
1.28. Движение материальной точки задано уравнением r(t)=i(A+Bt2)+jCt, где A==10 м, В= — 5 м/с2, С=10 м/с. Начертить траекторию точки. Найти выражения v(t) и a(t). Для момента времени t=1 с вычислить: 1) модуль скорости |v| ; 2) модуль ускорения |а|; 3) модуль тангенциального ускорения |а |; 4) модуль нор¬мального ускорения |an|.
1.29. Точка движется по кривой с постоянным тангенциальным ускорением a =0,5 м/с2. Определить полное ускорение а точки на участке кривой с радиусом кривизны R=3 м, если точка движется на этом участке со скоростью v==2 м/с.
1.30. Точка движется по окружности радиусом R==4 м. Начальная скорость v0 точки равна 3 м/с, тангенциальное ускорение a =1 м/с2. Для момента времени t=2 с определить: 1) длину пути s, пройденного точкой; 2) модуль перемещения | |; 3) среднюю путевую скорость | |; 4) модуль вектора средней скорости |<v>|.
1.31. По окружности радиусом .R=5 м равномерно движется материальная точка со скоростью v=5 м/с. Построить графики зависимости длины пути s и модуля перемещения | | от времени t. В момент времени, принятый за начальный (t=0), s(0) и | (0)| считать равными нулю.
1.32. За время t=6 с точка прошла путь, равный половине длины окружности радиусом R==0,8 м. Определить среднюю путевую скорость <v> за это время и модуль вектора средней скорости |<v>|.
1.33. Движение точки по окружности радиусом R=4 м задано уравнением * =A+Bt+Ct2, где A=10 м, В=—2 м/с, С=1 м/с2. Найти тангенциальное а , нормальное an и полное а ускорения точки в момент времени t=2с.
1.34. По дуге окружности радиусом R= 10 м движется точка. В некоторый момент времени нормальное ускорение точки аn=4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол =60°. Найти скорость v и тангенциальное ускорение a точки.
1.35. Точка движется по окружности радиусом R=2 м согласно уравнению * =At3, где A =2 м/с3. В какой момент времени t нормальное ускорение аn точки будет равно тангенциальному а . Определить полное ускорение а в этот момент.
1.36. Движение точки по кривой задано уравнениями x=A1t3 и y=A2t, где A1==l м/с3, A2=2 м/с. Найти уравнение траектории точки, ее скорость v и полное ускорение а в момент времени t=0,8 с.
1.37. Точка А движется равномерно со скоростью v по окружности радиусом R. Начальное положение точки и направление движения указаны на рис. 1.8. Написать кинематическое уравнение движения проекции точки A на направление оси х.
1.38. Точка движется равномерно со скоростью v по окружности радиусом R и в момент времени, принятый за начальный (t=0), занимает положение, указанное на рис. 1.8. Написать кинематические уравнения движения точки: 1) в декартовой системе координат, расположив оси так, как это указано на рисунке; 2) в полярной системе координат (ось х считать полярной осью).
1.39. Написать для четырех случаев, представленных на рис. 1.9:
1) кинематические уравнения движения x=f1(t) и x=f2(t); 2) уравнение траектории у= (х). На каждой позиции рисунка — а, б, в, г — изображены координатные оси, указаны начальное положение точки A, ее начальная скорость v0 и ускорение g.
1.40. С вышки бросили камень в горизонтальном направлении. * См. сноску на с. 11. Через промежуток времени t=2 с камень упал на землю на расстоянии s=40 м от основания вышки. Определить начальную v0 и конечную v скорости камня.
1.41. Тело, брошенное с башни в горизонтальном направлении со скоростью v=20 м/с, упало на землю на расстоянии s (от основания башни), вдвое большем высоты h башни. Найти высоту башни.
1.42. Пистолетная пуля пробила два вертикально закрепленных листа бумаги, расстояние l между которыми равно 30 м. Пробоина во втором листе оказалась на h=10см ниже, чем в первом. Определить скорость v пули, если к первому листу она подлетела, двигаясь горизонтально. Сопротивлением воздуха пренебречь.
1.43. Самолет, летевший на высоте h-=2940 м со скоростью v=360 км/ч, сбросил бомбу. За какое время t до прохождения над целью и на каком расстоянии s от нее должен самолет сбросить бомбу, чтобы попасть в цель? Сопротивлением воздуха пренебречь.
1.44. Тело брошено под некоторым углом к горизонту. Найти этот угол, если горизонтальная дальность s полета тела в четыре раза больше максимальной высоты Н траектории.
1.45. Миномет установлен под углом =60° к горизонту на крыше здания, высота которого h=40 м. Начальная скорость v0 мины равна 50 м/с. Требуется: 1) написать кинематические уравнения движения и уравнения траектории и начертить эту траекторию с соблюдением масштаба; 2) определить время полета мины, максимальную высоту Н ее подъема, горизонтальную дальность s полета, скорость v в момент падения мины на землю. Сопротивлением воздуха пренебречь.
Указание. Начало координат поместить на поверхности земли так, чтобы оно находилось на одной вертикали с минометом и чтобы вектор скорости v лежал в плоскости хОу.
1.46. Снаряд, выпущенный из орудия под углом =30° к горизонту, дважды был на одной и той же высоте h: спустя время t1=10 с и t2=50 с после выстрела. Определить начальную скорость v0 и высоту h.
1.47. Пуля пущена с начальной скоростью v0=200 м/с под углом =60° к горизонту. Определить максимальную высоту Н подъема, дальность s полета и радиус R кривизны траектории пули в ее наивысшей точке. Сопротивлением воздуха пренебречь.
1.48. Камень брошен с вышки в горизонтальном направлении с начальной скоростью v0=30 м/с. Определить скорость v, тангенциальное a и нормальное an ускорения камня в конце второй секунды после начала движения.
1.49. Тело брошено под углом =30° к горизонту. Найти тангенциальное a ; и нормальное аn ускорения в начальный момент движения. Вращение тела вокруг неподвижной оси
1.50. Определить линейную скорость v и центростремительное ускорение an точек, лежащих на земной поверхности: 1) на экваторе; 2) на широте Москвы ( =56°).
1.51. Линейная скорость v1 точек на окружности вращающегося диска равна 3 м/с. Точки, расположенные на =10 см ближе к оси, имеют линейную скорость v2=2 м/с. Определить частоту вращения п диска.
1.52. Два бумажных диска насажены на общую горизонтальную ось так, что плоскости их параллельны и отстоят на d=30 см друг от друга. Диски вращаются с частотой n==25 с-1. Пуля, летевшая параллельно оси на расстоянии r=12 см от нее, пробила оба диска. Пробоины в дисках смещены друг относительно друга на расстояние s=5 см, считая по дуге окружности. Найти среднюю путевую скорость <v> пули в промежутке между дисками и оценить создаваемое силой тяжести смещение пробоин в вертикальном направлении. Сопротивление воздуха не учитывать.
1.53. На цилиндр, который может вращаться около горизонтальной оси, намотана нить. К концу нити привязали грузик и предоставили ему возможность опускаться. Двигаясь равноускоренно, грузик за время t=3 с опустился на h= 1,5 м. Определить угловое ускорение цилиндра, если его радиус r=4 см.
1.54. Диск радиусом r=10 см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением =0,5 рад/с2. Найти тангенциальное a , нормальное ап и полное а ускорения точек на окружности диска в конце второй секунды после начала вращения.
1.55. Диск радиусом r=20 см вращается согласно уравнению =A+Bt+Сt3, где A=3 рад, В=—1 рад/с, С=0,1 рад/с3. Определить тангенциальное a нормальное аn и полное а ускорения точек на окружности диска для момента времени t=10 с.
1.56. Маховик начал вращаться равноускоренно и за промежуток времени t=10 с достиг частоты вращения n=300 мин"1. Определить угловое ускорение маховика и число N оборотов, которое он сделал за это время.
1.57. Велосипедное колесо вращается с частотой п=5 с1. Под действием сил трения оно остановилось через интервал времени t=1 мин. Определить угловое ускорение и число N оборотов, которое сделает колесо за это время.
1.58. Колесо автомашины вращается равноускоренно. Сделав N=50 полных оборотов, оно изменило частоту вращения от n1=4 с1 до n2==6 с1. Определить угловое ускорение колеса.
1.59. Диск вращается с угловым ускорением =—2 рад/с2. Сколько оборотов N сделает диск при изменении частоты вращения от n1=240 мин -1 до n2=90 мин -1? Найти время t, в течение которого это произойдет.
1.60. Винт аэросаней вращается с частотой n=360 мин1. Скорость v поступательного движения аэросаней равна 54 км/ч. С какой скоростью u движется один из концов винта, если радиус R винта равен 1 м?
1.61. На токарном станке протачивается вал диаметром d=60 мм. Продольная подача h резца равна 0,5 мм за один оборот. Какова скорость v резания, если за интервал времени t=1 мин протачивается участок вала длиной l=12 см?
Второй закон Ньютона
2.1. На гладком столе лежит брусок массой m=4 кг. К бруску привязан шнур, ко второму концу которого приложена сила F=10 Н, направленная параллельно поверхности стола. Найти ускорение а бруска.
2.2. На столе стоит тележка массой m1=4 кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением a будет двигаться тележка, если к другому концу шнура привязать гирю массой m2=1 кг?
2.3. К пружинным весам подвешен блок. Через блок перекинут шнур, к концам которого привязали грузы массами m1=l,5 кг и m2=3 кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь.
2.4. Два бруска массами m1=l кг и m2=4 кг, соединенные шнуром, лежат на столе. С каким ускорением а будут двигаться бруски, если к одному из них приложить силу F=10 H, направленную горизонтально? Какова будет сила натяжения Т шнура, соединяющего бруски, если силу F=10 Н приложить к первому бруску? ко второму бруску? Трением пренебречь.
2.5. На гладком столе лежит брусок массой т=4 кг. К бруску привязаны два шнура, перекинутые через неподвижные блоки, прикрепленные к противоположным краям стола. К концам шнуров подвешены гири, массы которых т1=1 кг и т2=2 кг. Найти ускорение а, с которым движется брусок, и силу натяжения Т каждого из шнуров. Массой блоков и трением пренебречь.
2.6. Наклонная плоскость, образующая угол =25° с плоскостью горизонта, имеет длину l=2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время t=2 с. Определить коэффициент трения f тела о плоскость.
2.7. Материальная точка массой т=2 кг движется под действием некоторой силы F согласно уравнению x=A+Bt+Ct2+Dt3, где С=1 м/с2, D=—0,2 м/с3. Найти значения этой силы в моменты времени t1=2 с и t2=5 с. В какой момент времени сила равна нулю?
2.8. Молот массой m=1 т падает с высоты h=2 м на наковальню. Длительность удара t=0,01 с. Определить среднее значение силы <F> удара.
2.9. Шайба, пущенная по поверхности льда с начальной скоростью v0=20 м/с, остановилась через t=40 с. Найти коэффициент трения f шайбы о лед.
2.10. Материальная точка массой т=1 кг, двигаясь равномерно, описывает четверть окружности радиусом r= 1,2 м в течение времени t=2 с. Найти изменение ? импульса точки.
2.11. Тело массой m=5 кг брошено под углом =30° к горизонту с начальной скоростью v0=20 м/с. Пренебрегая сопротивлением воздуха, найти: 1) импульс силы F, действующей на тело, за время его полета; 2) изменение ? импульса тела за время полета.
2.12. Шарик массой m=100 г упал с высоты h=2,5 м на горизонтальную плиту, масса которой много больше массы шарика, и отскочил от нее вверх. Считая удар абсолютно упругим, определить импульс р, полученный плитой.
2.13. Шарик массой m=300 г ударился о стену и отскочил от нее. Определить импульс p1, полученный стеной, если в последний момент перед ударом шарик имел скорость v0=10 м/с, направленную под углом =30° к поверхности стены. Удар считать абсолютно упругим.
2.14. Тело массой т=0,2 кг соскальзывает без трения по желобу высотой h==2 м. Начальная скорость v0 шарика равна нулю. Найти изменение импульса шарика и импульс р, полученный желобом при движении тела.
2.15. Ракета массой m=1 т, запущенная с поверхности Земли вертикально вверх, поднимается с ускорением a=2g. Скорость v струи газов, вырывающихся из сопла, равна 1200 м/с. Найти расход Qm горючего.
2.16. Космический корабль имеет массу т=3,5 т. При маневрировании из его двигателей вырывается струя газов со скоростью v=800 м/с; расход горючего Qm=0,2 кг/с. Найти реактивную силу R двигателей и ускорение а, которое она сообщает кораблю.
2.17. Вертолет массой m=3,5 т с ротором, диаметр d которого равен 18 м, «висит» в воздухе. С какой скоростью v ротор отбрасывает вертикально вниз струю воздуха? Диаметр струи считать равным диаметру ротора.
2.18. Брусок массой m2=5 кг может свободно скользить по горизонтальной поверхности без трения. На нем находится другой брусок массой т1=1 кг. Коэффициент трения соприкасающихся поверхностей брусков f=0,3. Определить максимальное значение силы Fmах приложенной к нижнему бруску, при которой начнется соскальзывание верхнего бруска.
2.19. На горизонтальной поверхности находится бросок массой m1=2 кг. Коэффициент трения f1 бруска о поверхность равен 0,2. На бруске находится другой брусок массой m2=8 кг. Коэффициент трения f2 верхнего бруска о нижний равен 0,3. К верхнему бруску приложена сила F. Определить: 1) значение силы F1, при котором начнется совместное скольжение брусков по поверхности; 2) значение силы F2, при котором верхний брусок начнет проскальзывать относительно нижнего.
2.20. Ракета, масса которой М=6 т, поднимается вертикально вверх. Двигатель ракеты развивает силу тяги F=500 кН. Определить ускорение а ракеты и силу натяжения Т троса, свободно свисающего с ракеты, на расстоянии, равном 1/4 его длины от точки прикрепления троса. Масса т троса равна 10 кг. Силой сопротивления воздуха пренебречь.
2.21. На плоской горизонтальной поверхности находится обруч, масса которого ничтожно мала. К внутренней части обруча прикреплен груз малых размеров, как это показано на рис. 2.7. Угол =30°. С каким ускорением а необходимо двигать плоскость в направлении, указанном на рисунке, чтобы обруч с грузом не изменил своего положения относительно плоскости? Скольжение - Рис. 2.7 обруча по плоскости отсутствует.
2.22. Самолет летит в горизонтальном направлении с ускорением а=20 м/с2. Какова перегрузка пассажира, находящегося в самолете? (Перегрузкой называется отношение силы F, действующей на пассажира, к силе тяжести Р.)
2.23. Автоцистерна с керосином движется с ускорением а=0,7 м/с2. Под каким углом к плоскости горизонта расположен уровень керосина в цистерне?
2.24. Бак в тендере паровоза имеет длину l=4 м. Какова разность l уровней воды у переднего и заднего концов бака при движении поезда с ускорением a=0,5 м/с2?
2.25. Неподвижная труба с площадью S поперечного сечения, равной 10 см2, изогнута под углом =90° и прикреплена к стене (рис. 2.8). По трубе течет вода, объемный расход QV которой 50 л/с. Найти давление р струи воды, вызванной изгибом трубы.
2.26. Струя воды ударяется о неподвижную плоскость, поставленную под углом =60° к направлению движения струи. Скорость v струи равна 20м/с, площадь S ее поперечного сечения равна 5 см2. Определить силу F давления струи на плоскость.
2.27*. Катер массой m=2 т с двигателем мощностью N=50 кВт развивает максимальную скорость vmах =25 м/с. Определить время t, в течение которого катер после выключения двигателя потеряет половину своей скорости. Принять, что сила сопротивления движению катера изменяется пропорционально квадрату скорости.
2.28*. Снаряд массой т=10 кг выпущен из зенитного орудия вертикально вверх со скоростью v0=800 м/с. Считая силу сопротивления воздуха пропорциональной скорости, определить время t подъема снаряда до высшей точки. Коэффициент, сопротивления k=0,25 кг/с.
2.29*. С вертолета, неподвижно висящего на некоторой высоте над поверхностью Земли, сброшен груз массой m=100 кг. Считая, что сила сопротивления воздуха изменяется пропорционально скорости, определить, через какой промежуток времени t ускорение а груза будет равно половине ускорения свободного падения. Коэффициент сопротивления k=10 кг/с.
2.30*. Моторная лодка массой m=400 кг начинает двигаться по озеру. Сила тяги F мотора равна 0,2 кН. Считая силу сопротивления Fc пропорциональной скорости, определить скорость о лодки через t=20 с после начала ее движения. Коэффициент сопротивления k=20 кг/с.
2.31. Катер массой m=2 т трогается с места и в течение времени =10 с развивает при движении по спокойной воде скорость v=4 м/с. Определить силу тяги F мотора, считая ее постоянной. Принять силу сопротивления Fc движению пропорциональной скорости; коэффициент сопротивления k=100 кг/с.
2.32. Начальная скорость v0 пули равна 800 м/с. При движении * Перед решением задач 2.27—2.30 следует предварительно разобрать пример 3 из в воздухе за время t=0,8 с ее скорость уменьшилась до v=200 м/с. Масса т пули равна 10 г. Считая силу сопротивления воздуха пропорциональной квадрату скорости, определить коэффициент сопротивления k. Действием силы тяжести пренебречь.
2.33. Парашютист, масса которого т=80 кг, совершает затяжной прыжок. Считая, что сила сопротивления воздуха пропорциональна скорости, определить, через какой промежуток времени t скорость движения парашютиста будет равна 0,9 от скорости установившегося движения. Коэффициент сопротивления k=10 кг/с. Начальная скорость парашютиста равна нулю.
Закон сохранения импульса
2.34. Шар массой m=10 кг, движущийся со скоростью v1=4 м/с, сталкивается с шаром массой m=4 кг, скорость v2 которого равна 12 м/с. Считая удар прямым, неупругим, найти скорость и шаров после удара в двух случаях: 1) малый шар нагоняет большой шар, движущийся в том же направлении; 2) шары движутся навстречу друг другу.
2.35. В лодке массой m1=240 кг стоит человек массой m2=60 кг. Лодка плывет со скоростью v1=2 м/с. Человек прыгает с лодки в горизонтальном направлении со скоростью v=4 м/с (относительно лодки). Найти скорость и движения лодки после прыжка человека в двух случаях: 1) человек прыгает вперед по движению лодки и 2) в сторону, противоположную движению лодки.
2.36. На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса человека М =60 кг, масса доски т=20 кг. С какой скоростью и (относительно пола) будет двигаться тележка, если человек пойдет вдоль доски со скоростью (относительно доски) v=1 м/с? Массой колес пренебречь. Трение во втулках не учитывать.
2.37. В предыдущей задаче найти, на какое расстояние а: 1) передвинется тележка, если человек перейдет на другой конец доски; 2) переместится человек относительно пола; 3) переместится центр масс системы тележка — человек относительно доски и относитель¬но пола. Длина l доски равна 2 м.
2.38. На железнодорожной платформе установлено орудие. Масса платформы с орудием M=15 т. Орудие стреляет вверх под углом =60° к горизонту в направлении пути. С какой скоростью v1 покатится платформа вследствие отдачи, если масса снаряда m=20 кг и он вылетает со скоростью v2=600 м/с?
2.39. Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке траектории. В этой точке он разорвался на две части. Меньшая массой m1=3 кг получила скорость u1=400 м/с в прежнем направлении. Найти скорость u2 второй, большей части после разрыва.
2.40. В предыдущей задаче найти, с какой скоростью и2 и под каким углом 2 к горизонту полетит большая часть снаряда, если меньшая полетела вперед под углом 1=60° к горизонту.
2.41. Два конькобежца массами m1=80 кг и m2=50 кг, держась за концы длинного натянутого шнура, неподвижно стоят на льду один против другого. Один из них начинает укорачивать шнур, выбирая его со скоростью v=1 м/с. С какими скоростями u1 и u2 будут двигаться по льду конькобежцы? Трением пренебречь. Динамика материальной точки, движущейся по окружности
2.42. Диск радиусом R=40 см вращается вокруг вертикальной оси. На краю диска лежит кубик. Принимая коэффициент трения f=0,4, найти частоту п вращения, при которой кубик соскользнет с диска.
2.43. Акробат на мотоцикле описывает «мертвую петлю» радиусом r=4 м. С какой наименьшей скоростью vmin должен проезжать акробат верхнюю точку петли, чтобы не сорваться?
2.44. К шнуру подвешена гиря. Гирю отвели в сторону так, что шнур принял горизонтальное положение, и отпустили. Как велика сила натяжения Т шнура в момент, когда гиря проходит положение равновесия? Какой угол  с вертикалью составляет шнур в момент, когда сила натяжения шнура равна силе тяжести гири?
2.45. Самолет описывает петлю Нестерова радиусом R = 200 м. Во сколько раз сила F, с которой летчик давит на сиденье в нижней точке, больше силы тяжести Р летчика, если скорость самолета v=100 м/с?
2.46. Грузик, привязанный к шнуру длиной l=50 см, описывает окружность в горизонтальной плоскости. Какой угол образует шнур с вертикалью, если частота вращения n=1 с1?
2.47. Грузик, привязанный к нити длиной l=1 м, описывает окружность в горизонтальной плоскости. Определить период Т обращения, если нить отклонена на угол =60° от вертикали.
2.48. При насадке маховика на ось центр тяжести оказался на расстоянии r=0,1 мм от оси вращения. В каких пределах меняется сила F давления оси на подшипники, если частота вращения маховика n= 10 с1? Масса т маховика равна 100 кг.
2.49. Мотоцикл едет по внутренней поверхности вертикального цилиндра радиусом R=11,2 м. Центр тяжести мотоцикла с человеком расположен на расстоянии l=0,8 м от поверхности цилиндра. Коэффициент трения f покрышек о поверхность цилиндра равен 0,6. С какой минимальной скоростью vmin должен ехать мотоциклист? Каков будет при этом угол наклона его к плоскости горизонта?
2.50. Автомобиль массой m=5 т движется со скоростью v=10 м/с по выпуклому мосту. Определить силу F давления автомобиля на мост в его верхней части, если радиус R кривизны моста равен 50 м.
2.51. Сосуд с жидкостью вращается с частотой n=2 с1 вокруг вертикальной оси. Поверхность жидкости имеет вид воронки. Чему равен угол наклона поверхности жидкости в точках, лежащих на расстоянии r=5 см от оси?
2.52. Автомобиль идет по закруглению шоссе, радиус R кривизны которого равен 200 м. Коэффициент трения f колес о покрытие дороги равен 0,1 (гололед). При какой скорости v автомобиля начнется его занос?
2.53. Какую наибольшую скорость vmax может развить велосипедист, проезжая закругление радиусом R =50 м, если коэффициент трения скольжения f между шинами и асфальтом равен 0,3? Каков угол отклонения велосипеда от вертикали, когда велосипедист движется по закруглению?
2.54. Самолет массой m=2,5 т летит со скоростью v=400 км/ч. Он совершает в горизонтальной плоскости вираж (вираж — полет самолета по дуге окружности с некоторым углом крена). Радиус R траектории самолета равен 500 м. Найти поперечный угол наклона самолета и подъемную силу F крыльев во время полета.
2.55. Вал вращается с частотой п =2400 мин-1. К валу перпендикулярно его длине прикреплен стержень очень малой массы, несущий на концах грузы массой m=1 кг каждый, находящиеся на расстоянии r=0,2 м от оси вала. Найти: 1) силу F, растягивающую стержень при вращении вала; 2) момент М силы, которая действовала бы на вал, если бы стержень был наклонен под углом =89° к оси вала.
2.56. Тонкое однородное медное кольцо радиусом R=10 см вращается относительно оси, проходящей через центр кольца, с угловой скоростью =10 рад/с. Определить нормальное напряжение , возникающее в кольце в двух случаях: 1) когда ось вращения перпендикулярна плоскости кольца и 2) когда лежит в плоскости кольца. Деформацией кольца при вращении пренебречь. Работа и энергия
2.57. Под действием постоянной силы F вагонетка прошла путь s=5 м и приобрела скорость v=2 м/с. Определить работу A силы, если масса т вагонетки равна 400 кг и коэффициент трения f=0,01.
2.58. Вычислить работу А, совершаемую при равноускоренном подъеме груза массой m=100 кг на высоту h=4 м за время t=2 с.
2.59. Найти работу А подъема груза по наклонной плоскости длиной l=2 м, если масса т груза равна 100 кг, угол наклона =30°, коэффициент трения f=0,1 и груз движется с ускорением а=1 м/с2.
2.60. Вычислить работу А, совершаемую на пути s=12 м равномерно возрастающей силой, если в начале пути сила F1=10 H, в конце пути F2=46 H.
2.61. Под действием постоянной силы F=400 H, направленной вертикально вверх, груз массой m=20 кг был поднят на высоту h=15 м. Какой потенциальной энергией П будет обладать поднятый груз? Какую работу А совершит сила F?
2.62. Тело массой m=1 кг, брошенное с вышки в горизонтальном направлении со скоростью v0=20 м/с, через t=3 с упало на землю. Определить кинетическую энергию Т, которую имело тело в момент удара о землю. Сопротивлением воздуха пренебречь.
2.63. Камень брошен вверх под углом =60° к плоскости горизонта. Кинетическая энергия Т0 камня в начальный момент времени равна 20 Дж. Определить кинетическую Т и потенциальную П энергии камня в высшей точке его траектории. Сопротивлением воздуха пренебречь.
2.64. Насос выбрасывает струю воды диаметром d=2 см со скоростью v=20 м/с. Найти мощность N, необходимую для выбрасывания воды.
2.65. Какова мощность N воздушного потока сечением S=0,55 м2 при скорости воздуха v=20 м/с и нормальных условиях?
2.66. Вертолет массой т=3 т висит в воздухе. Определить мощность N, развиваемую мотором вертолета в этом положении, при двух значениях диаметра d ротора: 1) 18 м; 2) 8 м. При расчете принять, что ротор отбрасывает вниз цилиндрическую струю воздуха диаметром, равным диаметру ротора.
2.67. Материальная точка массой m=2 кг двигалась под действием некоторой силы, направленной вдоль оси Ох согласно уравнению x=A+Bt+Ct2+Dt3, где В= — 2 м/с, С=1 м/с2, D= — 0,2 м/с3. Найти мощность N, развиваемую силой в момент времени t1=2 с и t2=5 с.
2.68. С какой наименьшей высоты h должен начать скатываться акробат на велосипеде (не работая ногами), чтобы проехать по дорожке, имеющей форму «мертвой петли» радиусом R=4 м, и не оторваться от дорожки в верхней точке петли? Трением пренебречь.
2.69. Камешек скользит с наивысшей точки купола, имеющего форму полусферы. Какую дугу опишет камешек, прежде чем оторвется от поверхности купола? Трением пренебречь.
2.70. Мотоциклист едет по горизонтальной дороге. Какую наименьшую скорость v он должен развить, чтобы, выключив мотор, проехать по треку, имеющему форму «мертвой петли» радиусом R=4 м? Трением и сопротивлением воздуха пренебречь.
2.71. При выстреле из орудия снаряд массой m1=10 кг получает кинетическую энергию T1=1,8 МДж. Определить кинетическую энергию T2 ствола орудия вследствие отдачи, если масса m2 ствола орудия равна 600 кг.
2.72. Ядро атома распадается на два осколка массами m1=1,6 10-25 кг и m2=2,4•10-25 кг. Определить кинетическую энергию T2 второго осколка, если энергия T1 первого осколка равна 18 нДж.
2.73. Конькобежец, стоя на льду, бросил вперед гирю массой m1=5 кг и вследствие отдачи покатился назад со скоростью v2=1 м/с. Масса конькобежца m2=60 кг. Определить работу A, совершенную конькобежцем при бросании гири.
2.74. Молекула распадается на два атома. Масса одного из атомов в п=3 раза больше, чем другого. Пренебрегая начальной кинетической

энергий и импульсом молекулы, определить кинетические энергии T1 и T2 атомов, если их суммарная кинетическая энергия T=0,032 нДж.
2.75. На рельсах стоит платформа, на которой закреплено орудие без противооткатного устройства так, что ствол его расположен в горизонтальном положении. Из орудия производят выстрел вдоль железнодорожного пути. Масса m1 снаряда равна 10 кг, и его скорость u1=1 км/с. На какое расстояние l откатится платформа после выстрела, если коэффициент сопротивления f=0,002? Mпл = 20 т.
2.76. Пуля массой m=10 г, летевшая со скоростью v=600 м/с, попала в баллистический маятник (рис. 2.9) массой M=5 кг и застряла в нем. На какую высоту h, откачнувшись после удара, поднялся маятник?
2.77. В баллистический маятник массой М=5 кг попала пуля массой m= 10 г и застряла в нем. рис 2.9 Найти скорость v пули, если маятник, отклонившись после удара, поднялся на высоту h=10 см.
2.78. Два груза массами m1=10 кг и m2=15 кг подвешены на нитях длиной l=2 м так, что грузы соприкасаются между собой. Меньший груз был отклонен на угол =60° и выпущен. Определить высоту h, на которую поднимутся оба груза после удара. Удар грузов считать неупругим.
2.79. Два неупругих шара массами m1=2 кг и m2=3 кг движутся со скоростями соответственно v1=8 м/с и v1=4 м/с. Определить увеличение внутренней энергии шаров при их столкновении в двух случаях: 1) меньший шар нагоняет больший; 2) шары движутся навстречу друг другу.
2.80. Шар массой m1, летящий со скоростью v1=5 м/с, ударяет неподвижный шар массой m2. Удар прямой, неупругий. Определить скорость и шаров после удара, а также долю кинетической энергии летящего шара, израсходованной на увеличение внутренней энергии этих шаров. Рассмотреть два случая: 1) т1=2 кг, m2=8 кг; 2) m1=8 кг, m2=2 кг.
2.81. Шар массой m1=2 кг налетает на покоящийся шар массой m2=8 кг. Импульс p1 движущегося шара равен 10 кг м/с. Удар шаров прямой, упругий. Определить непосредственно после удара: 1) импульсы первого шара и р'2 второго шара; 2) изменение импульса первого шара; 3) кинетические энергии первого шара и Т'2 второго шара; 4) изменение кинетической энергии первого шара; 5) долю кинетической энергии, переданной первым шаром второму.
2.82. Шар массой m1=6 кг налетает на другой покоящийся шар массой m2=4 кг. Импульс p1 первого шара равен 5 кг-м/с. Удар шаров прямой, неупругий. Определить непосредственно после удара: 1) импульсы первого шара и р'2 второго шара; 2) изменение импульса первого шара; 3) кинетические энергии первого шара и Т'2 второго шара; 4) изменение кинетической энергии первого шара; 5) долю кинетической энергии, переданной первым шаром второму и долю кинетической энергии, оставшейся у первого шара; 6) изменение внутренней энергии шаров; 7) долю кинетической энергии первого шара, перешедшей во внутреннюю энергию шаров.
2.83. Молот массой m1=5 кг ударяет небольшой кусок железа, лежащий на наковальне. Масса m2 наковальни равна 100 кг. Массой куска железа пренебречь. Удар неупругий. Определить КПД удара молота при данных условиях.
2.84. Боек свайного молота массой m1=500 кг падает с некоторой высоты на сваю массой m2=100 кг. Найти КПД удара бойка, считая удар неупругим. Изменением потенциальной энергии сваи при углублении ее пренебречь.
2.85. Молотком, масса которого т1=1 кг, забивают в стену гвоздь массой т2=75 г. Определить КПД удара молотка при данных условиях.
2.86. Шар массой m1=200 г, движущийся со скоростью v1=10 м/с, ударяет неподвижный шар массой m2=800 г. Удар прямой, абсолютно упругий. Каковы будут скорости v1 и v2 шаров после удара?
2.87. Шар массой m=1,8 кг сталкивается с покоящим
 
MassimoДата: Понедельник, 18.11.2013, 15:02 | Сообщение # 2
Полковник
Группа: Администраторы
Сообщений: 183
Репутация: 0
Статус: Offline
Момент инерции
3.1. Определить момент инерции J материальной точки массой m=0,3 кг относительно оси, отстоящей от точки на r=20 см.
3.2. Два маленьких шарика массой m=10 г каждый скреплены тонким невесомым стержнем длиной l=20 см. Определить момент инерции J системы относительно оси, перпендикулярной стержню и проходящей через центр масс.
3.3. Два шара массами m и 2m (m=10 г) закреплены на тонком невесомом стержне длиной l=40 см так, как это указано на рис. 3.7, а, б. Определить моменты инерции J системы относительно оси, перпендикулярной стержню и проходящей через его конец в этих двух случаях. Размерами шаров пренебречь. лярной стержню и проходящей через: 1) его конец; 2) его середину; 3) точку, отстоящую от конца стержня на 1/3 его длины.
3.7. Определить момент инерции J тонкого однородного стержня длиной l=60 см и массой m=100 г относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на а=20 см от одного из его концов.
3.8. Вычислить момент инерции J проволочного прямоугольника со сторонами а=12 см и b=16 см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по длине проволоки с линей ной плотностью τ=0,1 кг/м.
3.9. Два однородных тонких стержня: АВ длиной l1=40 см • и массой m1=900 г и CD длиной l2=40 см и массой l2=400 г скреплены под прямым углом (рис. 3.9). Определить момент инерции J системы стержней относительно оси 00', проходящей через конец стержня АВ параллельно стержню CD.
3.10. Решить предыдущую задачу для случая, когда ось 00' проходит через точку А перпендикулярно плоскости чертежа.
3.11. Определить момент инерции J проволочного равностороннего треугольника со стороной а=10 см относительно: 1) оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине (рис. 3.10, а); 2) оси, совпадающей с одной из сторон треугольника (рис. 3.10, б). Масса т треугольника равна 12 г и равномерно распределена по длине проволоки.
3.12. На концах тонкого однородного стержня длиной l и массой 3m прикреплены маленькие шарики массами m и 2m. Определить момент инерции J такой системы относительно оси, перпендикулярной стер и проходящей через точку О, лежащую на оси стержня. Вычисления выполнить для случаев а, б, в, г, д, изображенных на рис. 3.11. При расчетах принять l=1 м, m=0,1 кг. Шарики рассматривать как материальные точки.
3.13. Найти момент инерции J тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр.
3.14. Определить момент инерции J кольца массой т=50 г и радиусом R=10 см относительно оси, касательной к кольцу.
3.15. Диаметр диска d=20 см, масса т=800 г. Определить момент инерции J диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.
3.16. В однородном диске массой т=1 кг и радиусом r=30 см вырезано круглое отверстие диаметром d=20 см, центр которого находится на расстоянии l=15 см от оси диска (рис. 3.12). Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр.
3.17. Найти момент инерции J плоской однородной прямоугольной пластины массой т=800 г относительно оси, совпадающей с одной из ее сторон, если длина а другой стороны равна 40 см.
3.18. Определить момент инерции J тонкой плоской пластины со сторонами а=10 см и b=20 см относительно оси, проходящей через центр масс пластины параллельно большей стороне. Масса пластины равномерно распределена по ее площади с поверхностной плотностью σ=1,2 кг/м2. Основное уравнение динамики вращательного движения
3.19. Тонкий однородный стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку О на стержне (рис. 3.13). Стержень отклонили от вертикали на угол а и отпустили. Определить для начального момента времени угловое в и тангенциальное а ускорения точки В на стержне. Вычисления произвести для следующих случаев:
3.20. Однородный диск радиусом R = 10 см может свободно вращаться вокруг горизонтальной оси, перпендикулярной плоскости диска и проходящей через точку О на нем (рис. 3.14). Диск отклонили на угол а и отпустили. Определить для начального момента времени угловое ε и тангенциальное ат ускорения точки В, находящейся на диске. Вычисления выполнить для следующих случаев:
3.21. Тонкий однородный стержень длиной l=50 см и массой m=400 г вращается с угловым ускорением ε=3 рад/с2 около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент М.
3.22. На горизонтальную ось насажены маховик и легкий шкив радиусом R=5 см. На шкив намотан шнур, к которому привязан груз массой т=0,4 кг. Опускаясь равноускоренно, груз прошел путь s=l,8 м за время t=3 с, Определить момент инерции J маховика. Массу шкива считать пренебрежимо малой.
3.23. Вал массой m=100 кг и радиусом R=5 см вращался с частотой n=8 с-1. К цилиндрической поверхности вала прижали тормозную колодку с силой F=40 H, под действием которой вал остановился через t=10 с. Определить коэффициент трения f.
3.24. На цилиндр намотана тонкая гибкая нерастяжимая лента, массой которой по сравнению с массой цилиндра можно пренебречь. Свободный конец ленты прикрепили к кронштейну и предоставили цилиндру опускаться под действием силы тяжести. Определить линейное ускорение а оси цилиндра, если цилиндр: 1) сплошной; 2) полый тонкостенный.
3.25. Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m1=100 г и т2=110 г. С каким ускорением а будут двигаться грузики, если масса т блока равна 400 г? Трение при вращении блока ничтожно мало.
3:26. Два тела массами т1=0,25 кг и m2=0,15 кг связаны тон, кой нитью, переброшенной через блок (рис. 3.15). Блок укреплен на краю горизонтального стола, по поверхности которого скользит тело массой т1. С каким ускорением а движутся тела и каковы силы T1 и Т2 натяжения нити по обе. стороны от блока? Коэффициент трения f тела о поверхность стола равен 0,2. Масса т блока равна 0,1 кг и ее можно считать равномерно распределенной по ободу. Массой нити и трением в подшипниках оси блока пренебречь.
3.27. Через неподвижный блок массой т=0,2 кг перекинут шнур, к концам которого подвесили грузы массами m1=0,3 кг и m2=0,5 кг. Определить силы натяжения T1 и T2 шнура по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу.
3.28. Шар массой m=10 кг и радиусом R=20 см вращается во круг оси, проходящей через его центр. Уравнение вращения шара имеет вид , где В=4 рад/с2, С= —1 рад/с3. Найти закон изменения момента сил, действующих на шар. Определить момент сил М в момент времени t=2 с. Закон сохранения момента импульса
3.29. Однородный тонкий стержень массой m1=0,2 кг и длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку О (рис. 3.16). В точку А на стержне попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси z) со скоростью υ=10 м/с и прилипает к стержню. Масса Рис. 3.17
т2 шарика равна 10 г. Определить угловую скорость W стержня и линейную скорость и нижнего конца стержня в начальный момент времени. Вычисления выполнить для следующих значений расстояния между точками А и О: 1) l/2; 2) l/3; 3) l/4.
3.30. Однородный диск массой т1= 0,2 кг и радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку С (рис. 3.17). В точку, А на образующей диска попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси z) со скоростью υ= 10 м/с, и прилипает к его поверхности. Масса т2 шарика равна 10 г. Определить угловую скорость W диска и линейную скорость и точки О на диске в начальный момент времени. Вычисления выполнить для следующих значений а и b: 1) a=b=R; 2) a=R/2, b=R; 3) a=2R/3, b=R/2; 4) a=R/3, b=2R/3.
3.31. Человек стоит на скамье Жуковского и ловит рукой мяч массой т=0,4 кг, летящий в горизонтальном направлении со скоростью υ=20 м/с. Траектория мяча проходит на расстоянии r =0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью  начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг-м2?
3.32. Маховик, имеющий вид диска радиусом R=40 см и массой т1=48 кг, может вращаться вокруг горизонтальной оси. К его цилиндрической поверхности прикреплен конец нерастяжимой нити, к другому концу которой подвешен груз массой т2= 0,2 кг (рис. 3.18). Груз был приподнят и затем опущен. Упав свободно с высоты h=2 м, груз натянул нить и благодаря этому привел маховик во вращение. Какую угловую скорость  груз сообщил при этом маховику?
3.33. На краю горизонтальной платформы, имеющей форму диска радиусом R=2м, стоит человек массой т1=80кг. Масса m2 платформы равна 240 кг.
Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью  будет вращаться платформа, если человек будет идти вдоль ее края со скоростью V=2 м/с относительно платформы.
3.34. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек массой т1=60 кг. На какой угол φ повернется платформа, если человек пойдет вдоль края платформы и, обойдя его, вернется в исходную точку на платформе? Масса т2 платформы равна 240 кг. Момент инерции J человека рассчитывать как для материальной точки.
3.35. Платформа в виде диска радиусом R=1 м вращается по инерции с частотой n1=6мин-1. На краю платформы стоит человек, масса т которого равна 80 кг. С какой частотой п будет вращаться платформа, если человек перейдет в ,ее центр? Момент инерции J платформы равен 120 кг·м2. Момент инерции человека рассчитывать как для материальной точки.
3.36. В центре скамьи Жуковского стоит человек и держит в руках стержень длиной l=2,4 м и массой т=8 кг, расположенный вертикально по оси вращения скамейки. Скамья с человеком вращается с частотой n1=1 с-1. С какой частотой n2 будет вращаться скамья с человеком, если он повернет стержень в горизонтальное положение? Суммарный момент инерции J человека и скамьи равен 6 кг•м2.
3.37. Человек стоит на скамье Жуковского и держит в руках стержень, расположенный вертикально вдоль оси вращения скамейки. Стержень служит осью вращения колеса, расположенного на верхнем конце стержня. Скамья неподвижна, колесо вращается с частотой n=10 с-1. Радиус R колеса равен 20 см, его масса т=3 кг. Определить частоту вращения п2 скамьи, если человек повернет стержень на угол 180°? Суммарный момент инерции J человека и скамьи равен 6 кг•м2. Массу колеса можно считать равномерно распределенной по ободу.

Работа и энергия

3.38. Шарик массой т=100 г, привязанный к концу нити длиной l1=l м, вращается, опираясь на горизонтальную плоскость, с частотой n1=1 с-1. Нить укорачивается и шарик приближается к оси вращения до расстояния l2=0,5 м. С какой частотой n2 будет при этом вращаться шарик? Какую работу А совершит внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.
3.39. Маховик вращается по закону, выражаемому уравнением φ=A+Bt+Ct2, где A=2 рад, B=32 рад/с, С=—4 рад/с2. Найти среднюю мощность <N>, развиваемую силами, действующими на маховик при его вращении, до остановки, если его момент инерции J=100 кг·м2.
3.40. Маховик вращается по закону, выражаемому уравнением φ=A+Bt+Ct2, где А=2 рад, В=16 рад/с, С=—2 рад/с2. Момент инерции J маховика равен 50 кг-м2. Найти законы, по которым меняются вращающий момент М и мощность N. Чему равна мощность в момент времени t=3 с?
3.41. Якорь мотора вращается с частотой n=1500 мин-1. Определить вращающий момент М, если мотор развивает мощность N=500 Вт.
3.42. Со шкива диаметром d=0,48 м через ремень передается мощность N=9 кВт. Шкив вращается с частотой и=240 мин-1. Сила натяжения T1 ведущей ветви ремня в два раза больше силы натяжения Т2 ведомой ветви. Найти силы натяжения обеих ветвей ремня.
3.43. Для определения мощности мотора на его шкив диаметром d=20 см накинули ленту. К одному концу ленты прикреплен динамометр, к другому подвесили груз Р.Найти мощность N мотора, если мотор вращается с частотой n=24 с-1, масса т груза равна 1 кг и показание динамометра F=24 Н.
3.44. Маховик в виде диска массой m=80 кг и радиусом R=30 см находится в состоянии покоя. Какую работу A1 нужно совершить, чтобы сообщить маховику частоту n=10 с-1? Какую работу A2 пришлось бы совершить, если бы при той же массе диск имел меньшую толщину, но вдвое больший радиус?
3.45. Кинетическая энергия Т вращающегося маховика равна 1 кДж. Под действием постоянного тормозящего момента маховик начал вращаться равнозамедленно и, сделав N=80 оборотов, остановился. Определить момент М силы торможения.
3.46. Маховик, момент инерции J которого равен 40 кг ·м2, начал
вращаться равноускоренно из состояния покоя под действием момента силы М=20 Н·м. Вращение продолжалось в течение t= 10 с. Определить кинетическую энергию Т, приобретенную маховиком.
3.47. Пуля массой m=10 г летит со скоростью V=800 м/с, вращаясь около продольной оси с частотой n=3000 с-1. Принимая пулю за цилиндрик диаметром d=8 мм, определить полную кинетическую энергию Т пули.
3.48. Сплошной цилиндр массой т=4 кг катится без скольжения по горизонтальной поверхности. Линейная скорость v оси цилиндра равна 1 м/с. Определить полную кинетическую энергию Г цилиндра.
3.49. Обруч и сплошной цилиндр, имеющие одинаковую массу т=2 кг, катятся без скольжения с одинаковой скоростью υ=5 м/с. Найти кинетические энергии Т1 и Т2 этих тел.
3.50. Шар катится без скольжения по горизонтальной поверхности. Полная кинетическая энергия Т шара равна 14 Дж. Определить кинетическую энергию T1 поступательного и T2 вращательного движения шара.
3.51. Определить линейную скорость v центра шара, скатившегося без скольжения с наклонной плоскости высотой h=l м.
3.52. Сколько времени t будет скатываться без скольжения обруч с наклонной плоскости длиной l=2 м и высотой h=10 см?
3.53. Тонкий прямой стержень длиной l=1 м прикреплен к горизонтальной оси, проходящей через его конец. Стержень отклонили на угол φ=60° от положения равновесия и отпустили. Определить линейную скорость υ нижнего конца стержня в момент прохождения через положение равновесия.
3.54. Однородный тонкий стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку О на стержне. Стержень отклонили от положения равновесия на угол а и отпустили (см. рис. 3.13). Определить угловую скорость со стержня и линейную скорость V точки В на стержне в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) а=0, b=l/2, α=π/3; 2) а=l/3, b=2l/3, α=π/2; 3) а=l/4, b=l, α=2π/3.
3.55. Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую со и линейную v скорости будет иметь в конце падения: 1) середина карандаша? 2) верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.
3.56. Однородный диск радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку О (см. рис. 3.14). Определить угловую со и линейную v скорости точки В на диске в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: 1) a=b=R, α=π/2; 2) a=R/2, b=0, α=π/3; 3) а=2R/3, b=2R/3, α=5π/6; 4) a=R/3, b=R, α=2π/3.
Силы тяготения. Гравитационное поле
4.1. Центры масс двух одинаковых однородных шаров находятся на расстоянии r = 1 м друг от друга. Масса m каждого шара равна 1 кг. Определить силу F гравитационного взаимодействия шаров.
4.2. Как велика сила F взаимного притяжения двух космических кораблей массой m = 10т каждый, если они сблизятся до расстояния r = 100 м?
4.3 Определить силу F взаимного притяжения двух соприкасающихся железных шаров диаметром d = 20 см каждый.
4.4. На какой высоте h над поверхностью Земли напряженность gh гравитационного поля равна 1 Н/кг? Радиус R Земли считать известным.
4.5. Ракета, пущенная вертикально вверх, поднялась на высоту h=3200 км и начала падать. Какой путь s пройдет ракета за первую секунду своего падения?
4.6. Радиус R планеты Марс равен 3,4 Мм, ее масса М = 6,4·1023 кг. Определить напряженность g гравитационного поля на поверхности Марса.
4.7. Радиус Земли в n=3,66 раза больше радиуса Луны; средняя плотность Земли в k=1,66 раза больше средней плотности Луны. Определить ускорение свободного падения gЛ на поверхности Луны, если на поверхности Земли ускорение свободного падения g считать известным.
4.8. Радиус R малой планеты равен 250 км, средняя плотность ρ=3 г/см3. Определить ускорение свободного падения g на поверхности планеты.
4.9. Масса Земли в n=81,6 раза больше массы Луны. Расстояние l между центрами масс Земли и Луны равно 60,3R (R — радиус Земли). На каком расстоянии r (в единицах R) от центра Земли находится точка, в которой суммарная напряженность гравитационного поля Земли и Луны равна нулю?
4.10. Искусственный спутник обращается вокруг Земли по окружности на высоте h=3,6 Мм. Определить линейную скорость v спутника. Радиус R Земли и ускорение свободного падения g на поверхности Земли считать известными.
4.11. Период Т вращения искусственного спутника Земли равен
2 ч. Считая орбиту спутника круговой, найти, на какой высоте А над поверхностью Земли движется спутник.
4.12. Стационарный искусственный спутник движется по окружности в плоскости земного экватора, оставаясь все время над одним и тем же пунктом земной поверхности. Определить угловую скорость ω спутника и радиус R его орбиты.
4.13. Планета Нептун в k=30 раз дальше от Солнца, чем Земля. Определить период Т обращения (в годах) Нептуна вокруг Солнца.
4.14. Луна движется вокруг Земли со скоростью υ1=1,02 км/с. Среднее расстояние l Луны от Земли равно 60,3 R (R — радиус Земли). Определить по этим данным, с какой скоростью υ2 должен двигаться искусственный спутник, вращающийся вокруг Земли на незначительной высоте над ее поверхностью.
4.15. Зная среднюю скорость υ1 движения Земли вокруг Солнца (30 км/с), определить, с какой средней скоростью υ2 движется малая планета, радиус орбиты которой в n=4 раза больше радиуса орбиты Земли.
4.16. Советская космическая ракета, ставшая первой искусственной планетой, обращается вокруг Солнца по эллипсу. Наименьшее расстояние rmin ракеты от Солнца равно 0,97, наибольшее расстояние rmax равно 1,31 а. е. (среднего расстояния Земли от Солнца). Определить период Т вращения (в годах) искусственной планеты.
4.17. Космическая ракета движется вокруг Солнца по орбите, почти совпадающей с орбитой Земли. При включении тормозного устройства ракета быстро теряет скорость и начинает падать на Солнце (рис. 4.6). Определить время t, в течение которого будет падать ракета.
Указание. Принять, что, падая на Солнце, ракета движется по эллипсу, большая ось которого очень мало отличается от радиуса орбиты Земли, а эксцентриситет — от единицы. Период обращения по эллипсу не зависит от эксцентриситета.
4.18. Ракета, запущенная с Земли на Марс, летит, двигаясь вокруг Солнца по эллиптической орбите (рис. 4.7). Среднее расстояние r планеты Марс от Солнца равно 1,5 а. е. В течение какого времени t будет лететь ракета до встречи с Марсом?
4.19. Искусственный спутник движется вокруг Земли по эллипсу с эксцентриситетом ε=0,5. Во сколько раз линейная скорость спутника в перигее (ближайшая к центру Земли точка орбиты спутника) больше, чем в апогее (наиболее удаленная точка орбиты)?
Указание. Применить закон сохранения момента импульса.
Рис. 4.6 Рис. 4.7
4.20. Комета движется вокруг Солнца по эллипсу с эксцентриситетом ε=0,6. Во сколько раз линейная скорость кометы в ближайшей к Солнцу точке орбиты больше, чем в наиболее удаленной?
4.21. Ближайший спутник Марса находится на расстоянии r=9,4 Мм от центра планеты и движется вокруг нее со скоростью υ=2,1 км/с. Определить массу М Марса.
4.22. Определить массу М Земли по среднему расстоянию r от центра Луны до центра Земли и периоду Т обращения Луны вокруг Земли (Т и r cчитать известными).
4.23. Один из спутников планеты Сатурн находится приблизительно на таком же расстоянии r от планеты, как Луна от Земли, но период Т его обращения вокруг планеты почти в n=10 раз меньше, чем у Луны. Определить отношение масс Сатурна и Земли.
4.24. Найти зависимость ускорения свободного падения g от расстояния r, отсчитанного от центра планеты, плотность ρ которой можно считать для всех точек одинаковой. Построить график зависимости g ®. Радиус R планеты считать известным.
4.25. Тело массой m=1 кг находится на поверхности Земли. Определить изменение ΔР силы тяжести для двух случаев: 1) при подъеме тела на высоту h=5 км; 2) при опускании тела в шахту на глубину h=5 км. Землю считать однородным шаром радиусом R=6,37 Мм и плотностью ρ =5,5 г/см3.
4.26. Определить работу A, которую совершат силы гравитационного поля Земли, если тело массой m=1 кг упадет на поверхность Земли: 1) с высоты h, равной радиусу Земли; 2) из бесконечности. Радиус R Земли и ускорение свободного падения g на ее поверхности считать известными.
4.27. На какую высоту h над поверхностью Земли поднимется ракета, пущенная вертикально вверх, если начальная скорость υ ракеты равна первой космической скорости?
4.28. Определить значения потенциала φ гравитационного поля на поверхностях Земли и Солнца.
4.29. Вычислить значения первой (круговой) и второй (параболической) космических скоростей вблизи поверхности Луны.
4.30. Найти первую и вторую космические скорости вблизи поверхности Солнца.
4.31. Радиус R малой планеты равен 100 км, средняя плотность ρ вещества планеты равна 3 г/см3. Определить параболическую скорость υ2 у поверхности этой планеты.
4.32. Какова будет скорость v ракеты на высоте, равной радиусу Земли, если ракета пущена с Земли с начальной скоростью υ0= 10 км/с? Сопротивление воздуха не учитывать. Радиус R Земли и ускорение свободного падения g на ее поверхности считать известными.
4.33. Ракета пущена с Земли с начальной скоростью υо=15 км/с. К какому пределу будет стремиться скорость ракеты, если расстояние ракеты от Земли бесконечно увеличивается? Сопротивление воздуха и притяжение других небесных тел, кроме Земли, не учитывать.
4.34. Метеорит падает на Солнце с очень большого расстояния, которое практически можно считать бесконечно большим. Начальная скорость метеорита пренебрежимо мала. Какую скорость υ будет иметь метеорит в момент, когда его расстояние от Солнца равна среднему расстоянию Земли от Солнца?
4.35. Комета огибает Солнце, двигаясь по орбите, которую можно считать параболической. С какой скоростью υ движется комета, когда она проходит через перигей (ближайшую к Солнцу точку своей орбиты), если расстояние r кометы от Солнца в этот момент равно 50 Гм?
4.36. На высоте h=2,6Мм над поверхностью Земли космической ракете была сообщена скорость υ=10 км/с, направленная перпендикулярно линии, соединяющей центр Земли с ракетой. По какой орбите относительно Земли будет двигаться ракета? Определить вид конического сечения.
Силы упругости. Механическое напряжение. Прочность
4.37. К проволоке диаметром d=2 мм подвешен груз массой m=1 кг. Определить напряжение а, возникшее в проволоке.
4.38. Верхний конец свинцовой проволоки диаметром d=2 см и длиной l=60 м закреплен неподвижно. К нижнему концу подвешен груз массой m=100 кг. Найти напряжение  материала: 1) у нижнего конца; 2) на середине длины; 3) у верхнего конца проволоки.
4.39. Какой наибольший груз может выдержать стальная проволока диаметром d=1 мм, не выходя за предел упругости σупр=294 МПа? Какую долю первоначальной длины составляет удлинение проволоки при этом грузе?
4.40. Свинцовая проволока подвешена в вертикальном положении за верхний конец. Какую наибольшую длину l может иметь проволока, не обрываясь под действием силы тяжести? Предел прочности σпр свинца равен 12,3 МПа.
4.41. Гиря массой m=10 кг, привязанная к проволоке, вращается с частотой n=2 с-1 вокруг вертикальной оси, проходящей через конец проволоки, скользя при этом без трения по горизонтальной поверхности. Длина l проволоки равна 1,2 м, площадь S ее поперечного сечения равна 2 мм2. Найти напряжение а металла проволоки. Массой ее пренебречь.
4.42. Однородный стержень длиной l=1,2 м, площадью поперечного сечения S=2 cм2 и массой m=10 кг вращается с частотой n=2 с-1 вокруг вертикальной оси, проходящей через конец стержня, скользя при этом без трения по горизонтальной поверхности. Найти наибольшее напряжение σmax материала стержня при данной частоте вращения.
Модуль упругости. Жесткость
4.43. К вертикальной проволоке длиной l=5 м и площадью поперечного сечения S=2 мм2 подвешен груз массой m=5,1 кг. В результате проволока удлинилась на x=0,6 мм. Найти модуль Юнга Е материала проволоки.
4.44. К стальному стержню длиной l=3 м и диаметром d=2 см подвешен груз массой m=2,5103 кг. Определить напряжение σ в стержне, относительное ε и абсолютное х удлинения стержня.
4.45. Проволока длиной l=2 м и диаметром d=l мм натянута практически горизонтально. Когда к середине проволоки подвесили груз массой m=1 кг, проволока растянулась настолько, что точка подвеса опустилась на h=4 см. Определить модуль Юнга Е материала проволоки.
4.46. Две пружины жесткостью k1=0,3 кН/м и k2=0,8 кН/м соединены последовательно. Определить абсолютную деформацию x1 первой пружины, если вторая деформирована на x2=1,5 см.
4.47. Определить жесткость k системы двух пружин при последовательном и параллельном их соединении (рис. 4.8). Жесткость пружин k1=2 кН/м и k2=6 кН/м.
4.48. Нижнее основание железной тумбы, имеющей форму цилиндра диаметром d=20 см и высотой h=20 см, закреплено неподвижно. На верхнее основание тумбы действует сила F=20 кН (рис. 4.9). Найти: 1) тангенциальное напряжение τ в материале тумбы; 2) относительную деформацию γ (угол сдвига); 3) смещение Δx верхнего основания тумбы.
4.49. Тонкий стержень одним концом закреплен, к другому концу приложен момент силы М=1 кН·м. Определить угол φ закручивания стержня, если постоянная кручения С=120 кН·м/рад.
4.50. Тонкая однородная металлическая лента закреплена верхним концом. К нижнему концу приложен момент силы M = 1 мН·м. Угол φ закручивания ленты равен 10°. Определить постоянную кручения С.
Работа упругой силы.
Энергия деформированного тела
4.51. Какую работу А нужно совершить, чтобы растянуть на x=1 мм стальной стержень длиной l=1 м и площадью S поперечного сечения, равной 1 см2?
4.52. Для сжатия пружины на x1=1 см нужно приложить силу F=10 H. Какую работу А нужно совершить, чтобы сжать пружину на x2=10 см, если сила пропорциональна сжатию?
4.53. Пружина жесткостью k=10 кН/м сжата силой F=200 Н. Определить работу А внешней силы, дополнительно сжимающей эту пружину еще на x=1 см.
4.54. Пружина жесткостью k=1 кН/м была сжата на x1=4 см. Какую нужно совершить работу A, чтобы сжатие пружины увеличить до x2=18 см?
4.55. Гиря, положенная на верхний конец спиральной пружины, поставленной на подставке, сжимает ее на x=2 мм. На сколько сожмет пружину та же гиря, упавшая на конец пружины с высотой h=5 см?
4.56. Пуля массой m=10 г вылетает со скоростью υ=300 м/с из дула автоматического пистолета, масса m2 затвора которого равна 200 г. Затвор пистолета прижимается к стволу пружиной жесткостью k=25 кН/м. На какое расстояние l отойдет затвор после выстрела? Считать пистолет жестко закрепленным.
4.57. Две пружины с жестокостями k1=0,3 кН/м и k2=0,5 кН/м скреплены последовательно и растянуты так, что абсолютная деформация х2 второй пружины равна 3 см. Вычислить работу А растяжения пружин.
4.58. Пружина жесткостью k1=100 кН/м была растянута на
x1=4 см. Уменьшая приложенную силу, пружине дают возможность вернуться в первоначальное состояние (нерастянутое). Затем сжимают пружину на x2=6 см. Определить работу А, совершенную при этом внешней силой.
4.59. Стальной стержень массой m=3,9 кг растянут на ε=0,001 своей первоначальной длины. Найти потенциальную энергию П растянутого стержня.
4.60. Стержень из стали длиной l=2 м и площадью поперечного сечения S=2 см2 растягивается некоторой силой, причем удлинение х равно 0,4 см. Вычислить потенциальную энергию П растянутого стержня и объемную плотность ω энергии.
4.61. Стальной стержень длиной l=2 м и площадью поперечного сечения S=2 см2 растягивается силой F=10 кН. Найти потенциальную энергию П растянутого стержня и объемную плотность ω энергии.
4.62. Две пружину, жесткости которых k1=1 кН/м и k2=3 кН/м, скреплены параллельно. Определить потенциальную энергию П данной системы при абсолютной деформации x=5 см.
4.63. С какой скоростью υ вылетит из пружинного пистолета шарик массой m=10 г, если пружина была сжата на x=5 см. Жесткость k пружины равна 200 Н/м?

4.64. В пружинном ружье пружина сжата на x1=20 см. При взводе ее сжали еще на х2=30 см. С какой скоростью υ вылетит из ружья стрела массой m=50 г, если жесткость k пружины равна 120 Н/м?
4.65. Вагон массой m=12 г двигался со скоростью υ=1м/с. Налетев на пружинный буфер, он остановился, сжав пружину буфера на x=10 см. Найти жесткость k пружины.
4.66. Стальной стержень растянут так, что напряжение в материале стержня σ=300 МПа, Найти объемную плотность ω потенциальной энергии растянутого стержня.
Рис. 4.10
4.67. Стержень из стали имеет длину l=2 м и площадь
поперечного сечения S=10 мм2. Верхний конец стержня закреплен неподвижно, к нижнему прикреплен упор. На стержень надет просверленный посередине груз массой m=10 кг (рис. 4.10). Груз падает с высоты h=10 см и задерживается упором. Найти: 1) удлинение х стержня при ударе груза; 2) нормальное напряжение σ, возникающее при этом в материале стержня.
 
MassimoДата: Понедельник, 18.11.2013, 15:02 | Сообщение # 3
Полковник
Группа: Администраторы
Сообщений: 183
Репутация: 0
Статус: Offline
Релятивистское изменение длин и интервалов времени
5.1. Предположим, что мы можем измерить длину стержня с точностью Δl=0,1 мкм. При какой относительной скорости и двух инерциальных систем отсчета можно было бы обнаружить релятивистское сокращение длины стержня, собственная длина l0 которого равна 1 м?
5.2. Двое часов после синхронизации были помещены в системы координат К и К', движущиеся друг относительно друга. При какой скорости и их относительного движения возможно обнаружить релятивистское замедление хода часов, если собственная длительность τ0 измеряемого промежутка времени составляет 1 с? Измерение времени производится с точностью Δτ=10 пс.
5.3. На космическом кораблеспутнике находятся часы, синхронизированные до полета с земными. Скорость υ0 спутника составляет 7,9 км/с. На сколько отстанут часы на спутнике по измерениям земного наблюдателя по своим часам за время τ0=0,5 года?
5.4. Фотонная ракета движется относительно Земли со скоростью υ=0,6 с. Во сколько раз замедлится ход времени в ракете с точки зрения земного наблюдателя?
5.5. В системе К' покоится стержень, собственная длина l0 которого равна 1 м. Стержень расположен так, что составляет угол φ0=45° с осью x'. Определить длину l стержня и угол φ в системе K, если скорость υ о системы K' относительно К равна 0,8 с.
5.6. В системе К находится квадрат, сторона которого параллельна оси х'. Определить угол φ между его диагоналями в системе К, если система К' движется относительно К со скоростью υ=0,95 с.
5.7. В лабораторной системе отсчета (Kсистема) пимезон с момента рождения до момента распада пролетел расстояние l=75 м. Скорость υ пимезона равна 0,995 с. Определить собственное время жизни τ0 мезона.
5.8. Собственное время жизни τ0 мюмезона равно 2 мкс. От точки рождения до точки распада в лабораторной системе отсчета мюмезон пролетел расстояние l=6 км. С какой скоростью υ (в долях скорости света) двигался мезон?
Релятивистское сложение скоростей
5.9. Показать, что формула сложения скоростей релятивистских частиц переходит в соответствующую формулу классической механики при υ <<C.
5.10. Две релятивистские частицы движутся в лабораторной системе отсчета со скоростями υ1=0,6 с и υ2=0,9 с вдоль одной прямой. Определить их относительную скорость u21 в двух случаях: 1) частицы движутся в одном направлении; 2) частицы движутся в противоположных направлениях.
5.11. В лабораторной системе отсчета удаляются друг от друга две частицы с одинаковыми по модулю скоростями. Их относительная скорость u в той же системе отсчета равна 0,5 с. Определить скорости частиц.
5.12. Ион, вылетев из ускорителя, испустил фотон в направлении своего движения. Определить скорость фотона относительно ускорителя, если скорость υ иона относительно ускорителя равна 0,8 с.
5.13. Ускоритель сообщил радиоактивному ядру скорость υ1= =0,4 с. В момент вылета из ускорителя ядро выбросило в направлении своего движения βчастицу со скоростью υ2=0,75 с относительно ускорителя. Найти скорость u21 частицы относительно ядра.
5.14. Два ускорителя выбрасывают навстречу друг другу частицы со скоростями |υ|=0,9 с. Определить относительную скорость и21 сближения частиц в системе отсчета, движущейся вместе с одной из частиц.
Релятивистская масса и релятивистский импульс
5.15. Частица движется со скоростью υ=0,5 с. Во сколько раз релятивистская масса частицы больше массы покоя?
5.16. С какой скоростью υ движется частица, если ее релятивистская масса в три раза больше массы покоя?
5.17. Отношение заряда движущегося электрона к его массе, определенное из опыта, равно 0,881011 Кл/кг. Определить релятивистскую массу т электрона и его скорость υ.
5.18. На сколько процентов релятивистская масса частицы больше массы покоя при скорости υ=30 Мм/с?
5.19. Показать, что выражение релятивистского импульса переходит в соответствующее выражение импульса в классической механике при υ<<c.
5.20. Электрон движется со скоростью υ=0,6 с. Определить релятивистский импульс р электрона.
5.21. Импульс р релятивистской частицы равен т0с (т0 — масса покоя). Определить скорость υ частицы (в долях скорости света).
5.22. В лабораторной системе отсчета одна из двух одинаковых частиц покоится, другая движется со скоростью υ=0,8 с по направлению к покоящейся частице. Определить: 1) релятивистскую массу движущейся частицы в лабораторной системе отсчета; 2) скорость частиц в системе отсчета, связанной с центром инерции системы; 3) релятивистскую массу частиц в системе отсчета, связанной с центром инерции.
5.23. В лабораторной системе отсчета находятся две частицы. Одна частица с массой покоя т0 движется со скоростью υ=0,6 с, другая с массой покоя 2т0 покоится. Определить скорость Vc центра масс системы частиц.
Взаимосвязь массы и энергии *
5.24. Полная энергия тела возросла на ΔE=1 Дж. На сколько при этом изменится масса тела?
5.25. Определить, на сколько должна увеличиться полная энергия тела, чтобы его релятивистская масса возросла на Δm=1 г?
5.26. Вычислить энергию покоя: 1) электрона; 2) протона; 3) αчастицы. Ответ выразить в джоулях и мегаэлектронвольтах.
5.27. Известно, что объем воды в океане равен 1,37·109 км3. Определить, на сколько возрастет масса воды в океане, если температура воды повысится на Δt=1 °С. Плотность р воды в океане принять равной 1,03·103 кг/м3.
5.28. Солнечная постоянная С (плотность потока энергии электромагнитного излучения Солнца на расстоянии, равном среднему расстоянию от Земли до Солнца) равна 1,4 кВт/м2. 1. Определить массу, которую теряет Солнце в течение одного года. 2. На сколько изменится масса воды в океане за один год, если предположить, что поглощается 50 % падающей на поверхность океана энергии излучения? При расчетах принять площадь S поверхности океана равной 3,6·108 км2.
Кинетическая энергия релятивистской частицы
5.29. Кинетическая энергия Т электрона равна 10 МэВ. Во сколько раз его релятивистская масса больше массы покоя? Сделать такой же подсчет для протона.
5.30. Во сколько раз релятивистская масса протона больше релятивистской массы электрона, если обе частицы имеют одинаковую кинетическую энергию Т= 1 ГэВ?
5.31. Электрон летит со скоростью υ=0,8 с. Определить кинетическую энергию Т электрона (в мегаэлектронвольтах).
5.32. При какой скорости υ кинетическая энергия любой частицы вещества равна ее энергии покоя?
5.33. Определить скорость VE электрона, если его кинетическая энергия равна: 1) Т=4 МэВ; 2) T=1 кэВ.
5.34. Найти скорость V протона, если его кинетическая энергия равна: 1) T=1 МэВ; 2) T=1 ГэВ.
* Задачи на эту тему, в условиях которых речь идет о ядерных превращениях, помещены в § 43.
5.35. Показать, что релятивистское выражение кинетической энергии при υ<<c переходит в соответствующее выра жение классической механики.
5.36. Какая относительная ошибка будет допущена при вычислении кинетической энергии релятивистской частицы, если вместо релятивистского выражения воспользоваться классическим ? Вычисления выполнить для двух случаев: 1) υ=
=0,2 с; 2) υ=0,8 с.
5.37. Две релятивистские частицы движутся навстречу друг другу с одинаковыми (в лабораторной системе отсчета) кинетическими энергиями, равными их энергии покоя. Определить: 1) скорости частиц в лабораторной системе отсчета; 2) относительную скорость сближения частиц (в единицах с); 3) кинетическую энергию (в единицах т0с2) одной из частиц в системе отсчета, связанной с другой частицей. Связь энергии релятивистской частицы с ее импульсом
5.38. Показать, что выражение релятивистского импульса через кинетическую энергию при переходит в соответствующее выражение классической механики.
5.39. Определить импульс р частицы (в единицах m0с), если ее кинетическая энергия равна энергии покоя.
5.40. Определить кинетическую энергию Т релятивистской частицы (в единицах ), если ее импульс
5.41. Кинетическая энергия релятивистской частицы равна ее энергии покоя. Во сколько раз возрастет импульс частицы, если ее кинетическая энергия увеличится в n=4 раза?
5.42. Импульс р релятивистской частицы равен . Под действием внешней силы импульс частицы увеличился в два раза. Во сколько раз возрастет при этом энергия частицы: 1) кинетическая? 2) полная?
5.43. При неупругом столкновении частицы, обладающей импульсом , и такой же покоящейся частицы образуется составная частица. Определить: 1) скорость υ частицы (в единицах с) до столкновения; 2) релятивистскую массу составной частицы (в единицах т0); 3) скорость составной частицы; 4) массу покоя составной частицы (в единицах m0);
5) кинетическую энергию частицы до столкновения и кинетическую энергию составной частицы (в единицах т0с2).
5.44. Частица с кинетической энергией налетает на другую такую же частицу, которая в лабораторной системе отсчета покоится. Найти суммарную кинетическую энергию Т' частиц в системе отсчета, связанной с центром инерции системы частиц.

Кинематика гармонических колебаний
6.1. Уравнение колебаний точки имеет вид , где ω=π с1, τ=0,2 с. Определить период Т и начальную фазу φ колебаний.
6.2. Определить период Т, частоту v и начальную фазу φ колебаний, заданных уравнением , где ω=2,5π с1, τ=0,4 с.
6.3. Точка совершает колебания по закону , где A=4 см. Определить начальную фазу φ, если: 1) х(0)=2 см и ; 2) х(0) = см и ; 3) х(0)=2см и ; 4) х(0)= и . Построить векторную диаграмму для момента t=0.
6.4. Точка совершает колебания .по закону , где A=4 см. Определить начальную фазу φ, если: 1) х(0)=2 см и ; 2) x(0)= см и ; 3) х(0)= см и ; 4) x(0)= см и . Построить векторную диаграмму для момента t=0.
6.5. Точка совершает колебания по закону , где A=2 см; ; φ= π/4 рад. Построить графики зависимости от времени: 1) смещения x(t); 2) скорости ; 3) ускорения 6.6. Точка совершает колебания с амплитудой A=4 см и периодом Т=2 с. Написать уравнение этих колебаний, считая, что в момент t=0 смещения x(0)=0 и . Определить фазу для двух моментов времени: 1) когда смещение х=1 см и ; 2) когда скорость = —6 см/с и x<0.
6.7. Точка равномерно движется по окружности против часовой стрелки с периодом Т=6 с. Диаметр d окружности равен 20 см. Написать уравнение движения проекции точки на ось х, проходящую через центр окружности, если в момент времени, принятый за начальный, проекция на ось х равна нулю. Найти смещение х, скорость и ускорение проекции точки в момент t=1 с.
6.8. Определить максимальные значения скорости и ускорения точки, совершающей гармонические колебания с амплитудой А=3 см и угловой частотой
6.9. Точка совершает колебания по закону , где А = =5 см; . Определить ускорение точки в момент времени, когда ее скорость =8 см/с.
6.10. Точка совершает гармонические колебания. Наибольшее смещение xmах точки равно 10 см, наибольшая скорость =20 см/с. Найти угловую частоту ω колебаний и максимальное ускорение точки.
6.11. Максимальная скорость точки, совершающей гармонические колебания, равна10см/с, максимальное ускорение =
= 100 см/с2. Найти угловую частоту ω колебаний, их период Т и амплитуду А. Написать уравнение колебаний, приняв начальную фазу равной нулю.
6.12. Точка совершает колебания по закону . В некоторый момент времени смещение х1 точки оказалось равным 5 см. Когда фаза колебаний увеличилась вдвое, смещение х, стало равным 8 см. Найти амплитуду А колебаний.
6.13. Колебания точки происходят по закону .
В некоторый момент времени смещение х точки равно 5 см, ее скорость = 20 см/с и ускорение =—80 см/с2. Найти амплитуду A, угловую частоту ω, период Т колебаний и фазу в рассматриваемый момент времени.
Сложение колебаний
6.14. Два одинаково направленных гармонических колебания одного периода с амплитудами A1=10 см и A2=6 см складываются в одно колебание с амплитудой А=14 см. Найти разность фаз складываемых колебаний.
6.15. Два гармонических колебания, направленных по одной прямой и имеющих одинаковые амплитуды и периоды, складываются в одно колебание той же амплитуды. Найти разность фаз складываемых колебаний.
6.16. Определить амплитуду А и начальную фазу ф результирующего колебания, возникающего при сложении двух колебаний одинаковых направления и периода: и , где A1=A2=1 см; ω=π с1; τ=0,5 с. Найти уравнение результирующего колебания.
6.17. Точка участвует в двух одинаково направленных колебаниях: и , где А1=1 см; A2=2 см; ω== 1 с1. Определить амплитуду А результирующего колебания,
его частоту v и начальную фазу φ. Найти уравнение этого движения.
6.18. Складываются два гармонических колебания одного на
правления с одинаковыми периодами T1=T2=1,5 с и амплитудами
А1=А2=2 см. Начальные фазы колебаний и . Определить амплитуду А и начальную фазу φ результирующего колебания. Найти его уравнение и построить с соблюдением масштаба векторную диаграмму сложения амплитуд.
6.19. Складываются три гармонических колебания одного направления с одинаковыми периодами Т1=Т2=Т3=2 с и амплитудами A1=A2=A3=3 см. Начальные фазы колебаний φ1=0, φ2=π/3, φ3=2π/3. Построить векторную диаграмму сложения амплитуд. Определить из чертежа амплитуду А и начальную фазу φ результирующего колебания. Найти его уравнение.
6.20. Складываются два гармонических колебания одинаковой частоты и одинакового направления: и x2=
= . Начертить векторную диаграмму для момента времени t=0. Определить аналитически амплитуду А и начальную
фазу φ результирующего колебания. Отложить A и φ на векторной диаграмме. Найти уравнение результирующего колебания (в тригонометрической форме через косинус). Задачу решить для двух случаев: 1) А1=1 см, φ1=π/3; A2=2 см, φ2=5π/6; 2) А1=1 см, φ1=2π/3; A2=1 см, φ2=7π/6.
6.21. Два камертона звучат одновременно. Частоты ν1 и ν2 их колебаний соответственно равны 440 и 440,5 Гц. Определить период Т биений.
6.22. Складываются два взаимно перпендикулярных колебания, выражаемых уравнениями и , где А1=2 см, A2=1 см, , τ=0,5 с. Найти уравнение траектории и построить ее, показав направление движения точки.
6.23. Точка совершает одновременно два гармонических колебания, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями и ,
где А1=4 см, A1=8 см, , τ=1 с. Найти уравнение траектории точки и построить график ее движения.
6.24. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями: 1) и
Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А=2 см, A1=3 см, А2=1 см; φ1=π/2, φ2=π.
6.25. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями и
, где A1=2 см, A2=1 см. Найти уравнение траектории точки и построить ее, указав направление движения.
6.26. Точка одновременно совершает два гармонических колебания, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями и , где А1= =0,5 см; A2=2 см. Найти уравнение траектории точки и построить
ее, указав направление движения.
6.27. Движение точки задано уравнениями и у= = , где A1=10 см, A2=5 см, ω=2 с1, τ=π/4 с. Найти уравнение траектории и скорости точки в момент времени t=0,5 с.
6.28. Материальная точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями и , где A1=2 см, A2=1 см. Найти уравнение траектории и построить ее.
6.29. Точка участвует одновременно в двух гармонических колебаниях, происходящих по взаимно перпендикулярным направлениям описываемых уравнениями: 1) и Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A=2 см; A1=З см.
6.30. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями и
y=A2 sin 0,5ωt, где A1=2 см, A2=3 см. Найти уравнение траектории точки и построить ее, указав направление движения.
6.31. Смещение светящейся точки на экране осциллографа является результатом сложения двух взаимно перпендикулярных колебаний, которые описываются уравнениями: 1) х=А sin 3ωt и у=A sin 2ωt; 2) х=А sin 3ωt и y=A cos 2ωt; 3) х=А sin 3ωt и y=A cos ωt. Применяя графический метод сложения и соблюдая масштаб, построить траекторию светящейся точки на экране. Принять А=4 см.
Динамика гармонических колебаний. Маятники
6.32. Материальная точка массой т=50 г совершает колебания, уравнение которых имеет вид х=А cos ωt, где А = 10 см, ω=5 с1. Найти силу F, действующую на точку, в двух случаях: 1) в момент, когда фаза ωt=π/3; 2) в положении наибольшего смещения точки.
6.33. Колебания материальной точки массой т=0,1 г происходят согласно уравнению х=A cos ωt, где A=5 см; ω=20 с1. Определить максимальные значения возвращающей силы Fmax и кинетической энергии Тmах.
6.34. Найти возвращающую силу F в момент t=1 с и полную энергию Е материальной точки, совершающей колебания по закону х=А cos ωt, где А = 20 см; ω=2π/3 с1. Масса т материальной точки равна 10 г.
6.35. Колебания материальной точки происходят согласно уравнению х=A cos ωt, где A=8 см, ω=π/6 с1. В момент, когда возвращающая сила F в первый раз достигла значения —5 мН, потенциальная энергия П точки стала равной 100 мкДж. Найти этот момент времени t и соответствующую ему фазу ωt.
6.36. Грузик массой m=250 г, подвешенный к пружине, колеблется по вертикали с периодом Т=1 с. Определить жесткость k пружины.
6.37. К спиральной пружине подвесили грузик, в результате чего пружина растянулась на х=9 см. Каков будет период Т колебаний грузика, если его немного оттянуть вниз и затем отпустить?
6.38. Гиря, подвешенная к пружине, колеблется по вертикали с амплитудой A =4 см. Определить полную энергию Е колебаний гири, если жесткость k пружины равна 1 кН/м.
6.39. Найти отношение длин двух математических маятников, если отношение периодов их колебаний равно 1,5.
6.40. Математический маятник длиной l=1 м установлен в лифте. Лифт поднимается с ускорением а=2,5 м/с2. Определить период Т колебаний маятника.
6.41. На концах тонкого стержня длиной l=30 см укреплены одинаковые грузики по одному на каждом конце. Стержень с грузиками колеблется около горизонтальной оси, проходящей через точку, удаленную на d=10 см от одного из концов стержня. Определить приведенную длину L и период Т колебаний такого физического маятника. Массой стержня пренебречь.
6.42. На стержне длиной l=30 см укреплены два одинаковых грузика: один — в середине стержня, другой — на одном из его концов. Стержень с грузиком колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину L и период Т колебаний такой системы. Массой стержня пренебречь.
6.43. Система из трех грузов, соединенных стержнями длиной l=30 см (рис. 6.6), колеблется относительно горизонтальной оси, проходящей через точку О перпендикулярно плоскости чертежа. Найти период Т колебаний системы. Массами стержней пренебречь, грузы рассматривать как материальные точки.
6.44. Тонкий обруч, повешенный на гвоздь, вбитый горизонтально в стену, колеблется в плоскости, параллельной стене. Радиус R обруча равен 30 см. Вычислить период Т колебаний обруча.
6.45. Однородный диск радиусом R=30 см колеблется около горизонтальной оси, проходящей через одну из образующих цилиндрической поверхности диска. Каков период Т его колебаний?
6.46. Диск радиусом R=24 см колеблется около горизонтальной оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. Определить приведенную длину L и период Т колебаний такого маятника.
6.47. Из тонкого однородного диска радиусом R=20 см вырезана часть, имеющая вид круга радиусом r=10 см, так, как это показано на рис. 6.7. Оставшаяся часть диска колеблется относительно горизонтальной оси О, совпадающей с одной из образующих цилиндрической поверхности диска. Найти период Т колебаний такого маятника.
6.48. Математический маятник длиной l1=40 см и физический маятник в виде тонкого прямого стержня длиной l2=60 см синхронно колеблются около одной и той же горизонтальной оси. Определить расстояние а центра масс стержня от оси колебаний.
6.49. Физический маятник в виде тонкого прямого стержня длиной l=120 см колеблется около горизонтальной оси, проходящей перпендикулярно стержню через точку, удаленную на некоторое расстояние а от центра масс стержня. При каком значении а период Т колебаний имеет наименьшее значение?
6.50. Физический маятник представляет собой тонкий однородный стержень массой т с укрепленным на нем маленьким шариком массой т. Маятник совершает колебания около горизонтальной оси, проходящей через точку О на стержне. Определить период Т гармонических колебаний маятника для случаев а, б, в, г, изображенных на рис. 6.8. Длина l стержня равна 1 м. Шарик рассматривать как материальную точку.
6.51. Физический маятник представляет собой тонкий однородный стержень массой т с укрепленными на нем двумя маленькими шариками массами т и 2т. Маятник совершает колебания около горизонтальной оси, проходящей через точку О на стержне. Определить частоту ν гармонических колебаний маятника для случаев а, б, в, г, изображенных на рис. 6.9. Длина l стержня равна 1 м. Шарики рассматривать как материальные точки.
6.52. Тело массой т=4 кг, закрепленное на горизонтальной оси, совершало колебания с периодом T1=0,8 с. Когда на эту ось был насажен диск так, что его ось совпала с осью колебаний тела, период T2 колебаний стал равным 1,2 с. Радиус R диска равен 20 см, масса его равна массе тела. Найти момент инерции J тела относительно оси колебаний.
6.53. Ареометр массой т=50 г, имеющий трубку диаметром d= 1 см, плавает в воде. Ареометр немного погрузили в воду и затем предоставили самому себе, в результате чего он стал совершать гармонические колебания. Найти период Т этих колебаний.
6.54. В открытую с обоих концов Uобразную трубку с площадью поперечного сечения S=0,4 см2 быстро вливают ртуть массой т=200 г. Определить период Т колебаний ртути в трубке.
6.55. Набухшее бревно, сечение которого постоянно по всей длине, погрузилось вертикально в воду так, что над водой находится лишь малая (по сравнению с длиной) его часть. Период Т колебаний бревна равен 5 с. Определить длину l бревна.

Затухающие колебания
6.56. Амплитуда затухающих колебаний маятника за время t1=5 мин уменьшилась в два раза. За какое время t2, считая от начального момента, амплитуда уменьшится в восемь раз?
6.57. За время t=8 мин амплитуда затухающих колебаний маятника уменьшилась в три раза. Определить коэффициент затухания δ.
6.58. Амплитуда колебаний маятника длиной l=1 м за время t=10 мин уменьшилась в два раза. Определить логарифмический декремент колебаний Θ.
6.59. Логарифмический декремент колебаний Θ маятника равен 0,003. Определить число N полных колебаний, которые должен сделать маятник, чтобы амплитуда уменьшилась в два раза.
6.60. Гиря массой т=500 г подвешена к спиральной пружине жесткостью k=20 Н/м и совершает упругие колебания в некоторой среде. Логарифмический декремент колебаний Θ=0,004. Определить число N полных колебаний, которые должна совершить гиря, чтобы амплитуда колебаний уменьшилась в n=2 раза. За какое время t произойдет это уменьшение?
6.61. Тело массой т=5 г совершает затухающие колебания. В течение времени t=50 с тело потеряло 60 % своей энергии. Определить коэффициент сопротивления b.
6.62. Определить период Т затухающих колебаний, если период Т0 собственных колебаний системы равен 1 с и логарифмический декремент колебаний Θ=0,628.
6.63. Найти число N полных колебаний системы, в течение которых энергия системы уменьшилась в n=2 раза. Логарифмический декремент колебаний Θ=0,01.
6.64. Тело массой т=1 кг находится в вязкой среде с коэффициентом сопротивления b=0,05 кг/с. С помощью двух одинаковых пружин жесткостью k=50 Н/м каждое тело удерживается в положении равновесия, пружины при этом не деформированы (рис. 6.10). Тело сместили от положения равновесия и
отпустили. Определить: 1) коэффициент затухания δ; 2) частоту ν колебаний; 3) логарифмический декремент колебаний Θ; 4) число N колебаний, по прошествии которых амплитуда уменьшится в е раз.

Вынужденные колебания. Резонанс
6.65. Под действием силы тяжести электродвигателя консольная балка, на которой он установлен, прогнулась на h=1 мм. При какой частоте вращения п якоря электродвигателя может возникнуть опасность резонанса?
6.66. Вагон массой т=80 т имеет четыре рессоры. Жесткость k
пружин каждой рессоры равна 500 кН/м. При какой скорости υ вагон начнет сильно раскачиваться вследствие толчков на стыках рельс, если длина l рельса равна 12,8 м?
6.67. Колебательная система совершает затухающие колебания с частотой ν=1000 Гц. Определить частоту ν0 собственных колебаний, если резонансная частота νpeз=998 Гц.
6.68. Определить, на сколько резонансная частота отличается от частоты ν0=l кГц собственных колебаний системы, характеризуемой коэффициентом затухания δ=400 с1.
6.69. Определить логарифмический декремент колебаний Θ колебательной системы, для которой резонанс наблюдается при частоте, меньшей собственной частоты ν0=10 кГц на Δν=2 Гц.
6.70. Период Т0 собственных колебаний пружинного маятника равен 0,55 с. В вязкой среде период Т того же маятника стал равным 0,56 с. Определить резонансную частоту ν peз колебаний.
6.71. Пружинный маятник (жесткость k пружины равна 10 Н/м, масса т груза равна 100 г) совершает вынужденные колебания в вязкой среде с коэффициентом сопротивления r=2·102 кг/с. Определить коэффициент затухания δ и резонансную амплитуду Aрез, если амплитудное значение вынуждающей силы F0=10 мН.
6.72. Тело совершает вынужденные колебания в среде с коэффициентом сопротивления r=1 г/с. Считая затухание малым, определить амплитудное значение вынуждающей силы, если резонансная амплитуда Aрез=0,5 см и частота ν 0 собственных колебаний равна 10 Гц.
6.73. Амплитуды вынужденных гармонических колебаний при частоте ν1=400 Гц и ν2=600 Гц равны между собой. Определить резонансную частоту νpeз. Затуханием пренебречь.
6.74. К спиральной пружине жесткостью k=10 Н/м подвесили грузик массой т=10 г и погрузили всю систему в вязкую среду. Приняв коэффициент сопротивления b равным 0,1 кг/с, определить: 1) частоту ν0 собственных колебаний; 2) резонансную частоту νpeз; 3) резонансную амплитуду Aрез, если вынуждающая сила изменяется по гармоническому закону и ее амплитудное значение F0= =0,02 Н; 4) отношение резонансной амплитуды к статическому смещению под действием силы F0.
6.75. Во сколько раз амплитуда вынужденных колебаний будет меньше резонансной амплитуды, если частота изменения вынуждающей силы будет больше резонансной частоты: 1) на 10 %? 2) в два раза? Коэффициент затухания δ в обоих случаях принять равным 0,1 ω0 (ω 0 — угловая частота собственных колебаний).
 
MassimoДата: Понедельник, 18.11.2013, 15:03 | Сообщение # 4
Полковник
Группа: Администраторы
Сообщений: 183
Репутация: 0
Статус: Offline
Уравнение плоской волны
7.1. Задано уравнение плоской волны х,t)=Acos(t—kx), где A=0,5 см, (=628c-1,k=2 м-1. Определить: 1) частоту колебаний v и длину волны  2) фазовую скорость ; 3) максимальные значения скорости max и ускорения max колебаний частиц среды.
7.2. Показать, что выражение х,t)=Acos(t—kx) удовлетворяет волновому уравнению при условии, что k.
7.3. Плоская звуковая волна возбуждается источником колебаний частоты v=200 Гц. Амплитуда А колебаний источника равна 4 мм. Написать уравнение колебаний источника 0,t), если в начальный момент смещение точек источника максимально. Найти смещение х,t) точек среды, находящихся на расстоянии x=100 см от источника, в момент t=0,1 с. Скорость  звуковой волны принять равной 300 м/с. Затуханием пренебречь.
7.4. Звуковые колебания, имеющие частоту v=0,5 кГц и амплитуду A=0,25 мм, распространяются в упругой среде. Длина волны =70 см. Найти: 1) скорость  распространения волн; 2) максимальную скорость max частиц среды.
7.5. Плоская звуковая волна имеет период Т=3 мс, амплитуду A=0,2 мм и длину волны =1,2 м. Для точек среды, удаленных от источника колебаний на расстояние х=2 м, найти: 1) смещение х,t) в момент t=7 мс; 2) скорость и ускорение для того же момента времени. Начальную фазу колебаний принять равной нулю.
7.6. От источника колебаний распространяется волна вдоль прямой линии. Амплитуда A колебаний равна 10 см. Как велико смещение точки, удаленной от источника на х=¾, в момент, когда от начала колебаний прошло время t=0,9 Т?
7.7. Волна с периодом Т=1,2с и амплитудой колебаний A=2 см распространяется со скоростью =15 м/с. Чему равно смещение х,t) точки, находящейся на расстоянии x=45 м от источника волн, в тот момент, когда от начала колебаний источника прошло время t=4 с?
7.8. Две точки находятся на расстоянии х=50 см друг от друга на прямой, вдоль которой распространяется волна со скоростью =50 м/с. Период Т колебаний равен 0,05 с. Найти разность фаз  колебаний в этих точках.
7.9. Определить разность фаз  колебаний источника волн, находящегося в упругой среде, и точки этой среды, отстоящей на х=2 м от источника. Частота v колебаний равна 5 Гц; волны распространяются со скоростью =40 м/с.
7.10. Волна распространяется в упругой среде со скоростью =100 м/с Наименьшее расстояние х между точками среды, фазы колебаний которых противоположны, равно 1 м. Определить частоту v колебаний.
7.11. Определить скорость  распространения волны в упругой среде, если разность фаз  колебаний двух точек среды, отстоящих друг от друга на х=10 см, равна /3. Частота v колебаний равна 25 Гц.

Скорость звука *
7.12. Найти скорость  распространения продольных упругих колебаний в следующих металлах: 1) алюминии; 2) меди; 3) вольфраме.
7.13. Определить максимальное и минимальное значения длины  звуковых волн, воспринимаемых человеческим ухом, соответствующие граничным частотам v1=16 Гц и v2=20 кГц. Скорость звука принять равной 340 м/с.
7.14. Определить скорость  звука в азоте при температуре Т=300 К.
7.15. Найти скорость  звука в воздухе при температурах T1=290 К и Т2=350 К.
7.16. Наблюдатель, находящийся на расстоянии l=800 м от источника звука, слышит звук, пришедший по воздуху, на t=1,78 с позднее, чем звук, пришедший по воде. Найти скорость  звука в воде, если температура Т воздуха равна 350 К.
7.17. Скорость  звука в некотором газе при нормальных условиях равна 308 м/с. Плотность  газа равна 1,78 кг/м3. Определить отношение Сp/Сv для данного газа.
7.18. Найти отношение скоростей 1/2 звука в водороде и углекислом газе при одинаковой температуре газов.
7.19. Температура Т воздуха у поверхности Земли равна 300 К; при увеличении высоты она понижается на T=7 мК на каждый метр высоты. За какое время звук, распространяясь, достигнет высоты h=8 км?
Суперпозиция волн
7.20. Имеются два источника, совершающие колебания в одинаковой фазе и возбуждающие в окружающей среде плоские волны одинаковой частоты и амплитуды (A1=A2=1 мм). Найти амплитуду А колебаний точки среды, отстоящей от одного источника колебаний на расстоянии x1=3,5 м и от другого — на x2=5,4 м. Направления колебаний в рассматриваемой точке совпадают. Длина волны =0,6 м.

* В задачах, где в условии не указана скорость звука и не заданы величины, по которым ее можно вычислить, значение скорости следует брать из табл. 16.
7.21. Стоячая волна образуется при наложении бегущей волны и волны, отраженной от границы раздела сред, перпендикулярной направлению распространения волны. Найти положения (расстояния от границы раздела сред) узлов и пучностей стоячей волны, если отражение происходит: 1) от среды менее плотной; 2) от среды более плотной. Скорость  распространения звуковых колебаний равна 340 м/с и частота v=3,4 кГц.
7.22. Определить длину  бегущей волны, если в стоячей волне расстояние l между: 1) первой и седьмой пучностями равно 15 см; 2) первым и четвертым узлом равно 15 cм
7.23. В трубе длиной l=1,2 м находится воздух при температуре T=300 К. Определить минимальную частоту vmin возможных колебаний воздушного столба в двух случаях: 1) труба открыта; 2) труба закрыта.
7.24. Широкая трубка, закрытая снизу и расположенная вертикально, наполнена до краев водой. Над верхним отверстием трубки помещен звучащий камертон, частота v колебаний которого равна 440 Гц. Через кран, находящийся внизу, воду медленно выпускают. Когда уровень воды в трубке понижается на H=19,5 см, звук камертона усиливается. Определить скорость  звука в условиях опыта.
Рис. 7.4

7.25. Один из способов измерения скорости звука состоит в следующем. В широкой трубке A может перемещаться поршень В. Перед открытым концом трубки A, соединенным с помощью резиновой трубки с ухом наблюдателя, расположен звучащий камертон К. (рис. 7.4.). Отодвигая поршень В от конца трубки A, наблюдатель отмечает ряд следующих друг за другом увеличении и уменьшении громкости звука. Найти скорость  звука в воздухе, если при частоте колебаний v=440 Гц двум последовательным усилениям интенсивности звука соответствует расстояние l между положениями поршня, равное 0,375 м.

7.26. На рис. 7.5 изображен прибор, служащий для определения скорости звука в твердых телах и газах. В латунном стержне А, зажатом посередине, возбуждаются колебания. При определенном положении легкого кружочка
Рис. 7.5
В, закрепленного на конце стержня, пробковый порошок, находящийся в трубке С, расположится в виде небольших кучек на равных расстояниях. Найти скорость  звука в латуни, если расстояние и между кучками оказалось равным 8,5 см. Длина стержня l=0,8 м.
7.27. Стальной стержень длиной l=1 м, закрепленный посередине, натирают суконкой, посыпанной канифолью. Определить частоту v возникающих при этом собственных продольных колебаний стержня. Скорость  продольных волн в стали вычислить.
Эффект Доплера *
7.28. Поезд проходит мимо станции со скоростью u=40 м/с. Частота v0 тона гудка электровоза равна 300 Гц. Определить кажущуюся частоту v тона для человека, стоящего на платформе, в двух случаях: 1) поезд приближается; 2) поезд удаляется.
7.29. Мимо неподвижного электровоза, гудок которого дает сигнал частотой v0=300 Гц, проезжает поезд со скоростью и=40 м/с. Какова кажущаяся частота v тона для пассажира, когда поезд приближается к электровозу? когда удаляется от него?
7.30. Мимо железнодорожной платформы проходит электропоезд. Наблюдатель, стоящий на платформе, слышит звук сирены поезда. Когда поезд приближается, кажущаяся частота звука v1=1100 Гц; когда удаляется, кажущаяся частота v2=900 Гц. Найти скорость и электровоза и частоту v0 звука, издаваемого сиреной.
7.31. Когда поезд проходит мимо неподвижного наблюдателя, высота тона звукового сигнала меняется скачком. Определить относительное изменение частоты v/v, если скорость и поезда равна 54 км/ч.
7.32. Резонатор и источник звука частотой v0=8 кГц расположены на одной прямой. Резонатор настроен на длину волны =4,2 см и установлен неподвижно. Источник звука может перемещаться по направляющим вдоль прямой. С какой скоростью u и в каком направлении должен двигаться источник звука, чтобы возбуждаемые им звуковые волны вызвали колебания резонатора?
7.33. Поезд движется со скоростью u=120 км/ч. Он дает свисток длительностью 0=5 с. Какова будет кажущаяся продолжительность  свистка для неподвижного наблюдателя, если: 1) поезд приближается к нему; 2) удаляется? Принять скорость звука равной 348 м/с.

* См. сноску на с. 108
7.34. Скорый поезд приближается к стоящему на путях электропоезду со скоростью и=72 км/ч. Электропоезд подает звуковой сигнал частотой v0=0,6 кГц. Определить кажущуюся частоту v звукового сигнала, воспринимаемого машинистом скорого поезда.
7.35. На шоссе сближаются две автомашины со скоростями u1=30 м/с и u2=20 м/с. Первая из них подает звуковой сигнал частотой v1=600 Гц. Найти кажущуюся частоту v2 звука, воспринимаемого водителем второй автомашины, в двух случаях: 1) до встречи; 2) после встречи. Изменится ли ответ (если изменится, то как) в случае подачи сигнала второй машиной?
7.36, Узкий пучок ультразвуковых волн частотой v0=50 кГц направлен от неподвижного локатора к приближающейся подводной лодке. Определить скорость и подводной лодки, если частота v1 биений (разность частот колебаний источника и сигнала, отраженного от лодки) равна 250 Гц. Скорость  ультразвука в морской воде принять равной 1,5 км/с.
Энергия звуковых волн *
7.37. По цилиндрической трубе диаметром d=20 см и длиной l=5 м, заполненной сухим воздухом, распространяется звуковая волна средней за период интенсивностью I=50 мВт/м2. Найти энергию W звукового поля, заключенного в трубе. 7.38. Интенсивность звука 1=1 Вт/м2. Определить среднюю объемную плотность <> энергии звуковой волны, если звук распространяется в сухом воздухе при нормальных условиях. 7.39. Мощность N изотропного точечного источника звуковых волн равна 10 Вт. Какова средняя объемная плотность <> энергии на расстоянии г=10 м от источника волн? Температуру Т воздуха принять равной 250 К. 7.40. Найти мощность N точечного изотропного источника звука, если на расстоянии r=25 м от него интенсивность I звука равна 20 мВт/м2. Какова средняя объемная плотность <> энергии на этом расстоянии? Звуковое давление. Акустическое сопротивление *
7.41. Определить удельное акустическое сопротивление Zs воздуха при нормальных условиях. 7.42. Определить удельное акустическое сопротивление Zs воды при температуре t=15°C.
*См. сноску на с. 108
7.43. Какова максимальная скорость колебательного движения частиц кислорода, через который проходят звуковые волны, если амплитуда звукового давления p0=0,2 Па, температура Т кислорода равна 300 К и давление p=100 кПа?
7.44. Определить акустическое сопротивление Za воздуха в трубе диаметром d=20см при температуре T=300 К и давлении p=200 кПа. 7.45. Звук частотой v=400 Гц распространяется в азоте при температуре T=290 К и давлении p=104 кПа. Амплитуда звукового давления p0=0,5 Па. Определить амплитуду А колебаний частиц азота.
7.46. Определить амплитуду p0 звукового давления, если амплитуда А колебаний частиц воздуха равна 1 мкм. Частота звука v =600 Гц.
7.47. На расстоянии r=100 м от точечного изотропного источника звука амплитуда звукового давления 0=0,2 Па. Определить мощность P источника, если удельное акустическое сопротивление Zs воздуха равно 420 Пас/м. Поглощение звука в воздухе не учитывать .
7.48. Источник звука небольших линейных размеров имеет мощность Р=1 Вт. Найти амплитуду звукового давления p0 на расстоянии r =100 м от источника звука, считая его изотропным. Затуханием звука пренебречь.
7.49. В сухом воздухе при нормальных условиях интенсивность I звука равна 10пВт/м2. Определить удельное акустическое сопротивление Zs воздуха при данных условиях и амплитуду p0 звукового давления. 7.50. Найти интенсивности I1 и I2 звука, соответствующие амплитудам звукового давления p01=700 мкПа и p02=40 мкПа. Уровень интенсивности, и уровень громкости звука
7.51. Определить уровень интенсивности Lр звука, если его интенсивность равна: 1) 100 пВт/м2; 2) 10 мВт/м2. 7.52. На расстоянии r1=24 м от точечного изотропного источника звука уровень его интенсивности Lр=32 дБ. Найти уровень интенсивности Lр звука этого источника на расстоянии r2=16 м.
7.53. Звуковая волна прошла через перегородку, вследствие чего уровень интенсивности Lр звука уменьшился на 30 дБ. Во сколько раз уменьшилась интенсивность I звука?
7.54. Уровень интенсивности Lр шума мотора равен 60 дБ. Каков будет уровень интенсивности, если одновременно будут работать: 1) два таких мотора; 2) десять таких моторов?
7.55. Три тона, частоты которых равны соответственно v1=50 Гц, v2=200 Гц и v3=1кГц, имеют одинаковый уровень интенсивности Lр=40 дБ. Определить уровни громкости LN этих тонов.
7.56. Звук частотой v=1 кГц имеет уровень интенсивности Lр=50 дБ. Пользуясь графиком на рис. 7.1, найти уровни интенсивности равно громких с ним звуков с частотами: v1=l кГц, v2=5 кГц, v3=2 кГц, v4,=300 Гц, v5 =50 Гц.
7.57. Уровень громкости тона частотой v=30 Гц сначала был LN1 =10 фон, а затем повысился до LN2=80 фон. Во сколько раз увеличилась интенсивность тона? 7.58. Пользуясь графиком уровней на рис. 7.1, найти уровень громкости LN звука, если частота v звука равна 2 кГц и амплитуда звукового давления 0=0,1 Па. Условия, при которых находится воздух, нормальные.
7.59. Для звука частотой v=2 кГц найти интенсивность I, уровень интенсивности Lр и уровень громкости LN, соответствующие: а) порогу слышимости; б) порогу болевого ощущения. При решении задачи пользоваться графиком на рис. 7.1.
7.60. Мощность Р точечного изотропного источника звука равна 100 мкВт. Найти уровень громкости LN при частоте v=500 Гц на расстоянии r =10 м от источника звука.
7.61. На расстоянии r =100 м от точечного изотропного источника звука уровень громкости Lр, при частоте v=500 Гц равен 20 дБ. Определить мощность Р источника звука.
Молекулярное строение вещества

8.1. Определить относительную молекулярную массу Mr: 1) воды; 2) углекислого газа СО2; 3) поваренной соли NaCl.
8.2. Найти молярную массу М серной кислоты H2SO4.
8.3. Определить массу m1 молекулы: 1) углекислого газа; 2) поваренной соли.
8.4. В сосуде вместимостью V=2 л находится кислород, количество вещества v которого равно 0,2 моль. Определить плотность  газа.
8.5. Определить количество вещества v и число N молекул азота массой m=0,2 кг.
8.6. В баллоне вместимостью V=3л находится кислород массой m=4 г. Определить количество вещества v и число N молекул газа.
8.7. Кислород при нормальных условиях заполняет сосуд вместимостью V=11,2 л. Определить количество вещества v газа и его массу m.
8.8. Определить количество вещества v водорода, заполняющего сосуд вместимостью V=3 л, если плотность газа =6,6510-3 кг/моль.
8.9. Колба вместимостью V=0,5 л содержит газ при нормальных условиях. Определить число N молекул газа, находящихся в колбе.
8.10. Сколько атомов содержится в газах массой 1 г каждый:
1) гелии, 2) углероде, 3) фторе, 4) полонии?
8.11. В сосуде вместимостью V=5л находится однородный газ количеством вещества v==0,2 моль. Определить, какой это газ, если его плотность =1,12 кг/м3.
8.12. Одна треть молекул азота массой m=10 г распалась на атомы. Определить полное число N частиц, находящихся в газе.
8.13. Рассматривая молекулы жидкости как шарики, соприкасающиеся друг с другом, оценить порядок размера диаметра молекулы сероуглерода CS2. При тех же предположениях оценить порядок размера диаметра атомов ртути. Плотности жидкостей считать известными.
8.14. Определить среднее расстояние <l> между центрами молекул водяных паров при нормальных условиях и сравнить его с диаметром d самих молекул (d=0,311 нм).
8.15. В сосуде вместимостью V=1,12 л находится азот при нормальных условиях. Часть молекул газа при нагревании до некоторой температуры оказалась диссоциированной на атомы. Степень диссоциации =0,3. Определить количество вещества: 1) v — азота до нагревания; 2) vмол—молекулярного азота после нагревания;
3) vат — атомарного азота после нагревания: 4) vпол — всего азота после нагревания.
Примечание. Степенью диссоциации называют отношение числа молекул, распавшихся на атомы, к общему числу молекул газа. Степень диссоциации показывает, какая часть молекул распалась на атомы.

Уравнение газового состояния

8.16. В цилиндр длиной l=1,6 м, заполненный воздухом при нормальном атмосферном давлении p0, начали медленно вдвигать поршень площадью 5=200 см2. Определить силу F, которая будет действовать на поршень, если его остановить на расстоянии li=10 см от дна цилиндра.
8.17. Колба вместимостью V=300 см2, закрытая пробкой с краном, содержит разреженный воздух. Для измерения давления в колбе горлышко колбы погрузили в воду на незначительную глубину и открыли кран, в результате чего в колбу вошла вода массой m=292 г. Определить первоначальное давление p в колбе, если атмосферное давление p0=100 кПа.
8.18. В U-образный манометр налита ртуть. Открытое колено манометра соединено с окружающим пространством при нормальном атмосферном давлении 0, и ртуть в открытом колене стоит выше, чем в закрытом, на h=10 см. При этом свободная от ртути часть трубки закрытого колена имеет длину l=20 см. Когда открытое колено присоединили к баллону с воздухом, разность уровней ртути увеличилась и достигла значения h1=26 см. Найти давление  воздуха в баллоне.

Рис. 8.1
8.19. Манометр в виде стеклянной U-образной трубки с внутренним диаметром d=5 мм (рис. 8.1, а) наполнен ртутью так, что оставшийся в закрытом колене трубки воздух занимает при нормальном атмосферном давлении объем V1==10 мм3. При этом разность уровней h1ртути в обоих коленах трубки равна 10 см. При соединении открытого конца трубки с большим сосудом (рис. 8.1, б) разность h2 уровней ртути уменьшилась до 1 см. Определить давление  в сосуде.
8.20. В баллоне содержится газ при температуре t1= 100°С. До какой температуры t2 нужно нагреть газ, чтобы его давление увеличилось в два раза?
8.21. При нагревании идеального газа на Т=1 К при постоянном давлении объем его увеличился на 1/350 первоначального объема. Найти начальную температуру T газа.
8.22. Полый шар вместимостью V=10 см3, заполненный воздухом при температуре T1=573 К, соединили трубкой с чашкой, заполненной ртутью. Определить массу m ртути, вошедшей в шар при остывании воздуха в нем до температуры Т2=293 К. Изменением вместимости шара пренебречь.
8.23. Оболочка воздушного шара вместимостью V=800 м3 целиком заполнена водородом при температуре T1=273 К. На сколько изменится подъемная сила шара при повышении температуры до Т2=293 К? Считать вместимость V оболочки неизменной и внешнее давление нормальным. В нижней части оболочки имеется отверстие, через которое водород может выходить в окружающее пространство.
8.24. В оболочке сферического аэростата находится газ объемом V=1500 м3, заполняющий оболочку лишь частично. На сколько изменится подъемная сила аэростата, если газ в аэростате нагреть от Т0 =273 К до T=293 К? Давления газа в оболочке и окружающего воздуха постоянны и равны нормальному атмосферному давлению.

Рис. 8.2 Рис. 8.3
8.25. Газовый термометр состоит из шара с припаянной к нему горизонтальной стеклянной трубкой. Капелька ртути, помещенная в трубку, отделяет объем шара от внешнего пространства (рис. 8.2). Площадь S поперечного сечения трубки равна 0,1 см2. При температуре T1=273 К капелька находилась на расстоянии l1=30 см от поверхности шара, при температуре Т2=278 К — на расстоянии l2=50 см. Найти вместимость V шара.
8.26. В большой сосуд с водой был опрокинут цилиндрический сосуд (рис. 8.3). Уровни воды внутри и вне цилиндрического сосуда находятся на одинаковой высоте. Расстояние l от уровня воды до дна опрокинутого сосуда равно 40 см. На какую высоту h поднимется вода в цилиндрическом сосуде при понижении температуры от T1=310К до Т2=273 К? Атмосферное давление нормальное.
8.27. Баллон вместимостью V=12 л содержит углекислый газ. Давление p газа равно 1 МПа, температура Т=300 К. Определить массу m газа в баллоне.
8.28. Какой объем V занимает идеальный газ, содержащий количество вещества v=l кмоль при давлении p=1 МПа и температуре T=400 К?
8.29. Котел вместимостью V=2 м3 содержит перегретый водяной пар массой m=10кг при температуре T=500 К. Определить давление p пара в котле.
8.30. Баллон вместимостью V=20 л содержит углекислый газ массой m=500 г под давлением p=1,3 МПа. Определить температуру Т газа.
8.31. Газ при температуре Т=309 К и давлении p=0,7 МПа имеет плотность =12 кг/м3. Определить относительную молекулярную массу Mr газа.
8.32. Определить плотность  насыщенного водяного пара в воздухе при температуре Г=300 К. Давление р насыщенного водяного пара при этой температуре равно 3,55 кПа.
8.33. Оболочка воздушного шара имеет вместимость V=1600 м3. Найти подъемную силу F водорода, наполняющего оболочку, на высоте, где давление p=60 кПа и температура T=280 К. При подъеме шара водород может выходить через отверстие в нижней части шара.
8.34. В баллоне вместимостью V=25 л находится водород при температуре T=290 К. После того как часть водорода израсходовали, давление в баллоне понизилось на p=0,4 МПа. Определить массу m израсходованного водорода.
8.35. Оболочка аэростата вместимостью V=1600 м3, находящегося на поверхности Земли, на k=7/8 наполнена водородом при давлении p1=100 кПа и температуре T=290 К. Аэростат подняли на некоторую высоту, где давление p2==80 кПа и температура Т2=280 К. Определить массу m водорода, вышедшего из оболочки при его подъеме.
Смеси газов
8.36. Какой объем V занимает смесь газов — азота массой m1=1 кг и гелия массой m2=1 кг—при нормальных условиях?
8.37. В баллонах вместимостью V1=20 л и V2=44 л содержится газ. Давление в первом баллоне p1=2,4 МПа, во втором — p2=1,6 МПа. Определить общее давление р и парциальные p'1 и p'2 после соединения баллонов, если температура газа осталась прежней.
8.38. В сосуде вместимостью V=0,01 м3 содержится смесь газов — азота массой m1=7 г и водорода массой m2=1 г— при температуре Т==280 К. Определить давление р смеси газов.
8.39. Найти плотность  газовой смеси водорода и кислорода, если их массовые доли 1 и 2 равны соответственно 1/9 и 8/9. Давление р смеси равно 100 кПа, температура T=300 К.
8.40. Газовая смесь, состоящая из кислорода и азота, находится в баллоне под давлением p=1 МПа. Определить парциальные давления p1 кислорода и p2 азота, если массовая доля 1 кислорода в смеси равна 0,2.
8.41. Сухой воздух состоит в основном из кислорода и азота. Если пренебречь остальными составными частями воздуха, то можно считать, что массовые доли кислорода и азота соответственно 1=0,232, 2=0,768. Определить относительную молекулярную массу Мr воздуха.
8.42. Баллон вместимостью V=30 л содержит смесь водорода и гелия при температуре T=300 К и давлении р=828 кПа. Масса m смеси равна 24 г. Определить массу m1 водорода и массу m2 гелия.
8.43. В сосуде вместимостью V=15 л находится смесь азота и водорода при температуре t=23°С и давлении р=200кПа. Определить массы смеси и ее компонентов, если массовая доля 1 азота в смеси равна 0,7.
8.44. Баллон вместимостью V=5 л содержит смесь гелия и водорода при давлении р=600 кПа. Масса m смеси равна 4 г, массовая доля 1 гелия равна 0,6. Определить температуру Т смеси.
8.45. В сосуде находится смесь кислорода и водорода. Масса m смеси равна 3,6 г. Массовая доля 1 кислорода составляет 0,6. Определить количество вещества v смеси, v1 и v2 каждого газа в отдельности.
 
MassimoДата: Понедельник, 18.11.2013, 15:03 | Сообщение # 5
Полковник
Группа: Администраторы
Сообщений: 183
Репутация: 0
Статус: Offline
Концентрация молекул
9.1. В сосуде вместимостью V=12 л находится газ, число N молекул которого равно 1,441018. Определить концентрацию п молекул газа.
9.2. Определить вместимость V сосуда, в котором находится газ, если концентрация молекул n == 1,251026 м-3, а общее их число N=2,5 •1023.
9.3. В сосуде вместимостью V=20 л находится газ количеством вещества v=l,5кмоль. Определить концентрацию п молекул в сосуде.
9.4. Идеальный газ находится при нормальных условиях в закрытом сосуде. Определить концентрацию п молекул газа.
9.5. В сосуде вместимостью V=5л находится кислород, концентрация п молекул которого равна 9,411023 м-3. Определить массу m газа.
9.6. В баллоне вместимостью V=5 л находится азот массой m=17,5 г. Определить концентрацию п молекул азота в баллоне.
9.7. Определить количество вещества v водорода, заполняющего сосуд вместимостью V=3 л, если концентрация п молекул газа в сосуде равна 21018 м-3.
9.8. В двух одинаковых по вместимости сосудах находятся разные газы: в первом — водород, во втором — кислород. Найти отношение n1/n2 концентраций газов, если массы газов одинаковы.
9.9. Газ массой m=58,5 г находится в сосуде вместимостью V=5 л. Концентрация п молекул газа равна 2,21026 м-3. Какой это газ?
9.10. В баллоне вместимостью V=2 л находится кислород массой m=1,17г. Концентрация п молекул в сосуде равна 1,11025 м-3. Определить по этим данным постоянную Авогадро NA.
9.11. В баллоне находится кислород при нормальных условиях. При нагревании до некоторой температуры часть молекул оказалась диссоциированной на атомы. Степень диссоциации =0,4, Определить концентрации частиц: 1) n1—до нагревания газа; 2) n2—молекулярного кислорода после нагревания; 3) n3—атомарного кислорода после нагревания.
Основное уравнение кинетической теории газов.
Энергия молекул
9.12. Определить концентрацию п молекул идеального газа при температуре T=300 К и давлении p=1 мПа.
9.13. Определить давление p идеального газа при двух значениях температуры газа: 1) T=3 К; 2) T=1 кК. Принять концентрацию п молекул газа равной 1019 см-3.
9.14. Сколько молекул газа содержится в баллоне вместимостью V=30 л при температуре Т=300 К и давлении р=5 МПа?
9.15. Определить количество вещества v и концентрацию п молекул газа, содержащегося в колбе вместимостью V=240 см3 при температуре T=290 К и давлении р=50 кПа.
9.16. В колбе вместимостью V=100 см3 содержится некоторый газ при температуре T=300 К. На сколько понизится давление р газа в колбе, если вследствие утечки из колбы выйдет N= 1020 молекул?
9.17. В колбе вместимостью V =240 см3 находится газ при температуре Т=290 К и давлении р=50 кПа. Определить количество вещества v газа и число N его молекул.
9.18. Давление р газа равно 1 мПа, концентрация п его молекул равна 1010 см-3. Определить: 1) температуру Т газа; 2) среднюю кинетическую энергию <п> поступательного движения молекул газа.
9.19. Определить среднюю кинетическую энергию <п> поступательного движения и среднее значение <>полной кинетической энергии молекулы водяного пара при температуре Т=600 К. Найти также кинетическую энергию W поступательного движения всех молекул пара, содержащего количество вещества v=l кмоль.
9.20. Определить среднее значение <> полной кинетической энергии одной молекулы гелия, кислорода и водяного пара при температуре T=400 К.
9.21. Определить кинетическую энергию <1>, приходящуюся в среднем на одну степень свободы молекулы азота, при температуре Т=1 кК, а также среднюю кинетическую энергию <п> поступательного движения, <вр> вращательного движения и среднее значение полной кинетической энергии <> молекулы.
9.22. Определить число N молекул ртути, содержащихся в воздухе объемом V=1м3 в помещении, зараженном ртутью, при температуре t=20 °C, если давление р насыщенного пара ртути при этой температуре равно 0,13 Па.
9.23. Для получения высокого вакуума в стеклянном сосуде необходимо прогревать его при откачке с целью удалить адсорбированные газы. Определить, на сколько повысится давление в сферическом сосуде радиусом R=10 см, если все адсорбированные молекулы перейдут со стенок в сосуд. Слой молекул на стенках считать мономолекулярным, сечение  одной молекулы равно 10-15 см2. Температура Т, при которой производится откачка, равна 600 К.
9.24. Определить температуру Т водорода, при которой средняя кинетическая энергия <п> поступательного движения молекул достаточна для их расщепления на атомы, если молярная энергия диссоциации водорода Wm=419 кДж/моль.
Примечание. Молярной энергией диссоциации называется энергия, затрачиваемая на диссоциацию всех молекул газа количеством вещества v =1 моль.

Скорости молекул
9.25. Найти среднюю квадратичную <кв> среднюю арифметическую <> и наиболее вероятную в скорости молекул водорода. Вычисления выполнить для трех значений температуры: 1) T=20 К; 2) T=300 К; 3) Т=5 кК.
9.26. При какой температуре Т средняя квадратичная скорость атомов гелия станет равной второй космической скорости 2=11,2 км/с?
9.27. При какой температуре Т молекулы кислорода имеют такую же среднюю квадратичную скорость <кв>, как молекулы водорода при температуре T1=100 К?
9.28. Колба вместимостью V=4 л содержит некоторый газ массой m=0,6 г под давлением p=200 кПа. Определить среднюю квадратичную скорость <кв> молекул газа.
9.29. Смесь гелия и аргона находится при температуре T=1,2 кК. Определить среднюю квадратичную скорость <кв> и среднюю кинетическую энергию атомов гелия и аргона.
9.30. Взвешенные в воздухе мельчайшие пылинки движутся так, как если бы они были очень крупными молекулами. Определить среднюю квадратичную скорость <кв> пылинки массой m=10-10 г, если температура Т воздуха равна 300 К.
9.31. Во сколько, раз средняя квадратичная скорость <кв> молекул кислорода больше средней квадратичной скорости пылинки массой m=10-8 г, находящейся среди молекул кислорода?
9.32. Определить среднюю арифметическую скорость <> молекул газа, если их средняя квадратичная скорость <кв>=1 км/с.
9.33. Определить наиболее вероятную скорость в молекул водорода при температуре T=400 К.
Распределение Больцмана

10.1. Пылинки, взвешенные в воздухе, имеют массу m=10-18 г. Во сколько раз уменьшится их концентрация п при увеличении высоты на h =10 м? Температура воздуха Т=300 К.
10.2. Одинаковые частицы массой m=10-12 г каждая распределены в однородном гравитационном поле напряженностью G=0,2 мкН/кг. Определить отношение п1/п2 концентраций частиц, находящихся на эквипотенциальных уровнях, отстоящих друг от друга на z= 10 м. Температура Т во всех слоях считается одинаковой и равной 290 К.
10.3. Масса m каждой из пылинок, взвешенных в воздухе, равна 1 аг. Отношение концентрации n1 пылинок на высоте h1=1м к концентрации п0 их на высоте h0=0 равно 0,787. Температура воздуха Т=300 К. Найти по этим данным значение постоянной Авогадро NА,.
10.4. Определить силу F, действующую на частицу, находящуюся во внешнем однородном поле силы тяжести, если отношение п1/п2 концентраций частиц на двух уровнях, отстоящих друг от друга на z=1 м, равно e. Температуру Т считать везде одинаковой и равной 300 К.
10.5. На сколько уменьшится атмосферное давление р=100 кПа при подъеме наблюдателя над поверхностью Земли на высоту h=100 м? Считать, что температура Т воздуха равна 290 К и не изменяется с высотой.
10.6. На какой высоте h над поверхностью Земли атмосферное давление вдвое меньше, чем на ее поверхности? Считать, что температура Т воздуха равна 290 К и не изменяется с высотой.
10.7. Барометр в кабине летящего вертолета показывает давление р=90 кПа. На какой высоте h летит вертолет, если на взлетной площадке барометр показывал давление p0=100 Па? Считать, что температура Т воздуха равна 290 К и не изменяется с высотой.
10.8. Найти изменение высоты h, соответствующее изменению давления на p=100 Па, в двух случаях: 1) вблизи поверхности Земли, где температура T1=290 К, давление p1=100 кПа; 2) на некоторой высоте, где температура Т2=220 К, давление p2=25 кПа.
10.9. Барометр в кабине летящего самолета все время показывает одинаковое давление р=80 кПа, благодаря чему летчик считает высоту h полета неизменной. Однако температура воздуха изменилась на T=1 К. Какую ошибку h в определении высоты допустил летчик? Считать, что температура не зависит от высоты и что у поверхности Земли давление р0=100 кПа.
10.10. Ротор центрифуги вращается с угловой скоростью . Используя функцию распределения Больцмана, установить распределение концентрации п. частиц массой m, находящихся в роторе центрифуги, как функцию расстояния r от оси вращения.
10.11. В центрифуге с ротором радиусом а, равным 0,5 м, при температуре T=300К находится в газообразном состоянии вещество с относительной молекулярной массой Mr=108. Определить отношение na/n0 концентраций молекул у стенок ротора и в центре его, если ротор вращается с частотой п=30 с-1.
10.12. Ротор центрифуги, заполненный радоном, вращается с частотой п=50с-1. Радиус а ротора равен 0,5 м. Определить давление р газа на стенки ротора, если в его центре давление р0 равно нормальному атмосферному. Температуру Т по всему объему считать одинаковой и равной 300 К.
10.13. В центрифуге находится некоторый газ при температуре Т=271 К. Ротор центрифуги радиусом а=0,4 м вращается с угловой скоростью =500 рад/с. Определить относительную молекулярную массу Мr газа, если давление р у стенки ротора в 2,1 раза больше давления p0 в его центре.
10.14. Ротор ультрацентрифуги радиусом а=0,2 м заполнен атомарным хлором при температуре T=3 кК. Хлор состоит из двух изотопов: 37Cl и 35Cl. Доля 1 атомов изотопа 37Cl составляет 0,25. Определить доли '1 и '2 атомов того и другого изотопов вблизи стенок ротора, если ротору сообщить угловую скорость вращения , равную 104 рад/с.

Распределение молекул по скоростям
и импульсам
10.15. Зная функцию распределения молекул по скоростям, вывести формулу наиболее вероятной скорости в.
10.16. Используя функцию распределения молекул по скоростям, получить функцию, выражающую распределение молекул по относительным скоростям и (u=/в).
10.17. Какова вероятность W того, что данная молекула идеального газа имеет скорость, отличную от ½в не более чем на 1 %?
10.18. Найти вероятность W того, что данная молекула идеального газа имеет скорость, отличную от 2в не более чем на 1 %.
10.19. Зная функцию распределения молекул по скоростям, вывести формулу, определяющую долю  молекул, скорости  которых много меньше наиболее вероятной скорости в.
10.20. Определить относительное число  молекул идеального газа, скорости которых заключены в пределах от нуля до одной сотой наиболее вероятной скорости в.
10.21. Зная функцию распределения молекул по скоростям, определить среднюю арифметическую скорость <> молекул.
10.22. По функции распределения молекул по скоростям определить среднюю квадратичную скорость <кв >
10.23. Определить, какая из двух средних величин, <1/> или 1/<>, больше, и найти их отношение k.
10.24. Распределение молекул по скоростям в молекулярных пучках при эффузионном истечении* отличается от максвелловского и имеет вид . Определить из условия нормировки коэффициент С.
10.25. Зная функцию распределения молекул по скоростям в некотором молекулярном пучке , найти выражения для: 1) наиболее вероятной скорости в; 2) средней арифметической скорости <>.
10.26. Водород находится при нормальных условиях и занимает объем V=1 см3. Определить число N молекул в этом объеме, обладающих скоростями, меньшими некоторого значения max=1 м/с.
10.27. Вывести формулу наиболее вероятного импульса рв молекул идеального газа.
10.28. Найти число N молекул идеального газа, которые имеют импульс, значение которого точно равно наиболее вероятному значению рв.
10.29. Вывести формулу, определяющую среднее значение компонента импульса < р> молекул идеального газа.
10.30. На сколько процентов изменится наиболее вероятное значение рв импульса молекул идеального газа при изменении температуры на один процент?
10.31. Найти выражение для импульса молекул идеального газа, энергии которых равны наиболее вероятному значению энергии.
* Эффузионным называется истечение газов через отверстия, малые по сравнению с длиной свободного пробега молекулы.

Распределение молекул по кинетическим энергиям
10.32. Найти выражение средней кинетической энергии <в> поступательного движения молекул. Функцию распределения молекул по энергиям считать известной.
10.33. Преобразовать формулу распределения молекул по энергиям в формулу, выражающую распределение молекул по относительным энергиям (=п/<п>), где п —кинетическая энергия; <п> — средняя кинетическая энергия поступательного движения молекул.
10.34. Определить долю  молекул идеального газа, энергии которых отличаются от средней энергии <п> поступательного движения молекул при той же температуре не более чем на 1 %.
10.35. Вывести формулу, определяющую долю  молекул, энергия  которых много меньше kT. Функцию распределения молекул по энергиям считать известной.
10.36. Определить долю  молекул, энергия которых заключена в пределах от 1=0 до 2=0,011kТ.
10.37. Число молекул, энергия которых заключена в пределах от нуля до некоторого значения , составляет 0,1 % от общего числа молекул. Определить величину  в долях kT.
10.38. Считая функцию распределения молекул по энергиям известной, вывести формулу, определяющую долю  молекул, энергия  которых много больше энергии теплового движения молекул.
10.39. Число молекул, энергия которых выше некоторого значения 1, составляет 0,1 от общего числа молекул. Определить величину 1 в долях kT, считая, что 1»kT.
Указание. Получающееся трансцендентное уравнение решить графически.
10.40. Используя функцию распределения молекул по энергиям, определить наиболее вероятное значение энергии в.
10.41. Преобразовать функцию f()d распределения молекул по кинетическим энергиям в функцию f()d распределения молекул по относительным кинетическим энергиям (где =/в; в — наиболее вероятное значение кинетической энергии молекул).
10.42. Найти относительное число  молекул идеального газа, кинетические энергии которых отличаются от наиболее вероятного значения в энергии не более чем на 1 %.
10.43. Определить относительное число  молекул идеального газа, кинетические энергии которых заключены в пределах от нуля до значения, равного 0.01 в (в — наиболее вероятное значение кинетической энергии молекул).
10.44. Найти выражение для кинетической энергии молекул идеального газа, импульсы которых имеют наиболее вероятною Значение рв.
10.45. Во сколько раз изменится значение максимума функции f() распределения молекул идеального газа по энергиям, если температура Т газа увеличится в два раза? Решение пояснить графиком.
10.46. Определить, во сколько раз средняя кинетическая энергия <п> поступательного движения молекул идеального газа отличается от наиболее вероятного значения п кинетической энергии поступательного движения при той же температуре.

Длина свободного пробега и число столкновений молекул

10.47. Найти среднюю длину свободного пробега <l> молекул водорода при давлении p=0,1 Па и температуре Т=100 К.
10.48. При каком давлении р средняя длина свободного пробега <l> молекул азота равна 1 м, если температура Т газа равна 300 К?
10.49. Баллон вместимостью V=10 л содержит водород массой m=1 г. Определить среднюю длину свободного пробега <l> молекул.
10.50. Можно ли считать вакуум с давлением p=100 мкПа высоким, если он создан в колбе диаметром d=20 см, содержащей азот при температуре T=280 К?
10.51. Определить плотность  разреженного водорода, если средняя длина свободного пробега <l> молекул равна 1 см.
10.52. Найти среднее число <z> столкновений, испытываемых в течение t=1 с молекулой кислорода при нормальных условиях.
10.53. Найти число N всех соударений, которые происходят в течение t=1 с между всеми молекулами водорода, занимающего при нормальных условиях объем V=1 мм3.
10.54. В газоразрядной трубке находится неон при температуре T=300 К и давлении p=1 Па. Найти число N атомов неона, ударяющихся за время t=1 с о катод, имеющий форму диска площадью S==1 см2.
10.55. Найти среднюю продолжительность <> свободного пробега молекул кислорода при температуре Т=250 К и давлении р=100 Па.
10.56. Найти зависимость средней длины свободного пробега <l> молекул идеального газа от давления р при следующих процессах: 1) изохорном; 2) иэотермическом. Изобразить эти зависимости на графиках.
10.57. Найти зависимость средней длины свободного пробега <l> молекул идеального газа от T температуры при следующих процессах: 1) изохорном; 2) изобарном. Изобразить эта зависимости на графиках.
10.58. Найти зависимость среднего числа столкновений <z> молекулы идеального газа в 1 с от давления р при следующих, процессах: 1) изохорном; 2) изотермическом. Изобразить эти зависимости на графиках.
10.59. Найти зависимость среднего числа столкновений (г) молекулы идеального газа в 1 с от температуры Т при следующих процессах: 1) изохорном; 2) изобарном. Изобразить эти зависимости на графиках.

Явления переноса: диффузия, вязкость,
теплопроводность
10.60. Средняя длина свободного пробега <l> атомов гелия при нормальных условиях равна 180 нм. Определить диффузию D гелия.
10.61. Диффузия D кислорода при температуре t=0°С равна 0,19 см2/с. Определить среднюю длину свободного пробега <l> молекул кислорода.
10.62. Вычислить диффузию D азота: 1) при нормальных условиях; 2) при давлении p=100 Па и температуре T=300 К.
10.63. Определить, во сколько раз отличается диффузия D1 газообразного водорода от диффузии D2 газообразного кислорода, если оба газа находятся при одинаковых условиях.
10.64. Определить зависимость диффузии D от температуры Т при следующих процессах: 1) изобарном; 2) изохорном.
10.65. Определить зависимость диффузии D от давления р при следующих процессах: 1) изотермическом; 2) изохорном.
10.66. Вычислить динамическую вязкость  кислорода при нормальных условиях.
10.67. Найти среднюю длину свободного пробега <l> молекул, азота при условии, что его динамическая вязкость =17 мкПас.
10.68. Найти динамическую вязкость  гелия при нормальных условиях, если диффузия D при тех же условиях равна 1,0610-4 м2/с.
10.69. Определить зависимость динамической вязкости  от температуры Т при следующих процессах: 1) изобарном; 2) изохорном. Изобразить эти зависимости на графиках.
10.70. Определить зависимость динамической вязкости  от давления p при следующих процессах: 1) изотермическом; 2) изохорном. Изобразить эти зависимости на графиках.
10.71. Цилиндр радиусом R1=10 см и длиной l=30 см расположен внутри цилиндра радиусом , R2=10,5 см так, что оси обоих цилиндров совпадают. Малый цилиндр неподвижен, большой вращается относительно геометрической оси с частотой n=15с-1. Динамическая вязкость  газа, в котором находятся цилиндры, равна 8,5 мкПас. Определить: 1) касательную силу F, действующую на поверхность внутреннего цилиндра площадью S=l м2; 2) вращающий момент М, действующий на этот цилиндр.
10.72. Два горизонтальных диска радиусами R=20 см расположены друг над другом так, что оси их совпадают. Расстояние d между плоскостями дисков равно 0,5 см. Верхний диск неподвижен, нижний вращается относительно геометрической оси с частотой n=10с-1. Найти вращающий момент М, действующий на верхний диск. Динамическая вязкость  воздуха, в котором находятся диски, равна 17,2 мкПас.
10.73. В ультраразреженном азоте, находящемся под давлением p=1 мПа и при температуре T=300 К, движутся друг относительно друга две параллельные пластины со скоростью u=1 м/с. Расстояние между пластинами не изменяется и много меньше средней длины свободного пробега молекул. Определить силу F внутреннего трения, действующую на поверхность пластин площадью S=1 м2.
10.74. Вычислить теплопроводность  гелия при нормальных условиях.
10.75. В приближенной теории явлений переноса получается соотношение /=cv. Более строгая теория приводит к значению /=Kcv, где К — безразмерный коэффициент, равный (9—5)/4 (—показатель адиабаты). Найти значения К, вычисленные по приведенной формуле и по экспериментальным данным, приведенным в табл. 12, для следующих газов: 1) аргона; 2) водорода; 3) кислорода; 4) паров воды.
10.76. При нормальных условиях динамическая вязкость  воздуха равна 17,2 мкПас. Найти для тех же условий теплопроводность  воздуха. Значение К вычислить по формуле, приведенной в задаче 10.75.
10.77. Найти зависимость теплопроводности  от температуры T при следующих процессах: 1) изобарном; 2) изохорном. Изобразить эти зависимости на графиках.
10.78. Найти зависимость теплопроводности  от давления р при следующих процессах: 1) изотермическом; 2) изохорном. Изобразить эти зависимости на графиках.
10.79. Пространство между двумя большими параллельными пластинами, расстояние d между которыми равно 5 мм, заполнено гелием. Температура T1 одной пластины поддерживается равной 290 К, другой — T2=310 К. Вычислить плотность теплового потока |q|. Расчеты выполнить для двух случаев, когда давление р гелия равно: 1) 0,1 МПа; 2) 1 МПа.
 
  • Страница 1 из 4
  • 1
  • 2
  • 3
  • 4
  • »
Поиск: